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2Département de physique de l’ENS, École Normale Supérieure, CNRS,

PSL Research University, 75005 Paris, France
3Kavli Institute for the Physics and Mathematics of the Universe (WPI),

The University of Tokyo Institutes for Advanced Study, The University of Tokyo,
Kashiwa, 277-8583 Chiba, Japan

(Received 21 August 2018; published 20 November 2018)

In this paper, we show that any solution of general relativity (GR) that can be rendered spatially flat by a
coordinate change is also a solution of the self-accelerating branch of the minimal theory of massive gravity
(MTMG), with or without matter. We then for the first time obtain black hole and star solutions in a theory
of massive gravity that agree with the corresponding solutions in GR and that are free from strong coupling
issues. This in particular implies that the parametrized post-Newtonian parameters βPPN and γPPN are unity,
as in GR. We further show how these solutions can be embedded in a cosmological setting. While
cosmological scales have already been considered in previous works, this is the first study of the
phenomenology at shorter scales of the self-accelerating branch of MTMG.

DOI: 10.1103/PhysRevD.98.104031

I. INTRODUCTION

With the first observation of gravitational waves (GW)
from a binary black hole merger [1], there is no doubt that
black holes do exist in our Universe. Black hole space-
times have been central to research in gravity since the
discovery of the Schwarzschild solution [2] in the context
of general relativity (GR). One of the strongest reasons for
this is their simplicity, allowing one to describe celestial
objects with purely analytic tools. The Schwarzschild
solution can also be used as a part of the description of
systems including matter: the space-time outside quasi-
spherical objects such as stars and planets (without rota-
tion) is well approximated by this solution. The exterior
vacuum solution can then be connected to an interior
solution with matter. In GR, the existence of black holes
and, more generally, of spherically symmetric configura-
tions has proven to be a theoretical asset as much as it is of
course a phenomenological necessity.
In the latest decades, the search for theories going

beyond general relativity has grown, and it has been
important to test these theories in multiple ways. On
astrophysical scales, one may constrain a theory of gravity
by different means; a well-known example is the use of
parametrized post-Newtonian (PPN) constraints [3]. Our
present work is related to not only this but also another

avenue: showing the existence of black hole and star
solutions without strong coupling, and checking their
precise phenomenology. Black holes and stars are ubiqui-
tous and, as such, unavoidable elements that every theory
of gravity should be able to describe.
Among modified theories of gravity, massive gravity is

an archetype of infrared (IR) modification, first formalized
by Fierz and Pauli [4]. Then, the first theory to successfully
eradicate the Boulware-Deser (BD) ghost, previously
thought to appear generically in massive gravity [5], was
de Rham-Gabadadze-Tolley (dRGT) massive gravity [6].
This theory was also shown to be unique under some
assumptions, in particular Lorentz invariance and the
restriction to the sole metric field for the gravitational
sector. However, because of the lack of stable Friedmann-
Lemaître-Robertson-Walker (FLRW) cosmologies in dRGT
massive gravity [7], theories beyond dRGT have been
developed (see e.g., [8–12]). One of those, called the
minimal theory of massive gravity (MTMG) [13,14], a
Lorentz symmetry violating theory, has the special feature
that it only propagates two tensor modes instead of the five
present in dRGT theory. These modes are massive but
travel at the speed of light in the subhorizon limit, thus
passing with flying colors the recent constraints [15], while
the graviton mass term contributes to the late-time accel-
eration of the Universe. Note also that other restrictions
applying to dRGT theory, such as positivity bounds
[16–19], do not hold in MTMG, since these only restrict
Lorentz invariant theories.
In the context of black hole solutions, massive gravity

