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We introduce and develop the 1þ 3 covariant approach to relativity and cosmology to spacetimes of
arbitrary dimensions that have torsion and do not satisfy the metricity condition. Focusing on timelike
observers, we identify and discuss the main differences between their kinematics and those of their
counterparts in standard Riemannian spacetimes. At the center of our analysis lies the Raychaudhuri equation,
which is the fundamental formula monitoring the convergence and divergence, namely the collapse and
expansion, of timelike congruences. To the best of our knowledge, we provide the most general expression so
far of the Raychaudhuri equation, with applications to an extensive range of nonstandard astrophysical and
cosmological studies. Assuming that metricity holds, but allowing for nonzero torsion, we recover the results
of analogous previous treatments. Focusing on nonmetricity alone, we identify a host of effects that depend
on the nature of the timelike congruence and on the type of the adopted nonmetricity. We also demonstrate
that in highly symmetric spaces one can recover the pure-torsion results from their pure nonmetricity
analogues, and vice versa, via a simple ansatz between torsion and nonmetricity.
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I. INTRODUCTION

Given a manifold of arbitrary dimensions, one can
measure distances between points and angles between
vectors once a metric has been introduced. On the other
hand, for the parallel transport of vector and tensor fields on
a manifold, a connection is needed. In general, these two
spacetime features, namely the metric and the connection,
do not need to be related, and (for the time being at least)
there is no fundamental reason for them to be related apart
from simplicity. In classical general relativity, however, the
metric and the (Levi-Civita) connection are related to each
other, with the latter been expressed in terms of the former
and its derivatives. More specifically, one arrives at the
aforementioned relation after assuming that the metric is
covariantly constant (also known as the metricity condi-
tion) and that the connection is symmetric (also known as
the torsionless condition). Even though these two assump-
tions greatly simplify any theoretical analysis, we are not as
yet aware of any fundamental mathematical, or physical,
reason for selecting the Levi-Civita connection. The effort
to identify alternative connections dates back to the work
Weyl and Cartan towards the beginning of the last century
[1]—see also [2]. More specifically, Weyl considered
torsionless spaces with nonmetricity in an attempt to unify
gravity with electromagnetism, whereas Cartan considered
spaces with torsion. In the literature, the study of non-

Riemannian contributions to gravity, is typically referred to
as “metric-affine gravity” [3].
Motivated by the above, we extend the 1þ 3 covariant

approach to general relativity and cosmology (see [4] for
recent extensive reviews) to n-dimensional spacetimes that
have nonzero torsion and do not satisfy the metricity
condition. Our aim is to “exploit” the mathematical
compactness and the geometrical and physical transparency
of the covariant formalism in the ongoing quest for a deeper
insight into these most general spacetimes. Torsion and
nonmetricity introduce new features to their host spaces.
Among others, nonzero torsion implies that the Ricci
curvature tensor and the matter energy-momentum tensor
are no longer necessarily symmetric. This asymmetry
could be seen as a generic spacetime feature, but it may
also reflect the nonzero spin of its material content.
Nonmetricity, on the other hand, means that vectors and
tensors do not maintain the same magnitude, as they are
(parallelly) transported from one spacetime event to the
next. As a result, the concepts of “proper length” and
“proper time” lose their conventional meaning when the
metricity condition is violated. In view of these complica-
tions, in the first three chapters of this work, we identify the
key differences between our analysis and the standard
treatments and also lay the foundations for extending the
1þ 3 formalism to general spacetimes with arbitrary
dimensions, nonzero torsion and nonmetricity.
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At the center of our study lies the Raychaudhuri
equation, which has long been used to describe the mean
kinematics of self-gravitating media (e.g., see [5]). In
particular, Raychaudhuri’s formula has been at the core
of the gravitational collapse studies and the related singu-
larity theorems. Also, alternative versions of the same
equation are currently used in cosmology in search of an
answer to the question posed by the recent universal
acceleration. Here, we provide the most general (to the
best of our knowledge) version of the Raychaudhuri
equation, with no prior assumptions on the nature of the
underlying gravitational theory. This ensures that our
formula can be readily applied to a wide range of standard
and nonstandard astrophysical and cosmological problems.
Assuming that metricity holds, but allowing for nonzero
torsion, we find perfect agreement with the earlier 1þ 3
study of [6]. On the other hand, switching the torsion off
and turning the nonmetricity on reveals a rather intriguing
resemblance between some (at least) of the torsion and
nonmetricity effects. Motivated by this observation, as well
as by analogous reports in the literature, we consider
separately the simple cases of irrotational and shear-free
autoparallel congruences residing in empty (i.e., Ricci-flat)
spacetimes. In the first instance, we assume nonzero torsion
with metricity, while in the second we have nonmetricity
without torsion. Solving the Raychaudhuri equation in
either case, we arrive at formally identical solutions. In
particular, the pure-torsion solution can be recovered from
its pure nonmetricity counterpart (and vice versa) after
imposing a simple ansatz between these two spacetime
features. We interpret this as clear demonstration of the so-
called duality between torsion and nonmetricity (e.g., see
also [7]), which in spaces of high symmetry seems able to
make the two theories phenomenologically identical.

II. SPACES WITH TORSION AND
NONMETRICITY

Torsion and nonmetricity modify the familiar
Riemannian relations between the metric tensor, the con-
nection, and the curvature of the space. Here, we will
briefly outline the main differences referring the reader to
related reviews (e.g., see [3]) for further discussion.

A. Torsion and nonmetricity tensors

In the presence of torsion, the connection of the space is
generally asymmetric (i.e., Γμ

νλ ≠ ΓμðνλÞ), with its anti-
symmetric component giving the Cartan torsion tensor

Sμνλ ¼ Γλ½μν�; ð1Þ
so that Sμνλ ¼ S½μν�λ.

