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Here we show that the phenomenon of arbitrarily long-lived quasinormal modes (called quasireso-
nances) of a massive scalar field in the vicinity of a black hole is not an artifact of the test field
approximation, but takes place also when the (derivative) coupling of a scalar field with the Einstein tensor
is taken into consideration. We observe that at large coupling and high multipole numbers, the growing
modes appear in the spectrum, which are responsible for the eikonal instability of the field. For small
coupling, when the configuration is stable, there appear the purely imaginary quasinormal modes which are
nonperturbative in the coupling constant. At the sufficiently small coupling the nonminimal scalar field is
stable and the asymptotic late-time tails are not affected by the coupling term. The accurate calculations of
quasinormal frequencies for a massive scalar field with the derivative coupling in the Reissner-Nordström
black-hole background are performed with the help of the Frobenius method, time-domain integration and
WKB expansion.
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I. INTRODUCTION

The spectrum of quasinormal modes [1] is an essential
characteristic of a black hole. It governs the gravitational
wave response to the external perturbations and, thereby,
can be observed via gravitational interferometers [2].
Quasinormal modes of a test scalar field have been very
well studied by now for a great number of black-hole
metrics, representing the Einstein theory and its alterna-
tives. A number of papers in this area were devoted to
quasinormal modes of test massive fields. One of the
motivations for such interest was the fact that at some
fixed values of the mass of the field, special modes, called
in [3] quasiresonances, were observed. When approaching
the above values of mass, the damping rate of these modes
approaches zero [3]. This was shown for a massive test
scalar field in the Schwarzschild [3,4], Kerr [5] and Kerr-
Newman [6] backgrounds. Later, the same phenomenon of
arbitrarily long-lived modes was observed for a massive
vector [7] and Dirac [8,9] fields. Thus, apparently the effect
does not depend on spin of the field. An effective quasir-
esonance phenomenon was noticed also for a massless

scalar field around a black hole immersed in the asymp-
totically homogeneous magnetic field [10], because the
magnetic field brings an effective massive term [11]. In
some spacetimes, such as the Schwarzschild–de Sitter one,
the arbitrarily long-lived modes cannot exist, as it was
shown analytically in [4]. Nevertheless, in the asymptoti-
cally de Sitter spacetimes a slower decay owing to the
massive term was found [12].
Arbitrarily long-lived quasinormal modes look like the

standing waves and, thereby, describe rather an exotic
situation. Unless the massive scalar hair exists compatibly
with the black hole, the radiation should damp, and, in the
end, the system must achieve the static state. The hint, that
could probably resolve such an unnatural state, is that
infinitely long-lived quasinormal modes are artifacts of the
test field approximation. Indeed, any real physical inter-
action of a field in the vicinity of a black hole can never be
represented exactly as a pure test field in the black-hole
background, even when the coupling terms might be
neglected for practical reasons. Thus, the coupling terms
representing for instance quantum corrections, coupling to
other fields or classical backreaction of the field upon the
black hole geometry would bring more realistic approxi-
mation to a real behavior of the field near the black hole.
Therefore, we find it interesting to check whether there are
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quasiresonances in the spectrum of a massive scalar field
with coupling corrections.
Reduction of the perturbation equations to a wavelike

form in the presence of the coupling terms may be quite a
complicated problem which leads to the source term in
the resultant master equations. This occurs, for example,
when taking into consideration higher than linear terms of
expansion in the perturbation theory. However, when one
considers derivative couplings of a scalar field to the
Einstein tensor, then the perturbation equations can be
reduced to the traditional wavelike form with an effective
potential and without the source term [13–15]. In [15]
quasinormal modes of such a massive scalar field with
derivative coupling were considered with the help of the
third order WKB approach. The WKB formula, even when
expanded to higher orders [16], cannot be used for accurate
calculation of quasinormal modes of a massive scalar field,
because the massive term adds an additional local mini-
mum to the effective potential. Thus, there appear three
turning points instead of the two for which the WKB
formula of Schutz and Will and its higher order general-
izations [16] were developed. In addition, it is well known
that the WKB method does not give reliable results for
n ≥ l, where n is the overtone number and l is the
multipole number. Therefore, the dominant fundamental
mode l ¼ n ¼ 0was simply not calculated in [15] even for
the massless case.
Having all the above motivations in mind, our purpose