has faced challenges. In dRGT massive gravity, two
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branches of static solutions are present (see e.g., [20]). One
of them, in which both metrics are proportional to each
other, is unstable under both radial perturbations and
superradiant instability [21], and furthermore possesses
coordinate-invariant singularities at the horizon [22]. While
the second is claimed to be stable both in the radial and
modal senses [23] and nonsingular (anti-)de Sitter
Schwarzschild solutions can be found, it suffers from
infinitely strong coupling [24]. Note that the aforemen-
tioned problems can be bypassed by including a time
dependence in the description [24,25] and thus deviation
from corresponding solutions in GR. For other theories of
massive gravity, such as MTMG, these issues have not yet
been explored as thoroughly. It is thus interesting to
determine whether MTMG faces the same problems, or,
conversely, if healthy static solutions, such as black holes,
can be found.
In this work, we answer positively to the latter question,

and then extend our answer to time-dependent solutions
such as collapsing matter. We first present briefly the theory
and show the correspondence between GR and MTMG
solutions. Then, as corollaries of this result, the black hole
and star solutions are explicitly derived, their matching
with cosmology being also discussed.

II. MTMG IN A NUTSHELL

MTMG is a theory of massive gravity that propagates
only the two tensor modes. One may write it as a precursor
theory that breaks Lorentz invariance, together with
adequate constraints removing the extra degrees of free-
dom. MTMG thus contains, in the so-called unitary gauge,
a dynamical metric gμν and a fiducial metric fμν as well as
Lagrange multipliers λ and λi (i ∈ f1; 2; 3g).
The metric formulation of MTMG relies on an Arnowitt-

Deser-Misner (ADM) foliation of space-time, given by

ds2 ¼ −N2dt2 þ γijðdxi þ NidtÞðdxj þ NjdtÞ; ð1Þ

where ds2 ≡ gμνdxμdxν, and an equivalent decomposition
using tilded variables for the fiducial sector. The three-
dimensional fiducial metric γ̃ij enters the theory only via
the combinations Ki

j ≡ γikγ̃kj and ζ̃ij ≡ γ̃ik∂tγ̃kj=ð2ÑÞ,
where γij and γ̃ij are inverses of γij and γ̃ij, respectively.
The action for MTMG is then given by

SMTMG ¼ SGR þ Smat −
M2

Plm
2
g

2

Z
d4x

ffiffiffiffiffiffi
−g

p
W; ð2Þ

where SGR ¼ ðM2
Pl=2Þ

R
d4x

ffiffiffiffiffiffi−gp
R is the Einstein-Hilbert

action, Smat is the diffeoinvariant action for matter mini-
mally coupled to the metric gμν, MPl and mg are respec-
tively the Planck scale and a mass scale associated with the
graviton mass, and W is the potential term for the metric,

W ≡ Ñ
N
E þ Ẽ þ Ñλ

N
ðF̂ i

jζ̃
j
i − Ẽζ̃ii þ F̃ i

jKjkγkiÞ

þ Ñ
N
F̃ i

jDiλ
j −

m2
gÑ2λ2

4N2

�
½F̃ 2� − 1

2
½F̃ �2

�
: ð3Þ

Here, Dp is the covariant derivative compatible with γij,
Kij ¼ ð∂tγij −DiNj −DjNiÞ=2N is the extrinsic curva-
ture, ½A� denotes the trace of the matrix A,

E≡X3
i¼0

cie3−iðKÞ; Ẽ≡X4
i¼1

cie4−iðKÞ;

Ê≡X4
i¼2

cie5−iðKÞ; F̃ i
j≡ δẼ

δKj
i
; F̂ i

j≡ δÊ
δKj

i
; ð4Þ

eiðXÞ (i ¼ 0, 1, 2, 3) are the three-dimensional symmetric
polynomials and fcngn¼0..4 are constants. While MTMG is
presented here in a compact fashion, a more comprehensive
description of its construction and a study of cosmological
solutions can be found in [13,14].