1 At the same time, the metric is not
covariantly conserved and the failure of the connection to do
so is measured by the nonmetricity tensor

Qλμν ¼ −∇λgμν; ð2Þ

ensuring that Qλμν ¼ QλðμνÞ.
2 The geometrical effect of

torsion is that the parallel transport of a pair of vectors,
along each other’s direction, does not lead to a closed
parallelogram. Nonmetricity, on the other hand implies that
the lengths of vectors are not preserved when they are
parallelly transported in space.
Starting from the tensors defined above, one can con-

struct two pairs of associated vectors. In particular, the
torsion tensor leads to

Sμ ¼ Sμνλgνλ ¼ Sμνν and S̃μ ¼ εμνλβSνλβ; ð3Þ

where εμνλβ is the associated alternating tensor (with
εμνλβ ¼ ε½μνλβ�). The former of these is the familiar torsion
vector, while here we will refer to S̃μ as the torsion
pseudovector. The latter vanishes in highly symmetric
spacetimes, like those associated with the familiar
Friedmann-Robertson-Walker (FRW) models, because it
leads to parity violation. For the nonmetricity tensor, on the
other hand, the related vectors are

Qμ ¼ Qμνλgνλ ¼ Qμν
ν and Q̃μ ¼ gλνQλνμ ¼ Qν

νμ; ð4Þ

with Qμ representing the so-called Weyl vector. From here
on, we will refer to Q̃μ as the second nonmetricity vector.

B. Special types of torsion and nonmetricity

The simplest types of torsion and nonmetricity are of
vector form. So, in an n-dimensional space, the associated
torsion and nonmetricity tensors read

Sμνλ ¼
2

n − 1
S½μδν�λ and Qμνλ ¼

1

n
Qμgνλ; ð5Þ

respectively. Therefore, the torsion field is determined by
the torsion vector (Sμ) and the nonmetricity by the Weyl
vector (Qμ), in which case we are dealing with the so-called
Weyl nonmetricity. An additional interesting type of non-
metricity is one that allows for fixed-length vectors, is
which case the nonmetricity tensor satisfies the constraint

Qμνλ ¼ vμgνλ − gμðνvλÞ; ð6Þ

1Round brackets denote symmetrization, while square ones
indicate antisymmetrization.

2Nonmetricity implies that raising and lowering the indices are
no longer trivial operations when covariant differentiation is
involved. For instance, starting from (2), one can show show that
∇λgμν ¼ Qλμν. Also note that ∇μ ¼ gμν∇ν defines the contra-
variant counterpart of the covariant derivative operator.
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where vμ is an arbitrary vector field. In what follows, we
will first consider the implications of torsion and non-
metricity for the mean kinematics (i.e., for the volume
expansion or contraction scalar—see Sec. IVB below) of
the host spacetime, without imposing any restrictions on
either of these two geometrical features. Then, we will
apply our generalized equations to some of the specific
forms of torsion and nonmetricity given in this section.3

C. Curvature

As in conventional Riemannian geometry, the curvature
of a space with torsion and nonmetricity reflects the fact
that the covariant differentiation is not a commutative
operation. This is manifested in the Ricci identity, which
applied to the contravariant vector uμ reads

2∇½μ∇ν�uλ ¼ Rλ
βμνuβ þ 2Sμνβ∇βuλ; ð7Þ

where Rμ
νλβ is the curvature tensor of the space given by

Rμ
νλβ ¼ 2∂ ½λΓμjνjβ þ 2Γμ

α½λΓαjνjβ�: ð8Þ

The above has only one symmetry, namely Rμνλβ ¼ −Rμνβλ,
in contrast to its purely Riemannian counterpart (i.e., to the
Riemann curvature tensor itself).
The reduced symmetries of the curvature tensor ensure

that there are three independent contractions, namely,

R̃μν ¼ gλβRλβμν¼Rλ
λμν; R̂μν ¼ gλβRμλβν¼Rμ

λ
λν; ð9Þ

and

Rμν ¼ gλβRλμβν ¼ Rλ
μλν; ð10Þ

respectively. The latter provides the familiar Ricci curva-
ture tensor, while the former is usually referred to as the
“homothetic” curvature tensor. One additional contraction
leads to the Ricci scalar,

R ¼ gμνRμν; ð11Þ

which is uniquely defined (since gμνR̃μν ¼ 0 and
gμνR̂μν ¼ −R).
An important relation is obtained by applying the Ricci

identity to the metric tensor of the host space. Assuming
that the latter is n-dimensional with torsion and non-
metricity, in addition to curvature, we arrive at

2∇½μ∇ν�gλβ ¼ −2RðλβÞμν þ 2Sμνκ∇κgλβ: ð12Þ

Expanding this and then using definition (2) leads to

RðμνÞλβ ¼ ∇½λQβ�μν − SλβκQκμν; ð13Þ

which relates the curvature tensor with the torsion and the
nonmetricity tensors of the space.

III. SPACETIME SPLITTIG

The 1þ 3 covariant approach to relativity and cosmol-
ogy decomposes the four-dimensional spacetime into one
temporal and three spatial dimensions, while it utilizes the
Bianchi and the Ricci identities rather than the metric [4].
Over the years, this formalism has been extended to higher
dimensions, and to spacetimes with nonzero torsion, but (to
the best of our knowledge) it has never been applied to
spaces where the metricity condition no longer applies (i.e.,
when ∇cgab ≠ 0). In what follows, we will attempt to take
the first step in that direction.

A. The timelike observes

In an n-dimensional spacetime, suppose that uμ, with
uμ ¼ dxμ=dλ, is the n-velocity vector tangent to a con-
gruence of timelike curves. The latter also define the
worldlines of a family of observers, known as the funda-
mental observers. In the absence of metricity, the magni-
tude of the n-velocity vector is no longer preserved and for
this reason it cannot be normalized to −1 (or in any other
way). We may, therefore, write

uμuμ ¼ gμνuμuν ¼ −l2 ≡ −ϕðxαÞ; ð14Þ

where ϕðxαÞ is generally a function of both space and
time.4 As we will demonstrate throughout the rest of this
manuscript, the spacetime dependence seen in Eq. (14)
marks the starting point of a series of technical and
conceptual differences between metric and nonmetric
cosmologies. To begin with, the affine parameter λ does
not necessarily coincide with the proper time (τ) measured
along the observers’ timelike curves. In particular, setting
dτ2 ¼ −gμνdxμdxν, applying the chain-rule of differentia-
tion, and employing (14), we arrive at

dτ
dλ

¼ �l; ð15Þ

with l ¼ lðxαÞ due to the nonmetricity of the spacetime.
The above integrates to give the (nontrivial) relation τ ¼
� R

lðxαÞdλþ C between the proper time measured along a
timelike worldline and any affine parameter of that curve.