here is twofold: first, to learn whether the arbitrarily long-
lived quasinormal modes can survive when the coupling
terms are taken into consideration and, second, to comple-
ment the calculations of [15] by finding accurate quasi-
normal frequencies for the range of parameters which
cannot be treated within the WKB approach [16]. We shall
use the three independent methods of calculations: time-
domain integration [17], the Frobenius method [18] and the
six order WKB formula [16]. We will show that the
arbitrarily long-lived quasinormal modes do exist when
the derivative coupling is taken into account. It will also be
shown that the late-time tails, which follow the period of
the quasinormal ringing, are not affected by the coupling
terms. We have found that the scalar field is unstable when
the coupling constant is larger than some critical value,
which agrees with [13]. Here we have shown that the
instability is of the eikonal type; that is, it develops at high
multipole numbers l. A similar instability was observed
for the gravitational perturbations of black holes in the
Einstein-Gauss-Bonnet and other higher curvature cor-
rected theories [19–21]. It is important, because the eikonal
instability in some of the theories with higher curvature
corrections is usually accompanied by the nonhyperbolicity
of the corresponding perturbation equations [22], which
means the breakdown of the whole regime of linear
perturbations. In the formalism of linear perturbation this
nonhyperbolicty looks like the divergence of the wave

function when summing over the modes with different (up
to infinity) multipole numbers l [23].
The paper is organized as follows. Section II gives basic

formulas on perturbation equations and the resultant wave-
like equations with an effective potential. Section III briefly
reviews the three methods used for the calculations of
quasinormal modes. Section IV is devoted to the discussion
of the obtained numerical data, the observed instability and
the deduction of an analytical formula for eikonal quasi-
normal modes. Finally, in the Conclusion, we briefly
summarize the obtained results and mention open questions.

II. BASIC FORMULAS

Here we shall consider a massive scalar field coupled to
the Einstein tensor of the electrovacuum system. Thus, the
background solution is given by the ordinary Reissner-
Nordström metric, while the massive scalar field is not
described by the Klein-Gordon equation anymore. Instead,
the equation of motion for a scalar field with the derivative
coupling is used

□Φþ βGμν∇μ∇νΦþ μ2Φ ¼ 0; ð1Þ
where μ is the mass of the field and

Gμν ¼ Rμν −
1

2
Rgμν

is the Einstein tensor. The nonminimal couplings of similar
and more general forms have been recently considered in
a number of papers, mostly in the cosmological context
[24–27]. In [24] quasinormal modes of a nonminimally
coupled scalar field in the pure de Sitter spacetime have
been computed and a dynamical instability has been found.
In the Schwarzschild limit Q ¼ 0, the Einstein tensor
vanishes, so that the configuration is reduced to a mini-
mally coupled scalar field propagating in the Schwarzschild
background.
The Reissner-Nordström black hole is described by the

metric:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð2Þ

where

fðrÞ ¼ 1 −
2M
r

þQ2

r2
;

and M and Q are the mass and charge of the black hole.
The above equation of motion (1) is reduced to the

wavelike equation for the radial part FðrÞ in the following
way [15] �

d2

dr2�
þ ω2 − V

�
FðrÞ ¼ 0; ð3Þ
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where the tortoise coordinate is

dr� ¼
dr
fðrÞ ;

and the effective potential is given by

V ¼ r2 − 2MrþQ2

r6ðr4 þ βQ2Þ2 fr8½r2lðlþ 1Þ þ μ2r4 þ 2Mr − 2Q2�

þ βQ2r4ð6r2 þ μ2r4 − 12Mrþ 6Q2Þ
þ β2Q4½2r2 − lðlþ 1Þr2 − 6Mrþ 4Q2�g: ð4Þ

We shall parametrize the mass and charge of the black hole
by the event horizon radius rþ and the inner horizon r−,
so that

M ¼ rþ þ r−
2

; Q2 ¼ rþr−: ð5Þ

Further we shall use the dimensionless coupling

α ¼ βQ2

r4þ
¼ βr−

r3þ
> 0: ð6Þ

Let us notice that α is assumed to be non-negative,
because of the singularity at r ¼ rþ

ffiffiffiffiffiffi
−α4

p
[15]. Strictly

speaking, we might also admit negative α > −1, but such a
coupling would imply existence of the minimal black-hole
mass for which the singularity is still hidden by the horizon.