III. TWO BRANCHES OF SOLUTIONS

Taking FLRW forms for gμν and fμν in the unitary gauge,
the equation of motion (EOM) for λ is factorized as [14]

ðc3 þ 2c2X þ c1X2ÞẼ ¼ 0; ð5Þ

where X (≠ 0) is the ratio of the two scale factors and Ẽ is
some more complicated expression (see Eq. (83) of [14]).
This equation reveals the existence of two branches.
In the so-called “self-accelerating” branch, c3 þ 2c2X þ

c1X2 vanishes, and thus X is constant. At cosmological
scales, the phenomenology in this branch is the same as in
GR, albeit with an effective cosmological constant origi-
nating from the graviton mass term, and with a non-zero
mass (of order of today’s Hubble parameter) given to the
gravitational waves. On the other hand, in this letter, we
investigate, for the first time, the phenomenology at shorter
distances for spherically symmetric non-linear solutions.
The other branch (in which Ẽ vanishes), called the

“normal” branch, has an interesting phenomenology
[26,27], e.g., a modified growth of perturbations, but will
not be studied here. It is important to note that the graviton
mass term can lead to an effective cosmological constant
also in this branch.

IV. SPATIALLY FLAT SOLUTIONS

The present work relies upon the following lemma,
which is then used to derive black hole and star solutions.
Lemma.—Any GR solution that can be written with flat

constant-time surfaces is a solution of the self-accelerating
branch of MTMG, with the additional feature of a bare
cosmological constant.
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Proof.—A metric with flat constant-time surfaces is
written as

ds2 ¼ −α2dt2 þ a2ðtÞδSijðdxi þ βidtÞðdxj þ βjdtÞ; ð6Þ

where αðxμÞ and βiðxμÞ are free functions of the 4-
dimensional coordinates xμ ¼ ðt; r; θ;φÞ, aðtÞ is a function
of t corresponding to the scale factor and δSijdx

idxj ¼
dr2 þ r2ðdθ2 þ sin2θdφ2Þ. Similarly, a fiducial metric is
written as

fμνdxμdxν ¼ −Ñ2ðtÞdt2 þ a2fðtÞδSijdxidxj; ð7Þ

and the Lagrange multipliers are kept in the most general
form λ ¼ λðxμÞ and λi ¼ fλrðxμÞ; λθðxμÞ; λφðxμÞg.
The EOM for λ reveals the same splitting in two branches

as in cosmology, and we will work in the self-accelerating
one, where X ≡ af=a is constant. In this branch, the EOM
for λi are automatically satisfied, so one can safely choose
the Lagrange multipliers to be equal to their cosmological
values, λ ¼ λi ¼ 0. With this choice, the Einstein equation
for the metric (6) is

M2
Pl

�
Gμν þ

m2
g

2
ðc4 þ 2c3X þ c2X2Þgμν

�
¼ Tμν: ð8Þ

Thus the Einstein equation is indeed the same as in GR with
an effective cosmological constant

Λeff ≡m2
g

2
ðc4 þ 2c3X þ c2X2Þ: ð9Þ

□

Although this lemma concerns a wide class of solutions,
one has either to explicitly write the diffeomorphism to put
them in the form of (6), or to derive a more general
geometrical argument to find all GR solutions that permit
flat spatial sections. This work adopts the former and
demonstrates the existence of black hole and star solutions
in MTMG as a corollary of the lemma. Note that while the
chosen examples are spherically symmetric systems, this
assumption was not made in the lemma.

V. SPATIALLY FLAT SLICING

In general, one can write the metric for a spherically
symmetric system as

ds2 ¼ −fðt; rÞdt2 þ dr2

1 − 2mðt;rÞ
r

þ r2dΩ2: ð10Þ

By a change of coordinates t → τ þ Tðτ; rÞ satisfying�∂Tðτ; rÞ
∂r

�
2

¼ 1

fðτ; rÞ
2mðτ; rÞ

r − 2mðτ; rÞ ; ð11Þ

the metric (10) can be put in a spatially flat form

ds2 ¼ −N2dτ2 þ ½ðdrþ βdτÞ2 þ r2dΩ2�; ð12Þ
with

N2 ¼ ð1þ _TÞ2fð1þ T 02fÞ; β ¼ −T 0ð1þ _TÞf; ð13Þ
where a dot and a prime denote time and radial derivatives,
respectively.

