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Gravitational waves emitted from compact binary coalescence can be subject towave diffraction if they are
gravitationally lensed by an intervening mass clump whose Schwarzschild time scale matches the wave
period. Waves in the ground-based frequency band f ∼ 10–103 Hz are sensitive to clumps with masses
ME ∼ 102–103 M⊙ enclosed within the impact parameter. These can be the central parts of low mass
ML ∼ 103–106 M⊙ darkmatter halos, which are predicted in cold darkmatter scenarios but are challenging to
observe. Neglecting finely-tuned impact parameters, we focus on lenses aligned generally on the Einstein
scale for which multiple lensed images may not form in the case of an extended lens. In this case, diffraction
induces amplitude and phasemodulationswhose sizes∼10%–20% are small enough so that standardmatched
filtering with unlensed waveforms do not degrade, but are still detectable for events with high signal-to-noise
ratio. We develop and test an agnostic detection method based on dynamic programming, which does not
require a detailedmodel of the lensedwaveforms. For pseudo-Jaffe lenses alignedup to theEinstein radius,we
demonstrate that a pair of fully upgraded aLIGO/Virgo detectors can extract diffraction imprints from binary
black holemergers out to zs ∼ 0.2–0.3. The prospect will improve dramatically for a third-generation detector
for which binary black hole mergers out to zs ∼ 2–4 will all become valuable sources.
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I. INTRODUCTION

Recent detection of gravitational wave (GW) signatures
from compact binary coalescence with the ground-based
observatory network aLIGO/Virgo has opened up a new
window into the Universe [1–6]. A large number of events
from an increased volume are expected after aLIGO/Virgo
undergo major upgrades and after KAGRA [7] and LIGO-
India [8] join the network in the near future.
GWs can be gravitationally lensed if the line of sight is

perturbed by amass clump such as the darkmatter (DM) halo
associated with a galaxy or a galaxy cluster [9–17]. At
cosmological distances z ≃ 1, about10−3 of the eventswould
be strongly lensed by intervening galaxies. If observed, these
special events can be used to probe cosmology [18–20] or to
constrain fundamental physics [21,22].
In contrast to the galactic mass scaleML ≳ 1010 M⊙, the

lumpiness of the Universe on smaller mass scales are
empirically less understood. In the cold dark matter (CDM)
paradigm, DM halos are predicted to span a mass range
across many orders of magnitude ML ∼ 10−6–1015 M⊙
[23–26]. In alternative scenarios, the formation of low

mass clumps may be suppressed or prohibited, such as in
the case of warm dark matter [27–29], or bosonic dark
matter with a macroscopic de Broglie wavelength [30–35].
For testing those models, strong lensing of distant electro-
magnetic sources have been considered as powerful tools to
probe halos of low mass scales ML ∼ 106–109 M⊙, mainly
residing in intervening galactic halos [36–50] or cluster
halos [51–54] as substructures.
When the Schwarzschild time corresponding to the lens

mass is comparable to the wave period, wave diffraction
effects become important [55–61]. In this paper, we focus
on the frequency band of ground-based detectors
f ∼ 10–103 Hz, which points toward an intriguing mass
scaleME ∼ 102–103 M⊙ enclosed within a projected radius
on the order of the impact parameter. When the impact
parameter is on the order of the Einstein radius, this
corresponds to the inner mass enclosed within that radius,
and the lens’s actual virial mass may be a few orders of
magnitude larger ML ∼ 103–106 M⊙. Those mass scales
are relevant for collapsed DM halos in CDM theories.
Meanwhile, matter distribution on those scales may be
smoothed out in alternative micromodels for the DM.
However, observing subgalactic DM clumps is in general
difficult due to the lack of electromagnetic emissions.*ldai@ias.edu
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Gravitational wave observations therefore offer a precious
window into the matter distribution in the Universe on very
small scales.
Lensing in the geometrical regime preserves the shape of

the waveform. Without electromagnetic observation, it is
difficult to disentangle between the true source distance and
the lensing magnification. Inference about the lens therefore
requires detecting multiple images. By contrast, wave
diffraction induces amplitude and phase modulations in
the frequency domain waveform. Those modulations are
observable imprints of lensing even though multiple images
do not always form—for example in the case of a relatively
large impact parameter or a shallow inner density profile of
the lens.
In the single-image regime, diffraction-induced modu-

lations are small in size [56]. Typically, the amplitude
modulation is no larger than a few tens of percent in
fraction, and the phase modulation is less than a few tens of
percent of a radian, although those can be enhanced in the
presence of an external shear. Since the overall distortion to
the waveform is moderate, standard matched filtering
using unlensed templates would yield a good match.
Nevertheless, we will show that a diffraction-distorted
waveform is indeed distinguishable from the unlensed
waveform provided that the matched filtering signal-to-
noise ratio (SNR) is sufficiently high (e.g., ≳20–30).
In previous studies, the detectability of the lensing

diffraction effects was often estimated based on the
technique of matched filtering [56,59,60], which requires
specifying a lensed waveform model. For idealized lenses,
such as point masses [60,61] or singular isothermal spheres
[56], it is feasible to construct a parametrized model for the
mass profile and derive the corresponding diffraction
signature. However, for realistic lenses this approach can
be cumbersome due to the large number of parameters
needed. Moreover, the correct lens profile to use may not be
confidently known from theory or from simulations,
especially for low mass DM halos.
Another issue overlooked in previous works was the

look-elsewhere effect, which reduces detection signifi-
cance. This is particularly pertinent because a large number
of possible lensed waveforms need to be searched for, and
because lensed events are expected to be rare. Any practical
detection method must allow for correct quantification of
the look-elsewhere effect.
To address the above issues, we present a new method

based on dynamic programming. The method is computa-
tionally cheap and is highly practical as it does not require
any parametrized model for lensed waveforms. The key
idea is that diffraction-induced amplitude and phase dis-
tortions are highly correlated in the frequency domain,
unlike the (nearly) stationary detector noise which has little
correlation between different frequency components. We
therefore compute a marginalized likelihood over all
possible waveform perturbations around the best-fit
unlensed waveform, assigning a prior probability for

random amplitude and phase perturbations such that
correlated perturbations are favored. Under the assumption
of a Markovian process, this marginalized likelihood can be
efficiently computed with the forward algorithm [62]. The
false positive and the false negative probabilities can then
be quantified through the Monte Carlo technique, which
properly accounts for the look-elsewhere effect.
As a proof of concept, we will assess the observational

prospect of our method applied to compact binary coales-
cence, using a pseudo-Jaffe lens with a characteristic mass
ME ∼ 102–103 M⊙ enclosed within the Einstein radius. For
a pair of fully upgraded aLIGO detectors, we find that the
horizon distance of sensitivity for binary neutron star (NS)
mergers is not likely to be promising in terms of probing a
substantial amount of line-of-sight mass, but that for binary
black hole (BH) mergers can reach as far as ∼1 Gpc
(effective luminosity distance). The prospect will be further
enhanced with joint detection by additional detectors in the
network. As for one third-generation detector, such as the
proposed Einstein Telescope (ET) [63], the horizon for
suitable binary BH sources will be dramatically extended
to ≳10 Gpc, in which case the line of sight can have a
significantly larger chance of intersecting low mass halos.
The remainder of this paper is organized as the following.

