
 

Can we detect quantum gravity with compact binary inspirals?
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Treating general relativity as an effective field theory, we compute the leading-order quantum corrections
to the orbits and gravitational-wave emission of astrophysical compact binaries. These corrections are
independent of the (unknown) nature of quantum gravity at high energies, and generate a phase shift and
amplitude increase in the observed gravitational-wave signal. Unfortunately (but unsurprisingly), these
corrections are undetectably small, even in the most optimistic observational scenarios.
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I. INTRODUCTION

General relativity (GR) has passed an impressive range
of observational tests in the weak-field (i.e., low-energy)
regime [1]. However, it is well known that GR predicts the
formation of singularities, indicating the breakdown of
the theory in the extreme strong-field (high-energy) regime
[2–4]. Resolving such singularities is a major motivation
for the construction of a theory of quantum gravity (QG)
[5], which is well behaved at high energies but is equivalent
to GR in the low-energy limit.
The first attempts to quantize gravity failed due to the

negative mass dimension of Newton’s constant in four-
dimensional spacetime. In the perturbative approach, this
creates infinitely many divergences, whose renormalization
introduces infinitely many undetermined couplings, caus-
ing a loss of predictivity of the theory [6–10].
Despite this nonrenormalizability, one can isolate the

well-behaved low-energy regime of the theory from the
divergences by integrating out the high-energy degrees of
freedom [11–13]. This results in an effective field theory
(EFT), which is a predictive, well-defined theory of QG at
energies far below the Planck mass MP. (This is analogous
to the standard model of particle physics, which has been
verified to exquisite precision up to ∼10−16MP, but is
expected to give way to new physics at higher energies.)
Remarkably, the dominant corrections to GR in this EFT

are parameter free, and therefore independent of the high-
energy completion of QG. One can thus calculate quantum
corrections to low-energy gravitational phenomena, such as
the Newtonian potential of two point masses [14,15] and
the classical Schwarzschild and Kerr spacetimes [16].
These corrections are concrete, model-independent predic-
tions of QG. If observed, they would provide the first

experimental evidence for the quantum nature of
spacetime.1

In recent years, direct observations of gravitational
waves (GWs) by the Advanced LIGO and Advanced
Virgo interferometers [22–27] have lead to powerful new
tests of GR, including bounds on the GW propagation
speed and searches for non-GR polarization modes
[28–31]. In light of these stringent new tests, it is pertinent
to ask: could deviations from GR due to quantum effects be
observed with GW detectors? This paper provides an
answer, using the EFT of QG to compute the leading-
order quantum corrections to compact binary (CB) inspi-
rals, the most important class of source for current and
future GW detectors.

II. QUANTUM AND RELATIVISTIC
CORRECTIONS TO THE NEWTONIAN

POTENTIAL

In the EFT of QG, the one-loop scattering potential for
two point masses m1, m2 in the harmonic gauge is [14,15]

V1-loopðrÞ ¼ −
GM2ν

r

�
1þ 3

2

rS
r
þ k

l2
P

r2

�
; ð1Þ

whereM ≡m1 þm2 is the total mass, ν≡m1m2=M2 is the
dimensionless reduced mass, rS ≡ 2GM=c2 is the
Schwarzschild radius of the system, lP ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
is

the Planck length, and k ¼ 41=ð10πÞ in the absence of
other massless particles.2 The three terms represent the
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1The observational signatures of the QG corrections to the two-
body gravitational potential have already been investigated in the
context of solar system dynamics in a series of papers by Battista
et al. [17–21].

2Note however that any additional massless particles will
contribute to vacuum polarization, altering the value of k slightly.
However, one still expects k ∼ 1.
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classical Newtonian potential, the leading-order post-
Newtonian (PN; i.e., relativistic) correction, and the
leading-order QG correction, respectively. PN corrections
to CB inspirals have already been extensively studied to
much higher order than shown here [32]. For this reason,
we neglect all PN corrections and focus on the phenom-
enology of the quantum term, relative to the simple
Newtonian case. The point masses may represent extended
objects here, as finite-size effects only appear at much
higher order [33].
Even though the leading QG and PN terms both appear at

the same loop order, the QG term is many orders of
magnitude smaller. This is because there are two funda-
mental length scales one can use to construct dimensionless
terms in the 1=r expansion (1): the Planck length lP, and
the Schwarzschild radius rS. The two will coincide when
M ∼MP, but we are interested in astrophysical objects with
M ≳M⊙ ∼ 1038MP, so there exists a hierarchy of many
orders of magnitude. In fact, the PN and QG corrections in
Eq. (1) appear at the same loop order because they carry the
same power ofG, and therefore possess the same number of
graviton vertices in the contributing Feynman diagrams.
From this viewpoint, it is clear that the two-loop potential
will be of the form