3An additional simple form of torsion has Sμνλ ¼ εμνλβS̃
β=3!,

where εμνλβ is the four-dimensional Levi-Civita tensor. Unlike
vectorial torsion, however, this last form of torsion vanishes
identically in spatially homogeneous and isotropic (FRW-type)
cosmologies. Note that the latter spacetimes can naturally
accommodate both the Weyl and the fixed-length forms of
nonmetricity (see Sec. VI below).

4Greek indices takes values from 0 to n − 1 and Latin indices
run from 1 to n − 1 throughout this article.
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Therefore, here onwards, we will use overdots to indicate
differentiation with respect to the affine parameter (i.e.,
_¼ d=dλ) and primes to denote derivatives in terms of
proper time (i.e., 0 ¼ d=dτ).5

B. Temporal and spatial derivatives

The nonmetricity of the host spacetime also affects the
(spatial) hypersurfaces orthogonal to the timelike uμ-field
(e.g., see [4] for a comparison). More specifically, the
associated projection tensor is now given by

hμν ¼ gμν þ
1

l2
uμuν; ð16Þ

recalling that gμνgμν ¼ δμ
μ ¼ n. The above guarantees that

hμν ¼ hνμ, that hμνuμ ¼ 0 and that hμνhμν ¼ n − 1. In
addition, following definition (16), we obtain

hμλhλν ¼ hμν ¼ δμ
ν þ 1

l2
uμuν: ð17Þ

Overall, the timelike n-velocity field and the projector
defined above, introduce an 1þ ðn − 1Þ splitting of the
spacetime into one temporal direction and n − 1 spatial
counterparts. We may therefore define the temporal and
spatial derivatives of a general tensor field Tβ1���βm

α1���αn as

_Tβ1���βm
α1���αn ¼ uμ∇μT

β1���βm
α1���αn ð18Þ

and

DμT
β1���βm
α1���αn ¼hμλhα1

γ1 �� �hαn γnhδ1β1 � ��hδmβm∇λT
δ1���δm
γ1���γn ; ð19Þ

respectively. On using the above, every spacetime variable,
equation, and operator can be decomposed into their
temporal and spatial components.

IV. KINEMATICS

Torsion and nonmetricity complicate considerably the
kinematics of the timelike observers introduced in the
previous section. For example, some of the standard
kinematic variables are no longer uniquely defined.
Here, we will attempt to address these issues and also
set up the mathematical formalism that will be used in the
rest of this study.

A. Path and hyper n-acceleration

The fact that the metric tensor is not covariantly con-
served (i.e., nonmetricity) means that the processes of
covariant differentiation and of index raising and lowering

are not commutative. This, in turn, implies that there are
two different n-acceleration vectors, namely a contravariant
and a covariant one, defined by

Aμ ≡ _uμ ≡ uλ∇λuμ ð20Þ

and

aμ ≡ _uμ ≡ uλ∇λuμ; ð21Þ
respectively. Given that∇λgμν ¼ Qλμν, withQλμν represent-
ing the nonmetricity of the host spacetime, we deduce that
Aμ ≠ gμνaν. More specifically, definitions (20) and (21)
ensure that

Aμ ¼ aμ þQνλμuνuλ; ð22Þ
in direct contrast to metric spacetimes where Aμ ¼ aμ [4].
It is then imperative to distinguish between these two
types of n-acceleration. So, hereafter, we will name the Aμ

path n-acceleration, since it vanishes along autoparallel
trajectories or paths, while we will refer to aμ as the
hyper n-acceleration, because it remains nonzero on auto-
parallel curves. In particular, Eq. (22) ensures that aμ ¼
−Qλμνuλuν ≠ 0 when Aμ ¼ 0.6

An additional key difference between metric and non-
metric spacetimes is that none of the two n-acceleration
vectors defined above is normal to their associated n-
velocity vector. Indeed, given that uμuμ ¼ −l2, with
l ¼ lðxαÞ, differentiating in terms of the affine parameter
(λ—see Sec. III B before) leads to

Aμuμ ¼ −
1

2
ðl2Þ· þ 1

2
Qμνλuμuνuλ: ð23Þ

Similarly, recalling that ∇λgμν ¼ −Qλμν, we arrive at

aμuμ ¼ −
1

2
ðl2Þ· − 1

2
Qμνλuμuνuλ: ð24Þ

The last two relations combine to give

ðAμ þ aμÞuμ ¼ −ðl2Þ· ð25Þ
and

ðAμ − aμÞuμ ¼ Qμνλuμuνuλ: ð26Þ
Finally, we should note that in the case of autoparallel
“motion” (i.e., when Aμ ¼ 0), expressions (25) and (26)
guarantee that l2 ¼ R

Qμνβuμuνuβdλþ C.

5The coordinate time (x0) measured by a comoving observers
(those with ua ¼ 0) relates to the affine parameter of their
timelike worldlines by means of dx0=dλ ¼ �l=

ffiffiffiffiffiffiffiffiffiffi−g00
p

. Then,
setting g00 ¼ −1 and using Eq. (15) we deduce that dx0 ¼ dτ. In
other words, proper and coordinate time still coincide for
comoving observers.

6By definition, autoparallel curves have zero path acceleration,
that is Aμ ¼ _uμ ¼ uλ∇λuμ ¼ 0. Autoparallel and geodesic tra-
jectories coincide in Riemannian spaces, equipped with the
Levi-Civita connection (i.e., when Γλ

μν ¼ ΓλðμνÞ), but not in
the presence of torsion (i.e., when Γλ½μν� ≠ 0), or nonmetricity
(i.e., when ∇λgμν ≠ 0).
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B. Volume scalar, shear and vorticity tensors

The irreducible kinematics of the ua-field are determined
by decomposing the associated covariant derivative into its
temporal and spatial components, according to

∇νuμ ¼ Dνuμ −
1

l2
ðuμξν þ aμuνÞ −

1

l4
ðuλaλÞuμuν; ð27Þ

where Dνuμ ¼ hνβhμλ∇βuλ [see definition (19)]. Also, ξμ ¼
uν∇μuν by definition with ξμuμ ¼ aμuμ by construction.7

Moreover, the projected covariant derivative decomposes
further into

Dνuμ ¼
1

n − 1

�
Θþ 1

l2
aλuλ

�
hμν þ σμν þ ωμν; ð28Þ

with

Θ ¼ gμν∇νuμ ¼ Dμuμ −
1

l2
aμuμ; ð29Þ

representing a uniquely defined “volume” scalar (where
Dμuμ ¼ hμν∇νuμ).