In Sec. II, we review the physics of lensing in the wave
diffraction regime, with an emphasis on the general behav-
iors of the diffractive distortion. We then discuss how to
detect diffraction signals in Sec. III.We first develop intuition
using the idealized method of matched filtering (Sec. III A).
We then present a practical detection method based on
dynamic programming (Sec. III B). In Sec. IV, we demon-
strate the method of dynamic programming by performing
mock detectionwith binaryNS andBHmergers. Assuming a
representative lens profile,we estimate detectability for those
GW sources at second-generation detector networks and at
third-generation detectors. In Sec. V, we briefly discuss
whether or not diffraction induced modulations may be
degenerate with the effects of spin-orbit precession and
orbital eccentricity on the waveform. Finally, we present a
summarizing discussion in Sec. VI.

II. DIFFRACTION DISTORTION IN WAVEFORMS

Consider a lens at redshift zL and a GW source at redshift
zS in a flat Friedmann-Lemaître-Robertson-Walker uni-
verse. Let dL, dS and dLS be the angular diameter distances
to the lens, to the source, and from the lens to the source,
respectively. At any given observed frequency f, the lensed
waveform is hðfÞ ¼ FðfÞh0ðfÞ, where h0ðfÞ is the
unlensed waveform. Under the approximation of a single
mass sheet, the multiplicative factor FðfÞ is a complex
number and can be obtained from a diffraction integral [64]

FðfÞ ¼ fð1þ zLÞ
i

dLdS
cdLS

Z
d2xei2πfð1þzLÞτðx;y;JextÞ; ð1Þ
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where x is the angular coordinates on the lens plane, and y
is the angular coordinates of the source position on the
source plane. The ray travel time τðx; y; JextÞ, defined
relative to free propagation, can be written as the sum of
the geometrical delay term and the Shapiro delay term,
τðx;y;JextÞ¼ðdLdSÞ=ðcdLSÞ½ðx−yÞ ·Jext ·ðx−yÞ=2−ϕðxÞ�,
where ϕðxÞ is the lensing potential (assuming the lens
centers at x ¼ 0), and we introduce a Jacobian matrix Jext
to account for any possible external convergence and shear.
To avoid cumbersome notation, in the following wewill not
explicitly write down the dependence of the ray travel time
τ on y and Jext. It should be understood that the diffraction
integral can be evaluated once y, Jext and ϕðxÞ are all
specified.
At high frequencies, namely in the geometrical limit,

FðfÞ is the sum of contributions from one or multiple
images, which we label as a ¼ 1; 2;… [64],

FgeoðfÞ ¼
X
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμðxaÞj

p
e−iπδasgnðfÞei2πfð1þzLÞτðxaÞ: ð2Þ

At each image position xa, μðxaÞ is the signed magnifica-
tion factor. The summation over i accounts for the
possibility of multiple images. The Morse phase e−iπδi
[65] depends on the image type and represents a residual
wave effect of topological origin [66].
In the geometrical limit, waveform distortions can only

arise when multiple images mutually interfere. The exist-
ence of more than one image often requires a sufficiently
compact lens and a small impact parameter. If only one
image is present xa ¼ x1, the lensed waveform is a rescaled
version of the intrinsic waveform but is shifted by τðx1Þ in
the time domain. In this case, a lensed event is indistin-
guishable from an unlensed one, unless either the lumi-
nosity distance or the source redshift is independently
measured [12,66].
In the absence of multiple-image interference, the

measurable effect of lensing is encoded in the deviation
of FðfÞ from FgeoðfÞ,

FrelðfÞ ≔ FðfÞ=FgeoðfÞ; ð3Þ

which induces waveform distortions. By construction,
FrelðfÞ approaches unity in the limit of high frequencies
f → ∞.
We now study concrete examples by modeling the

possible intervening lenses using pseudo-Jaffe ellipsoids
[67]. We first define the Einstein angular radius θE ≔
4πðσv=cÞ2ðdLS=dSÞ. The effective velocity dispersion σv
is related to the characteristic lens mass, defined to be the
enclosed mass within the Einstein radius:

ME ¼ð4π2σ4vdeffÞ=ðGc2Þ¼ 100M⊙

�
σv

1 km=s

�
4
�

deff
1Gpc

�
;

ð4Þ

where deff ≔ dLdLS=dS. The convergence is given by

κ ¼ ðθE=2Þ½ðs2 þ ξ2Þ−1=2 − ða2 þ ξ2Þ−1=2�: ð5Þ

Here s is the core scale and a is the truncation scale. The
ellipse variable ξ is introduced to allow for ellipticity. In a
coordinate system where the major axes of the lens ellipse
align with the coordinate axes, we have ξ2 ¼ x21 þ x22=q

2 for
0 < q ≤ 1. The case q ¼ 1 corresponds to an axisymmetric
lens. Analytic results for the lensing potential ϕðxÞ can be
found in Ref. [68].
We choose this simple analytic lens model because it can

approximate reasonably well any virialized self-gravitating
mass clump with an inner core and an outer radius of
truncation.
The importance of diffraction effects is characterized by

a dimensionless parameter

w ≔ 2πfð1þ zLÞ
dLdS
cdLS

θ2E ð6Þ

≃1.3ð1þ zLÞ
�

f
102 Hz

��
σv

1 km=s

�
4
�

deff
1 Gpc

�
: ð7Þ

It is linearly proportional to ME at a fixed wave frequency.