III. THE METHODS FOR FINDING
QUASINORMAL MODES

By now there is extensive literature on the numerical and
semianalytical methods for finding quasinormal modes of
black holes. Therefore, we will only briefly review the
methods used here, which are the Frobenius method, time-
domain integration, and WKB expansion.
The quasinormal modes are solutions of the master wave

equation (3) which correspond to the purely incoming wave
at the event horizon (because at the classical level a black-
hole horizon does not reflect anything) and purely outgoing
wave at spatial infinity. The latter condition is because the
distant observer receives the incoming proper radiation of
the black hole already when the source of perturbations
stops acting and does not interfere with the observed signal.

A. Frobenius series

The Frobenius method is the most powerful approach to
the calculation of the quasinormal modes, because it is
based on the convergent procedure, so that, unlike the
WKB formula, the frequencies can be obtained with any
desired accuracy via Frobenius expansion. For the first time
this approach was used for the search of quasinormal
modes by Leaver [18].

We represent the solution of (3) as the Frobenius series
near the event horizon

ΦðrÞ ¼ eiΩrðr − RÞλ
�
r − rþ
r − R

� −iω
f0ðrþÞ X∞

n¼0

an

�
r − rþ
r − R

�
n
;

λ ¼ iðrþ þ r−ÞðΩþ μ2=2ΩÞ; ð7Þ

where

Ω2 ¼ ω2 − μ2;

and the sign ofΩ is chosen in order to have the outgoingwave
(required by the quasinormal boundary condition) at spatial
infinity; that is, for ReðωÞ > 0 we choose ReðΩÞ > 0 [4].
The arbitrary parameter R, such that r− ≤ R < rþ, is

chosen in order to satisfy

���� r − rþ
r − R

���� > 1 ð8Þ

for all the singular points of Eq. (3), except the ones at the
event horizon and spatial infinity [28]. Once R is fixed in
this way, we find the 15-term recurrence relation for the
coefficients an in (7). Following [29], in order to find
quasinormal modes, we reduce numerically the obtained
recurrence to the three-term relation through Gaussian
eliminations and use the continued fraction method [18]
together with the generalized Nollert improvement [30].

B. Time-domain profiles

Although the Frobenius method allows one to find
accurate values of quasinormal modes, one has to search
in the frequency domain each mode by minimizing the
corresponding continued fraction. Alternatively one can
use the time-domain integration of the perturbation equa-
tions, so that contribution of all the modes (at a given
multipole number l) are taken into account within a single
profile of ringing. In order to produce the time-domain
profiles, we integrate the wavelike equation (3) rewritten in
terms of the light-cone variables u ¼ t − r� and v ¼ tþ r�.
The discretization scheme was described in detail in [17]:

ΨðNÞ ¼ ΨðWÞ þΨðEÞ −ΨðSÞ

− Δ2
VðWÞΨðWÞ þ VðEÞΨðEÞ

8
þOðΔ4Þ; ð9Þ

where we have used the following definitions for the points:
N ¼ ðuþ Δ; vþ ΔÞ, W ¼ ðuþ Δ; vÞ, E ¼ ðu; vþ ΔÞ
and S ¼ ðu; vÞ. The initial data are specified on the two
null surfaces u ¼ u0 and v ¼ v0. The time-domain inte-
gration of a massive field does not allow one to extract
the region of the quasinormal ringing precisely, so that
there is some uncertainty in defining of the quasinormal
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frequencies. However, this method enables us to learn the
behavior of the asymptotic tails at late times.

C. WKB formula

The approach is based on the WKB expansion of the
wave function at both infinities (the event horizon and
spatial infinity) which are matched with the Taylor expan-
sion near the peak of the effective potential. The WKB
approach in this form implies the existence of the two
turning points and monotonic decay of the effective
potentials along both infinities

iQ0ffiffiffiffiffiffiffiffiffi
2Q00

0

p −
Xi¼p

i¼2

Λi ¼ nþ 1

2
; n ¼ 0; 1; 2…; ð10Þ

where the correction terms Λi were obtained in [16] for
different orders. Here Qi

0 means the ith derivative of Q ¼
ω2 − V at its maximum with respect to the tortoise
coordinate r�, and n labels the overtones. This approach
can be applied to the modes with l ≥ n and to massless
fields, as there are only two turning points in that case. For
the massive field it is sufficiently accurate only when the
mass term μ2 is not large [8], and the higher l, the larger μ2

are allowed. Although in the general case the WKB series
converges only asymptotically, usually the difference
between results obtained at higher and lower WKB
orders gives an idea of how large the expected error of
the approximation is.