8 When the latter is positive, the
curves tangent to the uμ-field move apart and we have
expansion. In the opposite case, on the other hand, the
curves approach each other and there is contraction. Also,
the variables

σμν ¼ Dhνuμi and ωμν ¼ D½νuμ�; ð31Þ
define the shear tensor and the vorticity tensor, respectively.9

The formermonitors kinematic anisotropies, namely “shape”
distortions under constant “volume,” while a nonzero vor-
ticity implies that the uμ-field rotates.10 Note that, by
construction, σμ

μ ¼ 0 ¼ ωμ
μ and σμνuν ¼ 0 ¼ ωμνuν. In

other words, both the shear and the vorticity “live” in the
observers (n − 1)-dimensional rest space. Finally, expres-
sions (27) and (28), combine to the following decomposition,

∇νuμ ¼
1

n − 1

�
Θþ 1

l2
aλuλ

�
hμν þ σμν þ ωμν

−
1

l2
ðuμξν þ aμuνÞ −

1

l4
ðuλaλÞuμuν; ð32Þ

of the covariant form (∇νuμ) of the n-velocity gradient into
the irreducible kinematic variables of the motion.
Given that gνβgμλ∇βuλ ¼ ∇νðgμλuλÞ − uλ∇νgμλ and

recalling that ∇λgμν ¼ Qλμν—see footnote 2 in Sec. II
A), one can show that the contravariant form (∇νuμ) of the
velocity gradient accepts the following irreducible decom-
position

∇νuμ ¼ 1

n − 1

�
Θþ 1

l2
aλuλ

�
hμν þ σμν þ ωμν

−
1

l2
ðuμξν þ aμuνÞ − 1

l4
ðaλuλÞuμuν

þQνμλuλ; ð33Þ
where Θ ¼ gμν∇νuμ as in Eq. (32) above. Also, σμν ¼
gμλgνβσλβ and ωμν ¼ gμλgνβωλβ are the contravariant com-
ponents of the shear and vorticity tensors, respectively.
Note, however, that σμν ≠ Dhνuμi and ωμν ≠ D½νuμ� due to
the nonmetricity of the spacetime.

V. THE RAYCHAUDHURI EQUATION

The Raychaudhuri equation monitors the expansion, or
the contraction, of a self-gravitating medium. It plays a
fundamental role both in astrophysics and in cosmology
and has been at the center of all the singularity theorems.
In what follows, we will provide an expression for
Raychaudhuri’s formula in n-dimensional spaces with
torsion and nonmetricity.11

A. Deriving Raychaudhuri’s formula

Raychaudhuri’s formula is purely geometrical by nature
and follows from a set of (also purely geometrical)
relations, known as the Ricci identities. Applied to the
n-velocity vector uμ defined in Sec. III A, the latter read

2∇½μ∇ν�uλ ¼ −Rβλμνuβ þ 2Sμνβ∇βuλ; ð34Þ
with Sμνλ representing the torsion tensor and Rμνλβ being the
curvature tensor of the spacetime (so that Rμνλβ ¼ Rμν½λβ�—
see Sec. II A and Sec. II C earlier). Contracting (34) along
gλνuμ gives

gλνuμð∇μ∇νuλ−∇ν∇μuλÞ¼−Rβλμνuβuμgλν

þ2Sμνλuμ∇λuν: ð35Þ

7By construction ξμ ¼ uν∇μuν and ξμ ¼ uν∇μuν. Note, how-
ever, that nonmetricity guarantees that uν∇μuν ≠ uν∇μuν in
general, since uν∇μuν − uν∇μuν ¼ −Qμνλuνuλ.

8In the absence of metricity Dμuμ ≠ Dμuμ, which implies that
the “spatial” divergence of the uμ-field is not uniquely defined.
More specifically, using definitions (2), (4b), (20), and (21),
recalling that Qμνλ ¼ QμðνλÞ and employing the auxiliary relation
(26), we find that

Dμuμ ¼ Dμuμ −
1

l2
Qμνλuμuνuλ − Q̃μuμ: ð30Þ

The above explain/justify our choice for definingΘ ¼ gμν∇νuμ as
our volume scalar. We should also point out that Θ ≠ ∇μuμ, since
the divergence of the n-velocity is also not uniquely defined (i.e.,
∇μuμ ≠ ∇μuμ).

9Angled brackets indicate the symmetric and trace-free part
of a second-rank tensor. For instance, the shear tensor is
constructed as σμν ¼ hðνβhμÞλ∇βuλ − ½Θ=ðn − 1Þ�hμν.

10Each of the three kinematic variables splits in its Riemannian
and non-Riemannian parts. For instance the expansion scalar
decomposes as Θ¼Θ̄þðQ̃μ−Qμ=2−2SμÞuμ, with Θ̄ representing
the Riemannian component.

