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We present the first numerical models of differentially rotating stars in alternative theories of gravity.
We chose a particular class of scalar-tensor theories of gravity that is indistinguishable from general
relativity in the weak-field regime but can lead to significant deviations when strong fields are considered.
We show that the maximum mass that a differentially rotating neutron star can sustain increases
significantly for scalarized solutions and such stars can reach larger angular momenta. In addition, the
presence of a nontrivial scalar field has the effect of increasing the required axis ratio for reaching a given
value of angular momentum, when compared to a corresponding model of the same rest mass in general
relativity. We find that the scalar field also makes rapidly rotating models less quasitoroidal than their
general-relativistic counterparts. For large values of the angular momentum and values of the coupling
parameter that are in agreement with the observations, we find a second turning point for scalarized models
along constant angular momentum sequences, which could have interesting implications for the stability of
remnants created in a binary neutron star merger.
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I. INTRODUCTION

The gravitational wave observations of merging neutron
stars open new horizons towards testing our fundamental
understanding of the laws of nature, such as the behavior of
matter at extreme densities and the strong-field regime of
gravity. Such mergers are being studied with fully nonlinear
three-dimensional, general-relativistic simulations, which
are computationally very demanding (see Refs. [1–3] and
references therein). Very valuable conclusions on the fate
of binary neutron star mergers can also be reached by
examining equilibrium sequences of rotating neutron stars
(see e.g., Refs. [4–7]). The remnants formed after a binary
neutron star merger have strong differential rotation, which
can temporarily delay the collapse to a black hole. In the
case of neutron star formation through core collapse, even
though the standard scenario is a slowly rotating nascent
neutron star, a rapidly and differentially rotating neutron
star cannot be excluded for some progenitors.
Methods for studying equilibrium models of differen-

tially rotating neutron stars in general relativity (GR) are
well established (see Refs. [2,8] and reference therein).

In contrast to the uniformly rotating case, where a model
is defined uniquely by three parameters, in the case of
differential rotation different types of equilibrium models
can exist [9–11], such as quasitoroidal configurations and
additional types. In the case of binary neutron star mergers,
simulations show that the remnant is still quasispherical,
but with a rotational profile such that the maximum angular
velocity appears off center (see, e.g., Refs. [12–14]).
To date, models of differentially rotating neutron stars

have been constructed only in GR. Even though Einstein’s
theory of gravity is very well tested in the weak-field
regime (mainly with the Solar System experiments), con-
straints in the strong-field regime (such as through gravi-
tational waves from the coalescence and merger of compact
objects) still have large error bars (e.g., Refs. [15,16]).
Further tests using gravitational waves in the near future,
could narrow the constraints in the strong-field regime.
For binary neutron star mergers, the uncertainties in the
equation of state (EOS) and in the correct theory of gravity
need to be disentangled. In the present work we take a step
in this direction by examining, for the first time, differ-
entially rotating equilibrium models of neutron stars in a
well-known alternative theory of gravity: the scalar-tensor
theory. Our equilibrium sequences could be used to extend
the universal (EOS-independent) relations found in GR
[4–7] and thus obtain some insight regarding the outcome
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of neutron star mergers, without performing nonlinear
simulations.
Neutron star models in scalar-tensor theories became

particularly popular after the discovery by Damour and
Esposito-Farèse [17] that in certain classes of scalar field
coupling functions a nontrivial structure of the solutions is
present. That is, in addition to the GR neutron stars that are
always solutions of the field equations, additional branches
of neutron stars with a nontrivial scalar field exist for a
certain range of the parameters. Moreover, these theories
are perturbatively equivalent to GR in the weak-field
regime so that they satisfy all Solar System experiments.
Most importantly, these scalarized solutions are energeti-
cally favored over the corresponding GR solutions [17–19].
Slowly rotating neutron stars were constructed in
Refs. [20–23] and the case of rapid rotation was examined
in Refs. [24,25], where it was shown that neutron star
models with high rotation rates can deviate significantly
from the corresponding GR models (in contrast to the case
of nonrotating or slowly rotating models). Currently, the
binary pulsar experiments heavily constrain the values of
the free parameters of the theory [26–28] which leaves very
little space for deviations from GR in the nonrotating case,
while the regime of rapid rotation opens new prospects in
testing scalar-tensor theories. We note that in the case of a
binary neutron star merger, scalarization can occur dynami-
cally during inspiral [29,30].
The structure of the paper is as follows. In Sec. II we

review briefly the theory behind constructing equilibrium
differentially rotating neutron stars in scalar-tensor theo-
ries. The numerical results are presented in Sec. III.
Conclusions are presented in Sec. IV.