VI. STATIC SOLUTIONS IN VACUUM

The Schwarzschild-de-Sitter solution is given by
mðt; rÞ ¼ mðrÞ ¼ M − Λr3=6 with both M and Λ constant
and fðr; tÞ ¼ fðrÞ ¼ 1–2mðrÞ=r. Applying the transfor-
mation as in Eq. (13), one finds that

ds2 ¼ −dτ2 þ
�
dr�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r

−
Λr2

3

r
dτ

�2

þ r2dΩ2: ð14Þ

Going to the pure Schwarzschild solution (i.e., taking
Λ ¼ 0), this particular form of the metric has been long
known and was firstly independently proposed by Painlevé
[28] and Gullstrand [29].
By the lemma, the metric (14) is a solution of MTMG for

a flat fiducial metric γ̃ij ¼ X2δSij with X constant and
λ ¼ λi ¼ 0,1 provided that Λ ¼ Λeff . This demonstrates the
existence of static black holes in MTMG, identical to those
in GR.
The solution (14) can also be used to describe the outer

part of a non-rotating star. Thus the PPN parameters βPPN

and γPPN are unity, as in GR. In the following we turn to its
inner part, i.e., the inclusion of matter in MTMG.

VII. INCLUSION OF MATTER

Since in MTMG (and more generally in massive gravity)
diffeomorphisms are broken by the graviton mass term (in
the unitary gauge), solutions equivalent under a change of
coordinates in GR become different solutions in MTMG. It
is therefore important to make sure that there is no
coordinate singularity at the center of solutions with matter.
As a condition we require that in the r → 0 limit, the

extrinsic curvature remains regular and becomes isotropic,
and thus that the anisotropic part of the extrinsic curvature,
Krr − K=3, where K is the trace of the extrinsic curvature,
vanishes at the center. For the metric ansatz (12) it is
sufficient to show that

lim
r→0

�
∂rβ −

β

r

�
¼ 0: ð15Þ

1More generally, i.e., beyond the lemma, λðrÞ ¼ λ0 and λi∂i ¼
∓ λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=r − Λr2=3

p ∂r are also allowed, where λ0 is a constant.
However, in order to match with their cosmological boundary
condition, one has to impose λ0 ¼ 0 so that λ ¼ λi ¼ 0.
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For this purpose we expand all quantities around r ¼ 0, for
example βðτ; rÞ ¼ P∞

n¼0 βnðτÞrn. In the following equa-
tions the nth subscript will denote the coefficient of nth
power of r in the corresponding quantity. The following
argument does not depend on the effective equation of state
and applies to both dynamical and static configurations.
In the lowest order in r, the ττ component of the Einstein
equation becomes M2

Plβ
2
0=r

2 ¼ 0. This imposes that
β0 ¼ 0. Then, taking the next relevant order in r, one finds
that the ττ and rr components of the Einstein equation are
N2

0ρ0 ¼ 3M2
Plβ

2
1=2 and N1=N0 ¼ 0, leaving N0 ≠ 0 and

N1 ¼ 0. Iterating this procedure yields β2 ¼ 0 and thus

βðτ; rÞ ¼ � N0

MPl

ffiffiffiffiffiffiffiffi
2

3
ρ0

r
rþOðr3Þ; ð16Þ

in which we have denoted the matter density of the fluid by
ρ, assumed a general barotropic equation of state P ¼ PðρÞ,
and omitted here the negligible contribution from the
effective cosmological constant term.
Regular solutions found here include static solutions

with matter as a special case. As a concrete and simple
example let us consider the interior Schwarzschild solution,
as described for instance in [30]. The solution, after
matching to the Schwarzschild solution with Schwarzschild
radius 2M at the stellar radius r0, has

mðrÞ ¼ M
r3

r30
; f ¼

2
43
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r0

s
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2mðrÞ
r

r 3
52

;