11Versions of the Raychaudhuri equation in spacetimes with
nonzero torsion and/or spin have a fairly long history (e.g., see [8]
for a representative list). Here we adopt the formalism developed
in [6]. Recently, there was also an attempt to extend Raychad-
huri’s formula to spaces with Weyl geometry [9].
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where the velocity gradient ∇νuμ satisfies decomposition (32). Using the latter, recalling that Θ ¼ gμν∇νuμ and ∇μQνλ ¼
Qμ

νλ (see Sec. II A earlier), while employing definition (4a) together with the symmetry property Qμνλ ¼ QμðνλÞ of the
nonmetricity tensor, the first term on the left-hand side of the above evaluates to

gλνuμ∇μ∇νuλ ¼ _Θ −
1

n − 1

�
Θþ 1

l2
aνuν

�
Qμuμ −

1

l2ðn − 1Þ
�
Θ −

n − 2

l2
aβuβ

�
Qμνλuμuνuλ

þ 1

l2
Qμνλuμuνðaλ þ ξλÞ −Qμνλuμσνλ. ð36Þ

Employing decompositions (32) and (33), while keeping in mind that hμνhμν ¼ n − 1, that hμνuν ¼ 0 ¼ σμνuν ¼ ωμνuν, that
σμνhμν ¼ 0 ¼ ωμνhμν ¼ σμνω

μν, that ξμuμ ¼ aμuμ and also using definition (4b), the second term on the left-hand side of (35)
becomes

gλνuμ∇ν∇μuλ ¼ −
1

n − 1
Θ2 − 2ðσ2 − ω2Þ þ Dμaμ þ

1

l2
aμAμ −

1

l2
ðaμuμÞ· −

2Θ
l2ðn − 1Þ aμu

μ þ n − 2

l4ðn − 1Þ ðaμu
μÞ2

þ 2

l2
aμξμ −

1

n − 1

�
Θþ 1

l2
aβuβ

�
Q̃μuμ −

1

l2ðn − 1Þ
�
Θ −

n − 2

l2
aβuβ

�
Qμνλuμuνuλ −Qμνλðσμν þ ωμνÞuλ

þ 1

l2
Qμνλðuμξν þ aμuνÞuλ: ð37Þ

Note that the scalars σ2 ¼ σμνσ
μν=2 and ω2 ¼ ωμνω

μν=2
measure the magnitude of the shear and the vorticity
tensors, respectively.12

Let us now turn our attention to the right-hand side of
Eq. (35). Starting from relation (13) that was obtained in
Sec. II C earlier, while recalling that Qμνλ ¼ QμðνλÞ and
Sμνλ ¼ S½μν�λ, the first term on the right-hand side of
expression (35) reads

Rβλμνuβuμgλν ¼ Rμνuμuν þ _̃Qμuμ − uμuν∇λQμνλ

−Qμ
λβQβλνuμuν − 2SμλβQβλνuμuν; ð39Þ

with Rμν ¼ gλβRλμβν defining the Ricci curvature tensor. In
addition, substituting decomposition (32) and putting

together definition (3a) and the symmetry property Sμνλ ¼
S½μν�λ of the torsion tensor, the second term on the right-
hand side of (35) recasts into

Sμνλuμ∇λuν¼
1

n−1

�
Θþ 1

l2
aνuν

�
SμuμþSμνλuμðσνλþωνλÞ

þ 1

l2
Sμνλaμuνuλ: ð40Þ

Finally, combining the intermediate relations (36), (37),
(39), and (40), we obtain the generalization of the
Raychaudhuri equation to n-dimensional spaces with
torsion and nonmetricity, in addition to curvature, namely,

_Θ ¼ −
1

n − 1
Θ2 − Rμνuμuν − 2ðσ2 − ω2Þ þ Dμaμ þ

1

l2
aμAμ þ 2

n − 1

�
Θþ 1

l2
aνuν

�
Sμuμ

þ 2Sμνλuμðσνλ þ ωνλÞ þ 2

l2
Sμνλaμuνuλ −

1

l2
ðaμuμÞ· −

2Θ
l2ðn − 1Þ aμu

μ þ n − 2

l4ðn − 1Þ ðaμu
μÞ2

þ 2

l2
aμξμ − _̃Qμuμ þ

1

n − 1

�
Θþ 1

l2
aνuν

�
ðQμ − Q̃μÞuμ −Qμνλðσμν þ ωμνÞuλ − 1

l2
Qμνλuμuνðaλ þ ξλÞ

þQμνλuμσνλ þ
1

l2
Qμνλðuμξν þ aμuνÞuλ þ uμuν∇λQμνλ þQμ

λβQβλνuμuνþ2SμλβQβλνuμuν: ð41Þ

Note that only the first five terms on the right-hand side of
the above have Riemannian analogues. More specifically,
in the absence of torsion and in the presence of metricity

(i.e., when Sμνλ ≡ 0≡Qμνλ), the rest of the terms on the
right-hand side of (41) vanish identically. Then, setting
n ¼ 4, we recover the standard form of the Raychaudhui

12In deriving expression (37), we have also used the auxiliary relation

∇μaμ ¼ Dμaμ þ
1

l2
Aμaμ −

1

l2
ðaμuμÞ·: ð38Þ
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equation (e.g., see [4] and also keep in mind that aμ ≡ Aμ,
with aμuμ ¼ 0 ¼ Aμuμ, and that ξμ ≡ 0 when metricity
holds).
The Raychaudhuri equation derived in this section, as

well as its reduced expressions given in the following
sections (see Sec. V B and Sec. V C next), is a purely
geometrical relation. As yet, no matter sources have been
introduced and no assumption has been made about
the nature of the gravitational field. One could add
physical context to these geometrical expressions by
introducing a set of field equations, like the Einstein, or
the Einstein-Cartan, equations for example. In principle,
Eq. (41) should be compatible with any geometrical theory
of gravity.

Finally, it is worth stressing that the torsion terms on the
right-hand side of Eq. (41) share a certain “resemblance”
with some of the nonmetricity terms seen in the same
formula. This analogy between torsion and nonmetricity,
will become more apparent in Sec. VI A and Sec. VI B
below.

