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We present a careful study of accelerating black holes in anti-de Sitter spacetime, formulating the
thermodynamics and resolving discrepancies that have appeared in previous investigations of the topic. We
compute the dual stress-energy tensor for the spacetime and identify the energy density associated with a
static observer at infinity. The dual energy-momentum tensor can be written as a three-dimensional perfect
fluid plus a nonhydrodynamic contribution with a universal coefficient which is given in gauge theory
variables. We demonstrate that both the holographic computation and the method of conformal completion
yield the same result for the mass. We compare to previous work on black funnels and droplets, showing
that the boundary region can be endowed with noncompact geometry, and comment on this novel
holographic dual geometry.
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The importance of black holes in advancing our under-
standing of physics cannot be underestimated. They pro-
vide a setting for testing our most fundamental ideas about
gravity under extreme conditions and offer us insight into
the underlying microscopic degrees of freedom that may be
associated with quantum gravity. The subject of black hole
thermodynamics [1–3] has proven to be an invaluable tool
to this end, and broad classes of black holes have been
shown to exhibit a rich and varied range of thermodynamic
behavior, particularly in anti-de Sitter spacetime [4].
Within this framework, accelerating black holes have

presented a unique challenge. The idealized solution is
described by the C-metric [5–8], the spacetime of which
has a stringlike singularity along one polar axis attached to
the black hole. We can think of this conical singularity as a
cosmic string (indeed, the conical singularity can be replaced
by a finitewidth topological defect [9] or amagnetic flux tube
[10]) with the tension providing the force driving the
acceleration. Surprisingly, even though these black holes
are not isolated because of the “cosmic strings,” it is possible
to derive sensible looking thermodynamics, although recent
studies have apparently conflicting results [11–14].

We consider here the interpretation of an accelerating
black hole in anti-de Sitter (AdS) spacetime, with a focus
on a holographic interpretation of the thermodynamics.
We resolve conflicting issues that exist in the literature,
obtain a distinct set of thermodynamic variables that are
now consistent with the gravitational action, and agree with
both the conformal and holographic methods for computing
conserved charges. To this end, we focus our attention to
black holes with no acceleration horizon [15] so that there
is no ambiguity as to which horizon temperature should
be considered or as to whether there is an equilibrium
thermodynamics for the system. In addition, as we discuss,
the holographic computation and interpretation are also
unambiguous and straightforward. We also comment on the
cases when the acceleration horizons appear and provide a
novel interpretation of the boundary geometry.
An accelerating black hole in AdS can be described by

the metric [8,15,16]

ds2 ¼ 1

Ω2

�
−fdt2 þ dr2

f
þ r2

�
dθ2

Σ
þ Σsin2θ

dϕ2

K2

��
; ð1Þ

where

Ω ¼ 1þ Ar cos θ; Σ ¼ 1þ 2mA cos θ;

fðrÞ ¼ ð1 − A2r2Þ
�
1 −

2m
r

�
þ r2

l2
: ð2Þ
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The potential fðrÞ shows clearly the black hole nature of
the solution, as well as the effects of acceleration (A) and
cosmological constant (Λ ¼ −3=l2). Note that we require
2mA < 1 to preserve the metric signature. The parameter K
encodes information about the conical deficits on the north
and south poles that have tensions given by [12]

μ� ¼ δ�
8π

¼ 1

4

�
1 −

Σðθ�Þ
K

�
¼ 1

4

�
1 −

1� 2mA
K

�
: ð3Þ

The absence of an acceleration horizon yields the constraint
fð−1=A cos θÞ > 0, in turn constraining the parameter space
ðm;lÞ to the white region bounded by the blue and red lines
in Fig. 1. It is straightforward to show via a linear trans-
formation [16] on the coordinates ðx ¼ cos θ; y ¼ −1=ArÞ
that the latter bound is equivalent to the absence of black
droplets [17].
As discussed in Refs. [12,13], setting m ¼ 0 removes

the black hole horizon and leaves pure AdS spacetime
in Rindler-type coordinates. Performing the coordinate
transformation [15],