V2-loopðrÞ ¼ V1-loopðrÞ−
GM2ν

r

�
c1
r2S
r2

þ c2
rSl2

P

r3
þ c3

l4
P

r4

�
;

ð2Þ
where the new terms have a factor of G2 (hidden in the
definitions of rS and lP) compared to the tree-level
Newtonian term. Continuing in this way, one could in
principle generate PN corrections to arbitrary order by
extracting the ðrS=rÞn terms. These are relativistic effects,
corresponding exactly to the PN corrections calculated with
classical techniques. The remaining terms contain powers of
lP, representing QG effects. In the regime r ≫ rS ≫ lP

these quantum corrections are dominated by the l2
P=r

2 term
in Eq. (1). We therefore study CB inspirals with the potential

VðrÞ ¼ −
GM2ν

r

�
1þ k

l2
P

r2

�
; ð3Þ

comparing with the Newtonian potential to isolate the
leading-order QG effects.
For reasons discussed above, there are many orders of

PN corrections that are more significant than the leading-
order QG corrections. One can straightforwardly estimate
which order PN is comparable to the leading-order QG
term by setting l2

P=r
2 ¼ ðrS=rÞn to give

n ¼ 2
ln ðlP=rÞ
ln ðrS=rÞ

: ð4Þ

For example, a binary with m1 ¼ m2 ¼ M⊙ orbiting at
10 Hz (i.e., as the binary is entering the LIGO-Virgo

frequency band) would have leading-order QG effects
equivalent to PN effects of order n ≈ 44. (Cf. the current
PN “state of the art” of n ¼ 4 [32].) In the limit r → rS, the
PN corrections become large and n diverges. In the limit
r → ∞, the QG corrections are as large as the second-order
PN corrections, but both are negligible.

III. ORBITAL PERTURBATIONS

In the absence of QG corrections we have the Keplerian
two-body problem, in which the relative motion describes a
constant elliptical orbit in a fixed plane, characterized by its
semimajor axis (SMA) a and eccentricity e. The relative
speed and separation of the bodies varies over each period
T of the orbit, so we define the mean motion n≡ 2π=T
(i.e., the average angular velocity), which satisfies Kepler’s
equation,

n ¼
ffiffiffiffiffiffiffiffi
GM
a3

r
: ð5Þ

The orientation of the orbital plane with respect to some
fixed reference plane is determined by three angles: (i) the
inclination ι, which is the angle between the two planes;
(ii) the argument of the pericenter ω, which is the angle in
the orbital plane at which the binary reaches its minimum
separation; and (iii) the longitude of the ascending node Ω,
which specifies the line where the two planes meet. The
quantities a, e, n, ι, ω, Ω are called the orbital elements.
Once the QG corrections are taken into account, the

resulting orbit is no longer a fixed ellipse. We therefore
define the “osculating” orbital elements a, e, n, ι, ω, Ω as
dynamical variables corresponding to the instantaneous
ellipse defined by the relative speed and separation of the
binary. However, it is much simpler to calculate the
corrected orbit in terms of some set of angle-action
variables using Hamiltonian perturbation theory. One such
set is the Poincaré variables [34], with generalized coor-
dinates λ, γ, z and conjugate momenta Λ, Γ, Z defined by

λ≡ ntþ ωþΩ; Λ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM3ν2a

p
;

γ ≡ −ω − Ω; Γ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM3ν2a

p
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ;

z≡ −Ω; Z≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM3ν2að1 − e2Þ

q
ð1 − cos ιÞ: ð6Þ

The equations of motion (EoM) are then

_λ ¼ ∂H
∂Λ ; _γ ¼ ∂H

∂Γ ; _z ¼ ∂H
∂Z ;