B. The case of pure torsion

When dealing with a n-dimensional spacetime that has
nonzero torsion but satisfies the metricity condition,
expression (41) reduces to

Θ0 ¼ −
1

n− 1
Θ2 −Rμνuμuν − 2ðσ2 −ω2Þ þDμAμ þAμAμ þ

2

n− 1
ΘSμuμ þ 2Sμνλuμðσνλ þωνλÞ þ 2SμνλAμuνuλ; ð42Þ

with primes indicating proper-time derivatives (see Sec. III A
earlier). Applying the above to a four-dimensional space-
time, one recovers the Raychaudhuri equation of the Rie-
mann-Cartan geometry derived in [6]. Note that, when doing
the aforementioned identification, one should also take into
account the differences in the definitions of the torsion tensor
and of the torsion vector between the two studies.
Following (42), torsion affects the convergence or

divergence of a timelike congruence in a variety of
ways, which depend on whether these worldlines are
geodesics or not, as well as on whether they have nonzero
shear or vorticity. The most straightforward effect of
torsion propagates via the first term in the second line
on the right-hand side of the above. More specifically,
torsion enhances or inhibits the expansion or contraction
of the worldline congruence depending on the sign

of the inner product (Sμuμ) between the torsion vector
and the n-velocity (i.e., on the relative orientation
of the two vector fields—see also [6] for further
discussion).
As we mentioned in the previous section, Eq. (42) is of a

purely geometrical nature, since no matter fields have been
introduced yet. In order to investigate the effects of gravity,
we need to relate both the Ricci tensor and the torsion
tensor to the material component of the spacetime. This can
be done by means of, say, the Einstein-Cartan and the
Cartan field equations [6].

C. The case of pure nonmetricity

In the presence of nonmetricity, but in the absence of
torsion, expression (41) recasts as

_Θ ¼ −
1

n − 1
Θ2 − Rμνuμuν − 2ðσ2 − ω2Þ þ Dμaμ þ

1

l2
aμAμ −

1

l2
ðaμuμÞ· −

2Θ
l2ðn − 1Þ aμu

μ þ n − 2

l4ðn − 1Þ ðaμu
μÞ2

þ 2

l2
aμξμ − _̃Qμuμ þ

1

n − 1

�
Θþ 1

l2
aνuν

�
ðQμ − Q̃μÞuμ −Qμνλðσμν þ ωμνÞuλ − 1

l2
Qμνλuμuνðaλ þ ξλÞ

þQμνλuμσνλ þ
1

l2
Qμνλðuμξν þ aμuνÞuλ þ uμuν∇λQμνλ þQμ

λβQβλνuμuν: ð43Þ

Here, in contrast to Eq. (42), the overdot implies differ-
entiation in terms of the affine parameter (i.e., relative to λ—
see Sec. III A). According to the above, the impli-
cations of nonmetricity for the convergence or divergence
of a timelike congruence are multiple and not straight-
forward to decode. Similarly to the case of pure torsion seen
before, the most transparent effects are those depending on
the orientation of the nonmetricity vectors and their deriv-

atives (i.e., Qμ, Q̃μ and _̃Qμ) relative to the uμ-field.
Before closing this section, we should point out that the

Raychaudhuri formulas given in expressions (41)–(43), are

purely geometrical relations, which acquire physical rel-
evance after the energy-momentum and the hypermomen-
tum tensors are introduced. The former gives rise to
spacetime curvature, while the latter leads to both torsion
and nonmetricity through the field equations and the
Palatini equations, respectively. Also note that the nature
of the observers’ worldlines, namely of the curves tangent
to the n-velocity vector uμ, has so far been left unspecified.
Assuming, e.g., motion along autoparallel curves the
path-acceleration vanishes (i.e., Aμ ¼ 0—see Sec. IVA
earlier).
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VI. CHARACTERISTIC CASES

According to Eq. (41), torsion and nonmetricity affect
the mean expansion and contraction of the host spacetime
in a variety of intricate ways. In this section, we will try to
reveal the role of torsion and nonmetricity in some
characteristic cases.

A. Vectorial torsion

The kinematic effects of torsion (and spin) have been
investigated primarily within the framework of the
Einstein-Cartan theory. Assuming that the metricity con-
dition holds (i.e., setting Qμνλ ¼ 0), let us consider the case
of vectorial torsion with

Sμνλ ¼
2

n − 1
S½μgν�λ; ð44Þ

where Sμ ¼ Sμνν defines the associated torsion vector (e.g.,
see [10]). In this case, the connection decomposes as
Γλ

μν ¼ Γ̃λ
μν þ 2ðSμδλν − SλgμνÞ=ðn − 1Þ, with Γ̃λ

μν being
the Christoffel symbols. Then, the second-last term on the
right-hand side of (42) vanishes, while the last one reduces
to 2SμνλAμuνuλ ¼ −2SμAμ=ðn − 1Þ. As a result, the
Raychaudhuri equation recasts into

Θ0 ¼ −
1

n − 1
Θ2 − Rμνuμuν − 2ðσ2 − ω2Þ þ DμAμ þ AμAμ

þ 2

n − 1
ΘSμuμ −

2

n − 1
SμAμ: ð45Þ

Consequently, the effects of vectorial torsion on the mean
expansion or contraction of the host spacetime, depend on
the orientation of the torsion vector relative to the observ-
er’s velocity and acceleration. In particular, when Sμ is
purely timelike, we have SμAμ ¼ 0 (recall that Aμuμ ¼ 0

when metricity holds). For purely spacelike torsion vector,
on the other hand, Sμuμ ¼ 0.
Suppose now that the uμ-field is tangent to a congruence

of autoparallel curves in a four-dimensional spacetime (i.e.,
set Aμ ¼ 0 and n ¼ 4). Assume also a Ricci-flat (i.e.,
empty) spacetime with homogeneous and isotropic spatial
hypersurfaces (i.e., set Rμν ¼ 0 ¼ σμν ¼ ωμν). In such an
FRW-like environment, expression (45) reduces to

Θ0 ¼ −
1

3
Θ2 þ 2

3
ΘSμuμ ¼ −

1

3
ΘðΘ − 2SμuμÞ; ð46Þ

while the torsion vector becomes purely timelike (to
preserve the isotropy of the 3-space).13 Therefore, the

vectorial torsion increases or decreases the rate of the
mean expansion or contration of a timelike congruence,
depending on whether the torsion vector is, respectively,
parallel or antiparallel to the uμ-field. We may take a
qualitative look by employing the relation Θ ¼ Θ̃þ 2Sμuμ,
where Θ̃ represents the purely Riemannian (i.e., the
torsionless) counterpart of the expansion or contraction
scalar (e.g., see [6]). Recalling that Θ̃=3 ¼ a0=a, with a ¼
aðτÞ being the associated scale factor, solving the above
relation for Sμuμ and then substituting the resulting
expression into the right-hand side of Eq. (46), we find
that Θ0=Θ ¼ −a0=a. The latter integrates immediately to
give