1þ R2

l2
¼ 1þ ð1 − A2l2Þr2=l2

ð1 − A2l2ÞΩ2
; R sin ϑ ¼ r sin θ

Ω
;

ð4Þ

recovers AdS in global coordinates,

ds2AdS ¼ −
�
1þ R2

l2

�
α2dt2 þ dR2

1þ R2

l2

þ R2

�
dϑ2 þ sin2ϑ

dϕ2

K2

�
; ð5Þ

but with the notable feature that the time coordinate is not
the expected AdS time being rescaled by a factor of

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2l2

p
. Conventionally, we choose the normali-

zation of our time coordinate so that it corresponds to the
“time” of an asymptotic observer. While this is potentially a
slightly slippery concept in AdS, taken together with the
spherical asymptotic spatial coordinates, this scaling sug-
gests that the correct time coordinate is not in fact t, but
rather τ ¼ αt, giving a rescaling of the time coordinate in
(1). If we now proceed with this metric and compute the
temperature associated with the black hole (also the
temperature of the boundary field theory), then we obtain

T ¼ f0ðrþÞ
4πα

¼ 1þ 3
r2þ
l2 − A2r2þð2þ r2þ

l2 − A2r2þÞ
4παrþð1 − A2r2þÞ

; ð6Þ

where fðrþÞ ¼ 0.
It is worth pausing to reflect on this result. In past work

[11–13], the standard time coordinate appearing in the AdS
C-metric was used to derive the temperature of the black
hole horizon. This appeared to be a natural approach as the
blackening factor of the metric was in its canonical form.
However, as pointed out in Ref. [18], normalizing the time
and timelike Killing vector is key to obtaining the correct
thermodynamics, although the method of obtaining this
correct normalization was less transparent. Here, having
uncovered this suggestive result, we now proceed carefully
with considering thermodynamics of the accelerating black
hole. As usual, we will take the entropy to be one-quarter of
the horizon area:

S ¼ A
4
¼ πr2þ

Kð1 − A2r2þÞ
: ð7Þ

The remaining task is to correctly identify the black hole
mass, often the biggest challenge in studying thermody-
namics of black holes with nontrivial asymptotics. In what
follows, we will provide two independent arguments,
beginning with the conformal completion method [19,20].
Although consistency of the thermodynamic relations is a
common method for deriving thermodynamics (used for
example in Ref. [14]), we do not consider this sufficient;
hence, we return to our theme of holography, computing the
holographic stress tensor of the boundary theory, thereby
confirming our result. For an ancillary argument, we finally
check consistency with a computation of the free energy.
The first argument uses the Ashtekar-Das definition of

conformal mass [19,20], which extracts the mass via
conformal regularization of the AdS C-metric near the
boundary. The idea is to perform a conformal transforma-
tion on (1), ḡμν ¼ Ω̄2gμν, to remove the divergence near the
boundary, then obtain a conserved charge by integrating the
conserved current

QðξÞ ¼ l
8π

lim
Ω̄→0

I
l2

Ω̄
NαNβC̄ν

αμβξνdS̄μ ð8Þ

FIG. 1. Parameter space. The blue and red lines denote the
boundaries in the parameter space ðmA; AlÞ for which the
holographic computation is valid. The hashed red region is
where acceleration horizons are present, and the hashed blue
region is where the metric signature is not preserved, leaving the
white region as the physical parameter space.
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composed of the Weyl tensor of the conformal metric,
C̄μ

