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In this article, I discuss the construction of some globally conserved currents that one can construct in the
absence of a Killing vector. One is based on the Komar current, which is constructed from an arbitrary
vector field and has an identically vanishing divergence. I obtain some expressions for Komar currents
constructed from some generalizations of Killing vectors which may in principle be constructed in a generic
spacetime. I then present an explicit example for an outgoing Vaidya spacetime which demonstrates that the
resulting Komar currents can yield conserved quantities that behave in a manner expected for the energy
contained in the outgoing radiation. Finally, I describe a method for constructing another class of (non-
Komar) globally conserved currents using a scalar test field that satisfies an inhomogeneous wave equation,
and discuss two examples; the first example may provide a useful framework for examining the arrow of
time and its relationship to energy conditions, and the second yields (with appropriate initial conditions) a
globally conserved energy- and momentumlike quantity that measures the degree to which a given
spacetime deviates from symmetry.
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I. THE KOMAR CURRENT

In a 1959 article [1], Arthur Komar presented a
globally conserved current (the Komar current) for
general relativistic spacetimes, which is constructed
from an arbitrary vector field Uμ (which serves as
the generator for diffeomorphisms). The Komar current
is of the form1:

JμK ≔ ∇νð∇μUν −∇νUμÞ: ð1Þ

The Komar current has theoretical appeal because it
can be derived from the action in the context of Noether’s
theorem—in [2–4], it was shown that the Komar current is
in fact the conserved current corresponding to the diffeo-
morphism invariance of the Einstein-Hilbert Lagrangian
coupled to matter.2

Using the Ricci identity ½∇μ;∇ν�Tαβ ¼ Rα
σμνTσβ þ

Rβ
σμνTασ for the Levi-Civita connection ∇μ, it is straight-

forward to show that the divergence of JμK identically
vanishes:

∇μJ
μ
K ¼ ½∇μ;∇ν�∇μUν

¼ Rμ
σμν∇σUν þ Rν

σμν∇μUσ

¼ Rσν∇σUν − Rσμ∇μUσ ¼ 0: ð2Þ

The above result is an identity for any quantity of the form
given in Eq. (1); it only depends on the Ricci identity for
rank-2 tensors. Note also that Eq. (2) permits a shift
freedom in JμK; any divergence-free vector added to JμK
preserves the divergence-free property Eq. (2). One poten-
tially useful example is a vector field of the form ∇μϕ,
which is divergence free if the scalar field satisfies the wave
equation □ϕ ¼ 0.
From the Komar current JμK , I may construct the 3-form:

JμKdΣμ ¼ 2∇νð∇½μUν�ÞdΣμ: ð3Þ

By Stokes’ theorem, the integral of the above over some
constant-time hypersurface Σt becomes:

Z
Σt

JμKdΣμ ¼ 2

Z
∂Σt

∇½μUν�dSμν: ð4Þ

where dΣμ and dSμν are the respective surface elements3

for Σt and ∂Σt. Equation (4) may be used to construct
quasilocal expressions for quantities associated with a

1Note that there is a gauge freedom in this definition; for a
torsion-free connection ∇μ, JμK is invariant under the trans-
formation Uμ → Uμ þ∇μσ (σ being a scalar field).

2I also refer the reader to [5] and related work which extend the
analysis to more general theories of gravity [6–8]. 3See Ch. 3 of [9] for the explicit expressions.
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Komar current. Note in a closed universe, the constant-time
hypersurfaces Σt are compact and without boundary, so that
the Komar integrals vanish identically.
For a Killing vector4 χμ, Eq. (4) is the Komar integral,

and it is straightforward to show that the Komar current JμK
[Eq. (1)] becomes:

Jμχ ¼ −2□χμ ¼ 2Rμ
νχ

ν: ð5Þ

where I have made use of the following expression, which
may be obtained from the divergence of Killing’s equation
∇ðμχνÞ ¼ 0 [cf. Eq. (A2)]:

□χμ þ Rμ
νχ

ν ¼ 0: ð6Þ

Given a Killing vector χμ, Eq. (5) may then be used in
conjunction with the Komar integrals Eq. (4) to obtain (up
to factors of two) the Komar mass and angular momen-
tum [10].