FIG. 1. Examples of the relative amplification factor FrelðwÞ for
pseudo-Jaffe ellipsoids. We assume s ¼ 0.1 and a ¼ 2, and an
impact parameter y ¼ ½0.8; 0.8�. Four cases are shown: (1) ax-
isymmetric, no external convergence or shear (solid red);
(2) q ¼ 0.5, no external convergence or shear (dotted red);
(3) axisymmetric, κext ¼ γext ¼ 1=3 (solid blue); (4) q ¼ 0.5,
κext ¼ γext ¼ 1=3 (dotted blue). When both the lens ellipticity and
the external shear are nonzero, we assume a misalignment angle
π=2 between their major axes. (All angular variables are in units
of θE.)
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Figure 1 shows examples of FrelðwÞ. Typically, FrelðwÞ
asymptotes to unity for w ≫ 10 if the number of geomet-
rical image is one. For w≲ 10, amplitude and phase
modulations become non-negligible but do not exceed
∼10%–20%. The modulations can be enhanced in the
presence of order-unity external convergence κext and shear
γext, a situation that may arise if the lens is embedded in a
larger lens (e.g., lensing by a subhalo residing in the halo of
an intervening galaxy lens). Among the many modulation
cycles, the first one typically has the largest size and should
be the most interesting for detection.
Figure 2 shows how FrelðwÞ depends on the impact

parameter y for an isolated axisymmetric lens s ¼ 0.1 and
a ¼ 2. The sizes of both the phase and the amplitude
modulations decrease as the inverse of jyj. Also, the
locations of the maxima and the minima in terms of w
scale as the inverse of jyj. This implies that at fixed physical
frequency f and distance deff and for the same lens, a
lensing configuration with a larger impact parameter is
sensitive to a smaller massME enclosed within the Einstein
radius.
Figure 3 plots FrelðfÞ in the frequency band of ground-

based detectors. Detectable lenses should have σv and deff
in the “sweet spot” such that the ground-based frequency
band maps to w ∼Oð1Þ. For instance, a binary NS merger
event from zS ¼ 0.07 with a luminosity distance D ≃
300 Mpc can be sensitive to pseudo-Jaffe lenses
with a velocity dispersion σv ≃ 2 km=s at zL ¼ 0.04
(deff ≈ 70 Mpc). This translates to an intriguingly small
Einstein massME ≈ 100 M⊙. The more massive binary BH
mergers are detectable out to larger distances. A binary BH
event from zS ¼ 0.4 with a luminosity distance D ≃ 2 Gpc

can probe lenses with σv ∼ 1 km=s and ME ∼ 70 M⊙. The
nearly unique order of magnitude in ME is set by the wave
frequency in the detector’s band, whose inverse should
match the Schwarzschild time scale ∼GME=c3 in order to
maximize the diffraction effects.

III. DETECTION OF DIFFRACTION EFFECTS

In this section, we discuss the detectability of diffraction-
induced modulations in the waveform.

A. Detection by matched filtering

The ideal method is to construct waveform templates that
incorporate the exact amplitude and phase modulations,
and to perform a matched-filtering search using those
templates. The significance of the matched-filtering method
is quantified by the SNR. At a single detector, the strain
time series sðtÞ ¼ hðtÞ þ nðtÞ is the sum of the GW signal
hðtÞ and the detector noise nðtÞ. For a waveform template
hTðtÞ defined up to an arbitrary normalization λ and an
arbitrary phase constant ϕc, the matched-filtering SNR has
a maximal value

SNR2 ¼ max
λ;ϕc

½hs − λeiϕchT js − λeiϕchTi − hsjsi�

¼ jðsjhTÞj2=hhT jhTi; ð8Þ

with a best-fit normalization λ ¼ jðsjhTÞj=hhT jhTi. Here
hajbi denotes the “overlap” between any two strain series

FIG. 2. Same as Fig. 1 but for the case of an axisymmetric lens
a ¼ 2 and s ¼ 0.1 without any external convergence or shear.
Various curves correspond to different source impact parameters
y, whose values are indicated in the legends.

FIG. 3. Same as Fig. 1 but mapped to wave frequencies f in the
LIGO band in physical units. Curves are calculated for an
axisymmetric lens with s ¼ 0.1, a ¼ 2 and y ¼ ½0.8; 0.8� without
external convergence or shear. Two cases are shown:
(1) σv ¼ 2.0 km=s, zL ¼ 0.04, and deff ¼ 70 Mpc (red);
(2) σv ¼ 1.2 km=s, zL ¼ 0.2, and deff ¼ 330 Mpc (blue).
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aðtÞ and bðtÞ, and has the following frequency-space
representation, hajbi ≔ 4Re

Rþ∞
0 dfaðfÞb�ðfÞ=SNðfÞ,

where SNðfÞ is the one-sided power spectrum density
(PSD) for the detector noise (assumed to be Gaussian).
While hajbi is always real, we also introduce a complex-
valued “overlap” ðajbÞ ≔ 4

Rþ∞
0 dfaðfÞb�ðfÞ=SNðfÞ,

which is a useful quantity to compute when one would
like to vary the phase constant ϕc in order to maximize
the match.
A GW event may be simultaneously seen at multiple

detectors. Strictly speaking, the waveform normalization,
the phase constant, and the arrival time are all correlated
between the detectors, depending on the source’s sky
coordinates and the detectors’ locations and orientations.
Since that information is not our focus here, we neglect
those correlations for simplicity [69,70]. In this case, the
overall SNR is given by the SNRs defined in Eq. (8) for
individual detectors added up in quadrature.
In the presence of lensing hLðfÞ ¼ FðfÞh0ðfÞ ¼

FrelðfÞFgeoðfÞh0ðfÞ, we have sðfÞ ¼ hLðfÞ þ nðfÞ. If
the exact diffraction-distorted waveform hLðfÞ is used as
the template, the optimal matched-filtering SNR is

SNR2
opt ¼ jðsjhLÞj2=hhLjhLi ≈ hhLjhLi; ð9Þ

where we have neglected the overlap between hLðfÞ and
nðfÞ. However, lensed GW signal can also be recovered
with an unlensed template, say using hgeoðfÞ ≔
FgeoðfÞh0ðfÞ, albeit at a reduced SNR. This is because
the phase distortion in FrelðfÞ is typically much less than
one radian. The SNR corresponding to the unlensed
template is

SNR2
unlen ¼

jðsjh̃geoÞj2
hh̃geojh̃geoi

≈
jðhLjh̃geoÞj2
hh̃geojh̃geoi

¼ jðhLjhBFÞj2
hhBFjhBFi

: ð10Þ

The tilde added to hgeoðfÞ is a notation for enumerating all
possible values of tc to hgeoðfÞ in order to maximize the
match. The best-fit (unlensed) template

hBFðfÞ ¼
jðhLjh̃geoÞj
hh̃geojh̃geoi

h̃geoðfÞei argðhLjh̃geoÞ: ð11Þ

Intuitively, using the correct template generally yields a
better match, since SNR2

opt − SNR2
unlen > 0 due to the

Cauchy-Schwarz inequality.
How statistically significant is the improvement in the

