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We derive the Schrodinger-Newton equation as the nonrelativistic limit of the Einstein-Dirac equations.
Our analysis relaxes the assumption of spherical symmetry, made in an earlier work in the literature, while
deriving this limit. Since the spin of the Dirac field couples naturally to torsion, we generalize our analysis

to the Einstein-Cartan-Dirac equations, again recovering the Schrodinger-Newton equation.
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I. INTRODUCTION

The Schrodinger-Newton (SN) equation has been pro-
posed in the literature as a model for investigating the
effects of self-gravity on the motion of a nonrelativistic
(NR) quantum particle [1-4] (specifically as a model for
gravitational localization of macroscopic objects). It is a
nonlinear modification to the Schrodinger equation with a
Newtonian gravitational potential ¢,

2
poet) 7

ol = =y gy (). (1)

where the self-gravitating potential ¢ is assumed to be
classical and obeys the semiclassical Poisson equation

V2¢p = 42Gmly|*. (2)

The coupled system of the above two equations in
integrodifferential form is given by

Oy (r, t h?
lh% = —%Vﬁu(r, t)
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and is known as the SN equation. There are two broad
(complementary) viewpoints under which the SN equation
has been dealt with in the literature, amongst others. In one
of them, it is considered as a hypothesis and the ways
to falsify it are studied through theoretical and (or)
experimental considerations, e.g., the localization of wave
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packets for macroscopic objects [5], with a gravitationally
induced inhibition of quantum dispersion. The second
approach focuses on whether the SN equation can be
understood as a consequence of the known principles of
physics. It is viewed as a model for self-interaction of
matter waves. Notable work in this context [6] shows that
the SN equation is the nonrelativistic limit of the Einstein-
Klein-Gordon system and the Einstein-Dirac system for a
spherically symmetric space-time. Our present paper fol-
lows the second approach. We relax the assumption of a
spherically symmetric space-time made in [6] and obtain
the SN equation as the nonrelativistic limit of the Einstein-
Dirac equations. Since the spin of the Dirac field couples
naturally to torsion, we also study the Einstein-Cartan-
Dirac equations, and obtain its nonrelativistic limit. These
equations are a special case of the Einstein-Cartan-Sciama-
Kibble theory [7-14], which we henceforth refer to as the
Einstein-Cartan theory.

The plan of the paper is as follows. In Sec. II we describe
the Einstein-Cartan-Dirac equations. Section III is the
central part of the paper—the nonrelativistic limit of the
Einstein-Dirac equations is derived here. We first describe
the ansatz for the Dirac state and for the metric, which is
used to derive the nonrelativistic limit. We then describe in
detail the nonrelativistic expansion for the Dirac equation,
and for the energy-momentum tensor. It is then shown that
the nonrelativistic limit of the Eistein-Dirac equations is the
Schrodinger-Newton equation, as expected. In Sec. IV,
the nonrelativistic limit of the FEinstein-Cartan-Dirac
equations—which include the torsion of the Dirac field—
is derived. It is shown that torsion does not contribute in
the nonrelativistic limit, and once again we obtain the
Schrodinger-Newton equation. Conclusions are presented
in the next section, while the detailed Appendix gives
calculations of the geometric variables such as metric,
connection, and curvature, as well as the energy-momentum
tensor, for the ansatz used in this paper.

© 2018 American Physical Society
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The present paper is part of a series of our works [15-21]
that investigate the role of torsion in microscopic physics,
and the motivation for including torsion in the Einstein-
Dirac equations. The fundamental motivation comes from
noting that given a relativistic point mass m, Einstein
equations as well as the Dirac equation both claim to hold
for it, irrespective of the numerical value of the mass. This
is because there is no mass scale in either of the systems of
equations, but of course both cannot hold for all masses.
Only from experiments we know that Einstein equations
hold for macroscopic masses, and the Dirac equation for
small masses. But how large is large, and how small is
small? There has to be an underlying dynamics with an in-
built mass scale, to which the Dirac equation and Einstein
equation are small mass and large mass approximations,
respectively. The search for this underlying dynamics is
aided by the fact that general relativity has Schwarzschild
radius as a fundamental length (depending linearly on
mass) and the Dirac equation has Compton wavelength as
fundamental length (depending inversely on mass). This
strongly suggests that the underlying theory should have
one unified length, and also that it should include torsion,
which dominates over curvature for small masses, because
in this domain spin dominates mass. We have developed
such curvature-torsion models, and investigated what
physical role torsion might play in the modified Dirac
equation. It is in this spirit that in this paper we are studying
the nonrelativistic limit of the Eistein-Cartan-Dirac equa-
tions, to look for signatures of torsion.