II. KOMAR CURRENT FROM ALMOST
KILLING VECTORS

In spacetimes which do not admit Killing vectors, one
may consider the construction of Komar currents from
some generalization of Killing vectors. The general idea
was originally proposed by Komar in [10], in which he
considered semi-Killing vectors, which are divergence-free
and (under the divergence-free condition) satisfy an equa-
tion equivalent to Eq. (6). If, in an asymptotically flat
spacetime, the semi-Killing vectors are asymptotically
Killing, the surface integrals (4) may still be used to define
conserved charges—in particular the mass and angular
momentum5 for an asymptotically flat spacetime. Another
approach, introduced by Harte in [12], constructs Komar
currents from affine collineations (which form another
generalization for Killing vectors), defined as solutions
to the equation ∇α∇ðμξνÞ ¼ 0.
Here, I describe a generalization of Komar’s approach by

dropping the divergence-free constraint. One may recog-
nize that Eq. (6) is a curved spacetime wave equation for a
vector field; solutions of Eq. (6) form a natural generali-
zation for Killing vectors which in principle can be
constructed in a generic spacetime. A further generalization
of Eq. (6) is the almost Killing equation (AKE) [13–15]

□ξν þ Rν
σξ

σ þ ð1 − μÞ∇νð∇ · ξÞ ¼ 0; ð7Þ

where μ is a constant parameter. The solutions ξμ of the
AKE are termed almost-Killing vectors. The AKE (7) is a
generalization of Eq. (6), and it is straightforward to verify

that if ξμ is a Killing vector, it satisfies the AKE. If ξμ is a
solution to the AKE (7), the Komar current [Eq. (1)] takes
the following form6:

JνAK ¼ 2Rν
σξ

σ þ ð2 − μÞ∇νð∇ · ξÞ: ð8Þ

Note that for μ ¼ 2, the current vanishes for vacuum
spacetimes, and that for μ ≠ 2, it measures the degree to
which ∇ · ξ fails to be constant. Since Eq. (8) is a
consequence of Eq. (1), the divergence-free property for
the current JμAK (Eq. (2)) is an identity; it follows that if
solutions of Eq. (7) exist, they must satisfy the following
condition:

ξμ∇μRþ 2Rμν∇ðμξνÞ þ ð2 − μÞ□ð∇ · ξÞ ¼ 0: ð9Þ

I stress that Eq. (9) should be viewed as a property of
solutions for the AKE, not a constraint; it is a consequence
of the fact that the Komar current, as defined in Eq. (1),
identically satisfies the divergence-free condition (2).
I must mention the globally conserved current of Ruiz

et al. [15], which is also constructed from almost-Killing
vectors. In particularRuiz et al. construct a conserved current
from solutions ξμ of the AKE (8) by directly generalizing
Eq. (5) to obtain the expression Jμχ ¼ 2Rμ

νξ
ν. Their result is

not in general a Komar current, and is not identically
divergence-free; one only has a divergence-free current with
the choice μ ¼ 2 (in which case one has a Komar current) or
by imposing the constraint □ð∇ · ξÞ ¼ 0.
Another Komar current may be constructed from the

related notion of an approximate Killing vector by Matzner
in [16] (see also [17]), which may be of use for constructing
Komar currents in compact Riemannian manifolds of
positive definite signature. This approach seeks an extremal
value for the functional:

λ½ξ� ≔
R ∇ðμξνÞ∇ðμξνÞdVR

ξμξμdV
; ð10Þ

where dV ¼ ffiffiffiffiffijgjp
dnx is the volume element for the

manifold. Extremizing the functional λ½ξ� yields the follow-
ing equation:

Δξμ ≔ ∇νð∇μξν þ∇νξμÞ ¼ λξμ; ð11Þ

which one recognizes to be an eigenproblem for the
operator Δ. The resulting Komar current is:

4See the Appendix for a discussion of Killing vectors and
conservation laws.

5Up to an anomalous factor of two [2] (also see [11], which
relates this factor to the trace of the energy-momentum tensor).

6One might attempt to exploit the gauge freedom ξμ → ξμ þ
∇μσ in Eq. (1) for the Komar current to eliminate the divergence
of ξ, but since the result (8) depends on Eq. (7), one cannot
replace ξμ in the result with its gauge-transformed counterpart in
Eq. (8); if one attempts to impose a Lorenz gauge ∇ · ξ ¼ −□σ,
the most one can do is to replace ∇ · ξ with −□σ in Eq. (8).
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JμM ¼ 2Rμ
νξ