SNR by using the lensed template relative to using the
unlensed one? We would like to define a p-value which
quantifies the chance that there are no amplitude and phase
modulations and the SNR improves due to a statistical
fluke. One definition would be the change in the likelihood
(per detector)

lnp ¼ −ðSNR2
opt − SNR2

unlenÞ=2

≈ −
1

2

�
hhLjhLi −

jðhLjhBFÞj2
hhBFjhBFi

�
: ð12Þ

Reference [60] instead uses the vector-space “distance”

lnp ¼ −hhL − hBFjhL − hBFi=2: ð13Þ

Equations (12) and (13) are equivalent as long as hBFðfÞ
has the best-fit normalization and is tuned to the best-fit
phase constant as in Eq. (11).
In Fig. 4, we estimate how well the lensed waveform can

be distinguished from the unlensed waveform depending
on the source distance. We consider a specific lens: a
pseudo-Jaffe sphere with σv ¼ 2 km=s located at
zl ¼ zs=2, having the parameters of Case (1) in Fig. 1.
The curves are computed for the optimal source location
and orientation for which Deff is equal to the luminosity
distance. The lensed and the unlensed waveforms always
have a good match (better than 99%), reflecting the small
sizes of amplitude and phase modulations. Nevertheless, it
is possible to extract the subtle difference through matched
filtering if the precise lensed waveform is known.
With a single aLIGO detector at the design sensitivity

(aLIGO_DESIGN), the diffraction signature should be
detectable (say require p < 10−6) for binary neutron stars
within Deff ≈ 200 Mpc, and for heavy binary BHs (30 M⊙
per component) within Deff ≈ 3 Gpc. For a future detector
of the third generation, these distances increase to 1 Gpc
and 50 Gpc, respectively.
In the case of joint detection with a network of Ndet

detectors of comparable sensitivity, since the same modu-
lation is imprinted at all detectors, the logarithm of the
p-value is multiplied by a factor of Ndet, which results in a
further increase in the horizon distance. For the same
detection significance, two identical aLIGO detectors at the
design sensitivity could jointly reach Deff ∼ 300 Mpc for
binary NS mergers and Deff ∼ 2 Gpc for 30-solar-mass
binary BH mergers.
Admittedly, Fig. 4 overestimates the detectability. First,

diffraction-induced modulations are partially degenerate
with changes in the intrinsic parameters (e.g., chirp mass,
mass ratio, spins, tidal deformabilities, etc.). Moreover, one
needs to account for the look-elsewhere effect when
enumerating a large number of possible modulations.
Still, Eq. (12) provides zeroth-order intuition toward
understanding this problem. In the following, we address
these issues by developing a practical detection method
using dynamic programming.

B. Detection by dynamic programming

The matched filtering method requires a template for
FrelðfÞ. However, the exact shape of FrelðfÞ will not be
known a priori. It depends on many unknown parameters
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including the lens mass, the lens mass profile and shape,
and the impact parameter.
One strategy is to perform an agnostic search for all

possible functional forms FrelðfÞ ¼ gðfÞ. Define the fol-
lowing score,

S ≔
Z

DgðfÞP½gðfÞ�
YNd

a¼1

P½saðfÞjgðfÞhBF;aðfÞ�
P½saðfÞjhBF;aðfÞ�

: ð14Þ

This is a “path integral” over all possible amplitude and
phase distortions gðfÞ. In the numerator, we explore
perturbations to the best-fit unlensed waveform,
gðfÞhBF;aðfÞ, enumerating all detectors a ¼ 1; 2;…; Nd.
Here P½gðfÞ� is the prior probability for any specific gðfÞ.
The notation P½saðfÞjhaðfÞ� denotes the matched filtering
likelihood for the strain data saðfÞ given a putative GW
signal haðfÞ at the ath detector. Equation (14) measures the
marginalized improvement in the likelihood when the best-
fit unlensed waveform is perturbed by appropriate amounts.
Random gðfÞ can happen to improve the match due to

detector noise. However, stationary Gaussian noise has zero
correlations between frequencies. By contrast, diffraction
induces amplitude and phase modulations that are corre-
lated between frequencies, as can be seen from Figs. 1
and 3. In other words, detector noise matters more for
rapidly oscillating realizations of gðfÞ, while diffraction
corresponds to a continuous and smooth gðfÞ. Therefore,
the diffraction signature is distinguishable from random
noise if one uses a suitable prior P½gðfÞ� that favors
continuous and smooth functional forms.
In practice, the functional integral of Eq. (14) can be

approximated by a summation over a discrete set of gðfÞ’s.
Consider N frequency bins fj ≤ f < fjþ1, labeled by
j ¼ 0; 1;…; N − 1. We can approximate a continuous
function gðfÞ with a series of “steps”

gðfÞ ¼
XN−1

j¼0

ð1þ uj þ ivjÞΘðf − fjÞΘðfjþ1 − fÞ; ð15Þ

where ΘðxÞ is the usual Heaviside function, and uj and vj
are fractional perturbations to the real part and the imagi-
nary part, respectively. A discretized gðfÞ is specified by a
set of coefficients fu; vg ≔ fuj; vjg for j ¼ 0; 1;…; N − 1,
which we assume take discrete values within some range.
For example, we may allow them to take values on uniform
grids:

uj ∈ fumin þ kðumax − uminÞ=nu; k ¼ 0; 1;…; nug
vj ∈ fvmin þ lðvmax − vminÞ=nv; l ¼ 0; 1;…; nvg: ð16Þ

Then Eq. (14) can be approximated as

FIG. 4. Examples for binary NS (top), 10 M⊙ binary BH
(middle), and 30 M⊙ binary BH (bottom). Non-spinning wave-
forms are injected. In each plot, we show the optimal matched
filtering SNR (upper panel), the “match” between the unlensed
waveform h0ðfÞ and the lensed waveform hLðfÞ quantified as
jðh0jhLÞj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhLjhLihh0jh0i
p