II. ROTATING STARS IN SCALAR-TENSOR
THEORIES OF GRAVITY

The general form of the Einstein frame action in scalar-
tensor theories (STT) is

S ¼ 1

16πG�

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2gμν∂μφ∂νφ − 4VðφÞÞ

þ Sm½Ψm;A2ðφÞgμν�; ð1Þ
where R is the Ricci scalar with respect to the Einstein
frame metric gμν, VðφÞ is the scalar field potential and
A2ðφÞ is the Einstein frame coupling function between the
matter and the scalar field that appears in the action of the
matter Sm. The matter fields are collectively denoted byΨm.
After varying the action one can obtain the following field
equations:

Rμν −
1

2
gμνR ¼ 8πG�Tμν þ 2∂μφ∂νφ − gμνgαβ∂αφ∂βφ

− 2VðφÞgμν; ð2Þ

∇μ∇μφ ¼ −4πG�kðφÞT þ dVðφÞ
dφ

; ð3Þ

where kðφÞ is defined as

kðφÞ ¼ d lnðAðφÞÞ
dφ

: ð4Þ

In the present paper we will consider a class of STT
with zero scalar field potential VðφÞ ¼ 0 and coupling
function

kðφÞ ¼ βφ; ð5Þ

where β is a constant. This case is particularly interesting,
since the resulting STT is perturbatively equivalent to GR
in the weak-field regime while, nonlinear effects, such as
the scalarization of neutron stars, can be observed for
strong fields.
We consider equilibrium configurations, in which the

matter and scalar field (and hence the spacetime) are
stationary and axisymmetric. In this case, the metric can
take the following general form:

ds2 ¼ −eγþσdt2 þ eγ−σr2sin2θðdϕ − ωdtÞ2
þ e2αðdr2 þ r2dθ2Þ; ð6Þ

where all metric functions depend only on r and θ. The
explicit form of the dimensionally reduced field equations
was given in Refs. [24,25,31]. In this section, we will
discuss in detail only the equation for hydrostationary
equilibrium, since it depends directly on the chosen rotation
law. This equation can be derived from the conservation of
the energy-momentum tensor that takes the following form
in the Einstein frame:

∇μTμ
ν ¼ kðφÞT∂νφ: ð7Þ

For a perfect fluid

Tμν ¼ ðεþ pÞuμuν þ pgμν; ð8Þ

where p and ε are the Einstein frame pressure and energy
density of the fluid. One can easily show that the Einstein
frame fluid four-velocity takes the form

uμ ¼ e−ðσþγÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ½1; 0; 0;Ω�; ð9Þ

where the angular velocity is defined as

Ω ¼ uϕ

ut
; ð10Þ

and the proper velocity v of the fluid is given by

v ¼ ðΩ − ωÞr sin θe−σ: ð11Þ
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For a uniformly rotating star,Ω is a constant throughout the
star, while for differential rotation Ω ¼ Ωðr; θÞ.
Up to this point, we defined quantities in the Einstein

frame for convenience in the calculations, which differs
from the physical frame (Jordan frame) by a conformal
transformation of the metric plus a redefinition of the scalar
field. After completing the calculations in the Einstein
frame, quantities of interest will be reported in the physical
Jordan frame. Detailed relations between the two frames,
especially in the case of rapidly rotating neutron stars, can
be found in Ref. [24]. Here, we will only mention some of
the basic relations that are directly relevant for the results
presented in Sec. III.
The energy-momentum tensor, the energy density, the

pressure and the four-velocity transform between the two
frames as

Tμν ¼ A2ðφÞT̃μν;

ε ¼ A4ðφÞε̃;
p ¼ A4ðφÞp̃;
uμ ¼ A−1ðφÞũμ; ð12Þ

where the Jordan frame quantities are denoted with a tilde.
Ω and v remain the same in both frames.
With the above assumptions, the hydrostationary equi-

librium is described by

∂ip̃
ε̃þ p̃

− ½∂iðln utÞ − utuϕ∂iΩ − kðφÞ∂iφ� ¼ 0: ð13Þ

In Eq. (13) we have deliberately used the Jordan frame
pressure and energy density. The reason is that the field
equations and the equation for hydrostationary equilibrium
have to be supplemented with an equation of state for high-
density matter, which is given in terms of ε̃ and p̃.
For a barotropic EOS, where p̃ ¼ p̃ðε̃Þ, the integrability

condition of Eq. (13) leads to the requirement that the
product utuϕ is a function only of the angular velocity Ω,
i.e., utuϕ ¼ FðΩÞ. In the present paper, we will work with
one of the most standard and widely used choices for FðΩÞ,
namely