II. PRELIMINARIES: THE EINSTEIN-
CARTAN-DIRAC EQUATIONS

The antisymmetric part of the affine connection,

1
Qaﬂﬂ = F[aﬂ]ﬂ = E (Faﬂﬂ - Fﬂa”)’ (4)

is called torsion. The affine connection is related to the
Christoffel symbols by

(s

Q

where K,z is the contorsion tensor, and is given by
Ka/}'ﬂ = _Qa/)'” - Qﬂa/;’ + Q/)’”a-

For a matter field y, which is minimally coupled to
gravity and torsion, the action is given by [8]

s= [ @/ a Vo) - 5 R0080)|. O

where k = 87G/c*. The first and the second term on the
right-hand side correspond to contribution from matter
and gravity, respectively. Varying the action with respect
to y (matter field), g, (metric), and K, (contorsion), the
following field equations are obtained:

o(v/=9Lw)
ng_gm = 2k75(\/5jfm) and (8)
5(v/=gR)  6(\/=9L)
6Kop 2k 6Kopy ©)

Equation (7) yields the matter field equation on a space-
time with torsion. The right-hand side of Eq. (8) is related to
the metric energy-momentum tensor 7', while the right-
hand side of Eq. (9) is associated with the spin density
tensor S***. Equations (8) and (9) together give the

Einstein-Cartan field equations,
GH =k ZH, (10)
THbPx — | b (11)

G" is the asymmetric Einstein tensor constructed from
the asymmetric connection. 2** is the canonical energy-
momentum tensor (asymmetric) constructed from the
metric energy-momentum tensor (symmetric) and the spin
density tensor. In Eq. (11), T#/* is the modified torsion
(traceless part of the torsion tensor); it is algebraically
related to $*#% on the right-hand side. On setting the torsion
to 0, the field equations of general relativity are recovered.

For a Dirac field (y), the matter Lagrangian density is
given by

ihc
ﬁm = 7 (l/_/y#vﬂl// - vﬂlif}’”l//) - mCzl/_/l//. (12)
We denote a Riemannian space-time by V, and a space-
time with torsion by U,. Minimally coupling a Dirac field
on U, leads to the Einstein-Cartan-Dirac (ECD) theory.
The spinors are defined on V4 and U, using tetrads. We use
e# = 0" as the coordinate basis, which is covariant under
general coordinate transformations. Spinors (defined on a
Minkowski space-time) on the other hand are associated
with basis vectors that are covariant under local Lorentz
transformations. To this aim, we define at each point on the
manifold four orthonormal basis fields (tetrad fields) &’(x),
one for each i value. The tetrad fields satisfy the relation
2'(x) = el,(x)e#, where the transformation matrix e}, is
such that
(i) (k)
v

e e Ny = Y- (13)

The transformation matrix e,(f) facilitates the conversion of
the components of any world tensor (which transform
according to general coordinate transformations) to the
corresponding components in a local Minkowski space
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(these latter components being covariant under local
Lorentz transformations). Greek indices are raised and
lowered using the metric g,,, while the latin indices are
raised and lowered using 7;x)- Parentheses around indices
is a matter of convention.

We adopt the following conventions for the remainder
of the paper:

(i) Objects with greek indices (world indices), e.g., a, ,
6, transform according to general coordinate trans-
formations and are raised and lowered using the
metric g, .

Objects with latin indices within parentheses (tetrad
indices), e.g., (a) or (i), transform according to local
Lorentz transformations and are raised and lowered
using 77;)(x)-

Latin indices without parentheses, e.g., i, j, b, c,
refer to objects in Minkowski space, which trans-
form according to global Lorentz transformations.
In general 0, 1, 2, 3 refer to world indices while (0),
(1), (2), (3) refer to tetrad indices.

V! represents the covariant derivative with the
Christoffel connections ({}), while V denotes the
total covariant derivative.

Commas (,) refer to partial derivatives and semi-
colons (;) to the Riemannian covariant derivative,
which implies (;) and V1 are the same for tensors.
For spinors, (;) involves a partial derivative and the
Riemannian part of the spin connection.

Just as the affine connection I facilitates parallel trans-
port of geometrical objects with world (greek) indices, the
spin connection (y) does so for anholonomic objects (those
with latin indices). The affine connection I" has two parts—
Riemannian ({}) and torsional (constructed from the
contorsion tensor Ku(k)(i)); similarly, the spin connection

(ii)

(iif)

@iv)
()

(vi)

(7,/"™) has two parts—Riemannian (denoted by y5 (/%))
and torsional (constructed from the contorsion tensor
K ﬂ(")(i)). These quantities are interrelated by

y”(i)(k) =75 (k) — K#(k)(i) and (14)
yﬂ(z’)(k) _ e((;’) eu(k)l—*ﬂya —_ M) a, eﬁ”
- e((,i)e”(k){ * } - Kﬂ(k)(i) _ ev(k)@ﬂel(j)_ (15)
U

Using Egs. (14) and (15), the Riemannian part of the
spin connection can be expressed entirely in terms of the
Christoffel symbols and the tetrads as [13]

a _ L 0 i a (i)
{uv} = efhenn 0 Tegde’.  (16)

One can thus define the covariant derivative for spinors as

1 X
W;ﬂ:aul//+17;(b)(c)}’[(b)}’<c)]l// (OHV4) (17)
d Ve du ity b))
an w¥ = MV/+ZVﬂ(0)(b)7 Iana'd
1
—ZKﬂ(c)(b)Y[(b)V(C”W (on Uy) (18)

The explicit form of the matter Lagrangian density is
obtained by substituting Eqs. (17) and (18) in Eq. (12). The
Dirac equation is then given by Eq. (7),

mc

iy, — BV 0 (on V) (19)

. i u . me
and iy, + 7 K @)y Iy ===y =0 (onUs).
(20)

The gravitational field equations are obtained using
Egs. (8) and (12),

87G

Gu({}) =3 Tw  (onVy) (21)

87G
and G;w({}) :7Tyy _2

1 /87G\?
—<7> gyysaﬂ’lsaﬁx (onUy).
(22)

The metric energy-momentum (EM) tensor (symmetric) is
defined by

T;w = Z(ﬂl/) ({}>

ihc . _ _ _ _
= W = W =l

(23)
Equations (19) and (21) are the governing equations for the
Einstein-Dirac theory. The spin density tensor is obtained
from the matter Lagrangian density (12),