IV. QUASINORMAL MODES

A. Eikonal instability

For large multipole number l the effective potential (4)
takes the form

V ¼ fðrÞ
r2

�
lþ 1

2

�
2 r4 − βQ2

r4 þ βQ2
þOð1Þ: ð11Þ

From this one can see that for a highly charged black hole,
such that

r4þ < βQ2; ð12Þ

the potential has an arbitrarily deep negative gap at large l.
For such a sufficiently deep negative gap, a bound state
with the negative energy is guaranteed, that means the
instability. Indeed, in this situation for some finite value of
l a growing mode appears in the spectrum and dominates at
late time (see Fig. 1). For larger l, the instability grows
faster, so that apparently l → ∞ is the most unstable
regime. From this it follows that one is not allowed to
perform the multipole expansion of the wave function, so
that the linear approximation should not be valid in the
regime of instability. In other words, we expect that the

hyperbolicity of the perturbation equations might be
violated in this case.
This kind of instability at high multipole numbers l was

also observed in the spectrum of gravitational perturbations
of a black hole with Gauss-Bonnet and other higher
curvature terms (see, e.g., [19,20] and references therein).
In a number of works [21,23] it was shown that the eikonal
instability in the context of higher curvature corrected
theories is triggered by the purely imaginary modes which
are nonperturbative in the coupling constant in the sector
of stability. When the coupling constant approaches zero,
the imaginary part increases and goes to infinity [21,23].
In other words the growing purely imaginary modes,
responsible for the instability, do not go over into any
known quasinormal modes at zero coupling, but instead,
simply disappear from the spectrum.
Therefore, it would be interesting to know whether there

are such kinds of purely imaginary, nonperturbative modes
in the spectrum corresponding to the stable configuration of
the scalar field. The thorough investigation of the spectrum
via the time-domain integration on both sides from the
threshold of instability, shows that, indeed, there is a set
of purely imaginary modes whose damping rate increases
when the coupling α is increased (see Table I). The
quasinormal frequencies as a function of α obey the linear

0 10 20 30 40 50
t r

0.001

0.1

10

FIG. 1. Time-domain profiles for the scalar field (r− ¼ rþ=2,
α ¼ 2, μ ¼ 0) for stable multipole numbers l ¼ 0 (blue), l ¼ 1
(cyan), l ¼ 2 (green), and unstable l ¼ 3 (orange), l ¼ 4 (red),
l ¼ 5 (magenta).

TABLE I. The purely imaginary mode which triggers the
instability at α ≈ 1.45 (r− ¼ rþ=2) for l ¼ 5, μ ¼ 0. The modes
fit the linear law ωrþ ¼ ð0.4642α − 0.6636Þi.

α ωrþ
1.35 −0.037911i
1.40 −0.013165i
1.45 0.010513i
1.50 0.033199i
1.55 0.054965i
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law near the threshold of instability with very good
accuracy. In order to distinguish the purely imaginary
mode in a time-domain profile one should consider the
later stages of the quasinormal ringing when the mode is
not yet suppressed, but before the asymptotic tails become
dominating (see Fig. 2). Thus, it would be numerically
difficult to demonstrate that the purely imaginary frequen-
cies which we found here indeed go to (minus) infinity,
when α goes to zero. Nevertheless, in a similar fashion as
the Gauss-Bonnet case, the tendency observed near the
threshold of instability clearly indicates the nonperturbative
character of these modes.
Having in mind that α ¼ βQ2=r4þ, we can see that the

potential (4) is obviously positive definite for all values of α
within the following range:

0 ≤ α ≤ 1; ð13Þ

which guarantees stability. On the contrary, the values of
the coupling

α > 1 ð14Þ

provide a negative gap, and, according to [19], guarantee
the abovementioned eikonal instability. In terms of quasi-
normal modes, the critical value of α corresponding to the
threshold of instability is determined by the asymptotic
behavior l → ∞, while at each finite value of l the
growing mode appears at a larger than critical value of
α. The absence of convergence in l indicates the lack of
hyperbolicity of the master perturbation equation in the
range of instability. For the massless scalar field the above
instability was first observed in [13], but no connection
with the hyperbolicity was mentioned there. Here we have
shown that the massive scalar field obeys the same thresh-
old value of instability as the massless one, due to the
subdominant contribution of any finite mass term in the
eikonal regime.