_Λ ¼ −
∂H
∂λ ; _Γ ¼ −

∂H
∂γ ; _Z ¼ −

∂H
∂z ; ð7Þ

whereH is the Hamiltonian of the system. The limit e → 0
corresponds to circular orbits, while the limit ι → 0
corresponds to orbits in the reference plane; these must
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be taken after computing the EoM to produce the correct
result.
In terms of the Poincaré variables, the Hamiltonian for

the Newtonian case is simply

HN ¼ −
G2M5ν3

2Λ2
; ð8Þ

so we find _λ ¼ G2M5ν3=Λ3. Recalling the definitions in
Eq. (6), we see that this reproduces Eq. (5) with constant
orbital elements, as expected.
We now include the leading-order QG correction to the

Hamiltonian, read directly from Eq. (3),

H ¼ HN þHQG; HQG ¼ −
kl2

PGM
2ν

r3
: ð9Þ

The corrected Hamiltonian depends on the separation r,
which has no closed-form expression in terms of the
Poincaré variables, so the EoM cannot be derived through
the straightforward application of Hamilton’s equations.
One common solution is to time-average the Hamiltonian
over an orbit, so that it describes the system’s dynamics on
time scales longer than T [35,36]. The resulting low-
frequency departures from Keplerian behavior are called
secular perturbations to the system. This is an acceptable
approximation for small corrections to the Hamiltonian, as
the resulting perturbations to the motion are usually
negligible on time scales shorter than T. It is sufficient
to average over the Keplerian orbit rather than the corrected
orbit, as the result is identical to leading order in the
corrections. The secular averaging operation is therefore

hxi≡
Z

t0þT

t0

dt
T
x ¼

Z
ψ0þ2π

ψ0

dψ
2π

ð1 − e2Þ3=2
ð1þ e cosψÞ2 x; ð10Þ

where ψ is the true anomaly (i.e., the angle of the orbit
relative to ω in the orbital plane), and we have used the
Keplerian equations for conservation of angular momentum
and the orbital separation,

_ψ ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
a
r

�
2

; r ¼ að1 − e2Þ
1þ e cosψ

: ð11Þ

Averaging the corrected Hamiltonian (9), we find

hHi ¼ HN −
kl2

PG
4M11ν7

Λ3ðΛ − ΓÞ3 ; ð12Þ

so the secular EoM are

h_λi ¼ ∂hHi
∂Λ ¼ G2M5ν3

Λ3
þ 3kl2

PG
4M11ν7

2Λ − Γ
Λ4ðΛ − ΓÞ4 ;

ð13Þ

h_γi ¼ ∂hHi
∂Γ ¼ −

3kl2
PG

4M11ν7

Λ3ðΛ − ΓÞ4 : ð14Þ

Since ∂hHi
∂z ¼ 0, we see from Eq. (7) that Z is constant on

long time scales; it may undergo oscillations during each
orbit, but these vanish when performing the secular
averaging. Using Eq. (6), we therefore set Ω ¼ ι ¼ 0
and fix the orbit within the reference plane without loss
of generality. The other momentaΛ, Γ are also conserved in
the secular Hamiltonian, so that a and e are constant on
long time scales. Equations (6) and (10) give

h_λþ _γi ¼
�
dðntÞ
dt

�
¼ njt0þT þ t0

T
ðnjt0þT − njt0Þ; ð15Þ

but the lhs is constant and independent of the arbitrary
choice of t0, which implies the same for the rhs, so n is
constant. (This is also true on short time scales, unlike the
conservation of a, e, and ι.) Summing Eqs. (13) and (14)
and rewriting in terms of the orbital elements, we therefore
have

n ¼
ffiffiffiffiffiffiffiffi
GM
a3

r �
1þ 3kl2

P

a2ð1 − e2Þ3=2
�
: ð16Þ

Comparing with Eq. (5), we see that the QG correction
causes the binary to orbit slightly faster. Intuitively, this is
necessary to counteract the slightly stronger gravitational
attraction between the bodies. Similarly, rewriting Eq. (14)
in terms of orbital elements gives

h _ωi ¼
ffiffiffiffiffiffiffiffi
GM
a3

r
3kl2

P

a2ð1 − e2Þ2 ; ð17Þ

so the faster mean motion causes the pericenter to advance
at an average rate (17), many orders of magnitude smaller
than the corresponding relativistic precession. For example,
Eq. (17) predicts a perihelion advance of ∼10−84 arc-
seconds per century for the Mercury-Sun system, cf. 43 arc-
seconds per century due to relativistic effects [1].