—ihc

al

Srva = ——gybyryly. (24)

Using Egs. (24) and (9), Eq. (20) simplifies to the Hehl-
Datta equation [8,10], which together with Eq. (22) and the
relation between the modified torsion tensor and the spin
density tensor constitutes the field equations for the

Einstein-Cartan-Dirac theory,

387G 1 /87zG\?2
G/,w({}) - TT/W - (7) gvaaﬂﬁSaﬂb (25)

2
872G
T;wa = _K/w(l = 7‘9”1/(17 and (26)
. 3, u mc
ity =+ Ll v’y v+ = (27)
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Here, Lp is the Planck length. The Lorentz signature,
diag(+ ,—) is used throughout the paper. The gamma
matrices are represented in the Dirac basis, which happens
to be the matrix representation of Clifford algebra CI; 3[R],

]Iz 0 . 0 Ui
0: pr— l:
r=r <O —]I2>’ ! <—0'i 0>’

j o 01 ) ) 0 o
5_1 injnska,l — 2 i — [l —
=—¢;; = and o' = = . .
V=g Cumr v'ry (Hz 0) Pr (6, 0)

(28)

III. NONRELATIVISTIC LIMIT OF THE
EINSTEIN-DIRAC EQUATIONS

A. Ansatz for the spinor and the metric

Ansatz for the Dirac spinor: We expand w(x,t) as
w(x, 1) = €S0 (which can be done for any complex
function of x and ¢). S can be expressed as a perturbative
power series in VA or (1/c¢), to obtain the semiclassical
and the nonrelativistic limit, respectively. The scheme for
obtaining the nonrelativistic limit has been employed by
Kiefer and Singh [22]. Giulini and GrofBardt in their work
[6] construct a new ansatz with the parameter v7/c as
follows:

p(rg) = 500y (@) “a,r), (29)

n=0 ¢

where S(r,7) is a scalar function and a,,(r,7) is a spinor
field. We use this ansatz in our present work.

Ansatz for the metric: We express a general metric as a
perturbative power series in the parameter v/7/ ¢, similar to
the expansion for the spinor,

oty =nu+ > () i, o

where g[ ](x) are metric functions indexed by n. In the
nonrelativistic scheme, gravitational potentials are weak
and cannot produce velocities comparable to c¢. Hence, we
assume the leading order function to be the Minkowski
metric, g,[,(ﬂ(x) = - The generic power series for the
tetrads, spin coefficients, and Einstein tensor are then
given by

5

n=1

i = (i)[n] = n\" n
o) = o) +Z( ) el and GW:ZC/T“) Gl

n=1 n=1

(32)

uln] (i)[n] [n]
where e([>] R s V@) (b)(e)®

metric g, and its derivatives.

and G,[Z] are functions of the

B. Analyzing the Dirac equation
with the above ansatz

We first separate the spatial and the temporal part
of the Dirac equation on V, [Eq. (19)]. (Note that

YV = el et iy, = Sy, = 'y,

. mc
iy ——-w =0 (33)

[ .
107y Py =2 = 0. (34)

Multiplying both sides by eéo)y(o)c, we get

. ic_, a
0+ 76y 1w +iceq el O
. 2
ic (o N o c 0) ,mc
340 @100 1 My = e By =0, (39)

Using the series expansion for the tetrads and the
Riemannian part of the spin connection [Egs. (31) and
(32)], we keep terms of the order ¢% cand 1, and neglect
terms of the order (%) with n > 1. This is sufficient for
obtaining the equation obeyed by the leading order spinor
term, ay. We thus obtain

ivh 0[1]

0y +—— 7 T

g o)1) )]
—B——w—P—=ey Yy —Pmey "y =0, (36)

2 1 101 1 1
where E = ([eé Wa 4 e(i)]a( ], [e(() Wa@ 4+ e([)] (@],
[e(() ) ()—i—e?[l)] <>]). We now evaluate each term of

Eq. (36) by substituting the spinor ansatz (29).
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Term 1 Term 6
2 2 )
2s = (VA" mc me? 2 VR
+idy = i0, |:eTS Z; <7> an:| _ﬂT‘// = —ﬁ7€ E ; (7) a
s & SN(VR\ . s S SNV
= /22()(7) [=Sa,_, +ida, ). (37) = —¢' h3/2; — ) (Bma,). (42)
Term 2 Term 7
me o) me o[ s~ (VA"
iVh ¢ ——e([ =—p—F=e {eh —) a,,]
= Yo7y PR PR ; ¢
VR o e[ s (YR _ s (VR o
=+ Towor 7| e ZO o) = et hs/z; o ) Pmey ]
2s & S (V" [ivh (43)
:eTShs/zZ<—> [—V e 7l 3} (38)
=0\ € Term 8
Term 3
ictS - h n
—pmelPhy = —pm [680)[2] {e:s > <\/c_) an}
- [ © \/ﬁ n n=0
Vy =ica-V|ew — o0
ca.vy ca |:€ h nz;( - ) Cln:| B _e% C3 Z @ nﬂme(o)[z]a (44)
2 = A B wr\ c "
=ica |:€'21§C—Z(—> (iVSa, + Va, 2)}
h <=\ ¢ .
n=0 We thus obtain
A=A TSh3/2z< > { (—Vha.VS)a,
x [~V - VSa, + ivhi - Va,_,). (39) B
—(S+ﬂm+\/?zE.VS) any + (iVhaN = pme’' ) a,_,
Term 4 zf 1
OMO)
28 ©
+iVhE. VI//—l {T ( ) ] l\/— ol 2l
n; g Ay 7 = pmeg”™ a5 | = 0. (45)
75 [s9)
=er hz/zz \/E Sa,, ‘+le Va,l 3)- At the leading order (n = 0), we get
(40) VS =0, (46)
Term 5 which implies that the scalar S is a function of time only,
i.e., $ = S(7). The Dirac spinor is a four-component object
NG ofl] ) that can be written as a,, = (a,,1. a,2. a, 3, a,4). We split it
+Ta(’) () (B)(c) )y into two-component spinors, a, = (a,;.a,,) and a,; =
R o ()i [ s SNV (an‘3,aﬁ‘4).At order n=1, we get S + fim + VhE.VS = 0.
=G T e Z; = ) % Since VS = 0, this implies
3 oo ; .
s C VIR oo, > _ 4
5 W;(T) {Tamym ICHCIN | (m+ §)ag =0, (47a)