FðΩÞ ¼ A2
diffðΩc −ΩÞ; ð14Þ

where Adiff is a parameter and Ωc is the central value of the
angular velocity [32,33]. Of course other choices of FðΩÞ
are possible but since this is the first study of differentially
rotating neutron stars in alternative theories of gravity we
will limit ourselves to the classical case and leave the
exploration of other functions FðΩÞ, especially the ones
relevant for neutron star mergers [2,5,7,12–14], for a future
study.
Let us comment on the relation between the Jordan

and the Einstein frame mass, radius and angular momentum

of the star. The tensor mass of the neutron stars is by
definition the Arnowitt-Deser-Misner mass in the Einstein
frame that can be calculated either via an integral through-
out the star or from the asymptotics of the Einstein frame
metric [8,24,34]. Moreover, for the particular coupling
functions A2ðφÞ considered in the present paper, this mass
coincides with the Jordan frame one. The angular momen-
tum is by definition the same in the two frames. What
differs between the two frames, though, is the expression
for the radius of the star. Thus the Jordan frame stellar
radius is

R̃e ¼ AðφÞreðγ−σÞ=2jr¼re;θ¼π=2; ð15Þ

where re is defined to be the Einstein frame coordinate
equatorial radius of the star [corresponding to the location
where the pressure vanishes p̃ðre; θ ¼ π=2Þ ¼ 0].

III. MAIN RESULTS

A. Constant angular momentum sequences

In order to isolate the effect of differential rotation, we
focus, in the present paper, on a single hadronic equation of
state with average stiffness: APR4 [35]. Notice that this
equation of state gives a neutron star radius of ∼12 km at a
mass of 1.5 M⊙, which is within the range of ∼10–13.3 km
inferred from the first binary neutron star merger event
(GW170817) detected with gravitational waves [36,37].
Radii significantly larger than ∼14 km are also strongly
disfavored by observations in the electromagnetic spectrum
(see, e.g., Refs. [38,39]) while analyses of the implications
of GW170817 for the stability of post-merger remnants
have set a strict lower limit of 10.7 km on the radius of
typical nonrotating neutron stars [40], a maximum radius of
13.6 km [41] as well as upper limits on the maximum mass
of nonrotating neutron stars [42,43]. The APR4 EOS is thus
a good candidate EOS of average stiffness, compatible with
the above observational constraints and a more extensive
study of the effect of varying the equation of state is left
for future work. The numerical solution of the reduced field
equations is performed using a new version of the RNS

code [34] with differential rotation [9] extended to STT
[24,25,31]. This code is based on the Komatsu-Eriguchi-
Hachisu method [32,33] with the modifications introduced
in Refs. [44,45] and has proved to be very reliable and
robust for rapidly rotating neutron star models in GR, both
uniformly and differentially rotating. Here we report results
for Â ¼ Adiff=re ¼ 1.225 that were used in previous studies
of differentially rotating neutron stars in GR (in the context
of the stability of post-merger remnants [5]).
In Fig. 1 we plot sequences with constant angular

momentum J (in geometrical units), both in the GR case
and for STTwith different values of β. In the left panel the
mass M as a function of the central energy density ε̃c is
shown, while in the right panel the mass as a function of
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the neutron star radius Re is plotted. We have chosen to
present constant-J sequences since their turning points in
an Mðε̃cÞ plot are related to the change of quasiradial
stability. There is no turning-point theorem for the onset of
instability for differentially rotating stars, but simulations
have shown that the actual dynamical instability is rela-
tively close to the turning points [6]. The model with the
smallest central energy density for each sequence with
J > 0 is at the mass-shedding limit. The sequences are
terminated at a central energy density only somewhat
higher than the turning point. Notice that for high angular
momentum (J > 6) the sequences terminate at a central
energy density somewhat smaller than the actual turning
point. The reason for this is the following. At axis ratios
smaller than 0.5, models can become quasitoroidal (more
generally, several types of differentially rotating solutions
can exist [46]) and that is why in some parts of the
parameter space exactly close to the turning point, the
numerical method in RNS may not converge to a unique
solution. This problem could be circumvented using a
different formulation, as in Ref. [46].
As J increases, the central energy density of the model at

the mass-shedding limit increases, whereas the central
energy density of the model close to the turning point
decreases. For high J the range of central energy densities
for which models exist thus becomes shorter and for J ≳ 9
there is no equilibrium sequence in GR, for the chosen
rotation law (see Fig. 1) (notice that uniformly rotating
models are limited to J ≲ 4 in geometrical units).
We find that scalarized differentially rotating solutions

can reach larger values of J, depending on the chosen value
of the parameter β. In Fig. 1 we show results up to J ¼ 10,
but the particular threshold value of J above which no
solutions can be obtained would depend on the parameter β.