ν þ 2∇μð∇ · ξÞ − λξμ: ð12Þ

In compact Riemannian manifolds (with positive-definite
signature), the spectrum of eigenvalues λ is discrete and
nonnegative, and the eigenvalue λ ¼ 0 is contained in the
spectrum if and only if the corresponding eigenvector is a
Killing vector [16]. Approximate Killing vectors in such
manifolds may therefore be defined as solutions to Eq. (11)
which have the minimum value for the eigenvalue λ.
Unfortunately, these properties no longer hold for eigen-

solutions on noncompact spacetimes with Lorentzian sig-
nature, and the eigenvalue λ ¼ 0 is no longer unique.
Nevertheless, the approximate Killing vector approach still
provides some useful insights; Matzner demonstrates that
the functional λ½ξ� provides a measure of the deviation from
symmetry for linearized gravitational waves, and in the
context of the averaging procedure of Isaacson [18] for high
frequency gravitational radiation, the functional λ½ξ�
depends on the averaged effective energy-momentum tensor
for gravitational radiation [16].7

I also note that for Ricci-flat manifolds, the values of the
current JμM (12) provides (through λ) a nonlocal measure of
the degree to which ξμ fails to be a Killing vector. On the
other hand, the current JμAK (8) constructed only measures
the degree to which the ∇ · ξ fails to be constant. The
current JμM (12) constructed from Eigensolutions of (11)
therefore provides a more complete8 measure of the degree
to which ξμ fails to satisfy Killing’s equation.

III. AN EXAMPLE: THE VAIDYA SPACETIME

The conserved currents presented in the preceding
section yield conserved quantities that may be thought
of as generalizations of energy and momentum. Of course,
the generalized Killing vectors on which these currents are
based are by no means unique (I shall construct more later
on in this article), so one cannot regard the corresponding
conserved quantities as definitions for the true energy and
momentum of a gravitating system. Nonetheless, the
conserved quantities constructed from the conserved cur-
rents presented in this article may be useful as phenom-
enological (and local) definitions for conserved energy- and
momentumlike quantities.
Here, I illustrate this for the outgoing Vaidya spacetime,

which describes the spacetime geometry in the exterior of a
radiating object; the line element for the Vaidya spacetime
is (I set G ¼ 1 throughout this article):

ds2¼−
�
1−

2MðuÞ
r

�
du2−2dudrþ r2ðdθ2þ sin2θdϕ2Þ;

ð13Þ

and I consider the case where the mass function MðuÞ has
the form:

MðuÞ ¼ Mav −
1

2
δMerfðαuÞ; ð14Þ

where erfðxÞ ≔ 2=
ffiffiffi
π

p R
x
0 e

−q2dq is the error function and α
is a constant parameter. This mass function describes the
spacetime around a spherical object, initially of mass
Mav þ δM=2, that emits a uniform pulse of radiation
and loses a mass δM in the process. For μ ¼ 2, the
AKE (7) admits a solution of the following form:

ξ ¼
�
1 −

δMerfðαuÞ
2M

;−
δMαre−α

2u2ffiffiffi
π

p
M

; 0; 0

�
: ð15Þ

The Komar current (8) for ξ is then:

JAK ¼
�
0;−

2δMαe−α
2u2ð2M − δMerfðαuÞÞffiffiffi

π
p

Mr2
; 0; 0

�
: ð16Þ

On a spacelike constraint surface Σs defined by the
constraint function sðu; rÞ ¼ uþ r, I can perform the
following integral (I have made use of u ¼ s − r, with s
constant over Σs) over the domain R1 < r < R2 to obtain
the following energylike quantity9:

Q ¼ −
1

8π

Z
Σs

nμJ
μ
AK

ffiffiffiffiffiffi
jhj

p
d3y

¼ δM2

4M
ðerfðαðs − R2ÞÞ2 − erfðαðs − R1ÞÞ2Þ

þ δMðerfðαðs − R1ÞÞ − erfðαðs − R2ÞÞÞ: ð17Þ

Since Σs is spacelike, s is effectively a time coordinate, and
the pulse is centered at the radius r ¼ s. One can see that
when the pulse is well contained in the domain R1 < r <
R2 (in particular, for s ≫ R1 and s ≪ R2), Q is nearly
independent of s, and has a value Q ∼ 2δM (note that I am
evaluating this on a finite domain, which is why there is no
term containing M). Also note that the first term nearly
vanishes when the pulse is far from R1 and R2. When the
pulse is far outside the domain R1 < r < R2, s ≫ R2, so
the value of Q decreases to zero. The quantity Q therefore
behaves in a manner expected for the energy contained in a
uniform pulse of radiation emitted by a spherical object,
except that the change in the charge δQ ∼ 2δM is twice the

7An interesting line of investigation, which I leave for
future work, concerns the precise relationship between λ½ξ�
and the conserved charges for the Komar current calculated
from the eigenvectors ξμ.

8Though Matzner points out that on manifolds of Lorentzian
signature, the tensor ∇ðμξνÞ can be null (∇ðμξνÞ∇ðμξνÞ ¼ 0), even
if ξμ is not null [16], so λ½ξ� does not provide a fully complete
measure of the degree to which ξμ fails to be Killing.