(middle panel), and a corresponding
p-value [cf. Eq. (12)], all as a function of Deff . We compute for
three noise PSDs: aLIGO_MID_LOW (red), aLIGO_DESIGN
(blue), and the proposed ET [63] (orange). The aLIGO sensitivity
curves are provided in LALSuite. All curves are computed for a
single detector and a frequency range f ∈ ½10; 1024� Hz. Refer to
the text for more information.
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S ¼
�YN−1

j¼0

�X
uj

X
vj

��
P½fu; vg�

×
YN−1

j¼0

�YNd

a¼1

Pj½saðfÞjhBF;aðfÞð1þ uj þ ivjÞ�
Pj½saðfÞjhBF;aðfÞ�

�
: ð17Þ

The logarithm of the relative likelihood associated with the
jth frequency bin is given by

ln
Pj½saðfÞjhBF;aðfÞð1þ uj þ ivjÞ�

Pj½saðfÞjhBF;aðfÞ�
¼ hsajhBF;að1þ uj þ ivjÞij − hsajhBF;aij
−
1

2
hhBF;að1þ uj þ ivjÞjhBF;að1þ uj þ ivjÞij

þ 1

2
hhBF;ajhBF;aij; ð18Þ

where we introduce the notation hsaðfÞjhaðfÞij ≔
4Re

R fjþ1

fj
dfsaðfÞh�aðfÞ=SN;aðfÞ for the jth frequency

bin at the ath detector.
The prior function P½fu; vg� remains to be specified. We

assume that the (discretized) gðfÞ can be viewed as a
Markovian process in frequency space, so that P½fu; vg�
recursively factorizes following the chain rule of condi-
tional probability:

P½fu; vg� ¼ P½u0; v0�
YN−1

j¼1

P½uj; vjjuj−1; vj−1�: ð19Þ

In this case, Eq. (17) can be efficiently computed by the
Forward algorithm.
Let us order the frequency bins from the lowest to the

highest. Imagine the “path integral” of Eq. (17) is only
performed for the first nþ 1 ≤ N frequency bins
j ¼ 0; 1;…; n. Define the following “partial” path integral

Snðun;vnÞ¼
�Yn−1
j¼0

�X
uj

X
vj

����Yn−1
j¼0

P½uj;vjjuj−1;vj−1�
�

×
Yn−1
j¼0

�YNd

a¼1

Pj½saðfÞjhBF;aðfÞð1þujþ ivjÞ�
Pj½saðfÞjhBF;aðfÞ�

�

×P½un;vnjun−1;vn−1�
�

×

�YNd

a¼1

Pn½saðfÞjhBF;aðfÞð1þunþ ivnÞ�
Pn½saðfÞjhBF;aðfÞ�

�
:

ð20Þ

This leads to a recursive algorithm with a polynomial
computational cost OðnunvNÞ:

Snðun;vnÞ¼
�YNd

a¼1

Pn½saðfÞjhBF;aðfÞð1þunþ ivnÞ�
Pn½saðfÞjhBF;aðfÞ�

�

×
X
un−1

X
vn−1

P½un;vnjun−1;vn−1�Sn−1ðun−1;vn−1Þ;

ð21Þ

with initial conditions S−1ðu−1; v−1Þ≡ 1 and P½u0; v0ju−1;
v−1�≡ 1. Themarginalized score of Eq. (17) is then given by

S ¼
X
uN−1

X
vN−1

SN−1ðuN−1; vN−1Þ: ð22Þ

To find out the best-fit “path”, namely a most probable
set of values fuj ¼ ûj; vj ¼ v̂jg, we apply the Viterbi
algorithm [71]. Let us define Vjðuj; vjÞ, which satisfies
another recursion relation

Vnðun; vnÞ ¼
�YNd

a¼1

Pn½saðfÞjhBF;aðfÞð1þ un þ ivnÞ�
Pn½saðfÞjhBF;aðfÞ�

�

× max
un−1;vn−1

P½un; vnjun−1; vn−1�Vn−1ðun−1; vn−1Þ;

ð23Þ

with initial conditions V−1ðu−1; v−1Þ≡ 1 and
P½u0; v0ju−1; v−1�≡ 1. The “end point” of the most prob-
able “path” is

ðûN−1; v̂N−1Þ ¼ argmaxuN−1;vN−1
VN−1ðuN−1; vN−1Þ: ð24Þ

One then traces backward: if for the (jþ 1)th frequency bin
ðûjþ1; v̂jþ1Þ have been found, for the jth frequency bin the
best-fit “path” is

ðûj; v̂jÞ ¼ argmaxuj;vjP½ûjþ1; v̂jþ1juj; vj�Vjðuj; vjÞ: ð25Þ

This procedure then recovers the best-fit “path” fûj; v̂jg
for j ¼ 0; 1;…; N − 1.
The Markovian conditional probability P½uj; vjjuj−1;

vj−1� remains to be specified. To distinguish between
diffraction and randomnoise, it should favor smooth “paths”.
For fuj; vjg defined on uniform grids [Eq. (16)], a simple
choicewould be to require that from one frequency bin to the
next the u-/v-coefficients may only “jump” by up to a
maximum number of grid points. To be precise, let uj¼
uminþkjðumax−uminÞ=nu, vj ¼ vmin þ ljðvmax − vminÞ=nv,
and define P½kj; ljjkj−1; lj−1� ≔ P½uj; vjjuj−1; vj−1�. We
set P½kj; ljjkj−1; lj−1� to be a nonzero constant if jkj −
kj−1j ≤ Δkmax and jlj − lj−1j ≤ Δlmax but otherwise zero,
with the normalization

Pnu
kj¼0

Pnv
lj¼0 P½kj; ljjkj−1; lj−1�≡ 1.

Despite our approximation of gðfÞ using a sequence of
steps, the formalism can be straightforwardly generalized to
more sophisticated models of gðfÞ. For instance, gðfÞ can
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be approximated as linear or higher-order interpolation
within frequency bins. Also, there is freedom to tune the
specific form of P½gðfÞ� under the Markovian assumption.
In the following, we shall adopt the simplest scheme.

IV. TESTING DYNAMIC PROGRAMMING

In this section, we demonstrate dynamic programming as
outlined in Sec. III B using mock GW signals. We apply the
method of relative binning [69,72] for fast likelihood
evaluations.

A. Waveform models

For binary BHs, we use the phenomenological fre-
quency-domain waveform model IMRPhenomD [73,74].
This model is applicable to inspiral, merger and ringdown
of binary BHs with nonprecessing spins.
In the frequency domain, the unlensed waveform can be

written as h0ðfÞ ¼ AðfÞeiΨðfÞ, where AðfÞ is the amplitude
and ΨðfÞ is the phase. The amplitude AðfÞ is inversely
proportional to the effective distance Deff , which equals
the physical luminosity distance D for optimal source
sky location and orientation but otherwise exceeds D.
The phase ΨðfÞ depends on the intrinsic parameters
common to all detectors: detector-frame chirp mass Mc,
symmetric mass ratio η ¼ M1M2=ðM1 þM2Þ2, aligned
spin components s1z and s2z. At each detector, hðfÞ further
depends on three extrinsic parameters: the effective dis-
tance Deff , a phase constant ϕc, and an arrival time tc.
These parameters are not independent between detectors,
but for loud events it is an excellent approximation to fit
those separately [69,70].
For NS mergers, we use the augmented model

IMRPhenomD_NRTidal [75,76]. This model includes
tidally induced phasing. The reason to use realistic wave-
form models for proof of concept is to show that diffraction
signatures cannot be fully mimicked by a change in
intrinsic and extrinsic parameters.

