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We derive the Schrödinger-Newton equation as the nonrelativistic limit of the Einstein-Dirac equations.
Our analysis relaxes the assumption of spherical symmetry, made in an earlier work in the literature, while
deriving this limit. Since the spin of the Dirac field couples naturally to torsion, we generalize our analysis
to the Einstein-Cartan-Dirac equations, again recovering the Schrödinger-Newton equation.
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I. INTRODUCTION

The Schrödinger-Newton (SN) equation has been pro-
posed in the literature as a model for investigating the
effects of self-gravity on the motion of a nonrelativistic
(NR) quantum particle [1–4] (specifically as a model for
gravitational localization of macroscopic objects). It is a
nonlinear modification to the Schrödinger equation with a
Newtonian gravitational potential ϕ,

iℏ
∂ψðr; tÞ

∂t ¼ −
ℏ2

2m
∇2ψðr; tÞ þmϕψðr; tÞ; ð1Þ

where the self-gravitating potential ϕ is assumed to be
classical and obeys the semiclassical Poisson equation

∇2ϕ ¼ 4πGmjψ j2: ð2Þ

The coupled system of the above two equations in
integrodifferential form is given by

iℏ
∂ψðr; tÞ

∂t ¼ −
ℏ2

2m
∇2ψðr; tÞ

− Gm2

Z jψðr0; tÞj2
jr − r0j d3r0ψðr; tÞ; ð3Þ

and is known as the SN equation. There are two broad
(complementary) viewpoints under which the SN equation
has been dealt with in the literature, amongst others. In one
of them, it is considered as a hypothesis and the ways
to falsify it are studied through theoretical and (or)
experimental considerations, e.g., the localization of wave

packets for macroscopic objects [5], with a gravitationally
induced inhibition of quantum dispersion. The second
approach focuses on whether the SN equation can be
understood as a consequence of the known principles of
physics. It is viewed as a model for self-interaction of
matter waves. Notable work in this context [6] shows that
the SN equation is the nonrelativistic limit of the Einstein-
Klein-Gordon system and the Einstein-Dirac system for a
spherically symmetric space-time. Our present paper fol-
lows the second approach. We relax the assumption of a
spherically symmetric space-time made in [6] and obtain
the SN equation as the nonrelativistic limit of the Einstein-
Dirac equations. Since the spin of the Dirac field couples
naturally to torsion, we also study the Einstein-Cartan-
Dirac equations, and obtain its nonrelativistic limit. These
equations are a special case of the Einstein-Cartan-Sciama-
Kibble theory [7–14], which we henceforth refer to as the
Einstein-Cartan theory.
The plan of the paper is as follows. In Sec. II we describe

the Einstein-Cartan-Dirac equations. Section III is the
central part of the paper—the nonrelativistic limit of the
Einstein-Dirac equations is derived here. We first describe
the ansatz for the Dirac state and for the metric, which is
used to derive the nonrelativistic limit. We then describe in
detail the nonrelativistic expansion for the Dirac equation,
and for the energy-momentum tensor. It is then shown that
the nonrelativistic limit of the Eistein-Dirac equations is the
Schrödinger-Newton equation, as expected. In Sec. IV,
the nonrelativistic limit of the Einstein-Cartan-Dirac
equations—which include the torsion of the Dirac field—
is derived. It is shown that torsion does not contribute in
the nonrelativistic limit, and once again we obtain the
Schrödinger-Newton equation. Conclusions are presented
in the next section, while the detailed Appendix gives
calculations of the geometric variables such as metric,
connection, and curvature, as well as the energy-momentum
tensor, for the ansatz used in this paper.
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The present paper is part of a series of our works [15–21]
that investigate the role of torsion in microscopic physics,
and the motivation for including torsion in the Einstein-
Dirac equations. The fundamental motivation comes from
noting that given a relativistic point mass m, Einstein
equations as well as the Dirac equation both claim to hold
for it, irrespective of the numerical value of the mass. This
is because there is no mass scale in either of the systems of
equations, but of course both cannot hold for all masses.
Only from experiments we know that Einstein equations
hold for macroscopic masses, and the Dirac equation for
small masses. But how large is large, and how small is
small? There has to be an underlying dynamics with an in-
built mass scale, to which the Dirac equation and Einstein
equation are small mass and large mass approximations,
respectively. The search for this underlying dynamics is
aided by the fact that general relativity has Schwarzschild
radius as a fundamental length (depending linearly on
mass) and the Dirac equation has Compton wavelength as
fundamental length (depending inversely on mass). This
strongly suggests that the underlying theory should have
one unified length, and also that it should include torsion,
which dominates over curvature for small masses, because
in this domain spin dominates mass. We have developed
such curvature-torsion models, and investigated what
physical role torsion might play in the modified Dirac
equation. It is in this spirit that in this paper we are studying
the nonrelativistic limit of the Eistein-Cartan-Dirac equa-
tions, to look for signatures of torsion.