ð17Þ

where we have once again omitted the contribution of the
effective cosmological constant as physically negligible at
scales of order of the stellar radius. After transformation
(11), we recover a spatially flat space-time with

N2 ¼ rf
r − 2m

; β ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mf

r − 2m

r
: ð18Þ

As seen in the lemma this is a solution of MTMG
with λ ¼ λi ¼ 0.
The presence of time-dependent solutions with matter

allows one to construct non-homogeneous cosmological
solutions, as discussed in [31] for dRGT gravity. Those
solutions are good approximations of the canonical FLRW
universe for patches of the sizes larger than the Vainshtein
radius. In MTMG we can go beyond this as we shall see in
the following.

VIII. MATCHING TO COSMOLOGY

The special form of the metric (6) allows for a nontrivial
scale factor aðtÞ, which has not yet been discussed in the
examples so far. To include nontrivial aðtÞ, one shall also

implement a non-trivial scale factor in the fiducial sector as
γ̃ij ¼ a2fðtÞδSij, so that the ratio X ≡ af=a can be constant
for an expanding universe ( _a > 0), as required in the self-
accelerating branch. In MTMG this class of solutions is
distinct from the solution (14). Indeed, as exposed pre-
viously, solutions equivalent under a change of coordinates
in GR become different solutions in MTMG in the unitary
gauge and thus the Schwarzschild-de-Sitter black hole
solution of the form (14) is not equivalent to a black hole
embedded in an expanding universe with an exponential
scale factor.
Beginning with pure GR and the line-element (10) with

fðt; rÞ ¼ 1–2mðrÞ=r ¼ 1 − 2M=rþ Λr2=3 and both M
and Λ constant, the aim is to write it in a “generalized
Painlevé-Gullstrand” form

ds2 ¼ −Nðr; tÞ2dt2 þ a2ðtÞ½ðdrþ βðr; tÞdtÞ2 þ r2d2Ω�:
ð19Þ

This can be done with an appropriate coordinate change of
the form (11) together with r → aðtÞr, to have

Nðr; tÞ ¼ 1; βðr; tÞ ¼ _a
a
r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
a3r

−
Λr2

3

s
; ð20Þ

with aðtÞ being unspecified.
Turning to MTMG, we inject the metric (19) in the EOM

with a spherically symmetric ansatz for the Lagrange
multipliers as λ ¼ λðr; tÞ and λi∂i ¼ λrðr; tÞ∂r This yields

Nðr; tÞ ¼ 1; βðr; tÞ ¼ _a
a
r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðtÞ
a3r

−
Λeffr2

3

s
; ð21Þ

with the modified mass

μðtÞ¼M0�
m2

gðc1Xþc2ÞX
2

ffiffiffi
3

p
Z

t

−∞
dτa3ðτÞÑðτÞλ̃ðτÞ; ð22Þ

where M0 is a constant and the sign � is consistent with
Eq. (16). The Lagrange multipliers λ and λr are

λðr; tÞ ¼ 0; λrðr; tÞ ¼ λ̃ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð ffiffiffi

3
p

μðtÞ − Λeffr3Þ
q ; ð23Þ

where λ̃ðtÞ is an arbitrary function of t.
Considering a BH or an exterior solution of a star formed

from smooth and asymptotically FLRW initial data with
matter, both λ and λr should vanish at spatial infinity to
recover their cosmological values. Also, λrðt; rÞ should
vanish at r ¼ 0 for regularity, at least until a physical
singularity forms there. Moreover, λ ¼ 0 everywhere for
the final configuration as shown in (23), and finally the
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Lemma tells us that λ ¼ λr ¼ 0 is a solution all the time
from the initial data to the final configuration. By con-
tinuity we thus conjecture that λ̃ðtÞ ¼ 0 in (23), meaning
that μðtÞ ¼ M0 in (22). In this case the solution (21) in
MTMG recovers the solution (20) in GR, with M0 ¼ M
and Λeff ¼ Λ.
Contrary to the solutions found in [31] and [32] for

dRGT gravity, this solution (with λ̃ ¼ 0) in the M0 → 0
limit is strictly homogeneous and isotropic and is free from
strong coupling issues, which seems to be a unique and
significant feature of MTMG among massive gravity
theories.