B. Mock Forward-Viterbi tests

Let us consider the two aLIGO detectors detecting a
nonspinning double NS merger at their design sensitivities.
For demonstration, we choose a chirp massMc ¼ 1.2 M⊙,
a symmetric mass ratio η ¼ 0.24, and tidal deformability
parameters Λ1 ¼ Λ2 ¼ 400. We assume the source located
at zs ¼ 0.02, Deff ¼ 87 Mpc for both detectors, and a lens
as in Case (1) of Fig. 1 with σv ¼ 2 km=s and zl ¼ 0.01.
To apply the forward-Viterbi test, we divide the fre-

quency range [10, 1024] Hz into 27 frequency bins with
nearly equal contributions to the squared matched filtering
SNR. Following Eq. (16), we limit the fractional distortion
in hðfÞ to umax ¼ vmax ¼ 0.2 and umin ¼ vmin ¼ −0.2, and
set the number of grid points to be nu ¼ nv ¼ 32.
Furthermore, we set Δkmax ¼ Δlmax ¼ 4, restricting any

“jump” between adjacent frequency bins to be within 4 grid
points.
The top plot of Fig. 5 shows the reconstruction of the

diffraction signature for one random noise realization. The
forward algorithm yields a score S ¼ 5.999, which is
significantly higher than the typical score one would obtain
in the absence of diffraction distortion. The best-fit modu-
lation obtained through the Viterbi algorithm is noisy but
on average tracks the underlying signal. As expected, the
reconstruction is the most accurate within the frequency
range of the highest sensitivity [30, 200] Hz.
The method does not recover FrelðfÞ, but only the part

that is not degenerate with the physical parameters.
Although it would be difficult to undo this degeneracy,

FIG. 5. A double NS merger detected by two aLIGO detectors
at design sensitivity. Upper: amplitude (fractional) and phase
perturbations around the best-fit unlensed template for one noise
realization. Refer to the text for the parameters we use. Dots are
frequency binned reconstruction from the Viterbi algorithm.
Curves (solid and dashed for the two aLIGO detectors respec-
tively) are the theoretical modulation signals computed from
hLðfÞ=hBFðfÞ. Lower: Distribution of the score S with (solid)
and without (dotted) diffraction. We show the effect of increasing
the source distance (upper panel; assume zl ¼ zs=2, and for both
detectors Deff ¼ D ¼ 87, 132, 177 Mpc for zs ¼ 0.02, 0.03,
0.04, respectively) and increasing the impact parameter (lower
panel; fix zs ¼ 0.02).
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one can still infer from the partial reconstruction of FrelðfÞ
the modulation frequency scale (i.e., the “oscillation
period” in frequency space), whose inverse connects to
the Schwarzschild time scale of the lens.
The measured value for S should be compared to the

distribution of S under a given hypothesis to be tested. The
distribution can be numerically derived by injecting a
signal waveform into the noise. The lower plot of Fig. 5
compares the distribution of S between two cases: (1) the
diffraction distorted waveform hLðfÞ hidden in the noise;
(2) the best-fit undistorted waveform hBFðfÞ hidden in the
noise. The less the two distributions overlap, the more
detectable the diffraction signature is.
Two separated distributions may still have non-negligible

overlap in the tails. The detection significance is subject to
stochasticity due to random noise. For the example cases we
show in the lower plot of Fig. 5, it is not always possible to
claim a detection even for small source distances, although at
a large fraction of the times one would be able to rule out the
null hypothesis. The plot demonstrates how detectability

degrades as the source distance increases, and as the impact
parameter grows. The results suggest that, for an impact
parameter on the order of the angular Einstein scale θE, a pair
of aLIGO detectors at the design sensitivity are sensitive to
diffraction signals imprinted in binary NSmerger waveforms
out to Deff ≃ 100 Mpc.
The range of GW detection will be greatly extended by

third-generation detectors. For the same lens we have
assumed in the above, the proposed Einstein Telescope
(ET) will enable a search for diffraction signature in typical
double NS merger events out to Deff ∼ 1 Gpc, as shown
in Fig. 6.
Next, we apply the same analysis to binary BH mergers.

While spanning a smaller frequency range in the ground-
based band, they are louder sources than neutron stars.
Detectable to larger distances, those can be more efficient

FIG. 6. Same as Fig. 5 but for the proposed ET (single detector)
and for larger source distances. In the upper plot we assume zs ¼
2zl ¼ 0.2 andDeff ¼ 0.98 Gpc. In the lower plot, we indicate the
effective distance Deff in Gpc between parentheses following the
legend label for the source redshift.

FIG. 7. Distribution of the score S with (solid) and without
(dotted) diffractive lensing for binary BH coalescences. We
simulate for comparable component BH masses η ¼ 0.24 with
(source-frame) a chirp mass Mc ¼ 10 M⊙ (top plot) and Mc ¼
30 M⊙ (bottom plot), and assume zero spins. In each plot, we
consider the case of two aLIGO detectors at the design sensitivity
(upper panel) and the case of one third-generation detector as
proposed for the ET (lower panel). We fix zl ¼ zs=2. We indicate
the effective distance Deff in Gpc between parentheses following
the legend label for the source redshift.
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probes of lenses along the line of sight. We again use ∼30
frequency bins, but we have adjusted the frequency binning
according to how the distribution of the SNR in the
frequency domain varies.
The top plot in Fig. 7 considers binary BH systems

with (source-frame) chirp masses Mc ¼ 10 M⊙, whose
progenitors may be the observed high mass x-ray binaries.
With two aLIGO detectors at the design sensitivity and for
the same fiducial lens we have been assuming, diffraction
modulations are detectable out to zs ∼ 0.15–0.2, corre-
sponding toDeff ∼ 0.7–1 Gpc. This distance could increase
by an order of magnitude to Deff ∼ 10–20 Gpc with just
one third-generation detector, potentially reaching binary
BH mergers from zs ∼ 1–2.
The bottom plot in Fig. 7 considers more massive binary

BH systems with Mc ¼ 30 M⊙. Those intriguing systems
were first uncovered in GW detections. Due to low cut-off
frequencies, those are limited by the frequency span that
can adequately sampled, which will further exacerbate for
highly redshifted systems. Detectable diffraction-induced

modulation thus must fall within the right frequency range
that has a high SNR. Despite that, the strong GW power
from those systems still make them suitable sources for
probing intervening lenses out to very large distances. Two
detectors at the fully upgraded aLIGO will reach zs ∼ 0.25
or Deff ∼ 1 Gpc. Tremendous improvement can be
expected for third-generation detectors. The ETwill enable
to utilize sources out to zs ∼ 2–4 or Deff ∼ 15–35 Gpc.