II. PRELIMINARIES: THE EINSTEIN-
CARTAN-DIRAC EQUATIONS

The antisymmetric part of the affine connection,

Qαβ
μ ¼ Γ½αβ�μ ¼

1

2
ðΓαβ

μ − Γβα
μÞ; ð4Þ

is called torsion. The affine connection is related to the
Christoffel symbols by

Γαβ
μ ¼

�
μ

αβ

�
− Kαβ

μ; ð5Þ

where Kαβ
μ is the contorsion tensor, and is given by

Kαβ
μ ¼ −Qαβ

μ −Qμ
αβ þQβ

μ
α.

For a matter field ψ , which is minimally coupled to
gravity and torsion, the action is given by [8]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Lmðψ ;∇ψ ; gÞ − 1

2k
Rðg; ∂g;QÞ

�
; ð6Þ

where k ¼ 8πG=c4. The first and the second term on the
right-hand side correspond to contribution from matter
and gravity, respectively. Varying the action with respect
to ψ (matter field), gμν (metric), and Kαβμ (contorsion), the
following field equations are obtained:

δð ffiffiffiffiffiffi−gp
LmÞ

δψ
¼ 0; ð7Þ

δð ffiffiffiffiffiffi−gp
RÞ

δgμν
¼ 2k

δð ffiffiffiffiffiffi−gp
LmÞ

δgμν
and ð8Þ

δð ffiffiffiffiffiffi−gp
RÞ

δKαβμ
¼ 2k

δð ffiffiffiffiffiffi−gp
LmÞ

δKαβμ
: ð9Þ

Equation (7) yields the matter field equation on a space-
timewith torsion. The right-hand side of Eq. (8) is related to
the metric energy-momentum tensor Tμν, while the right-
hand side of Eq. (9) is associated with the spin density
tensor Sμβα. Equations (8) and (9) together give the
Einstein-Cartan field equations,

Gμν ¼ k Σμν; ð10Þ

Tμβα ¼ k τμβα: ð11Þ

Gμν is the asymmetric Einstein tensor constructed from
the asymmetric connection. Σμν is the canonical energy-
momentum tensor (asymmetric) constructed from the
metric energy-momentum tensor (symmetric) and the spin
density tensor. In Eq. (11), Tμβα is the modified torsion
(traceless part of the torsion tensor); it is algebraically
related to Sμβα on the right-hand side. On setting the torsion
to 0, the field equations of general relativity are recovered.
For a Dirac field (ψ), the matter Lagrangian density is

given by

Lm ¼ iℏc
2

ðψ̄γμ∇μψ −∇μψ̄γ
μψÞ −mc2ψ̄ψ : ð12Þ

We denote a Riemannian space-time by V4 and a space-
time with torsion by U4. Minimally coupling a Dirac field
on U4 leads to the Einstein-Cartan-Dirac (ECD) theory.
The spinors are defined on V4 andU4 using tetrads. We use
êμ ¼ ∂μ as the coordinate basis, which is covariant under
general coordinate transformations. Spinors (defined on a
Minkowski space-time) on the other hand are associated
with basis vectors that are covariant under local Lorentz
transformations. To this aim, we define at each point on the
manifold four orthonormal basis fields (tetrad fields) êiðxÞ,
one for each i value. The tetrad fields satisfy the relation
êiðxÞ ¼ eiμðxÞêμ, where the transformation matrix eiμ is
such that

eðiÞμ eðkÞν ηðiÞðkÞ ¼ gμν: ð13Þ

The transformation matrix eðiÞμ facilitates the conversion of
the components of any world tensor (which transform
according to general coordinate transformations) to the
corresponding components in a local Minkowski space
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(these latter components being covariant under local
Lorentz transformations). Greek indices are raised and
lowered using the metric gμν, while the latin indices are
raised and lowered using ηðiÞðkÞ. Parentheses around indices
is a matter of convention.
We adopt the following conventions for the remainder

of the paper:
(i) Objects with greek indices (world indices), e.g., α, ζ,

δ, transform according to general coordinate trans-
formations and are raised and lowered using the
metric gμν.

(ii) Objects with latin indices within parentheses (tetrad
indices), e.g., (a) or (i), transform according to local
Lorentz transformations and are raised and lowered
using ηðiÞðkÞ.

(iii) Latin indices without parentheses, e.g., i, j, b, c,
refer to objects in Minkowski space, which trans-
form according to global Lorentz transformations.