9The factor of 1=8π in front of the integral in Eq. (17) has been
chosen so that one recovers Q ¼ M for the case of a static
Schwarzschild spacetime.

SOME GLOBALLY CONSERVED CURRENTS FROM … PHYS. REV. D 98, 104035 (2018)

104035-3



expected value. The factor of two here comes from the fact
that the energy-momentum tensor for the Vaidya spacetime
is trace-free; it was noted in [11] that Komar integrals for
trace-free energy-momentum tensors yield values twice
that of energy-momentum tensors with nonvanishing trace.
The results I obtain here further establishes those of [11].

IV. KOMAR CURRENT FROM CONFORMAL
KILLING VECTORS AND THEIR

GENERALIZATION

I now consider the construction of the Komar current
from a conformal Killing vector and its generalization to
generic spacetimes. A conformal Killing vector is defined
as a vector ξ which satisfies the following [19]:

£ξgμν ¼ 2∇ðμξνÞ ¼ ψgμν; ð18Þ

where ψ is a scalar field. Note that ∇μξ
μ ¼ 2ψ . Taking the

divergence of (18) yields:

□ξμ þ Rμνξ
ν ¼ −∇μψ : ð19Þ

I now turn to the Komar current JμK [Eq. (1)], which now
takes the form:

JμC ¼ 2Rμ
νξ

ν þ 3∇μψ : ð20Þ

Note that in a vacuum, the value of JμC measures the degree
to which ξμ fails to be homothetic (ψ ¼ const.). The Komar
identity ∇μJ

μ
K ¼ 0 demands:

∇μJ
μ
C ¼ ξν∇νRþ Rψ þ 3□ψ ¼ 0; ð21Þ

so that the conformal factor ψ satisfies the following wave
equation:

□ψ þ 1

3
Rψ ¼ −

1

3
ξν∇νR: ð22Þ

Since Eq. (22) is derived from an identity ∇μJ
μ
K ¼ 0, this

result demonstrates that if a conformal Killing vector exists,
its associated conformal factor ∇μξ

μ ¼ 2φ must satisfy the
wave equation (22).
It is worth pointing out that in simple cosmological

spacetimes, the conformal Komar current in Eq. (20)
vanishes. It is well known that the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric admits a conformal
timelike Killing vector, and it is natural to construct a
Komar current from this vector. The FLRW spacetime may
be described by the line element10:

ds2 ¼ a2ðτÞ
�
−dτ2 þ dr2

1 − kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
;

ð23Þ

where the conformal time coordinate τ is related to the
usual comoving time coordinate t by dt ¼ aðτÞdτ. It is
straightforward to see that the line element (23) admits a
timelike conformal Killing vector; the only part of the line
element dependent on the coordinate τ is the scale factor
aðτÞ, which only appears once as a conformal factor. For
the FLRW metric, the Lie derivative is proportional to the
metric:

£ ∂∂τ
gμν ¼ 2

_aðτÞ
aðτÞ gμν: ð24Þ

The coordinate basis vector ∂=∂τ is therefore a conformal
Killing vector.
Since the FLRW admits a timelike conformal Killing

vector ∂=∂τ, it is natural to construct a Komar current from
∂=∂τ. Setting x0 ¼ τ, the components of ∂=∂τ are δμ0, with
δμν being the Kronecker delta. The Komar current that
results from this vanishes; to see this, note that the metric
component gμ0 form the covariant components of the vector
δμ0. In terms of gμ0, the conformal Komar current is:

JμC ¼ gμα∇βð∂αgβ0 − ∂βgα0Þ: ð25Þ

The quantity in the brackets vanishes because the metric is
diagonal and g00 depends only on τ. The Komar current
vanishes, and it follows that the resulting Komar integrals
also vanish.11 It is not surprising to find that the Komar
current and its associated charges vanish; the FLRW
spacetime possesses a high degree of symmetry, and for
a closed universe, the vanishing of charges immediately
follows from Eq. (4).
The conformal Komar current motivates the construction

of a more general almost-conformal Komar current, valid in
spacetimes which do not admit a conformal Killing vector.
In principle, one can construct Eq. (19) in a generic
spacetime:

□ζμ þ Rμνζ
ν ¼ −∇μω: ð26Þ

The Komar current for ζμ satisfying Eq. (26) is

JμAC ¼ 2Rμ
νζ

ν þ∇μð∇ · ζÞ þ∇μω: ð27Þ

The divergence of the above yields:

10I set c ¼ 1 and employ the MTW [20] signature
ð−;þ;þ;þÞ.