Θ ¼ Θ0

�
a0
a

�
; ð47Þ

with the zero suffix marking a given initial time. According
to the above solution, in an expanding spacetime (with
Θ0 > 0), we find that Θ → 0þ at late times (i.e., as
a → þ∞). When dealing with contracting models, on
the other hand, we have Θ0 < 0. In this case, solution
(47) ensures that Θ → −∞ as a → 0þ. In the former
example the expansion comes (asymptotically) to a halt,
while in the latter the (autoparallel) worldline congruence
focuses at a point.14

Not surprisingly, the quantitative effect of vectorial
torsion on the mean kinematics of the host spacetime
depends on the specific form of the associated torsion
vector. We can demonstrate this dependence by solving
Eq. (47) for the cosmological scale factor [a ¼ aðτÞ]. More
specifically, using the result aΘ ¼ a0Θ0 ¼ constant and
the splitting Θ ¼ Θ̃þ 2Sμuμ, of the volume scalar into its
purely Riemannian and torsional parts, we arrive at

a0 þ 2

3
ðSμuμÞ a ¼ a0Θ0 ¼ C0: ð48Þ

Keeping in mind that the torsion vector is purely timelike
due to the spatial symmetry and homogeneity of the
Friedmann-like spacetimes, the above accepts the solution

a ¼ aðτÞ ¼ e−
2
3

R
Sμuμdτ

�
C1 þ C0

Z
e
2
3

R
Sμuμdτdτ

�
; ð49Þ

where the integration constant C0 and C1 are decided by the
initial conditions. Therefore, in metric-compatible FRW-
type spacetimes with nonzero torsion, the scale factor
evolution is decided by the product Sμuμ, namely by the
orientation of the torsion vector relative to the uμ-field.
Interestingly, solution (49) also allows for the exponential

13In FRW-type models with torsion the associated torsion tensor
is conveniently given by the ansatz Sμνλ ¼ 2ϕu½μhν�λ, where ϕ is a
scalar function that depends only on time [11]. It is then
straightforward to show that Sμ ¼ Sμνν ¼ 3ϕuμ. Note that the
aforementioned torsion ansatz is a special case of definition (44).

14Generally speaking, a singularity in the volume scalar (i.e.,
Θ → −∞) means that caustics will develop in the worldline
congruence and does not necessarily imply a singularity in the
spacetime structure [5].
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increase of the scale factor. This can happen, e.g., when the
scalar Sμuμ equals a negative constant.

B. Weyl nonmetricity

The Weyl nonmetricity is also of vectorial form, since
Qμνλ ¼ Qμgνλ=n, where Qμ ¼ Qμν

ν is the associated Weyl
vector (see definition (4a) in Sec. II B earlier). Then, Q̃μ ¼
Qν

νμ ¼ Qμ=n [see definition (4b)], whichmeans that there is
only one independent nonmetricity vector. Also note that the
connection splits as Γλ

μν ¼ Γ̃λ
μν þ ð2δλðμQνÞ −QλgμνÞ=2n,

with Γ̃λ
μν giving the Christoffel symbols. Therefore, assum-

ing zero torsion, Weyl nonmetricity and confining to
autoparallel curves (i.e., setting Aa ¼ 0), the
Raychaudhuri equation (see (43) in Sec. V C) reduces to

�
Θ − 2

_l
l

�·

¼ −
1

n − 1

�
Θ − 2

_l
l

�2

− Rμνuμuν

− 2ðσ2 − ω2Þ: ð50Þ

Note that, in deriving the above,we have utilized the relation
aμ ¼ −ðQνuν=nÞuμ, which connects the hyper acceleration
to the Weyl vector in the case of autoparallel motion (see
Eq. (22) in Sec. IVA). Then, one can immediately obtain the
auxiliary resultsaμuμ ¼ −2l _l andQμuμ ¼ −2n _l=l, which
also hold for Weyl nonmetricity and for zero path accel-
eration. In addition, we have σμνgμν ¼ σμ

μ ¼ 0 and ξμuμ ¼
aμuμ by construction.
Confining to a four-dimensional spacetime and assuming

an autoparallel congruence that is also irrotational and
shear free, namely, setting n ¼ 4 and ω ¼ 0 ¼ σ in
Eq. (50), the latter leads to

�
Θ − 2

_l
l

�·

þ 1

3

�
Θ − 2

_l
l

�2

≤ 0; ð51Þ

provided that Rμνuμuν ≥ 0. This last constraint on the Ricci
tensor may be seen as the generalization of the familiar
“weak energy condition” to spacetimes with (Weyl) non-
metricity. It is then straightforward to show (e.g., see [5] for
details) that (51) integrates to

�
Θ − 2

_l
l

�−1
≥
�
Θ0 − 2

�
_l
l

�
0

�−1
þ 1

3
λ; ð52Þ

with the zero suffix marking a given initial affine value.
Starting from the above and following [5], we deduce
that Θ − 2_l=l → −∞ within finite affine length (i.e., for
λ ≤ ½Θ0 − 2ð _l=lÞ0�=3), assuming that Θ0 − 2ð _l=lÞ0 < 0

initially. Put another way, provided that Θ0 < 2ð _l=lÞ0,
the volume scalar of the congruence will develop a
caustic singularity (i.e., Θ → −∞), unless _l=l → þ∞

simultaneously. An interesting deviation from the standard
Riemannian studies is that, when ð _l=lÞ0 > 0, caustic
formation seems now possible even for initially expanding
congruences, namely for those with 0 < Θ0 < 2ð _l=lÞ0.
Before attempting to solve Eq. (50), it helps to

decompose the volume scalar into a purely Riemannian
component and the nonmetricity contribution. Recalling
that Θ ¼ gμν∇νuμ by definition, we find that that Θ ¼
∇μuμ −Qμuμ=n ¼ ∇μuμ þ 2_l=l in the case of Weyl non-

metricity. In addition, we have ∇μuμ¼∇̃μuμþQμuμ=2¼
∂μuμþΓ̃μ

νμuν− _l=l, with the latter equality also holding
for Weyl nonmetricity. Combining all the above gives