(41) and (m—S)ag =0, (47b)
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which satisfies either S = —mt with a5 =0 or S = +mt

Limc?t

withag = 0. The wave function at this orderisy = e+ ay,
which corresponds to particles of positive energy (lower
sign) and negative energy (upper sign), at rest. We restrict
ourselves to § = —mt and a5 = 0, i.e., the positive energy
solutions. Itis implicitly assumed that the two cases (positive
and negative energies) can be studied separately. We digress
at this point and analyze the energy-momentum tensor.

C. Analyzing the energy-momentum tensor 7,
with the above ansatz

The dynamical energy-momentum tensor is given by
Eq. (23). We analyze all the sixteen components of 7',.
(1) kT, (with the indices of the gamma matrices raised),

c . .
Syo i), 0)
[lI/V (3,w+ 2 VowprrY ]l//>

C . .
— (005 +Spe. Dy )0
<5zu/+ 2 Voo rY ]w>7 w} (48)

(£ )

B c N
x [1//7(0) (&w + 70 j)y[(’)y“”h//>

4mGh

kToo =

C . .
(85 = e g0 )0
<3IW+4[%@<J->7 Y ]l//)y w} (49)

Substituting the spinor ansatz [Eq. (29)] in Eq. (48),
we obtain a series expansion for k7'y,. At the leading
order we get

o= (205) )

n=0

(B0 ) Ee) o

with (n + m = 0), i.e.,

4zGi

kToy = ) {i(—m>a(§*a§+l(_m>ao ot

n=3
8aGmlag > & 1
==+ 0 (52)
n=3

104027-6

(2) kTo, (= 1,2,3),

kT, =

ZlﬂGfl
I

ey <8,4w +% 7 j)y[<i)y(f)]w])
+er, («%w +£[78<,-)( j)y[“)y(f”w])

c (aﬂl/'/ +%[VZ(,~)( j)y[“)y(”]v'f]) Yow
—c (301/74‘%[78( Al h/‘/]) m/} . (53)

Terms containing the spin coefficients (y,(;
the order C% or higher and hence do not contribute at
the order Cl, The rest of the terms are analyzed in
Appendix G 1, and are shown to have no contribu-
tion at the order 5. Hence,

(j)) are of

© /1
kTo, => 0 <C—) (54)
(3) kT, (v =1,23),

2175Gfl 1 o

7 1 0 i), (J
Ty, (5‘”1// + 2 [7/”(,')(]-)7’[< )7(])]W])

1 o
8.5+ ~[° . AD
<3yw+ 4[n<,~)<,)y Y w])mw

Once again, terms containing the spin coefficients
(Yu(i)(j)) are of the order 1; or higher and hence do not
contrlbute at the order . The rest of the terms are
analyzed in Appendix G 2 and are shown to have no
contribution at the order . Hence,

ro-So(l).

Results of the order analysis of the EM tensor, summa-

rized by Egs. (52), (54), and (56) imply

|T o0l |To0]

|T0i| ’ |Tij|

1
k| T 0| ~ 0<—2) Vije(1,2.3). (57)
C

<1, and
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Owing to Einstein’s equations, the same relations then hold
for the components of the Einstein tensor, i.e.,

G G
| 00|<<1 [Gool

Gol 7 |Gyl

1 .
|G00|~0<?> Vi, je(1,2,3).

<1, and

(58)

D. Constraints on the metric

In Sec. I C we showed that |G| ~ O(C%) while all the
other components of G, are of higher order. For a generic
metric ansatz, G, has been calculated in Appendix A. At this
point we make an important assumption—the metric field
is asymptotically flat. This leads to the following constraints
on the metric components (proved in Appendix B):

(D) G,[,,,] =0 (VYu,v) together with the condition of

asymptotic flatness of the metric, leads to the
following results (proved in Appendix B 1):

g;[tlu] =0, e’(ll.[;] =0, ef,i)[” =0, and
yE}])(j)(k) =0 Vijkuve(01,23). (59
2) G,[,zb] =0 (except for y=v=0) leads to the following
constraint: g,[,zy = F(r,1)6,, for some field F(r,?)
(proved in Appendix B 2).
The full metric is then given by

1 0 0 O
-1 0 0
gﬂb(l’,t): 0 -1 0
00 0 -1
FO0O0O
+<h>OFOO(t)
JR— r’
)10 0 F 0
00 O0F

g0 9 9 903

= (VA" | g0 ot gl o

1

+Z( ) W |0
920 921 922 93

g g dh g

(60)

where g([)z(l = g[l 1] = g[222] = g%] = F(r,t). The above

metric has been employed to calculate other objects
(tetrads, spin coefficients, etc.) in Appendixes C, E,
D, and F.