11This applies to the surface integrals in Eq. (4); note that the
integrand of the surface integrals depend on the bracketed
quantity in Eq. (25).
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ζν∇νRþ 2Rμν∇ðμζνÞ þ□ð∇ · ζÞ þ□ω ¼ 0: ð28Þ

Now since the divergence of the Komar current is iden-
tically zero, Eq. (28) does not constrain the scalar field ω;
Eq. (28) is a property of any solution ζμ to Eq. (26). Since I
intend ζμ to be a generalization of the conformal Killing
vector, I require that ω satisfies Eq. (22):

□ωþ 1

3
Rω ¼ −

1

3
ζν∇νR: ð29Þ

One may then solve Eqs. (26) and (29) for ζμ and ω; the
resulting vector field ζμ may then be used to construct a
Komar current in a generic spacetime. If they exist, Killing
vectors and conformal Killing vectors both lie in the
solution space of Eqs. (26) and (29). If ξμ is a Killing
vector, then Eq. (26) requires that ω be a constant, and
Eq. (29) implies that ω must vanish. If ζμ is a conformal
Killing vector, then Eq. (26) requires that up to a constant,
2ω ¼ ∇ · ζ, and the wave equation for ω (Eq. (29)),
combined with the property (28), requires that 2ω ¼ ∇ · ζ
holds exactly. The solutions of Eqs. (26) and (29) therefore
provide a suitable generalization for bothKilling vectors and
conformal Killing vectors in generic spacetimes. For sit-
uations in which one has an approximate conformal sym-
metry, it may be appropriate to formulate conservation laws
using the Komar current (27) constructed from solutions of
Eqs. (26) and (29).

V. GLOBALLY CONSERVED NON-KOMAR
CURRENTS FROM SCALAR TEST FIELDS

As mentioned earlier, the Komar current has theoretical
appeal because it can be derived from fundamental prin-
ciples in the context of Noether’s theorem [2–4]. However,
Komar currents may be of limited use in certain circum-
stances. As discussed earlier, any globally conserved
charge constructed from the Komar current will vanish
in spatially closed universes, by virtue of Eq. (4). Even for
Schwarzschild and Kerr spacetimes, which admit a non-
vanishing Komar charge for timelike Killing vectors, the
Komar current Jμχ [Eq. (5)] for Killing vectors is of little use
locally since it vanishes in vacuum spacetimes. While the
currents constructed from generalized Killing vectors in
Eqs. (8) and (27) do not in general vanish in vacuum
spacetimes, and their nonvanishing values measure the
degree to which the divergence of the generalized Killing
vector fails to be constant—it would be preferable instead
to have a current which more completely measures the
degree to which the generalized Killing vector fails to
satisfy Killing’s equation. Though the current Eq. (12)
constructed from Matzner’s approximate Killing vector can
be interpreted as such, it depends on λ½ξ� which, being
constructed from integrals, is difficult to evaluate on the
whole of a noncompact spacetime.

Fortunately, one can construct globally conserved cur-
rents that do not correspond to a Komar current—the
conserved current of Ruiz et al. is one example [15] (note,
however, that it also vanishes in a vacuum spacetime).
There is a more general class of conserved currents
(containing the Komar current) defined as those formed
from divergences of superpotentials; the discussion of this
approach is beyond the scope of this article, and I refer the
reader to [5,21,22] and references contained therein. In this
section, I examine a simple construction that can turn a
nonconserved current into a globally conserved current in a
generic spacetime. As I shall demonstrate, the simplicity of
this construction facilitates both the computation and
interpretation of the resulting currents.
To motivate this construction, recall that the identity

∇μJ
μ
K ¼ 0 for the Komar current JμK (2) admits a shift

freedom; one can add any divergence-free vector to the
Komar current JμK to obtain another conserved current. In
particular, I note that the current JμK þ∇μφ is also
divergence-free when the scalar field φ satisfies the
homogeneous wave equation □φ ¼ 0. In FLRW space-
time, one solution to the homogeneous wave equation is
φ ¼ −

R ðρ0=a2ðτÞÞdτ (where ρ0 is a constant); this pro-
duces a shift in the Komar charge by an amount ρ0V where
V is the spatial volume when aðτÞ ¼ 1. This property is
reminiscent of the shift freedom in the electrostatic poten-
tial or the Newtonian gravitational potential.12

Given a current Jμ that is not divergence free (∇μJμ ≠ 0),
I may construct a conserved current with a similar
procedure—I add to Jμ a gradient∇μ which cancels out the
divergence:

Kμ ¼ Jμ −∇μφ; ð30Þ

where the scalar field φ now satisfies an inhomogeneous
wave equation:

□φ ¼ ∇ · J: ð31Þ

In this framework, the scalar field φ absorbs the divergen-
ces for the current Jμ, and characterizes the degree to which
the current Jμ and its charges fail to satisfy conservation
laws. Of course, Eq. (31) admits many more solutions than
necessary for this purpose,13 since one can add solutions of
the homogeneous wave equation □φ ¼ 0 to a particular
solution of Eq. (31). These additional solutions correspond
to shifts in the conserved charges (recall the discussion in
the preceding paragraph for the FLRW example). This can

12In the gravitational case, note that for a uniform gravitational
field (like that near the surface of the earth) there is no absolute
definition for the potential energy; the shift freedom corresponds
to a freedom of choice in the reference height.

13Here, I assume that for a given set of initial conditions on a
Cauchy surface (and a well-behaved source), unique solutions to
(31) exist for a sufficiently short (but finite) time.
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be made explicit for the current Jμ ¼ Rμνnν, where nμ is the
unit normal vector to constant t surfaces:

Kμ
R ¼ Rμνnμ −∇μφ: ð32Þ

The resulting charge Q may be interpreted as an energy for
an FLRW spacetime. For a closed FLRW spacetime with
a scale factor14 aðtÞ ¼ a0tq, I obtain the following solution
of Eq. (31) for φ ¼ φðtÞ:

φðtÞ ¼ 3qðq − 1Þ
t

þ C1

t1−3q

1 − 3q
þ C2; ð33Þ

where C1 and C2 are constants of integration. The con-
served charge (evaluated on a constant t surface) is then:

Q ¼ a30C1V; ð34Þ

where V is the volume of the constant t hypersurface when
aðtÞ ¼ 1. Note that Q depends on the constant of integra-
tion C1; it is straightforward to verify that the term
containing C1 in Eq. (34) is in fact a solution of the
homogeneous wave equation □φ, which generates a shift
in the energy. If I set C1 ¼ 0, I recover the result that the
conserved charge (which corresponds to an energy) van-
ishes; the C1 ¼ 0 solution therefore yields the correct value
(zero) for the total energy in a closed FLRW universe. This
example further establishes that solutions to the homo-
geneous equation correspond to shifts in the conserved
charges.
I now discuss a current closely related to Kμ

R (32), which
endows the scalar field φ with an interesting property in a
spatially closed (not necessarily FLRW) universe. The
current takes the following form:

Kμ
T ¼ TμνXν −∇μφ: ð35Þ

where Xμ is a timelike, future-pointing unit vector, and Tμν

is an energy-momentum tensor that satisfies the dominant
energy condition [19,23], which for the discussion here
takes the form TμνXμZν ≥ 0 for any two future-directed
timelike unit vectors Xμ and Zμ. I note that one can always
choose initial conditions for φ such that (where nμ is a
timelike unit normal vector to a constant t hypersurface):

nμ∇μφ − TμνnμXν ¼ 0; ð36Þ

so that the resulting conserved charge takes the value
Q ¼ 0. Equation (31) ensures that Kμ

T is divergence-free so
that the value of the charge Q is foliation independent. If
Q ¼ 0, it follows that on any hypersurface Σ:

Z
Σ
nμ∇μφ

ffiffiffiffiffiffi
jhj

p
d3x ≥ 0; ð37Þ

where h is the determinant of the induced metric on Σ.
Since the above inequality holds for any spacelike hyper-
surface, I find that the dominant energy condition implies
that for any future-directed hypersurface-orthogonal vector
Zμ, the integral of the derivative Zμ∇μφ on the integral
hypersurfaces of Zμ is positive. This condition is the
statement that on average, φ is constant or increasing15

along future-directed integral curves of Zμ. I emphasize that
this property is only true on average, since the inequality
(37) does not in general imply Zμ∇μφ < 0 at every point in
Σ. Nevertheless, this property suggests that φ is globally
increasing along the integral curves of a unit hypersurface-
orthogonal timelike vector field Zμ. The current (35) may
therefore provide a framework for studying questions
concerning the arrow of time and its relationship to energy
conditions in general relativity.
Finally, I discuss a construction that generalizes the

Komar current JμAK for almost Killing vectors16:

Kμ
AK ¼ JμAK þ ξνð2∇ðμξνÞ þ κgμνð∇ · ξÞÞ −∇μφ; ð38Þ

where κ is a parameter and φ satisfies:

□φ ¼ ∇μðξνð2∇ðμξνÞ þ κgμνð∇ · ξÞÞÞ: ð39Þ

The current JμAK does not contribute to the right-hand side
(rhs) of (39) because it is a Komar current and is identically
conserved. Note that when ξμ is a Killing vector, Kμ

AK
becomes Jμχ [Eq. (5)] after eliminating the superfluous
solutions of the wave equation for φ (which may be done
with an appropriate choice of initial and boundary con-
ditions). I also point out that the scalar field φ may not
always be necessary to ensure conservation; if κ ¼ −2μ and
if∇ðμξνÞ is null and trace-free,

17 the rhs of (39) vanishes and
φ decouples from ξ.
In general, the current Kμ

AK is nonvanishing in vacuum
spacetimes which do not admit Killing vectors. While this
is true to some degree for the currents in Eqs. (8), (12) and
(27), the expression has a clear interpretation in the μ ¼ 2

case (in which JμAK vanishes for a vacuum spacetime); the

14Here, I use the usual comoving coordinate t, in which the line
element takes the form ds2 ¼ −dt2 þ a2ðtÞdS2, where dS2 is the
line element for constant t surfaces when aðtÞ ¼ 1.

15I should point out that since the volume of Σ differs
between hypersurfaces, the inequality in Eq. (37) does not imply
that the integral

R
Σ φ

ffiffiffiffiffiffijhjp
d3x increases for uniform infinitesimal

displacements in the direction of nμ. This is only true on
maximal hypersurfaces (hypersurfaces which have vanishing
mean curvature).

16One may instead substitute the more general current JμAC in
Eq. (27), but similar arguments apply—for simplicity, I restrict
my attention to JμAK .17Again, as pointed out earlier in footnote 7, the tensor ∇ðμξνÞ
can be null, even for non-Killing vectors ξmu that are not
themselves null [16].
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terms explicitly dependent on ξμ provide a local measure of
the degree to which ξμ fails to satisfy Killing’s equation,
and the inhomogeneous solutions φ of Eq. (39) provide a
nonlocal measure of the degree to which ξμ fails to be
Killing. The current Kμ

AK therefore provides an energy- and
momentum-like measure of the deviation from symmetry in
a generic spacetime. Note also that the computation of Kμ

AK
is much simpler than that of Eq. (12), and can be formulated
as an initial value problem for the AKE (7) and the wave
equation for φ (39).

VI. OUTLOOK

In this article, I have constructed some Komar currents
[Eqs. (8), (12), and (27)] from various generalizations of
Killing vectors, defined as the respective solutions to
Eqs. (7), (11), and the system given by Eqs. (26) and
(29), which can in principle be constructed in generic
spacetimes. In spacetimes that admit Killing vectors, I have
shown that Killing vectors lie in the solution space to these
equations, and Killing vector solutions may be recovered
with an appropriate choice of initial and boundary con-
ditions18—and I have also argued that for Killing vector
solutions, the corresponding currents reduce to the familiar
Komar currents for Killing vectors. Though the analysis
here of these currents and their properties is admittedly a
cursory one, I have included a simple example for the
Vaidya spacetime which demonstrates how Komar currents
from approximate Killing vectors can be used to define
conserved quantities that behave in a manner expected for
the energy (up to a factor of 2) contained in the outgoing
radiation. A more detailed investigation, which I leave for
future work, will involve the further study of the systems
(in particular their solutions in various spacetime geom-
etries) described in Eqs. (7), (11), (26), and (29).
I have also presented a new class of globally conserved

currents which do not correspond to Komar currents, and
can be constructed from an existing current (which does not
need to be conserved) and a scalar field. While these
currents do not have the same fundamental status as Komar
currents (which can be derived in the framework of
Noether’s theorem), they are simple to construct, and I
have shown that they can have interesting features which
may be of conceptual and calculational utility. I discussed a
couple of examples; the current (35) is constructed from a
unit timelike vector and the energy-momentum tensor, and
I have shown that under the dominant energy condition, the
scalar field φ is on average constant or increasing in the
direction of future-pointing hypersurface orthogonal time-
like unit vectors—this feature might make this construction
a useful framework for studying questions concerning the
arrow of time and its possible relationship to energy

conditions in general relativity. The current (38) is con-
structed from almost-Killing vectors and (with appropriate
initial conditions) yields a globally conserved energy- and
momentum-like quantity which measures the degree to
which a given spacetime deviates from symmetry. The
examples discussed in this article are by no means unique;
there are many more currents that one can construct
from the prescription in Eqs. (30) and (31). I leave for
future investigation the exploration and identification of
other useful currents that may be constructed with this
prescription.
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APPENDIX