IV. ORBITAL DECAY THROUGH GW EMISSION

We now calculate the GW emission from the QG-
corrected CB orbit, using the quadrupole formula.
Adopting Cartesian coordinates xi in the center-of-mass
frame, with the orbit in the x1 − x2 plane, the rate of energy
loss is [37]

_E ¼ −
2G
15c5

ð ⃛M2
11 þ ⃛M2

22 þ 3 ⃛M2
12 − ⃛M11

⃛M22Þ; ð18Þ

where Mij ¼ Mνxixj is the second mass moment (under
the point-mass approximation). For our corrected orbit, this
becomes
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M11 ¼ Mνr2cos2ðψ þ ωÞ;
M12 ¼ M21 ¼ Mνr2 cosðψ þ ωÞ sinðψ þ ωÞ;
M22 ¼ Mνr2sin2ðψ þ ωÞ; ð19Þ

where Eq. (11) holds as before, but with the corrected value
of n from Eq. (16), and ω evolves according to Eq. (17). To
give a gauge-invariant notion of GW energy, we must
average _E over one (QG-corrected) orbit. While GW
emission will cause a, e, n, h _ωi to evolve, we assume that
the energy radiated on orbital time scales T is much less
than the energy of the orbit so that

T _n
n

≈
Tω̈
_ω

≈
T _a
a

≈
T _e
e

≈ 0: ð20Þ

Applying Eqs. (18) and (19) with a, e, n, h _ωi constant, and
inserting the QG-corrected values of n and h _ωi from
Eqs. (16) and (17), we find

h _Ei ¼ −
32G4M5ν2

5c5a5ð1 − e2Þ7=2
�
1þ 73

24
e2 þ 37

96
e4
�

×

�
1þ 30kl2

P

a2ð1 − e2Þ3=2
�
1þ 37

20
e2 − 31

160
e4

1þ 73
24
e2 þ 37

96
e4

��
: ð21Þ

As expected, we recover the classical Peters-Mathews
formula in the limit lP → 0 [38]. The Ol2

P=a
2 term

represents additional GW power due to the strengthening
of the attractive force. Similarly, using the equation for
angular momentum loss under GW emission [37],

_L ¼ −
2G
5c5

½M̈12ð ⃛M11 − ⃛M22Þ − ⃛M12ðM̈11 − M̈22Þ�;
ð22Þ

we find

h _Li ¼ −
32G7=2M9=2ν2

5c5a7=2ð1 − e2Þ2
�
1þ 7

8
e2
�

×

�
1 −

27kl2
P

a2ð1 − e2Þ3=2
�
1þ 7

72
e2 − 1

18
e4

1þ 7
8
e2

��
: ð23Þ

To translate Eqs. (21) and (23) into expressions for _a, _e,
we write E, L in terms of orbital elements, accounting for
Ol2

P=a
2 corrections. By definition we have

L≡Mνr × _r ¼ Mνr2ð _ψ þ _ωÞ: ð24Þ

Differentiating gives _L ¼ Mνr × r̈, which vanishes identi-
cally when GW emission is neglected, as the gravitational
acceleration r̈ is parallel to the separation vector r.
However, backreaction due to GW emission causes a small
acceleration perpendicular to r, giving _L < 0 as we found

above. For all but the tightest orbits, jL= _Lj ≫ T, so we can
safely treat L as constant when performing the secular
averaging. We therefore find

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM3ν2að1 − e2Þ

q "
1þ 3k

l2
P

a2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

ð1 − e2Þ2
#
; ð25Þ

which is greater than the Keplerian value, due to the faster
mean motion and the pericenter advance. Now we write

E≡ 1

2
Mνj_rj2 þ VðrÞ

¼ 1

2
Mν_r2 þ L2

2Mνr2
−
GM2ν

r

�
1þ k

l2
P

r2

�
; ð26Þ

where Eq. (11) gives _r ¼ aen sinψ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
. Averaging

Eq. (26) over one orbit, and substituting the corrected
values for n and L, we obtain