IX. DISCUSSION

In previous works, the minimal theory of massive gravity
(MTMG) has proven to successfully pass cosmological
consistency tests [14,26,27]. Here, for the first time, we
have studied the existence of black hole and star solutions
in the context of MTMG. We find that two branches, the
self-accelerating branch and the normal branch, exist even
outside the previously studied FLRW case. The main result
of this paper is the lemma by which, for the class of space-
times that can be put into a spatially flat form by an
appropriate change of coordinates, any GR solutions are
also solutions of the self-accelerating branch of MTMG.
In order to illustrate the lemma, we have further

presented a collection of corollaries: (i) spherically sym-
metric static solutions in vacuum with or without cosmo-
logical constant, (ii) spherically symmetric solutions with
matter which are either time dependent or time indepen-
dent, and (iii) a Schwarzschild-de-Sitter solution matched
with a de Sitter background in the FLRW form. In
particular, matter solutions are found to be regular at the
center. These examples are of course not expected to be
exhaustive for the class of space-times concerned by the
lemma. Arguably, other types of GR solutions may also
find a corresponding MTMG solution; this is left as an
interesting point for future study. Some particular settings
would also require further attention, due to their physical
relevance. For example it would be important to study Kerr-
like rotating systems, which cannot be put in spatially flat
form in a simple manner under certain technical assump-
tions [33] and therefore are not covered by our lemma. Of
other particular interest would be the study of isolated
objects matched to different cosmological backgrounds,
e.g., matter and/or radiation dominated universes.
Due to the breaking of general covariance by the mass

term, coordinate transformations in the unitary gauge are
not innocuous. In particular, spatially flat coordinates
cannot be changed back to the usual Schwarzschild-like

coordinates unless Stückelberg fields are introduced. This
is a fundamental change with respect to GR. It is in
particular for this reason that matching with background
cosmological solutions is unavoidable in MTMG. As
emphasized above, we expect that this can be done in
more generality than what was presented in the
present work.
To our knowledge, the existence of static, black hole

configurations without strong coupling in massive gravity
is specific to MTMG. Indeed, it has been shown that in
dRGT gravity, no static solution is healthy, although there
exist time-dependent non-GR solutions [25]. MTMG
solutions identically match GR solutions, there are no
singularities except for those already existing in GR and
they are free from strong couplings. We leave for the future
the exploration of the stability of the solutions found in this
work, although it seems reasonable to expect the same
stability properties as the GR solutions.
The existence of the Schwarzschild solution in MTMG

has some direct consequences, in particular the values of
some PPN parameters. One has that γPPN ¼ βPPN ¼ 1,
values that are the same as in GR. A more detailed study
would be necessary to obtain all other PPN parameters.
The propagation of GW in MTMG is different from GR

but this difference is negligible since the sound speed of
GW in the subhorizon limit is equal to the speed of light
[13,14] and the expected mass of GW in MTMG, of order
H0, is still well below the current upper bounds from
observation. On the other hand, the production of GW
from binary systems may exhibit observable differences
from GR and thus it is interesting to investigate the
production process of GW in the context of MTMG.
Finally, we will leave for future studies the alternative

branch of MTMG, known as the “normal” branch. While
the self-accelerating branch is the closest to GR, the
phenomenology of the normal branch may allow for
interesting deviations, such as the ones in [14,26,27].
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