ανβ; the normal to the boundary, Nμ ¼ ∂μΩ̄; and a
suitable Killing vector for the mass, ξ ¼ ∂τ. Even though
the conformal completion is not unique, the charge thus
obtained is independent of the choice of conformal com-
pletion. We pick Ω̄ ¼ lΩr−1, which provides a smooth
conformal completion in the limit A ¼ 0. The spacelike
surface element tangent to Ω̄ ¼ 0 is

dS̄μ ¼ δτμ
l2ðd cos θÞdϕ

αK
; ð9Þ

obtained by inserting Ar cos θ ¼ −1 into the metric ḡμν and
computing the relevant determinant. This yields

M ¼ Qð∂τÞ ¼ α
m
K

ð10Þ

for the mass, in agreement with the temperature (6), but in
contrast to previous results [11,14]. The absence of accel-
eration horizons ensures thatM vanishes in the limitAl → 1
only for m ¼ 0 and is positive otherwise.
It is now straightforward to verify the first law and Smarr

[21] relation

δM ¼ TδSþ VδP − λþδμþ − λ−δμ−;

M ¼ 2TS − 2PV; ð11Þ

using (6), (7), and (10), provided

V ¼ 4

3

π

Kα

�
r3þ

ð1 − A2r2þÞ2
þmA2l4

�
;

λ� ¼ 1

α

�
rþ

1 − A2r2þ
−m

�
1� 2Al2

rþ

��
; ð12Þ

where P ¼ 3=8πl2 is the thermodynamic pressure asso-
ciated with the cosmological constant [4] and λ� are the
thermodynamic lengths introduced in Refs. [12,13] that
are conjugate to the tensions. We have included the
possibility that the tensions vary, as otherwise the system
is constrained and identification of the correct parameters
can be misleading.
We now turn to another method for deriving the

thermodynamic mass, by computing the holographic stress
tensor. This provides an alternate and completely indepen-
dent method of computation and will reveal the dual
interpretation of this system. The idea here is to perform
a Fefferman-Graham expansion of the metric [22], iden-
tifying the falloff of subleading terms in the metric at the
boundary. These are then used to compute the dual stress-
energy tensor that can be integrated to give the mass of the
system.

The action, including boundary counterterms [23,24], is

I½g� ¼ 1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6

l2

�
þ 1

8π

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
K

−
1

8π

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p �
2

l
þ l

2
RðhÞ

�
; ð13Þ

whereKab is the extrinsic curvature of the boundary metric,
evaluated asymptotically in an appropriate coordinate
system, defined presently. hab is the intrinsic metric on
∂M, and R is its Ricci curvature. Varying the action gives
the energy-momentum tensor:

8πT ab ¼ lGabðhÞ −
2

l
hab −Kab þ habK: ð14Þ

To compute these terms requires new coordinates near
the boundary of AdS, typically parametrized by Fefferman-
Graham coordinates, in which

ds2 ¼ l2

ρ2
dρ2 þ ρ2

l2

�
γð0Þab þ 1

ρ2
γð2Þab þ � � �

�
dxadxb: ð15Þ

Although often one identifies a ρ coordinate globally, due
to the complexity of (1), we instead perform an asymptotic
expansion for the coordinate transformation, writing

1

Ar
¼ −x −

X
FnðxÞρ−n; cos θ ¼ xþ

X
GnðxÞρ−n:

ð16Þ

The functions Fn and Gn are fixed by the required falloff
properties of (15), apart from F1, that we choose to write as

F1ðxÞ ¼ −
ð1 − A2l2XÞ3=2

AωðxÞα ; ð17Þ

in order to elucidate the conformal degree of freedom in the
boundary metric, ω, with X ¼ ð1 − x2Þð1þ 2mAxÞ.
Computing this boundary metric, ds2ð0Þ ¼ γð0Þab dx

adxb, we

find it sufficient to truncate the series (16) at n ¼ 4 and find

ds2ð0Þ ¼ −ω2dτ2 þ ω2α2l2dx2

Xð1 − A2l2XÞ2 þ
Xω2α2l2dϕ2

K2ð1 − A2l2XÞ :