E. NR limit of the Einstein-Dirac equations

1. Dirac equation

In Sec. III B we analyzed Eq. (45) forn =0 and n = 1.
Using the results of Appendixes C, D, and E, Eq. (45) can
be further simplified to

h3/22( ) { (S + pm)a,_; + i, s

mE(r,t
—g )an_3:| =0.

At order n = 2, Eq. (61) gives us
o))
. —1

0 S-m/\ay

The first of these two equations is trivially satisfied. The
second equation yields a relation between a; and ag,

_S
7

+ivha-Va, , - p (61)

(62)

—ivVAG -V
af = a;. (63)

At order n = 3, we get
(o st ) 7))
0 S-m/\a5 V0 ay
mF) >
(T ) (5) 0
0 za+’”F”) ag

which comprises two equations. Using Eq. (63), the first of
these two equations gives us

n? hF(r,t
in 2% _ e MAEED) L)

ot 2m 0 2 0

2. Einstein’s equations

The Einstein tensor has been evaluated in Appendix F.
Equating Gy to kT, we get

AVZF(r, 1) & 1 8aGm|ag|? & 1
I (L) SmeiE L $ (1)

n=3 n=3
(66)
At the leading order, this gives us
872G >|2
V2F(r, 1) = %M()l. (67)
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Recognizing the quantity hF(zr") as the Newtonian

potential ¢, we obtain the Schrodinger-Newton system
of equations (m¢ — gravitational potential energy and
m|ag|? — mass density) as the NR limit of the Einstein-
Dirac equations,

dag h?
i gto = —5- Va5 +mi(r.0)a; and (68)
V2¢(r, 1) = 4nGmlag |* = 4zGp(r, 1) (69)
A L 7 )
ilhﬁ——%v ao —Gm |r_7r/|d r/ao,
(70)

the physical picture for which has already been discussed in
Sec. I. This completes the derivation of the Schrodinger-
Newton equation as the nonrelativistic limit of the Einstein-
Dirac equations.

IV. NONRELATIVISTIC LIMIT OF THE
EINSTEIN-CARTAN-DIRAC EQUATIONS

We now employ the Wentzel-Kramers-Brillouin (WKB)
type ansatz of the previous section to the case when torsion
is included. It is to be noted that the torsion of the Dirac
field can be expressed directly in terms of the Dirac spinors.
Once the substitution of the torsion tensor has been done in
terms of the Dirac spinors, the nonlinear Dirac equation no
longer makes any reference to torsion. Similarly, in the
Einstein-Cartan field equations, the contribution coming
from torsion can be expressed in terms of the Dirac state.
Thus the Einstein-Cartan-Dirac system is a coupled differ-
ential system for the metric and the Dirac state—just like
the Einstein-Dirac system is—only, the nonlinear terms are
now different. Thus the WKB ansatz used earlier can be
directly used in the presence of torsion as well.

The Dirac equation on U, (also known as the Hehl-Datta
equation) is given by [Eq. (27)]

. 3, ; mc
iy'y., — ng%]l//}/Sy(a)Wysy( Jy — v =0 (7)

We have already analyzed the first and the last term on the
left-hand side using the ansatz for the spinor (29) and the
metric (60). The second term arises due to torsion and
makes the equation nonlinear. We evaluate this term similar
to the other two (Sec. III B). Multiplying the middle term

by e( y y@¢ [as was done in Sec. III B to obtain (35) from
(34)] we get

0 3¢ _ a
— ey —Ll%lu/ysr(a)wrsy( hy

et 0 o)
e S

% 5yl (f: <@) lam) , (72)

m=0

which simplifies to

3 0
w25 C hF(r,1) 1
1+ sy o5

n=3
3G o VA
X;( > <—> ail_irsnawnz—ﬂsr(”anq—k),
ny,ny,n3=0

c

(73)

where n = n; 4+ n, + n3. This term modifies Eq. (61) as
follows:

¢ hsh?ﬁ/ZZo (C> |:man—l + a,_3 +l\/ﬁ(1 . Van_z
n=

mF(r,t
—pma,_, —f é )a,,_3
3G bl \/ﬁ n + )
ST pRe———

(74)

where n=n;+n,+nz and i+ j+k=5, withi < ny, j<n,
and k < nj. Further, i, j, k,ny, ny,n3 € (0,1,2,3,4,5). The
nonlinear term contributes only at order n = 5 and higher.
As aresult, the analysis for n = 0, 1, 2, and 3 (considered in
Sec. IIIE) holds good. Thus aj satisfies the Schrodinger
equation, i.e., ih% = —%v%g + MFT(”)ag.

Einstein’s equations on U, read G, ({})=
kT, — 3k29,,SP*S 5. G, ({}) and T, have already been
analyzed in Sec. Il E. The second term on the right-hand
side, i.e., —§ k*g,,S%*S .5, involves a contraction of the spin
density tensor (24). We consider only the first term in the
series expansion of the metric, because the other terms
together with the coupling constant are of orders not relevant
for the NR limit. We thus obtain

-1
B kzgoosaﬂ’lsaﬂz
2GS (X
o>l
¢ N=0 \k=0 1=0
[e+] [s+] N &) 1
< (XS abtrrarm ) =>-0(5). 09)
n=0

m=0 n= n=6
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which implies that this additional term does not contribute
at the order ( 5) on the right-hand side of Eq. (25). Hence,
we once again recover Poisson’s equation. Thus the
Schrodinger-Newton equation also happens to be the NR
limit of the ECD theory, which implies that torsion does not
contribute at the leading order.