(iv) In general 0, 1, 2, 3 refer to world indices while (0),
(1), (2), (3) refer to tetrad indices.

(v) ∇fg represents the covariant derivative with the
Christoffel connections (fg), while ∇ denotes the
total covariant derivative.

(vi) Commas (,) refer to partial derivatives and semi-
colons (;) to the Riemannian covariant derivative,
which implies (;) and ∇fg are the same for tensors.
For spinors, (;) involves a partial derivative and the
Riemannian part of the spin connection.

Just as the affine connection Γ facilitates parallel trans-
port of geometrical objects with world (greek) indices, the
spin connection (γ) does so for anholonomic objects (those
with latin indices). The affine connection Γ has two parts—
Riemannian (fg) and torsional (constructed from the
contorsion tensor Kμ

ðkÞðiÞ); similarly, the spin connection
(γμðiÞðkÞ) has two parts—Riemannian (denoted by γoμ

ðiÞðkÞ)
and torsional (constructed from the contorsion tensor
Kμ

ðkÞðiÞ). These quantities are interrelated by

γμ
ðiÞðkÞ ¼ γoμ

ðiÞðkÞ − Kμ
ðkÞðiÞ and ð14Þ

γμ
ðiÞðkÞ ¼ eðiÞα eνðkÞΓμν

α − eνðkÞ∂μe
ðiÞ
ν

¼ eðiÞα eνðkÞ
�

α

μν

�
− Kμ

ðkÞðiÞ − eνðkÞ∂μe
ðiÞ
ν : ð15Þ

Using Eqs. (14) and (15), the Riemannian part of the
spin connection can be expressed entirely in terms of the
Christoffel symbols and the tetrads as [13]

�
α

μν

�
¼ eαðiÞeνðkÞγμ

oðkÞðiÞ þ eαðiÞ∂μe
ðiÞ
ν : ð16Þ

One can thus define the covariant derivative for spinors as

ψ ;μ¼∂μψþ1

4
γoμðbÞðcÞγ

½ðbÞγðcÞ�ψ ðonV4Þ ð17Þ

and ∇μψ ¼ ∂μψ þ 1

4
γ0μðcÞðbÞγ

½ðbÞγðcÞ�ψ

−
1

4
KμðcÞðbÞγ½ðbÞγðcÞ�ψ : ðon U4Þ ð18Þ

The explicit form of the matter Lagrangian density is
obtained by substituting Eqs. (17) and (18) in Eq. (12). The
Dirac equation is then given by Eq. (7),

iγμψ ;μ −
mc
ℏ

ψ ¼ 0 ðon V4Þ ð19Þ

and iγμψ ;μþ
i
4
KðaÞðbÞðcÞγ½ðaÞγðbÞγðcÞ�ψ−

mc
ℏ
ψ¼0 ðonU4Þ:

ð20Þ

The gravitational field equations are obtained using
Eqs. (8) and (12),

GμνðfgÞ ¼
8πG
c4

Tμν ðon V4Þ ð21Þ

and GμνðfgÞ¼
8πG
c4

Tμν−
1

2

�
8πG
c4

�
2

gμνSαβλSαβλ ðonU4Þ:

ð22Þ

The metric energy-momentum (EM) tensor (symmetric) is
defined by

Tμν ¼ ΣðμνÞðfgÞ

¼ iℏc
4

½ψ̄γμψ ;ν þ ψ̄γνψ ;μ − ψ̄ ;μγνψ − ψ̄ ;νγμψ �: ð23Þ

Equations (19) and (21) are the governing equations for the
Einstein-Dirac theory. The spin density tensor is obtained
from the matter Lagrangian density (12),

Sμνα ¼ −iℏc
4

ψ̄γ½μγνγα�ψ : ð24Þ

Using Eqs. (24) and (9), Eq. (20) simplifies to the Hehl-
Datta equation [8,10], which together with Eq. (22) and the
relation between the modified torsion tensor and the spin
density tensor constitutes the field equations for the
Einstein-Cartan-Dirac theory,

GμνðfgÞ ¼
8πG
c4

Tμν −
1

2

�
8πG
c4

�
2

gμνSαβλSαβλ; ð25Þ

Tμνα ¼ −Kμνα ¼
8πG
c4

Sμνα; and ð26Þ

iγμψ ;μ ¼ þ 3

8
L2
Plψ̄γ

5γðaÞψγ5γðaÞψ þmc
ℏ

ψ : ð27Þ
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Here, LPl is the Planck length. The Lorentz signature,
diagðþ;−;−;−Þ is used throughout the paper. The gamma
matrices are represented in the Dirac basis, which happens
to be the matrix representation of Clifford algebra Cl1;3½R�,