We expect that the existence of models with higher J in
scalarized solutions is related to the modification of the
matter distribution inside the star, when a scalar field is
present.
In Fig. 1 results for two values of β are presented,

β ¼ −4.5 and β ¼ −6, but if we consider massless STT
only β ¼ −4.5 is within the observational limits implied by
Refs. [26,27]. The examination of models with β ¼ −6
can be justified on the following grounds. First, since this is
the first study of differentially rotating neutron stars in STT,
we want to study in detail the effect of varying β on the
results. Second, considering β < −4.5 can be justified also
if the scalar field has nonzero mass. In this case the scalar
field will be confined within its Compton wavelength
which is directly related to its mass. Thus, for large enough
values of the mass the emission of scalar gravitational
radiation could be suppressed, which would reconcile the
theory with the binary pulsar observations for a larger range
of β [47–49]. The massless case for different β shown in
Fig. 1 is actually the upper limit for the deviations from GR
in the massive case for the same values of β, which justifies
our choice of examining scalarized models with β < −4.5.
Even if we limit our study to the β ¼ −4.5 case, an

interesting observation can be made. While the scalarized
neutron stars with β ¼ −4.5 are almost indistinguishable
from their GR counterparts for J ¼ 0, a clear difference
appears for higher J. In addition, the scalarized neutron
stars reach larger values of J, when compared to the GR
case, as discussed above. The maximum mass that a
differentially rotating neutron star can sustain therefore
is higher for scalarized models than for GR models (with a
strong dependence on the particular value of β). Notice that
in the present paper we compare differentially rotating
sequences of scalarized models with constant J to their GR

FIG. 1. Left panel: The mass as a function of the central energy density for differentially rotating sequences of neutron stars with
constant angular momentum (J is given in geometrical units). All the models have fixed Â ¼ Adiff=re ¼ 1.225. Sequences are shown for
β ¼ 0 (GR), β ¼ −4.5 and β ¼ −6. Right panel: Same as left panel, but as a function of radius.
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counterparts, whereas in Refs. [24,25] sequences at the
mass-shedding limit were considered. (This explains the
somewhat smaller deviations from GR, for the same β, in
the current results, with respect to those observed in
Refs. [24,25]).
In Fig. 1 we also make the following observation:

scalarized solutions with sufficient angular momentum
(e.g., J ¼ 4, or J ¼ 6) posses two turning points along a
constant-J sequence for values of the parameter β that are in
agreement with the observations in the massless STT case,
i.e., β > −4.5, while only one turning point appears for
smaller values of J. The turning point at higher central
density is the same as in GR. But, a second turning-point
appears at somewhat lower central density. Such a phe-
nomenon, i.e., the appearance of two turning points, is also
observed for more negative values of β even in the

nonrotating case, but if we consider massless STT, they
are not within the observational limits. Since in GR turning
points are associated with quasiradial stability and the
scalarized solution is energetically favored over the GR
solution (in the region where scalarized solutions appear)
it will be important to study the dynamical properties of
models along such constant-J sequences, in order to
determine whether an unstable region exists between the
two turning points (which would have important astro-
physical consequences for the stability of binary neutron
star merger remnants).

B. Structure of individual models

In Fig. 2, contour plots of the neutron star energy density
are presented for a model with baryon mass Mb ¼ 3.0 M⊙

FIG. 2. Contour plots of the neutron star energy density for a model with Â ¼ Adiff=re ¼ 1.225, J ¼ 4 (in geometrical units) and
baryon massM0 ¼ 3.0 M⊙. Left panel: β ¼ 0 (GR). Right panel: β ¼ −4.5. Notice that the scalarized model has a somewhat larger axis
ratio and the core is less quasitoroidal.