V. CONCLUSIONS

While the nonrelativitic limit of the FEinstein-Dirac
equations for a self-gravitating Dirac field has been
calculated by Giulini and GroBardt [6], we relax the
assumption of a spherically symmetric metric in our present
work. The Schrodinger-Newton equation is obtained as the
nonrelativistic limit for a general metric, by considering
a perturbative series in the parameter (f’) for the spinor,
the metric, and other relevant quantities. This scheme for
obtaining the nonrelativistic limit follows the WKB-like
expansion given by Giulini and Grofardt [6].

The Einstein-Cartan-Dirac equations provide an elegant
system for coupling matter to the geometry of space-time,
where torsion arises due to the spin of the Dirac field. The
nonrelativistic limit of this system of equations (derived in
Sec. IV) yields the Schrodinger-Newton equation, at the
leading order of the parameter (). This suggests that
torsion does not manifest itself at this order.

The effect of torsion in the higher order corrections to the
Schrodinger-Newton equation can be obtained from the
Einstein-Cartan-Dirac equations, by considering a WKB-
type expansion for the spinor and other relevant quantities,
as was done in the present work. However, in this paper, we
have restricted ourselves to the analysis at the leading order,
which gives us the nonrelativistic limit. A similar pre-
scription may also be employed to obtain the higher order
corrections to the Schrodinger equation (starting from
Dirac’s equation) and Newton’s equation for gravitation
(starting from FEinstein’s equations).

The Einstein-Cartan-Dirac equations with the unified
new length scale [19] provide for the possibility of a
solitonic solution that interpolates between a black hole and
a Dirac fermion. This is one of the primary motivations for
us to study this system of field equations. The search for
such solutions has been attempted in [21] and further work
is in progress. One could well ask if Derrick’s theorem [23]
could compel such solitonic solutions to be unstable. The
theorem suggests that stationary localized solutions to
nonlinear wave equations such as those considered here
are unstable. In the present situation, however, the inclusion
of torsion (which has a dispersive effect) makes it more
plausible to achieve a stable balancing solution where
the dispersive aspect due to torsion balances the collapse
aspect due to gravity. Moreover, a way out of Derrick’s
no-go theorem is that the sought-for solitonic solutions
are periodic in time, rather than time independent. Such
solutions were actually reported by us in [21]. Rigorously
speaking, the so-called Vakhitov-Kolokolov stability

criterion [24] provides a precise condition for the linear
stability of a periodic solitary wave solution. This require-
ment continues to hold for the Einstein-Cartan-Dirac
equations as well.
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APPENDIX A: FORM OF THE EINSTEIN
TENSOR EVALUATED USING THE GENERIC
METRIC UP TO SECOND ORDER

The ansatz for the metric is given by [Eq. (30)]

G (%) = M, + Z( >

To the second order, the metric and its inverse is then
given by

gﬂy=n,w+(ﬁ>g£w < >W+ZO< ) and (A1)

g;w _ l,[m/ _ <?> g/w[l] _ (%) [g;mgﬂv[l] + g/w[Z]]

+§;0<l>

We evaluate Christoffel symbols, Riemann curvature
tensor, Ricci tensor, and scalar curvature to obtain the
Einstein tensor G, up to the second order as follows:

Gulth = ()ain+ (B)ean. @)

where

(A2)

_ 1
G ({})=- Dgﬂu], 7y :gﬂu]—inwg“], 9= (" g).
(Ad)
i |
Gm({}) = Dg;w +flg). G0 =g - M9’
and g = (n"”g;[i])- (AS5)
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In Eq. (AS), f is a function of g,[llll, which is given by

1
flgw) = =5 20°910,9, ~ 20410, g0

pgv I]a gl’[l

pgl/ I]alld}

+ apgﬁ“]a”g 0,95"0,9" + 0,9 0,4 - 8,9, v gL

[2519“ 8,05 — 20, g8, gl

+ 0,9 0,4M + 0,4 0,4 - 0

G,, happens to be the same as G, ({}) for V4. For U, on
the other hand, G, ({}) is the Riemannian part of G,
(a symmetric tensor constructed from the Christoffel
symbols).

APPENDIX B: CONSTRAINTS ON THE
METRIC DUE TO THE ASYMPTOTIC
FLATNESS CONDITION

1. Constraint on g,[,l,,]

From the analysis of Sec. III C one can argue that all the
components of GLI,,] are 0, which implies Dg,[,lb] = Dg,[l]ll =0,
from Eq. (A4) for u # v (off-diagonal terms). Gravitational
waves are the nontrivial solutions to this equation.
However, they do not respect asymptotic flatness. We

are therefore obliged to consider the trivial solution, i.e.,

g,[w] = 0 for the off-diagonal terms. In order to evaluate the

diagonal terms, we consider the following general form of
the metric:

A0 0 o
o A 0 o
gl = (B1)
o o £ oo
o 0o o £
Hence,
P U
iy =~ (B2)
M, A A
_ fi+5Hh —-fG-f
gy = (B3)
A G
9[212] — fi+ /s 5 fr =] and (B4)
P UR (I|| B
Gy = (BS)