C. Comparison to matched filtering

We now compare dynamic programming to matched
filtering. For the latter, we define a score

Smf ≔
1

2

XNd

a¼1

�jðsajh̃BF;aÞj2
hh̃BF;ajh̃BF;ai

−
jðsajhBF;aÞj2
hhBF;ajhBF;ai

�
; ð26Þ

which quantifies the improvement in the log-likelihood
function after diffractive distortion is allowed into the
waveform model. Here hBF;aðfÞ is the best-fit unlensed

FIG. 8. Relation between the false positive probability fFP and the false negative probability fFN for a single GW event. We consider
binary BH mergers, with the same parameters as used in Fig. 7. We compare dynamic programming [using the score S of Eq. (17); solid
curves] to matched filtering [using the score Smf of Eq. (26); dashed curves]. The legends indicate the source redshift zs followed by the
effective distance Deff [Gpc] given between parentheses. We assume two aLIGO detectors at the design sensitivity for the top plots, and
one third-generation detector for the bottom plots. In the bottom right plot, the curve for matched filtering for the case zs ¼ 4 is not
shown because fFP and fFN are so small that the sample size of our mocks is insufficient.
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waveform, and h̃BF;aðfÞ is the best-fit diffraction-
distorted waveform in the form of an unknown unlensed
waveform multiplied by FrelðfÞ. We pretend that the
true FrelðfÞ is exactly known. Compared to the idealistic
analysis of Sec. III A [cf. Eq. (12)], Eq. (26) accounts
for observational degeneracy between diffraction and the
source parameters, and allows stochasticity from the
detector noise.
Similar to testing out dynamic programming, we can

derive the distribution for the score, both in the presence of
diffraction and under the null hypothesis. For a single GW
event, and at a given threshold value Sc for claiming a
detection, the false positive probability is given by the
cumulative distribution fFP ≔ P0ðS > ScÞ computed
under the null hypothesis, and the false negative probability
is given by fFN ≔ PðS < ScÞ computed in the presence of
diffraction. One way to characterize the effectiveness of a
given score is to map out a relation between fFP and fFN by
continuously varying Sc.
Taking binary BH mergers as an example, we show

curves for fFP versus fFN in Fig. 8 using the distributions
presented in Fig. 7. In particular, we make a comparison
between our implementation of dynamic programming and
matched filtering. Compared to matched filtering, dynamic
programming is much more practical when FrelðfÞ is not
known. However, the advantage of being agnostic comes at
the expense of large reduction in sensitivity relative to
matched filtering. Consequently, the horizon distances we
have found for dynamic programming are necessarily
smaller than the naïve estimates of Fig. 4. For the same
parameters we have chosen for the forward-Viterbi filter,
the false positive rate typically worsens by one or two
orders of magnitude relative to matched filtering at a fixed
false negative rate fFN ∼ 10%.
The optical depth to diffractive lensing of distant sources

is likely to be small (see discussion in Sec. VI). Only after
many GW events are analyzed, one of them may be found
to exhibit nontrivial waveform distortions. If diffractive
lensing occurs once among every thousand events, and if
we take the simplifying assumption that all events are
similar, we will have to achieve an expected single-event
false positive probability with our detection method that is
substantially less than 10−3. Since the lensing optical depth
grows quickly from zs ∼ 0.2 to zs ∼ 2–3, this penalty may
be an order of magnitude more severe for second generation
detectors than for third generation detectors.
For the above reason, it is of great importance to optimize

the forward-Viterbi filter for a smaller single-event false
positive probability. The knowledge of the FrelðfÞ’s generic
behavior is crucial for designing the best frequency binning,
the best discretization scheme for FrelðfÞ, and the best prior
function P½uj; vj�, all of which would help mitigating the
look-elsewhere penalty. A more dedicated study of this
optimization problem goes beyond the scope of this work.
We defer such a study to future work.

We have only quoted results for a pseudo-Jaffe lens, with
a specific choice for the impact parameter on the order of
the Einstein radius. Detectability of the diffraction signa-
ture may substantially vary depending on the lens profile,
the impact parameter, and the influence of external con-
vergence and shear. In the case of a low mass lens
embedded in a massive lens as a substructure, external
convergence and shear can amplify the diffraction-induced
modulations. Further work is in need for a thorough
exploration of the parameter space.

V. ON PRECESSING SPINS AND ECCENTRICITY

The waveform models we have used for demonstration
are highly realistic but are not fully general. Waveforms
describing compact binary coalescence can exhibit imprints
from spin-orbit precession due to misaligned spins and
from orbital eccentricity.
The effects of binary masses, aligned spins, and tidal

deformabilities are distinguishable from diffraction induced
modulations. This is because those do not cause oscillations
in the amplitude and in the unwrapped phase of the
frequency-domain waveform. However, this is not the case
for binaries with precessing spins. The GW amplitude
oscillates as the orbital plane wobbles around the direction
of the total angular momentum vector on a time scale that is
O½ðv=cÞ−2� longer than the orbital time scale. For systems
suitable for ground-based detection, the orbital plane
wobbles for about Oð10Þ cycles through the band, a
number largely insensitive to spin magnitudes [77].
Precessing spins also cause small oscillations in the
unwrapped waveform phase [78,79].
Misaligned spins are certainly possible for physical

binary mergers [80]. Their effects on the waveform,
however, may not be severely degenerate with diffraction.
While the latter creates modulation cycles linearly spaced
with the frequency, precession modulations are more
densely packed toward low frequencies. We have seen
that the first diffraction peak at low frequencies is the
foremost target for detection, while for spin-orbit preces-
sion we would expect many modulation cycles in the same
frequency range. Moreover, spin-orbit precession tends to
induce an amplitude modulation that is significantly greater
in size than the phase modulation [78]. For diffraction the
two would have comparable sizes. The oscillatory effects
should also be fit simultaneously with the nonoscillatory
phasing corrections induced by misaligned spins.
The issue may also be relevant if nonzero orbital

eccentricity is allowed. In this case, oscillation occurs on
the time scale of a relativistic periastron precession, which
is again O½ðv=cÞ−2� longer than the orbital period. This
induces rather rapid modulation cycles in the frequency
domain [81]. Eccentric binaries also distribute their GW
power into higher harmonics, a feature not present with
diffraction.
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Further details need to be worked out for quantifying
how waveform modulation from precessing spins and
eccentricity may resemble that from diffraction, for which
accurate and efficient frequency-domain waveform tem-
plates are crucial. When applying dynamic programming,
one should first find the best-fit unlensed waveform with
the extended waveform model, and then seek additional
perturbations around the best-fit solution using dynamic
programming. In order to mitigate possible degeneracy
with other sources of waveform modulation, we may
design special prior in favor of diffractionlike distortions.