B. Quasinormal modes in the stable sector

The method which gives accurate values of the quasi-
normal modes is the Frobenius method. The other two
methods, the time-domain integration and the WKB
approach, are accurate only in some range of parameters.
In Table II one can see that in the range of parameters in
which all the three methods can be applied, the results are
in a good concordance. The relatively small difference of
time-domain integration and WKB results from the accu-
rate Frobenius data is related to the fact that (a) the WKB
approach is more accurate for larger values of l and smaller
μ, and (b) within the time-domain integration for massive
fields it is usually difficult to determine the region corre-
sponding to the ring-down phase, because the asymptotic
tail “merges” with the ringing phase.
From Table III we can learn that, once the coupling α is

tuned on, the real oscillation frequency diminishes and the
damping rate increases. The fundamental mode l ¼ n ¼ 0
shown in Tables III and IV was not considered in [15],
as the WKB formula gives a very large error in this regime,
making the obtained results even inappropriate, e.g,
showing sometimes the growing (unstable) “modes” in the
spectrum.
In Table IV we can see that the damping rate of the

fundamental quasinormal frequency l ¼ n ¼ 0 diminishes
up to very small values, when the mass μ is increased.
Numerically, it is difficult to reach even smaller values of
ImðωÞ, because the Frobenius method converges slower
when approaching the regime of the nondamped modes—
quasiresonances. However, extrapolating the data from
Table IV it is easy see that at some finite value of μ the
damping rate vanishes. The WKB formula does not allow
one to approach the regime of modes with very small
damping rates as it was shown in [8]. Nevertheless, in Fig. 3
one can see that at sufficiently large values of the multipole
number l, when the WKB formula is accurate enough, the
corresponding modes tend to those with zero damping rate.
A similar picture can be obtained as a result of time-domain
integration, though, as it was mentioned before, the ringing
period will be hardly distinguishable from the asymptotic
tails. Thus, we have clear numerical evidence that a massive
scalar field with the derivative coupling to the Einstein
tensor has quasiresonances in its spectrum. Here we have

0 20 40 60 80 100 120 140
t r

10 5

10 4

0.001

0.01

0.1

1

FIG. 2. Time-domain profiles for the scalar field (r− ¼ rþ=2,
l ¼ 5, μ ¼ 0) for α ¼ 1.35 (blue), α ¼ 1.40 (cyan), α ¼ 1.45
(green), α ¼ 1.50 (red), α ¼ 1.55 (magenta).

TABLE II. Illustration of the concordance of data obtained by
the three different methods: WKB, Frobenius and time-domain
integration. Here we have r− ¼ 0, μrþ ¼ 0.5, α ¼ 1 (l ¼ 1,
n ¼ 0).

Method ωrþ
Third order WKB 0.573 − 0.165i
Sixth order WKB 0.575 − 0.173i
Time-domain int. 0.583 − 0.168i
Frobenius 0.5773 − 0.1646i
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also showed numerical data for the case r−=rþ ¼ 0, but
α ≠ 0, representing the black hole whose charge is negli-
gible (which is astrophysically relevant), but, at the same
time, the coupling with the Einstein tensor is not small.
At asymptotically late times, the following power-law

behavior is observed in Fig. 4:

ΨðtÞ ∝ t−
5
6 sinðμ · tÞ; ð15Þ

where ωðtÞ depends weakly on time. The same law was
observed for a test massive scalar field in the Schwarzschild
[31], Reissner-Nordström [32] and Kerr [33] backgrounds.
In [34] it was argued the existence of an interesting