Using the above equations, we get

= 0,00, = 0,0 0,8 + 0,0 ¥ g,

LGn O G-

R R A

Cll
Yoo 3 0
=0+ 0 + 07 + 07 = (B6)
0 _
_ +
07! = O Vii . iy
= Of + 07 =07 + 07y (B7)
M, A1 A
gl :Dfl +/f3 2f2 fa —0
=0 + 04 =0/ +0f) and  (B8)
0 _ A
ol = f RN _0
2
= o'+ Ofl = ol + o, (B9)
Equations (B7)—(B9) imply
O =0 = A = T+ e, (B10)
O =0 = ' = +¢, and  (B11)
O =0 = = AV 4 e, (B12)

The constants ¢, ¢,, and c3 must be 0, as any one of
them not being equal to O would violate the condition of
asymptotic flatness. Hence, Eq. (B6) implies 4[] f[ll] =
0= 71 [11] = 0 (wave solutions and nonzero constants also
satisfy the equation, but do not respect asymptotic flatness).

Hence, f [.” =0 V i, which in turn implies

=0V uv (B13)

2. Constraint on g,[,l,,]

From the analysis of Sec. III C one can argue that the

off-diagonal components of G,[,ZJ are 0. This implies Dg,[fj =

Dg[2 =0 (u#v), from Eq. (A4). Following the same
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arguments of Appendix B 1, g,l[lzl.] =0 (u #v) is the only
allowed solution to the above equation. Once again, we
consider the following general form of the metric in order
to evaluate the diagonal terms:

A0 o o
2
0 0 0
g = 2 ) (B14)
0 0 f7 o0
o 0o o f&
Hence,

2 2 2 2
oSS (B15)
2 9

o P

g =T (B16)
2], (2 _ 2

§[222]:f1 +f3 2f2 f4 and (B17)
2, f2 _ 2

9[2]_‘]“1 +f4 fZ f3 . (Blg)

33 2

At the second order, all the components of the Einstein
tensor are 0, except for the 00 component. This implies

i fY

g
900 3
= O + 07 + OfF + OF7 #0, - (B19)
2 2 2 2
YL Ml i e £
! 2
>0 +O =0+ o7 (B20)
2 2 2 2
D?]@:Dﬂl]ﬂé]; i1y
=07+ 07 =0/ +0fy and  (B21)
o), (0] _ ol _
_ +fi -/ - f
a2 — Df 1 4 2 3
g3 3
o +of =0 o (B22)
Equations (B20)—(B22) imply
Ofy =0 = 15 = 17, (B23)
O =0 = /=77 and  (B24)
O =0 = 10 =17 (B25)

The absence of constants in the above equations follows
from the arguments of Appendix B 1. Using Eqgs. (B23)—

(B25), we get fgz] = [22] = fgz] = fé[‘z] = F(r, ), hence,

F(r,t) 0 0 0
0 F(r, 1) 0 0
2 ;

v — B26
9 0 0  F(ri 0 (B26)
0 0 0  F(r.i)
APPENDIX C: METRIC AND
CHRISTOFFEL SYMBOLS

The metric defined in Eq. (60) is of the form
1 4 2EED) 0 0 0
0 -1+ 0 0
G = 0 0 1t hFC(Zr,t) 0
0 0 0 1+ hF(r,1)
0 1
o— Cl
+>-0() )
JELLC 0 0
0 |-hEED 0
and ¢"' = . | hF({J) .
0 0 0  —1-hEr
© /1]
o—). C2
+>0(3) ©2)

Christoffel connections: For the above metric the nonzero
Christoffel connections are

n=3
—ho,F(r,t) & 1
w o T — C3
=" > 0(5) (©3)

where p runs from 1 to 3 (spatial coordinates only). It is
worth noting that the zeroth and first order terms in (1) are
absent in Eq. (C3). The other nonzero Christoffel con-
nections are of order 3 and higher in (1), which we do not

c
mention here.
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APPENDIX D: TETRADS

Tetrads were introduced in Sec. II. For the metric
defined by

hF(r,1)

6‘2

ds? = [1 +L(§’ t)] c*dr - [1 - }dﬂ, (D1)
C

the tetrad fields over the entire manifold are given by

N 1 hF\3 . hF
6(0) — E <1 +7) 8t, 6( ) (1 _C_> 8x7

5 hF\: . hF\2
6(2) = (1 —?> 6}, and €(3> = (1 —?> 82. (D2)

The transformation matrices [defined in Eq. (13)] that relate
the world components with the anholonomic components
are given by

1 4 250 0 0 0
hF(r,t)
0 0 1 -2 0 0
0 0 1-MEoog
0 0 0 1 -2
@ /1
+Y 0 (C—> , (D3)
n=3
=Ml 0 0
. I . 0
€0 = hF(r.1)
0 0 1+ 0
0 0 0 1+ hF(r 1)
© /1
+Y 0 (C> . (D4)
n=3
1+ o 0 0
0 -1l 0
Cu(k) = .
0 0 —14MEl o
0 0 0 —1+ 200
> /1
+> 0 <c—) and (D5)
n=3

=MD 0 0
hF(r,1)
e 0 1 -2 0 0
0 0 1 - 2EED 0
0 0 0 1 -2

APPENDIX E: RIEMANNIAN PART OF THE
SPIN CONNECTIONS (7, .))