VI. DISCUSSION

This work has focused on the feasibility of probing
intervening low mass DM clumps through their diffractive
lensing effects imprinted in astrophysical GWs detectable
at ground-based detectors. The frequency coverage of
aLIGO/Virgo and their forthcoming companion observa-
tories translates into a lens mass scale ∼102–103 M⊙
enclosed within a radius of order the impact parameter.
The sensitivity to low mass halos will be useful in differ-
entiating warm and cold dark matter scenarios [82].
We have developed a dynamic-programming-based

algorithm to search for amplitude and phase modulations
imprinted in the waveform due to diffractive lensing.
Unlike matched filtering, the algorithm does not require
a template bank for lensed waveforms. It is a practical and
computationally cheap method which can be straightfor-
wardly incorporated into the current framework of GW data
analysis. While being suboptimal compared to matched
filtering (if the exact lensed waveform model is known), the
method allows us to properly quantify the look-elsewhere
penalty of trying out a large number of possible waveform
distortions.
We have demonstrated the general feasibility of our

method using mock detections of injected GWs. We have
verified that the diffraction signature is not completely
degenerate with many of the binary parameters, including
the masses, the aligned spins, tidal phasing, the arrival time,
the phase constant, and the overall amplitude normaliza-
tion. Future work should shed light on whether diffraction
modulation can be degenerate with the effects of spin-orbit
precession and orbital eccentricity.
We assessed detectability assuming a fiducial pseudo-

Jaffe lens with an impact parameter on the order of the
Einstein radius, and found that the range of detectability
can be interesting for binary BH mergers. Two fully
upgraded aLIGO detectors can jointly probe diffraction
imprints using binary BH mergers out to ≳1 Gpc or
zs ∼ 0.2–0.3. Third-generation detectors will be much more
powerful for this test. Just a single ET-like detector will
enable to utilize binary BH sources to probe lenses out to
≳10 Gpc or zs ≳ 2. Such large source distances are much
more favorable for the line of sight to intersect any
intervening halo.

We note that detectability may vary substantially
depending on the lens profile and the impact parameter,
which alters the modulation size. Without a specific
theoretical prediction for the mass profile of the low mass
halos, we have not attempted to thoroughly chart the
parameter space. For our fiducial lens model, our estimates
correspond to an impact parameter on the order of the
Einstein radius.
What might be the probability for diffractive lensing to

occur in a CDM universe? A quick estimate might start
with the assumption that all DM is locked up in halos
of various masses, say ML ∼ 100–1015 M⊙, with a mass
function such that equal logarithmic intervals in the halo
mass contribute the same mass (as is nearly the case for
substructure mass function inside a cluster or galactic halo
[83]). If the observationally relevant halos span one decade
in the mass around some characteristic mass scaleML, they
account for some fraction 1=N of the total mass in the
Universe, where we may take N ≃ 15. For a typical source
redshift zl and proper distance r, on average the line of sight
intersects one halo at a chance

∼0.003
�
1þ zl
2

�
3
�
15

N

��
r

5 Gpc

��
105 M⊙

ML

��
b

1 pc

�
2

;

ð27Þ

where b is the maximum impact parameter required. A
standard NFW halo [84] with M200 ¼ 105 M⊙ encloses a
column of massMenc ∼ 100 M⊙ within b ¼ 1 pc if it has a
concentration c200 ¼ R200=Rs ¼ 30 [85], while the corre-
sponding Einstein radius falls a factor of ten short
rE ¼ 0.1 pcðMenc=100 M⊙Þ1=2ðd=1 GpcÞ1=2, where d is
some characteristic angular diameter distance. Note, how-
ever, that this probes the region well within the scale radius
b=Rs ¼ 0.04. If the NFW model underestimates the mass
profile slope at small radii for low mass halos [86], the
enclosed mass within the impact parameter may be sig-
nificantly larger without altering the halo’s overall mass
scale, leading to a larger Einstein radius and increased
strong lensing probability. Halo ellipticity also in general
enhances this probability. In any case, the above crude
answer suggests that developing third-generation GW
detectors are strongly desirable for fully realizing this
observational potential.
We further note that theoretically we expect a fraction

∼10−3 among the sources from cosmological distances zs ∼
1–2 should be strongly lensed by an intervening galaxy
[12,15,87,88]. In this case, GWs associated with each
macro image propagate through the halo of the lens galaxy
and hence has an enhanced probability of intersecting a low
mass halo as a substructure. Also, amplified modulation
should be expected due to the external shear associated
with the macro image (cf. Fig. 1). This suggests that
GW events subject to galaxy lensing may be promising
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candidates. Detailed calculations are warranted in the future
to assess the observational prospect for any given
DM model.
In the regime of our interest, the lensing configuration

would not change over the human time scale. If the host
galaxy of the GW source can be identified, follow-up
imagings may provide a cross check by searching for
lensing distortions in the galaxy image [89]. At the same
level of chance alignment, low mass halos should only
cause moderate flux magnification at optical/infrared wave-
lengths, contributing to the scatter in the apparent lumi-
nosity of cosmological standard candles [90]. This can
provide a multiwavelength cross check for the lensing
effect we seek with GWs.
Although we have considered lensing by DM halos, our

technique should be applicable to searching for wave
diffraction induced by compact object lensing at large
impact parameters, which will extend the work in Ref. [60].
This will constrain the abundance of primordial BHs as
possible LIGO sources [91,92].
Finally, it would be interesting to consider GW sources

for space-based observatories, extending previous work

on the wave effects [56]. In this case, the space-based
frequency band f ∼ 10−4–10−2 Hz corresponds to very
different mass scales ME ∼ 106–108 M⊙.
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