correspondence stating that quasinormal modes which any
stationary, spherically symmetric and asymptotically flat
black hole emits in the eikonal regime are determined by
the parameters of the circular null geodesic: the real and
imaginary parts of the quasinormal mode are multiples of
the frequency and instability timescale of the circular null
geodesics respectively. In [35] it was shown that the
correspondence indeed exists for a number of cases; it is
guaranteed for test fields in the vicinity of a black hole, but
not for the gravitational field itself. Here we shall learn
whether the correspondence works for a nonminimal scalar
field. For this purpose we shall derive the analytical
formula for quasinormal modes in the eikonal (l → ∞)
regime.
In the eikonal regime (l → ∞) the analytical formula for

quasinormal modes can be deduced by the first order WKB
formula

iQ0ffiffiffiffiffiffiffiffiffi
2Q00

0

p ¼ nþ 1

2
ð16Þ

TABLE III. The fundamental quasinormal mode l ¼ n ¼ 0 of the massless scalar field obtained by the Frobenius method for
various r−=rþ and α.

α ωrþ (r− ¼ 0Þ ωrþ (r− ¼ 0.25rþ) ωrþ (r− ¼ 0.50rþ) ωrþ (r− ¼ 0.75rþ) ωrþ (r− ¼ 0.95rþ)

0 0.220910 − 0.209792i 0.202534 − 0.168076i 0.179447 − 0.132499i 0.152670 − 0.109294i 0.136881 − 0.098302i
0.2 0.206566 − 0.214425i 0.192342 − 0.173834i 0.173246 − 0.138765i 0.150692 − 0.114506i 0.136072 − 0.101361i
0.4 0.193183 − 0.218949i 0.182967 − 0.179475i 0.167776 − 0.144789i 0.149029 − 0.119114i 0.135278 − 0.104155i
0.6 0.180268 − 0.223410i 0.174098 − 0.185167i 0.162930 − 0.150744i 0.147632 − 0.123248i 0.134517 − 0.106731i
0.8 0.167401 − 0.227815i 0.165494 − 0.191076i 0.158681 − 0.156756i 0.146460 − 0.126993i 0.133799 − 0.109123i
1.0 0.154161 − 0.232111i 0.156931 − 0.197403i 0.155066 − 0.162909i 0.145476 − 0.130410i 0.133128 − 0.111359i

TABLE IV. The fundamental quasinormal mode l ¼ n ¼ 0
obtained by the Frobenius method for α ¼ 1=8 and various μ.

μrþ ωrþ (r− ¼ 0) ωrþ (r− ¼ rþ=8)

0 0.211801 − 0.212704i 0.204432 − 0.191646i
0.05 0.212085 − 0.211621i 0.204768 − 0.190559i
0.10 0.212900 − 0.208386i 0.205734 − 0.187315i
0.15 0.214145 − 0.203052i 0.207208 − 0.181975i
0.20 0.215681 − 0.195738i 0.209031 − 0.174685i
0.25 0.217388 − 0.186645i 0.211089 − 0.165685i
0.30 0.219240 − 0.176012i 0.213391 − 0.155229i
0.35 0.221302 − 0.164026i 0.216033 − 0.143476i
0.40 0.223664 − 0.150783i 0.219096 − 0.130480i
0.45 0.226381 − 0.136313i 0.222606 − 0.116252i
0.50 0.229462 − 0.120627i 0.226543 − 0.100796i
0.55 0.232891 − 0.103737i 0.230871 − 0.084129i
0.60 0.236636 − 0.085662i 0.235545 − 0.066283i
0.65 0.240662 − 0.066430i 0.240517 − 0.047287i
0.70 0.244928 − 0.046072i 0.245734 − 0.027171i
0.75 0.249398 − 0.024623i 0.251187 − 0.005977i
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r
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Im r

FIG. 3. Evidence of quasiresonances in the eikonal regime: real (left panel) and imaginary (right panel) parts of the quasinormal modes
for a weakly charged black hole r− ¼ 0, α ¼ 1=8 (blue), α ¼ 1=2 (green), α ¼ 1 (red) at a high multipole number l ¼ 20.
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applied to the potential (11). For small values of α we find
that the maximum of the potential is located at

r ¼ r0

�
1þ 4αr4þðr0 − rþÞ2

r40ð3r20 − 8r0rþ þ 6r2þÞ
�
þOðα2;l−2Þ;

where r0 is the point of maximum for α ¼ 0,

r0 ¼
3ðrþ þ r−Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðrþ − r−Þ2 þ 4rþr−

p
4

¼ 3M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
2

: ð17Þ

Then, using (17) in (16) and expanding the result for ω in
terms of 1=l, we obtain