1. Killing vectors and conservation laws

In this Appendix, I briefly review the relationship
between Killing vectors and global conservation laws, the
discussion of whichmay be found in a standard reference on
general relativity (see for instance [9,19,20,24,25]) or in the
seminal work of Komar [10]. A Killing vector χμ is defined
by Killing’s equation:

1

2
£χgμν ¼ ∇ðμχνÞ ¼ 0; ðA1Þ

where £χ is the Lie derivative, and I use the symmetrization
convention AðμνÞ ¼ 1

2
ðAμν þ AνμÞ. From Eq. (A1), it is

straightforward to show that a Killing vector is diver-
gence-free ∇μχ

μ ¼ 0, and that χμ satisfies the following
wave equation:

□χμ þ Rμ
νχ

ν ¼ 0: ðA2Þ

where Rμν is the Ricci tensor. Killing vectors describe the
isometries of spacetime; if a metric admits a Killing vector,
there exists a coordinate system in which the metric is
independent of a coordinate and the Killing vector becomes
a coordinate basis vector for that coordinate.19

Given a Killing vector, one may construct a conserved
current from the energy-momentum tensor for matter Tμν:

JμT ≔ Tμνχν: ðA3Þ

18In the case of Eq. (11), one must also select the λ ¼ 0
eigensolutions.

19To see this, recall that the Lie derivative with respect to a
coordinate basis vector is just the partial derivative. For a
coordinate x, this means that £∂=∂x ¼ ∂=∂x. Killing’s equation
for ∂=∂x then becomes ∂gμν=∂x ¼ 0, which is precisely the
condition that gμν is independent of the coordinate x.
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The divergence of JμT vanishes:

∇μJ
μ
T ¼ ∇ðμχνÞTμν þ χν∇μTμν ¼ 0: ðA4Þ

The second equality follows from Killing’s equation (A1)
and the local conservation law ∇μTμν ¼ 0 for the energy-
momentum tensor.
One can construct another conserved current from the

Ricci tensor Rμν:

JμR ≔ Rμνχν: ðA5Þ
The divergence of JμR takes the following form:

∇μJ
μ
R ¼ ∇ðμχνÞRμν þ χν∇μRμν: ðA6Þ

The divergence of Rμν does not vanish, but it does satisfy
the contracted Bianchi identity:

∇μRμν ¼ 1

2
∇νR ðA7Þ

The last term in (A6) vanishes by way of χν∇νR ¼ 0; this
property follows from the observation that if the Killing
vector χ is a coordinate basis vector so that χ ¼ ∂=∂z, then
the metric and the Ricci scalarR become independent of the
coordinate z. It then follows that the divergence of JμR
vanishes

∇μJ
μ
R ¼ 0: ðA8Þ

It is straightforward to construct globally conserved
quantities from Jμ, provided∇μJμ ¼ 0. To do this, integrate
∇μJμ ¼ 0 over some region of spacetimeU (with boundary
∂U) and apply the divergence theorem to obtain the result:

Z
U
∇μJμ

ffiffiffiffiffi
jgj

p
d4x ¼

Z
∂U

nμJμε
ffiffiffiffiffiffi
jhj

p
d3y ¼ 0: ðA9Þ

where nμ is the outward pointing unit normal vector to the
boundary ∂U, with ε ¼ nμnμ ¼ �1, y are coordinates on
∂U, and h ¼ detðhijÞ, with hij being the induced metric on
∂U (here, I assume the ∂U is non-null). If the spacetime
manifold has topology R × Σ, where Σ is compact and
without boundary,20 I may choose the boundary to be given
by ∂U ¼ Σt1 ∪ Σt2 where Σt1 is a spacelike constant time
hypersurface defined by the coordinate value t ¼ t1, and Σt2
is defined by t ¼ t2. Equation (A9) then implies the
following:

Z
Σt2

nμJμ
ffiffiffiffiffiffi
jhj

p
d3y ¼

Z
Σt1

nμJμ
ffiffiffiffiffiffi
jhj

p
d3y: ðA10Þ

Since the above holds for an arbitrary coordinate system on
the spacetime manifold, one may infer that the following
integral is conserved (assuming spacelike Σ), where the
factor 1=4π is chosen so to yield the appropriate value of
mass for an asymptotically flat spacetime:

Q ¼ 1

4π

Z
Σ
nμJμ

ffiffiffiffiffiffi
jhj

p
d3y: ðA11Þ

In particular, Eq. (A10) implies thatQ is independent of the
choice of spacelike hypersurface Σ in the spacetime; it is a
conserved quantity.
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