E ¼ −
GM2ν

2a

�
1 −

10kl2
P

a2ð1 − e2Þ3=2
�
; ð27Þ

which is slightly larger than the Keplerian value, making it
slightly easier to gravitationally unbind the CB than in the
Newtonian case.
Combining Eqs. (25) and (27) with Eqs. (21) and (23),

we find the secular evolution of the SMA and eccentricity,

h _ai ¼ −
64G3M3ν

5c5a3ð1 − e2Þ7=2
�
1þ 73

24
e2 þ 37

96
e4
�

×

�
1þ 60kl2

Pl

a2ð1 − e2Þ3=2
1þ 397

240
e2 − 421

1920
e4

1þ 73
24
e2 þ 37

96
e4

�
; ð28Þ

h_ei ¼ −
304G3M3νe

15c5a4ð1 − e2Þ5=2
�
1þ 121

304
e2
�

×

	
1þ 468kl2

P

19a2e2ð1 − e2Þ3=2ð1þ 121
304

e2Þ

×

�
1þ 133

156
e2 −

211

1248
e4 þ 1

52
e6

−
3

26

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
1þ 7

8
e2
��


; ð29Þ

which match the classical results when lP → 0 [37].
Equations (28) and (29) form a coupled system that is
analytically intractable due to its nonlinearity, and numeri-
cally intractable due to the vastly fundamental different
time and length scales, which require extreme numerical
precision to resolve. However, we can make progress by
looking at circular orbits, e → 0. Taking e ≪ 1 is well
justified, as the majority of CBs in the LIGO-Virgo
frequency band are thought to form through common

JENKINS, PITHIS, and SAKELLARIADOU PHYS. REV. D 98, 104032 (2018)

104032-4



evolution, with low eccentricity as a result. However,
neglecting eccentricity in Eqs. (28) and (29) requires
e ≪ lP=a, which is much more restrictive than e ≪ 1,
and is almost certainly false for realistic binaries.
Nonetheless, for an order-of-magnitude estimate of the
QG corrections one can neglect eccentricity entirely. We
therefore take e → 0 in Eq. (28) to obtain

_a ¼ −
64ν

5c5

�
GM
a

�
3
�
1þ 60k

l2
P

a2

�
: ð30Þ

We have dropped the angle brackets, since the orbital
separation remains fixed in the e → 0 case, and there is no
further need to perform the secular averaging.
In the e → 0 case, the precession of the circular orbit due

to _ω is indistinguishable from the mean motion of the
bodies around that orbit, so that _ω is absorbed into n.
Combining Eqs. (16) and (17), we obtain

nje¼0 ¼
ffiffiffiffiffiffiffiffi
GM
a3

r �
1þ 6k

l2
P

a2

�
: ð31Þ

V. GRAVITATIONAL WAVEFORM AND
OBSERVATIONAL PROSPECTS

Using the quadrupole formula, we write the time-domain
complex GW waveform observed at a distance R along the
orbital axis (i.e., viewing the binary face-on) as [37]

hðtÞ≡hþðtÞ− ih×ðtÞ¼
G
c4R

ðM̈11−2iM̈12−M̈22Þ: ð32Þ

Using Eqs. (19), (30), and (31), this becomes

hðtÞ ¼ AðtÞ exp½iΨðtÞ�; ð33Þ

which we have written in terms of a phase,

ΨðtÞ≡Ψ0 þ 2

Z
t

t0

dt0nðt0Þ; ð34Þ

and an amplitude,

AðtÞ ¼ 4νðGMÞ5=3n2=3ðtÞ
c4R

�
1þ 6kl2

Pn
4=3ðtÞ

ðGMÞ2=3
�
: ð35Þ

This defines two types of QG correction to the waveform:
(i) a phase shift, and (ii) an amplitude increase. We
calculate the phase shift by writing

Z
t

t0

dt0nðt0Þ ¼
Z

aðtÞ

a0

da
n
_a
; ð36Þ

and substituting the expressions in Eqs. (30) and (31) to
give

ΨðtÞ ¼ Ψ0 þ
1

16ν

��
πrSf0
2c

�
−5=3

−
�
πrSfðtÞ

2c

�
−5=3

�

−
65kl2

P

νr2S

��
πrSf0
2c

�
−1=3

−
�
πrSfðtÞ

2c

�
−1=3

�
; ð37Þ

where fðtÞ≡ nðtÞ=π is the GW frequency. The classical
expression is regained by takinglP → 0, so the phase shift is

δΨQGðtÞ≡ ΨðtÞ − lim
lP→0

ΨðtÞ; ð38Þ

where the comparison is between the Newtonian and
QG-corrected waveforms at the same initial and final
frequencies. If a binary is observed for long enough then
fðtÞ ≫ f0 and the phase shift is simply