γ0¼ β¼
�
I2 0

0 −I2

�
; γi ¼

�
0 σi

−σi 0

�
;

γ5¼ i
4!
ϵijklγ

iγjγkγl¼
�
0 I2
I2 0

�
and αi ¼ βγi¼

�
0 σi

σi 0

�
:

ð28Þ

III. NONRELATIVISTIC LIMIT OF THE
EINSTEIN-DIRAC EQUATIONS

A. Ansatz for the spinor and the metric

Ansatz for the Dirac spinor: We expand ψðx; tÞ as
ψðx; tÞ ¼ eiSðx;tÞℏ (which can be done for any complex
function of x and t). S can be expressed as a perturbative
power series in

ffiffiffi
ℏ

p
or (1=c), to obtain the semiclassical

and the nonrelativistic limit, respectively. The scheme for
obtaining the nonrelativistic limit has been employed by
Kiefer and Singh [22]. Giulini and Großardt in their work
[6] construct a new ansatz with the parameter

ffiffiffi
ℏ

p
=c as

follows:

ψðr; tÞ ¼ e
ic2
ℏ Sðr;tÞ

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
anðr; tÞ; ð29Þ

where Sðr; tÞ is a scalar function and anðr; tÞ is a spinor
field. We use this ansatz in our present work.
Ansatz for the metric: We express a general metric as a

perturbative power series in the parameter
ffiffiffi
ℏ

p
=c, similar to

the expansion for the spinor,

gμνðr; tÞ ¼ ημν þ
X∞
n¼1

� ffiffiffi
ℏ

p

c

�
n
g½n�μνðr; tÞ; ð30Þ

where g½n�μνðxÞ are metric functions indexed by n. In the
nonrelativistic scheme, gravitational potentials are weak
and cannot produce velocities comparable to c. Hence, we
assume the leading order function to be the Minkowski

metric, g½0�μνðxÞ ¼ ημν. The generic power series for the
tetrads, spin coefficients, and Einstein tensor are then
given by

eμðiÞ ¼ δμðiÞ þ
X∞
n¼1

� ffiffiffi
ℏ

p

c

�
n
eμ½n�ðiÞ ;

γðaÞðbÞðcÞ ¼
X∞
n¼1

� ffiffiffi
ℏ

p

c

�
n
γ½n�ðaÞðbÞðcÞ; ð31Þ

eðiÞμ ¼ δðiÞμ þ
X∞
n¼1

� ffiffiffi
ℏ

p

c

�
n
eðiÞ½n�μ and Gμν ¼

X∞
n¼1

� ffiffiffi
ℏ

p

c

�
n
G½n�

μν ;

ð32Þ

where eμ½n�ðiÞ , e
ðiÞ½n�
μ , γ½n�ðaÞðbÞðcÞ, and G½n�

μν are functions of the

metric g½n�μν and its derivatives.

B. Analyzing the Dirac equation
with the above ansatz

We first separate the spatial and the temporal part
of the Dirac equation on V4 [Eq. (19)]. (Note that

γðaÞψ ;ðaÞ ¼ eðaÞμ eνðaÞγ
μψ ;ν ¼ δνμγ

μψ ;ν ¼ γμψ ;μ.)

iγμψ ;μ −
mc
ℏ

ψ ¼ 0 ð33Þ

⇒ iγ0∂0ψ þ i
4
γð0Þγoð0ÞðbÞðcÞγ

½ðbÞγðcÞ�ψ þ iγα∂αψ

þ i
4
γðjÞγoðjÞðbÞðcÞγ

½ðbÞγðcÞ�ψ −
mc
ℏ

ψ ¼ 0: ð34Þ

Multiplying both sides by eð0Þ0 γð0Þc, we get

i∂tψþ ic
4
γo
0ðbÞðcÞγ

½ðbÞγðcÞ�ψþ iceð0Þ0 eαðaÞα
ðaÞ∂αψ

þ ic
4
eð0Þ0 αðjÞγoðjÞðbÞðcÞγ

½ðbÞγðcÞ�ψ −eð0Þ0 β
mc2

ℏ
ψ ¼0: ð35Þ

Using the series expansion for the tetrads and the
Riemannian part of the spin connection [Eqs. (31) and
(32)], we keep terms of the order c2, c and 1, and neglect
terms of the order ð 1cnÞ with n ≥ 1. This is sufficient for
obtaining the equation obeyed by the leading order spinor
term, a0. We thus obtain