Θ ¼ ∂0lþ Γ̃μ
0μlþ

_l
l
¼ Γ̃μ

0μlþ 2
_l
l
; ð53Þ

since uμ ¼ δμ0l and ∂0l ¼ l0 ¼ _l=l. Finally, keeping in
mind that Γ̃0

00 ¼ 0 and Γ̃1
01 ¼ Γ̃2

02 ¼ Γ̃3
03 ¼ a0=a in a

flat FRW spacetime, we arrive at

Θ ¼ 3
_a
a
−

_l
l
: ð54Þ

Let us now apply Eq. (50) to a congruence of irrotational
and shear-free autoparallel curves “living” in a Ricci-flat
four-dimensional spacetime. Then, a straightforward inte-
gration of the remaining differential equation leads to

Θ − 2
_l
l
¼

�
1

3
λþ C

�
−1
; ð55Þ

where the integration constant (C) depends on the initial
conditions. In addition, keeping in mind that Θ ¼
3_a=a − _l=l (see Eq. (54) above), the left-hand side of
(55) reads ½lnða=lÞ3�· and we arrive at the following
expression

a ¼ aðλÞ ¼ lðC1 þ C2λÞ; ð56Þ

for the scale factor in terms pf the affine parameter. To
proceed further, recall that l2 ¼ R

Qμνλuμuνuλdλþ C when
dealing with autoparallel curves (see Sec. IVA earlier).
Therefore, for Weyl nonmetricity in a four-dimensional
spacetime, we find

l ¼ l0e
−1
8

R
Qμuμdλ: ð57Þ

Furthermore, substituting the above expression into
Eq. (15) and integrating leads to

λ ¼ � 1

l0

Z
e−

1
8

R
Qμuμdλ: ð58Þ
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Finally, on using the auxiliary relations (57) and (58),
expression (56) recasts into

a ¼ aðλÞ ¼ e−
1
8

R
Qμuμdλ

�
C3 þ C4

Z
e
1
8

R
Qμuμdλ

�
: ð59Þ

The above solution provides the scale factor in terms of the
affine parameter of an autoparallel congruence of irrota-
tional and shear-free worldlines, which reside in a four-
dimensional, Ricci-flat spacetime “equipped” with Weyl
nonmetricity. In close analogy with the case of pure
(vectorial) torsion (see Sec. VI A before), when the host
spacetime is FRW-like, the nonmetricity vector is purely
timelike. Also, the scale-factor evolution is decided by the
scalar product Qμuμ, that is by the orientation (parallel or
antiparallel) of the nonmetricity vector relative to the uμ-
field. What is most intriguing, however, is that expression
(59) is formally identical to the pure-torsion solution (49).
In fact, the two expressions are indistinguishable, provided
we make the simple exchange Qμ ↔ 16Sμ=3 and inter-
change proper time with the affine parameter in the related
integrals.15 This apparent “duality” between torsion and
nonmetricity has been observed and reported in earlier
works as well [7]. Here, we see that in highly symmetric
(Friedmann-like) spacetimes where only the vector com-
ponents of torsion and nonmetricity survive, the effects of
the aforementioned two geometrical agents are phenom-
enologically indistinguishable.

VII. DISCUSSION

Classical general relativity combines theoretical elegance
and observational success at the highest level. Nevertheless,
modifications and extensions of Einstein’s theory have been
proposed and investigated ever since relativity was intro-
duced in the early years of the last century. The motivation
behind these efforts are multiple, ranging from the quest for
quantum gravity and the existence of singular solutions for
key relativistic equations, to the awareness of the intrinsic
limitations of the theory and its apparent inability to explain
certain observations. Violating the metricity condition and
including spacetime torsion have long been suggested as
possible ways of “improving” standard general relativity.
Technically speaking the noncompatibility of the metric and
the asymmetry of the connection imply that the latter is no
longer uniquely defined by the former. In other words, the
metric and the connection are treated as independent

geometrical fields, an approach that is often referred to as
the “Palatini formalism”, although a more precise terminol-
ogy is metric-affine formalism.
Historically speaking, nonmetricity was first introduced

to unify gravity with electromagnetism and torsion to
incorporate the nonzero spin of the matter into the
gravitational field. In the literature there are several
suggestions, as well as a debate, on the possibility of
experimentally testing torsion [13]. Although less frequent,
there is also discussion on potentially measurable effects
from nonmetricity [14]. In this work we have considered a
generalized spacetime with n dimensions, nonzero torsion,
and general nonmetricity. Our aim was to study the mean
kinematics of timelike worldlines and see how these are
affected by the aforementioned two extra spacetime fea-
tures. We did so, by employing and extending the 1þ 3
covariant formalism, which combines both mathematical
compactness and physical clarity, to spaces with torsion
and nonmetricity. After adapting the covariant approach to
the new environment and clarifying several subtle issues,
we derived and provided the most general (to the best of our
knowledge) version of Raychaudhuri’s formula. The latter
is known to monitor the mean kinematics of timelike
observers and has been the key formula for studying
self-gravitating media.
Not surprisingly, the introduction of extra degrees of

freedom into the host spacetime added several new effects
to the Raychaudhuri equation. This in turn made the
kinematics of the residing observers considerably more
involved and therefore more difficult to decode.
Nevertheless, by treating torsion and nonmetricity sepa-
rately and by confining to highly symmetric (Friedmann-
like) spacetimes, we were able to obtain both qualitative
results and analytical solutions. In particular, assuming
vectorial torsion and Weyl nonmetricity, we found that the
solutions of the associated Raychaudhuri equations were
formally identical. More specifically, it was shown that one
could recover the former solution from the latter (and vice
versa), by merely imposing a simple ansatz between the
torsion and the Weyl vectors. Analogous reports of such a
“duality” relation between these two geometrical agents are
not uncommon in the literature. We attribute ours to the
high symmetry of the host spacetimes, which appears to
make the effects of torsion and nonmetricity macroscop-
ically indistinguishable.
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previous section, solution (59) also allows for the exponential
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equals a negative constant. This result, which requires
further scrutiny, seems to support earlier claims made in the
literature about the theoretical possibility of a nonmetricity driven
inflation [12].
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