δΨQG ¼ −
65kl2

P

νr2S

�
πrSf0
2c

�
−1=3

; ð39Þ

which is greater for low-mass binaries and for lower initial
frequencies, due to the longer signal duration. Similarly, we
find an amplitude increase

δAQGðtÞ ¼
12π2νkl2

PrS
c2R

f2ðtÞ; ð40Þ

which grows as the binary approaches merger.
Of the two effects calculated above, the phase shift is

more easily observable, for two reasons. First, even if the
source’s host galaxy is identified, small corrections to the
amplitude as in Eq. (40) are dwarfed by the statistical
uncertainty of R. Second, matched-filter searches using
waveform templates are very sensitive to the signal’s phase
evolution, as any loss of phase coherence between signal
and template causes destructive interference and a loss of
statistical significance in the search. The precision with
which one can measure the phase is inverse to the signal-
to-noise ratio (SNR) [39], so a very loud signal of, say,
SNR ¼ 100 would allow a phase precision of ∼10−2
radians.3 An ensemble of N measurements would enhance
this by a factor of 1=

ffiffiffiffi
N

p
, so that using 100 such signals one

could detect a phase shift of ∼10−3 radians.
Even in this highly optimistic scenario, it is clear from

Eq. (39) that the effect is many orders of magnitude too
small to be detected for any astrophysical signal. For
example, a binary with m1 ¼ m2 ¼ M⊙ observed from
an initial frequency of f0 ¼ 10 Hz until merger (i.e., the
full frequency window of ground-based interferometers)
would undergo a phase shift of just ∼10−74 radians. Any
system with mass low enough to produce a measurable
phase shift would produce a signal far too weak to be
detected in the first place.

3Cf. the first detected signal, GW150914, which had
SNR ≈ 24.

CAN WE DETECT QUANTUM GRAVITY WITH COMPACT … PHYS. REV. D 98, 104032 (2018)

104032-5



VI. DISCUSSION

Equation (28) shows that the QG corrections will likely
be larger for eccentric CBs, e > 0, which we have not
considered here. However, given the gap of more than 70
orders of magnitude between the QG corrections for the
e ¼ 0 case and the optimistic phase sensitivity, it seems
very unlikely that this will lead to a detectable effect for any
reasonable value of the eccentricity.
We have focused on the modifications to the GW signal

due to the perturbed dynamics of the binary, and have
neglected any modifications to the quadrupole formula
[Eq. (18)] or the GW propagation. It is also possible to
calculate these other modifications within the same EFT
approach we have adopted, as shown recently in
Refs. [40,41]. These papers found that in addition to the
classical massless graviton, the EFT of QG predicts two
massive propagating modes, which have an alternative
dispersion relation, and whose production is described by
an additional term in the quadrupole formula. However,
experimental bounds on the masses of these additional
modes imply that they can only be radiated from a CB with
an orbital frequency greater than ≈1013 Hz, which is
unattainable for any astrophysical CB. For orbital frequen-
cies less than this, the GWemission will be purely given by
the classical graviton, with the classical quadrupole formula
as in Eq. (18). Thus for any astrophysical source, the
leading corrections to the GW signal from the EFT of QG
will be the ones presented here.
Note however that there may be nonperturbative QG

effects which cannot be predicted within EFT, but may have
observational consequences. In particular, there has been

much recent interest in the proposal of “BH echoes” in the
CB ringdown signal due to quantum modifications to the
structure of the BH event horizon [42–44]. These effects,
however, are very speculative and model dependent. Our
results show that QG is generally unobservable with CB
inspirals, but there may still be particular high-energy
completions of QG that give rise to observable nonpertur-
bative phenomena, such as echoes.

VII. CONCLUSION

We have used results from the EFT of QG [11–15] to
compute leading-order quantum corrections to the orbits
and GW emission of CBs. By virtue of the EFT approach,
these corrections are independent of the (unknown) nature
of QG at high energies: if gravity is indeed quantized, then
the dominant quantum effects for CBs will be of the form
presented here. The QG correction to the Newtonian
potential modifies the inspiral orbit, leading to a phase
shift and amplitude increase in the observed GW signal,
given by Eqs. (39) and (40). Unfortunately (but unsurpris-
ingly) these corrections are undetectably small, even in the
most optimistic observational scenarios.
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