i∂tψ þ i
ffiffiffi
ℏ

p

4
γo½1�
0ðbÞðcÞγ

½ðbÞγðcÞ�ψ þ icα:∇ψ þ i
ffiffiffi
ℏ

p
E⃗:∇ψ

þ i
ffiffiffi
ℏ

p

4
αðjÞγo½1�ðjÞðbÞðcÞγ

½ðbÞγðcÞ�ψ

− β
mc2

ℏ
ψ − β

mcffiffiffi
ℏ

p eð0Þ½1�0 ψ − βmeð0Þ½2�0 ψ ¼ 0; ð36Þ

where E⃗ ¼ ð½eð0Þ½1�0 αð1Þ þ e1½1�ðaÞ α
ðaÞ�; ½eð0Þ½1�0 αð2Þ þ e2½1�ðaÞ α

ðaÞ�;
½eð0Þ½1�0 αð3Þ þ e3½1�ðaÞ α

ðaÞ�Þ. We now evaluate each term of

Eq. (36) by substituting the spinor ansatz (29).
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Term 1

þi∂tψ ¼ i∂t

�
e
ic2S
ℏ

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
an

�

¼ e
ic2S
ℏ

c3

ℏ3=2

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
½− _San−1 þ i _an−3�: ð37Þ

Term 2

þ i
ffiffiffi
ℏ

p

4
γo½1�ð0ÞðbÞðcÞγ

½ðbÞγðcÞ�ψ

¼þi
ffiffiffi
ℏ

p

4
γo½1�ð0ÞðbÞðcÞγ

½ðbÞγðcÞ�
�
e
ic2S
ℏ

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
an

�

¼e
ic2S
ℏ

c3

ℏ3=2

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
�
i

ffiffiffi
ℏ

p

4
γo½1�ð0ÞðbÞðcÞγ

½ðbÞγðcÞ�an−3

�
: ð38Þ

Term 3

icα:∇ψ ¼ icα⃗ · ∇⃗
�
e
ic2S
ℏ

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
an

�

¼ icα⃗ ·

�
e
ic2S
ℏ
c2

ℏ

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
ði∇⃗San þ ∇⃗an−2Þ

�

¼ e
ic2S
ℏ

c3

ℏ3=2

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n

× ½−
ffiffiffi
ℏ

p
α⃗ · ∇⃗San þ i

ffiffiffi
ℏ

p
α⃗ · ∇⃗an−2�: ð39Þ

Term 4

þi
ffiffiffi
ℏ

p
E⃗:∇⃗ψ¼ i

ffiffiffi
ℏ

p
E⃗:∇⃗

�
e
ic2S
ℏ

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
an

�

¼e
ic2S
ℏ

c3

ℏ3=2

X∞
n¼0

½−
ffiffiffi
ℏ

p
E⃗:∇⃗San−1þi

ffiffiffi
ℏ

p
E⃗:∇⃗an−3�:

ð40Þ

Term 5

þ i
ffiffiffi
ℏ

p

4
αðjÞγo½1�ðjÞðbÞðcÞγ

½ðbÞγðcÞ�ψ

¼ þ i
ffiffiffi
ℏ

p

4
αðjÞγo½1�ðjÞðbÞðcÞγ

½ðbÞγðcÞ�
�
e
ic2S
ℏ

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
an

�

¼ e
ic2S
ℏ

c3

ℏ3=2

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
�
i

ffiffiffi
ℏ

p

4
αðjÞγo½1�ðjÞðbÞðcÞγ

½ðbÞγðcÞ�an−3

�
:

ð41Þ

Term 6

−β
mc2

ℏ
ψ ¼ −β

mc2

ℏ
e
ic2S
ℏ

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
an

¼ −eic2S
ℏ

c3

ℏ3=2

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
ðβman−1Þ: ð42Þ

Term 7

−β
mcffiffiffi
ℏ

p eð0Þ½1�0 ψ ¼ −β
mcffiffiffi
ℏ

p eð0Þ½1�0

�
e
ic2S
ℏ

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
an

�

¼ −eic2S
ℏ

c3

ℏ3=2

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
½βmeð0Þ½1�0 an−2�:

ð43Þ

Term 8

−βmeð0Þ½2�0 ψ ¼ −βm
�
eð0Þ½2�0

�
e
ic2S
ℏ

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
an

�

¼ −eic2S
ℏ

c3

ℏ3=2

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
βmeð0Þ½2�0 an−3: ð44Þ

We thus obtain

e
ic2S
ℏ

c3

ℏ3=2

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
�
ð−

ffiffiffi
ℏ

p
α⃗:∇⃗SÞan

− ð _Sþ βmþ
ffiffiffi
ℏ

p
E⃗:∇⃗SÞan−1þði

ffiffiffi
ℏ

p
α⃗:∇⃗− βmeð0Þ½1�0 Þan−2

þ
�
i∂tþ i

ffiffiffi
ℏ

p
E⃗:∇⃗þ i

ffiffiffi
ℏ

p

4
γo½1�ð0ÞðbÞðcÞγ

½ðbÞγðcÞ�

þ i
ffiffiffi
ℏ

p

4
αðjÞγo½1�ðjÞðbÞðcÞγ

½ðbÞγðcÞ�− βmeð0Þ½2�0

�
an−3

�
¼ 0: ð45Þ

At the leading order (n ¼ 0), we get

∇S ¼ 0; ð46Þ

which implies that the scalar S is a function of time only,
i.e., S ¼ SðtÞ. The Dirac spinor is a four-component object
that can be written as an ¼ ðan;1; an;2; an;3; an;4Þ. We split it
into two-component spinors, a>n ¼ ðan;1; an;2Þ and a<n ¼
ðan;3; an;4Þ. At order n¼1, we get _Sþ βmþ ffiffiffi

ℏ
p

E⃗:∇⃗S ¼ 0.

Since ∇⃗S ¼ 0, this implies

ðmþ _SÞa>0 ¼ 0; ð47aÞ

and ðm − _SÞa<0 ¼ 0; ð47bÞ
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which satisfies either S ¼ −mt with a<0 ¼ 0 or S ¼ þmt

witha>0 ¼ 0. Thewave function at this order isψ ¼ e
�imc2t

ℏ a0,
which corresponds to particles of positive energy (lower
sign) and negative energy (upper sign), at rest. We restrict
ourselves to S ¼ −mt and a<0 ¼ 0, i.e., the positive energy
solutions. It is implicitly assumed that the two cases (positive
and negative energies) can be studied separately. We digress
at this point and analyze the energy-momentum tensor.

C. Analyzing the energy-momentum tensor Tμν
with the above ansatz

The dynamical energy-momentum tensor is given by
Eq. (23). We analyze all the sixteen components of Tμν.
(1) kT00 (with the indices of the gamma matrices raised),

kT00 ¼
4iπGℏ
c4

�
ψ̄γ0

�
∂tψ þ c

4
½γo

0ðiÞðjÞγ
½ðiÞγðjÞ��ψ

�

−
�
∂tψ̄ þ c

4
½γo

0ðiÞðjÞγ
½ðiÞγðjÞ��ψ̄

�
γ0ψ

�
ð48Þ

¼ 4iπGℏ
c4

�
1þ

X∞
n¼1

� ffiffiffi
ℏ

p

c

�
n
e0½n�ð0Þ

�

×

�
ψ̄γð0Þ

�
∂tψ þ c

4
½γo

0ðiÞðjÞγ
½ðiÞγðjÞ��ψ

�

−
�
∂tψ̄ þ c

4
½γo

0ðiÞðjÞγ
½ðiÞγðjÞ��ψ̄

�
γð0Þψ

�
: ð49Þ

Substituting the spinor ansatz [Eq. (29)] in Eq. (48),
we obtain a series expansion for kT00. At the leading
order we get

kT00¼
4iπG
c2

��X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
a†n

�

×

�X∞
m¼0

� ffiffiffi
ℏ

p

c

�
m
½i _Samþ _am−2�

�

þ
�X∞

n¼0

� ffiffiffi
ℏ

p

c

�
n
½i _Sa†n− _a†n−2�

�

×

�X∞
n¼0

� ffiffiffi
ℏ

p

c

�
m
am

��
þ
X∞
n¼3

O

�
1

cn

�
; ð50Þ

with (nþm ¼ 0), i.e.,

kT00 ¼
4πGi
c2

fið−mÞa>†0 a>0 þ ið−mÞa>†0 a>0 g

þ
X∞
n¼3

O

�
1

cn

�
ð51Þ

¼ 8πGmja>0 j2
c2

þ
X∞
n¼3

O

�
1

cn

�
: ð52Þ

(2) kT0μ (μ ¼ 1, 2, 3),

kT0μ ¼
2iπGℏ
c4

�
cψ̄γ0

�
∂μψþ1

4
½γoμðiÞðjÞγ½ðiÞγðjÞ�ψ �

�

þcψ̄γμ

�
∂0ψþ1

4
½γo

0ðiÞðjÞγ
½ðiÞγðjÞ�ψ �

�

−c

�
∂μψ̄þ1

4
½γoμðiÞðjÞγ½ðiÞγðjÞ�ψ̄ �

�
γ0ψ

−c

�
∂0ψ̄þ1

4
½γo

0ðiÞðjÞγ
½ðiÞγðjÞ�ψ̄ �

�
γμψ

�
: ð53Þ

Terms containing the spin coefficients (γμðiÞðjÞ) are of
the order 1

c3 or higher and hence do not contribute at
the order 1

c2. The rest of the terms are analyzed in
Appendix G 1, and are shown to have no contribu-
tion at the order 1