ωrþ ¼ r0 − rþ
2r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6r0 − rþ − 9r−

r0

s "�
lþ 1

2

��
1 −

αr4þ
r40

�

− i

�
nþ 1

2

�
ð1þ αKÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

3rþ þ 3r−
2r0

s #

þOðα2; l−1Þ;
where

K ¼ 3

�
1 −

rþ
r0

�
2
�
1

2
−
r2þ
r20

��
6r0 − rþ − 9r−
4r0 − 3rþ − 3r−

�
2

> 0:

Let us notice that this expression can only beused to calculate
the damped modes of the spectrum far from the threshold
of instability, as the WKB formula (16) cannot be applied
to finding of the frequencies for which ReðωÞ ≪ ImðωÞ.
Since the null geodesic of the Reissner-Nordström black

hole remains unaffected, we find that the frequency and
instability timescale differ, respectively, by

ΔΩc

Ωc
¼ αr4þ

r40
þOðα2Þ; Δτc

τc
¼ αK þOðα2Þ; ð18Þ

from the real and imaginary part of the quasinormal modes
in the eikonal limit.
In the limit of the weakly charged black hole (r− → 0)

(18) reads

ΔΩc

Ωc
¼

�
2

3

�
4

αþOðα2Þ; Δτc
τc

¼
�
2

3

�
5

αþOðα2Þ:

Thus, the correspondence is not guaranteed for non-
minimally coupled fields as well, which is in concordance
with [35–37].

V. CONCLUSIONS

Although the diminishing of the damping rate of
quasinormal modes owing to the nonzero mass of the field
has been known for a long time [38] (see also more recent
papers [39]), the complete vanishing of the damping rate
observed first in [3] looks already unnatural, so that
studying more realistic configurations, which include
coupling terms, could promise a resolution of this “para-
dox” of quasiresonances. Here we have studied such a
coupling of the scalar field with the Einstein tensor and
found that the arbitrarily long-lived quasinormal modes
remain even in this case. Thus, apparently the effect of
quasiresonances is not an artifact of the test field approxi-
mation, but valid for more realistic configurations, admit-
ting the coupling terms. In this connection it would be
interesting to consider other types of couplings of a scalar
field to gravitational and other fields, which could model
the nonminimal interaction between the gravitational back-
ground and the scalar field, and, first of all, to study
perturbations of higher than linear order.
Here we have also complemented calculations of qua-

sinormal modes done in [14] by finding fundamental (and
therefore dominating at late times) quasinormal modes l ¼
n ¼ 0 which were omitted in [14], because the WKB
formula used there does not work for this case. The time-
domain integration which we used allowed us to show that
the asymptotic tails are the same at the nonzero derivative
coupling as they are for the test massive scalar field.
We have shown that for the coupling α > 1 the scalar

field is unstable. The instability occurs at large multipole
numbers l and it is similar to the eikonal instability of
Gauss-Bonnet black holes in a number of aspects. The new
branch of modes which are purely imaginary and non-
perturbative in the coupling α has been found. These modes
trigger the instability. As higher values of l correspond to
the most unstable part of the spectrum, it is evident that
there is no convergence in l and in the range of eikonal
instability, the hyperbolicity is also lacking. This is a
breakdown of the regime of linear perturbations, which
apparently signifies that the configuration at large coupling
α > 1 cannot be considered self-consistently.
It is interesting to notice that, an instability of the

Reissner-Nordström black hole has been recently found

FIG. 4. Quasinormal ringing and asymptotic tails for a weakly
charged black hole r−=rþ ¼ 0, α ¼ 1, μrþ ¼ 1.
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also for the scalar field coupled to the Maxwell field [40] at
sufficiently large coupling. However, that instability devel-
ops at the lowest multipole number and does not lead to the
violation of hyperbolicity of the perturbation equations.
Finally, in the stable regime, we have obtained the

eikonal analytical formula for quasinormal modes and
showed that for the nonminimal coupling it does not
coincide with the parameters of the null geodesics as
expected in [34].
The eikonal instability apparently should appear for other

spherically symmetric backgrounds and our paper could be
extended in this direction. It would also be interesting to
generalize the present work to the Kerr-Newman spacetime,

thus taking into consideration the effect of rotation of a
black hole.
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