FIG. 3. Same as Fig. 2, but for J ¼ 7.
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and angular momentum J ¼ 4, for both the GR case (left
panel) and for STT with β ¼ −4.5 (right panel). This
specific value of the baryon mass is chosen because the
merger of two standard mass neutron stars (say with a
gravitational mass approximately 1.3 − 1.4 M⊙) will result
in a supramassive neutron star with baryon mass roughly
3.0 M⊙ for the APR4 EOS (the merger of two neutron stars
is the most likely viable astrophysical scenario for creating
neutron stars of such high masses). Two main differences
between GR and STT are observed: a) for the same angular
momentum, the STT model has a somewhat larger axis
ratio and b) the core of the STT model is less quasitoroidal
than the core of the GR model. These differences should be
attributed to the effect of the scalar field in the interior of
the star.
In Fig. 3, we show a similar comparison as in Fig. 2, but

for a higher angular momentum of J ¼ 7. This time, the
two main differences between GR and STT (a larger axis
ratio and a core which is less quasitoroidal in STT than
in GR) are much more pronounced than for the slower-
rotating J ¼ 4 model.
Finally, Fig. 4 shows the distribution of the scalar field

(up to a distance of twice the coordinate equatorial radius)
for the two models with J ¼ 4 and J ¼ 7. It is evident, that
the scalar field is significantly less distorted away from
spherical symmetry, when compared to the rotational
distortion of the matter distribution. Even in the case of
the rapidly rotating J ¼ 7 model, in which the matter
distribution is highly quasitoroidal, the scalar field remains
quasispherical.

IV. DISCUSSION

We presented the first numerical models of differentially
rotating stars in alternative theories of gravity. Specifically,
we studied models in a particular class of scalar-tensor

theories of gravity that is indistinguishable from GR in the
weak-field regime but can lead to significant deviations
when strong fields are considered. The results were
obtained using a new version of the RNS code, employing
the usual one-parameter rotation law for differential rota-
tion. The degree of differential rotation considered in this
paper was chosen so as to lead to bulk properties (mass,
angular momentum and size) similar to those expected for
binary neutron star merger remnants (see also Ref. [5]).
Sequences with fixed angular momentum J were studied

both in GR and in STTwith different values of the coupling
parameter β. We were able to construct constant-J sequen-
ces with relatively large values of the angular momentum
and found that models in STT can reach values of angular
momentum that are not possible in GR. At the same time,
models in STT can reach higher masses than are possible
in GR. Moreover, we found that scalarized solutions with
sufficient angular momentum and values of β that are in
agreement with the observations in the massless STT case,
possess a second turning point along a constant-J sequence,
which appears at somewhat lower central density and is not
present for smaller J or in the nonrotating case. Since in GR
turning points are associated with quasiradial stability and
the scalarized solution is energetically favored over the
GR solution (in the region where scalarized solutions
appear) it will be important to study the dynamical proper-
ties of models along such constant-J sequences, in order
to determine whether an unstable region exists between
the two turning points. The possible existence of such an
unstable region would have astrophysical consequences
for the stability of binary neutron star merger remnants.
We showed that the distribution of the scalar field retains

a quasispherical shape, even for very rapidly rotating
models, where the matter distribution has become strongly
quasitoroidal, even though that scalar field is directly
sourced by the matter distribution on the right side of

FIG. 4. Contour plots of the scalar field. The two models are for fixed β ¼ −4.5, Â ¼ Adiff=re ¼ 1.225 and baryon mass M0 ¼ 3.0.
Left panel: J ¼ 4. Right panel: J ¼ 7.
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Eq. (3). The interaction of the scalar field with the matter
through the hydrostationary equilibrium equation results in
a matter distribution, which is less quasitoroidal, when
compared to a corresponding GR model with the same J.
This, in turn, allows for the existence of models with higher
J and higher masses in STT than in GR.
The ideal astrophysical laboratories for applying our

results are the remnants of binary neutron star mergers,
since they have a significant degree of differential rotation.
Our studies show that the scalarized differentially rotating
neutron stars can sustain considerably larger masses com-
pared to pure general relativity, for values of the coupling
parameters that are in agreement with the observations.
Future gravitational wave observations of neutron star
mergers should allow us to determine the threshold mass
for prompt collapse to a black hole with good accuracy
(which will improve with an increasing number of obser-
vations). For models in pure general relativity, the onset of
axisymmetric instability of differentially rotating stars has
been shown to satisfy a rather accurate empirical relation
between the mass and angular momentum, when a large
sample of hadronic EOSs is considered [7] and this relation
plays a direct role in establishing an empirical relation
between the threshold mass to collapse of merger remnants

and the maximum mass of nonrotating stars [5]. Thus, any
strong deviations from the expected empirical relations for
hadronic EOSs would indicate either different phases of
matter (strange quark matter or other strong phase tran-
sitions) or departures for general relativity. We aim at a
more extensive investigation of these prospects (by includ-
ing more realistic laws of differential rotation and more
exotic forms of matter) in forthcoming publications.
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