ð18Þ

Note that the transformation (16) is valid in general only
when A2l2X < 1, which is precisely the constraint that
acceleration horizons are absent.
The expectation value of the energy momentum of the

3-dimensional Conformal Field Theory (CFT3) can then be
calculated, yielding
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hT b
ai ¼ lim

ρ→∞

ρ

l
T b

a ¼

0
BB@

−ρE 0 0

0 ρE
2
þ Π 0

0 0 ρE
2
− Π

1
CCA; ð19Þ

where

ρE ¼ m
8πl2α3ω3

ð1 − A2l2XÞ3=2ð2 − 3A2l2XÞ;

Π ¼ 3mA2X
16πα3ω3

ð1 − A2l2XÞ32: ð20Þ

We can reexpress this in the language of the fluid/gravity
correspondence (for a review and references, see
Ref. [25]) as

hT abi ¼
3

2
dðxÞUaUb þ

dðxÞ
2

γð0Þab þ ξΘab; ð21Þ

where the 4-velocity U and Θ are defined as

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 2A2l2X

3ωð1 − A2l2XÞ

s
∂τ −

AXffiffiffiffiffiffi
3ω

p
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − A2l2XÞ

q
∂x;

Θab ¼ CabdUd þ CbadUd; ð22Þ
with Cabc ¼ ∇½cRb�a − ga½b∇c�R=4 the Cotton tensor [26]
of the metric (18); boundary indices are raised and

lowered with γð0Þab .
The fact that the boundary is nonconformally flat leads to

the inclusion of nonhydrodynamic corrections to the
perfect fluid, with

dðxÞ ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − A2l2XÞ5

p
4πl2ω3α3

: ð23Þ

The universal (in the sense of independent of black hole
mass and acceleration) coefficient is

ξ ¼ l2

8π
ffiffiffi
3

p ¼
ffiffiffi
2

3

r
1

12π
k1=2N3=2 ð24Þ

using the standard AdS4=CFT3 dictionary to identify kwith
the level and N with the rank of the gauge groups of the
N ¼ 6 Super Chern–Simons theory. All dissipative cor-
rections enumerated in Ref. [25] are seen to vanish,
ensuring the uniqueness of the decomposition given in (21).
Integrating the energy density, measured with respect to

a static geodesic observer ρE, yields

M ¼
Z

ρE

ffiffiffiffiffiffiffiffiffiffi
−γð0Þ

q
dxdϕ ¼ αm

K
; ð25Þ

for the mass, in agreement with (10) and independent of the
conformal frame (the choice of ω).
We see from (18) that the boundary metric does not

satisfy Dirichlet boundary conditions. However, for arbi-
trary variations of the parameters A and m, we find that

δI½g� ¼ 0, provided we set α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2l2

p
. Our analysis

therefore points toward the possibility of generalizing the
conditions under which the conformal and holographic
methods coincide for the mass computation [27,28].
Finally, let us return to the computation of the action

(26). We find

I ¼ β

2αK

�
m − 2mA2l2 −

r3þ
l2ð1 − A2r2þÞ2

�
; ð26Þ

using the time coordinate τ. Some simple algebra then
yields the expected result F ¼ I=β ¼ M − TS for the free
energy, which we plot (for fixed pressure) in Fig. 2.
Although similar in form, the behavior of the free energy

no longer indicates the presence of a standard Hawking-
Page transition [29]. As the string tension is fixed for the
curves in the plot, no transition to pure radiation (with zero
tension) is possible. One may, however, speculate that a
transition to a different type of spacetime (for example that
of the expanding spherical wave with an attached semi-
infinite string of given tension, similar to that in Ref. [30])
may still be possible—such an investigation, however,
remains to be carried out.
We can also explore the isoperimetric ratio, or the ratio of

the volume to the areal radius: R ¼ ð3Vω2
Þ13ðω2

AÞ
1
2 (recall ω2 ¼

4π=K here). Using (7) and (12), we find R ≥ 1, indicating
it satisfies the standard reverse isoperimetric inequality
[31], not adding to the notable exceptions [32–34].
Our full and consistent description of the thermodynam-

ics of an accelerating black hole reconciles discrepancies
and conflicts that have appeared in previous investigations
of this system [11,12,14]. For example, while a set of
thermodynamic variables for charged accelerating black