Using the relation between Christoffel connections and
tetrad transformation matrices [Eq. (16)], the Riemannian
part of the spin connections [defined by Eq. (14)] is
obtained as follows:

, —hF(1+55) & /1
Y(0)0)0) = o2 (1_%)+ZO o)

, —hO;F\ hF/2¢ S~ (1
y<i><o><o>:< 202 )(1+”—€ +20<cn)’

5
) —hOF(1+25) & /1
To0o = 22 (1- )+ZO<§>’

n=3
) _hOF 1
OO0 T 22 (14 2E)
ha FhF/2c o
Yl hF +ZO< )
OO0 = (1+25) " 2
0o —_ oo 1
Vo) =iy 30 o)
) haoF

°° 1
Y ()
n=3 ¢
o 0 0 1
7(o>(i)<j>—7i0j—7,-jo—+ 0 —

) —hdyF LN
Yoo = e 1+ )+ZO<§)

n=3

So(h) e

n=3

[

and v(y Gy =y =

The torsional part of the spin connections [defined by
Eq. (14)] manifests itself as a nonlinear term in the Hehl-
Datta equation. This term, being completely expressible in
terms of the Dirac spinor, is evaluated using the spinor
ansatz while deriving the nonrelativistic limit of the ECD
system of equations.
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APPENDIX F: EINSTEIN TENSOR

In this section, we aim to evaluate the Einstein tensor.
G,[,ly] has already been shown to be 0. Since g,[,ly] is 0, [g,[,ly]]
[defined in Eq. (AS5)] is also 0. Using g2 (defined in

Appendix B 2), G,[,zy] [Eq. (AS)] is evaluated as follows:

1
G,[fj = —ng where

1

_2 p

gl[ﬂJ = gl[llJ - Erl/w( ﬁhaﬁ)’ now (Fl)
10 0 oy [ 0 0 0
0-10 0 0o MEooo o

The =10 0 21 o R

- 0 0 e 0
00 0 -1 0 0 0
—2hF(r,t)

-T2 (F2)
thus G,, =0 for u #v. The diagonal components are
given by

1 _p 1)
GO() = —EDQ([)(; = —?DF(I', t)
ho?F(r,t)  AV2F(r,t
= |-— zf )+ 2( ) (F3)
c c

and G, =0 because g =0 forae(1,2,3). (F4)

Thus,

o O O O
oS O O O

o o o o
+
(¢
Q
~~
| -
N
)
=2

APPENDIX G: ANALYSIS OF THE
COMPONENTS OF THE
METRIC EM TENSOR

This section contains the calculations and proofs for
some of the results used in Sec. III C.

1. Analysis of kT,

After excluding the terms containing the spin coeffi-
cients y,(j)» kTo, [Eq. (53)] is given by

217rGh

kT o, = = [cpy° 0,y — cipry* Doy

- caﬂv'/y w + cOoprr'y]

—2inGh =R\ " oln]
= C3 <1 +ZI<T> e(0>

X [pr 0,y = 0,5y Oy

2inGh = \/% " uln|
+ C4 (1 +Z<T> e(a)

n=1

X [0y Dy — iy Do,

The first term on the right-hand side of Eq. (G2) is

2inGh \/E n .
- 3 Z() (allaﬂai’lz _a”anlanz) (n:}’ll +n2)

¢ n=0 ¢
- 1
->0(). (@3)
n=3 ¢

while the second term is

H ence, there is no contribution at the second order.

2. Analysis of kT,

After excluding the terms containing the spin coeffi-
cients y,(j)» kT, [Eq. (55)] is given by
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2inGh _ _
kT,, = = (=@ O —wry* O + 0,y 'y + 0,y ]

2irGh \/ﬁ "] "
-3 (1 E ( - ) Cla ))[W a avl// oy'a l//}

n=1
2inGh N (VA"
G Z(T) (efoyan @' Dya, = €f,) Dyan, ol
n=0
°° 1
ot
n=3 ¢

Hence, there is no contribution at the second order.

APPENDIX H: GENERIC COMPONENTS OF 7,

Using the spin connections of Appendix E, we analyze the metric energy-momentum tensor [Eq. (23)], whose

components are given below.

001w+ (Oow
+1[700a?°7* +Y0u077 W)

2yryo (Do
+1[700a?°7* +Y0u077 W)
- (801[/—1—}—1 [700a7"7"

+ro(,o7/"y0}v7) 20w +70aoy“y°]v7> 7y

wr1 (9w
+4[700a7° 7 + 700077’ W) 2(@y 101w =0wny)
01w — (80117+!¢ [Y00a?"7'

+70aoyiy°]t/7) Y1 —01pyow

wy2 (9w

+1 70077+ Y0a07 "7 lW) 7200w +y Oy

o0y — (aolf"f‘ﬂ?oocz}’oyi =0y =0y y

+ma07"7°]t/7) 2w —0apyow

wy3 (9w

+4700a? 7" +Y0a07" 7" JW) Wy301w Wy Ozy

+yoOsw — (8oll7+%[700a7’07i =0\ ysy =03y y

+V0aoy"y°]l/7) 73W =039 yow

)

+e( )aI,I(x ) G, —

WyoOy +wy2 (Ooy

+3[700a?°7* +Y0a07 7" I

+r0a07"y0}l/7) eV4

Wr102y + iy, 00y

=00y =0\ yay

2(@y20,w =02y ay)

Wy30W + Wy, 03y

=0y 3y —03pyay

[0,y Py —yTa®)d,y]
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