FIG. 2. Free energy. The red curve is the Schwarzschild-AdS
case, illustrating the well-known Hawking-Page transition, situ-
ated at a temperature given by the intersection of the red curve
with F ¼ 0. We do not know of any such interpretation for all
other curves with μ ≠ 0. The upper parts of these curves do not
continue to arbitrarily large M but terminate at the boundary
given in Fig. 1; this is visible in the above plot only for 4μ− ¼ 0.9.
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holes respecting the first law was obtained [11–13], the
computations employed an incorrectly normalized Killing
vector at infinity; furthermore, the resultant free energy is
not consistent with the standard Euclidean action calcu-
lation. Alternate expressions for mass and temperature have
been posited [14], with the tension of one deficit held fixed
to zero. The other tension, while allowed to vary, was not
included in the first law, which was derived by assuming
integrability of a scaling of mass and temperature. However
no physical interpretation was given either for this scaling
or for why the energy content of the tension was thermo-
dynamically irrelevant. Furthermore, the vacuum acceler-
ating black hole has an acceleration horizon, akin to a
Rindler horizon, and the full structure of the spacetime is
that of two accelerating black holes in two Rindler regions.
Whether one should be considering a single thermody-
namic mass and first law with an additional horizon and
black hole or whether, as suggested in Ref. [35], this should
be considered as a single system with a mass dipole is an
open question.
We also found a decomposition of the dual stress-energy

tensor for the accelerating black hole in terms of a perfect
fluid plus conformal tensors. We obtained a new “univer-
sal” coefficient, ξ, that is relevant for the fluid/gravity
correspondence in nonconformally flat manifolds. It is
natural to expect the existence of nonhydrodynamic cor-
rections to the energy-momentum tensor for an even-
dimensional CFT due to the conformal anomalies. We
have shown here that a similar picture arises in the odd-
dimensional case by explicitly constructing the relevant
nonhydrodynamic corrections necessary to provide a com-
plete holographic description of the system, cf. Ref. [36].
It would also be interesting to make a connection with

the weak coupling calculation of stress tensors in the
presence of conical deficits [37]. Future work will involve
investigating accelerating black holes with rotation, scalar
fields [38,39], and charge. The latter system will be a
challenge due to the asymptotic structure of the gauge field.
Since our computation is independent of the conformal

frame, we can compare to investigations of holographic
C-metrics with an acceleration horizon. For example, by

choosing ω2 ¼ ð1 − A2l2XÞα−2, we recover the form of
the boundary metric employed in Ref. [17], and our
coordinate transformation (16) is now valid throughout
x ∈ ½−1; 1�. However, if the condition A2l2X < 1 is
violated, then a black droplet/black funnel is present,
and we no longer have an equilibrium temperature for
the system in general. The boundary geometry corresponds
to a black hole in a spatially compact universe, and so there
is no spatial asymptotic region as pointed out in Ref. [17].
However, with the full conformal degree of freedom present
in our expression, we can easily remedy this shortcoming
by, for example, multiplying the ω above by 1ffiffiffiffiffiffi

1−x
p , giving an

AdS2 × S1 asymptotic region at x ¼ 1 with the AdS2 and
S1 radii being equal. If we again multiply by 1ffiffiffiffiffiffiffiffi

1−x2
p , then

there are actually two AdS2 × S1 asymptotic regions at

x ¼ �1, and γð0Þab yields the geometry of a wormhole when
there are no horizons at the boundary. The AdS2 × S1

asymptotic geometry is supersymmetric and to our knowl-
edge has been unnoticed so far in the literature.
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