c2. Hence,

kT0μ ¼
X∞
n¼3

O

�
1

cn

�
: ð54Þ

(3) kTμν (μ, ν ¼ 1, 2, 3),

kTμν ¼
2iπGℏ
c3

�
þψ̄γμ

�
∂νψ þ 1

4
½γoνðiÞðjÞγ½ðiÞγðjÞ�ψ �

�

þ ψ̄γν

�
∂μψ þ 1

4
½γoμðiÞðjÞγ½ðiÞγðjÞ�ψ �

�

−
�
∂νψ̄ þ 1

4
½γoνðiÞðjÞγ½ðiÞγðjÞ�ψ̄ �

�
γμψ

−
�
∂μψ̄ þ 1

4
½γoμðiÞðjÞγ½ðiÞγðjÞ�ψ̄ �

�
γνψ

�
: ð55Þ

Once again, terms containing the spin coefficients
(γμðiÞðjÞ) are of the order 1

c3 or higher and hence do not
contribute at the order 1

c2. The rest of the terms are
analyzed in Appendix G 2, and are shown to have no
contribution at the order 1

c2. Hence,

kTμν ¼
X∞
n¼3

O

�
1

cn

�
: ð56Þ

Results of the order analysis of the EM tensor, summa-
rized by Eqs. (52), (54), and (56) imply

jT00j
jT0ij

≪ 1;
jT00j
jTijj

≪ 1; and

kjT00j ∼O

�
1

c2

�
∀ i; j ∈ ð1; 2; 3Þ: ð57Þ
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Owing to Einstein’s equations, the same relations then hold
for the components of the Einstein tensor, i.e.,

jG00j
jG0ij

≪ 1;
jG00j
jGijj

≪ 1; and

jG00j ∼O

�
1

c2

�
∀ i; j ∈ ð1; 2; 3Þ: ð58Þ

D. Constraints on the metric

In Sec. III C we showed that jG00j ∼Oð 1c2Þ while all the
other components of Gμν are of higher order. For a generic
metric ansatz,Gμν has been calculated inAppendixA.At this
point we make an important assumption—the metric field
is asymptotically flat. This leads to the following constraints
on the metric components (proved in Appendix B):
(1) G½1�

μν ¼ 0 (∀ μ; ν) together with the condition of
asymptotic flatness of the metric, leads to the
following results (proved in Appendix B 1):

g½1�μν ¼ 0; eμ½1�ðiÞ ¼ 0; eðiÞ½1�μ ¼ 0; and

γ½1�ðiÞðjÞðkÞ ¼ 0 ∀ i; j; k; μ; ν ∈ ð0; 1; 2; 3Þ: ð59Þ

(2) G½2�
μν¼0 (except for μ¼ν¼0) leads to the following

constraint: g½2�μν ¼ Fðr; tÞδμν for some field Fðr; tÞ
(proved in Appendix B 2).
The full metric is then given by

gμνðr; tÞ ¼

2
6664
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

3
7775

þ
�
ℏ
c2

�
2
6664
F 0 0 0

0 F 0 0

0 0 F 0

0 0 0 F

3
7775ðr; tÞ

þ
X∞
n¼3

� ffiffiffi
ℏ

p

c

�
n

2
6666664

g½n�00 g½n�01 g½n�02 g½n�03

g½n�10 g½n�11 g½n�12 g½n�13

g½n�20 g½n�21 g½n�22 g½n�23

g½n�30 g½n�31 g½n�32 g½n�33

3
7777775
ðr; tÞ;

ð60Þ

where g½2�00 ¼ g½2�11 ¼ g½2�22 ¼ g½2�33 ¼ Fðr; tÞ. The above
metric has been employed to calculate other objects
(tetrads, spin coefficients, etc.) in Appendixes C, E,
D, and F.

E. NR limit of the Einstein-Dirac equations

1. Dirac equation

In Sec. III B we analyzed Eq. (45) for n ¼ 0 and n ¼ 1.
Using the results of Appendixes C, D, and E, Eq. (45) can
be further simplified to

e
ic2S
ℏ

c3

ℏ3=2

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
�
−ð _Sþ βmÞan−1 þ i _an−3

þ i
ffiffiffi
ℏ

p
α⃗ · ∇⃗an−2 − β

mFðr; tÞ
2

an−3

�
¼ 0: ð61Þ

At order n ¼ 2, Eq. (61) gives us

�
_Sþm 0

0 _S−m

��
a>1
a<1

�
− i

ffiffiffi
ℏ

p �
0 σ⃗ · ∇⃗

σ⃗ · ∇⃗ 0

��
a>0
a<0

�
¼ 0:

ð62Þ

The first of these two equations is trivially satisfied. The
second equation yields a relation between a<1 and a>0 ,

a<1 ¼ −i
ffiffiffi
ℏ

p
σ⃗ · ∇⃗

2m
a>0 : ð63Þ

At order n ¼ 3, we get

�
_Sþm 0

0 _S −m

��
a>2
a<2

�
− i

ffiffiffi
ℏ

p �
0 σ⃗ · ∇⃗

σ⃗ · ∇⃗ 0

��
a>1
a<1

�

−
�
i∂t −

mFðr;tÞ
2

0

0 i∂t þ mFðr;tÞ
2

��
a>0
a<0

�
¼ 0; ð64Þ

which comprises two equations. Using Eq. (63), the first of
these two equations gives us

iℏ
∂a>0
∂t ¼ −

ℏ2

2m
∇2a>0 þmℏFðr; tÞ

2
a>0 : ð65Þ

2. Einstein’s equations

The Einstein tensor has been evaluated in Appendix F.
Equating G00 to kT00 we get

ℏ∇2Fðr; tÞ
c2

þ
X∞
n¼3

O
�
1

cn

�
¼ 8πGmja>0 j2

c2
þ
X∞
n¼3

O
�
1

cn

�
:

ð66Þ

At the leading order, this gives us

∇2Fðr; tÞ ¼ 8πGmja>0 j2
ℏ

: ð67Þ
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Recognizing the quantity ℏFðr;tÞ
2

as the Newtonian
potential ϕ, we obtain the Schrödinger-Newton system
of equations (mϕ → gravitational potential energy and
mja>0 j2 → mass density) as the NR limit of the Einstein-
Dirac equations,

iℏ
∂a>0
∂t ¼ −

ℏ2

2m
∇2a>0 þmϕðr; tÞa>0 and ð68Þ

∇2ϕðr; tÞ ¼ 4πGmja>0 j2 ¼ 4πGρðr; tÞ ð69Þ

⇒ iℏ
∂a>0
∂t ¼ −

ℏ2

2m
∇2a>0 −Gm2

Z ja>0 ðr0; tÞj2
jr − r0j d3r0a>0 ;

ð70Þ

the physical picture for which has already been discussed in
Sec. I. This completes the derivation of the Schrödinger-
Newton equation as the nonrelativistic limit of the Einstein-
Dirac equations.

IV. NONRELATIVISTIC LIMIT OF THE
EINSTEIN-CARTAN-DIRAC EQUATIONS

We now employ the Wentzel-Kramers-Brillouin (WKB)
type ansatz of the previous section to the case when torsion
is included. It is to be noted that the torsion of the Dirac
field can be expressed directly in terms of the Dirac spinors.
Once the substitution of the torsion tensor has been done in
terms of the Dirac spinors, the nonlinear Dirac equation no
longer makes any reference to torsion. Similarly, in the
Einstein-Cartan field equations, the contribution coming
from torsion can be expressed in terms of the Dirac state.
Thus the Einstein-Cartan-Dirac system is a coupled differ-
ential system for the metric and the Dirac state—just like
the Einstein-Dirac system is—only, the nonlinear terms are
now different. Thus the WKB ansatz used earlier can be
directly used in the presence of torsion as well.
The Dirac equation on U4 (also known as the Hehl-Datta

equation) is given by [Eq. (27)]

iγμψ ;μ −
3

8
L2
Plψ̄γ

5γðaÞψγ5γðaÞψ −
mc
ℏ

ψ ¼ 0: ð71Þ

We have already analyzed the first and the last term on the
left-hand side using the ansatz for the spinor (29) and the
metric (60). The second term arises due to torsion and
makes the equation nonlinear. We evaluate this term similar
to the other two (Sec. III B). Multiplying the middle term

by eð0Þ0 γð0Þc [as was done in Sec. III B to obtain (35) from
(34)], we get

− eð0Þ0 γð0Þ
3c
8
L2
Plψ̄γ

5γðaÞψγ5γðaÞψ

¼ −
3c
8
l2Ple

ic2S
ℏ

�
1þ ℏFðr; tÞ

2c2
þ
X∞
n¼3

O

�
1

cn

��

×

�X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
a†n

�
γ5γðaÞ

�X∞
l¼0

� ffiffiffi
ℏ

p

c

�
l
al

�

× γ5γðaÞ
�X∞

m¼0

� ffiffiffi
ℏ

p

c

�
l
am

�
; ð72Þ

which simplifies to

e
ic2S
ℏ

c3

ℏ3=2

�
1þℏFðr; tÞ

2c2
þ
X∞
n¼3

O

�
1

cn

��

×
3G
8

� X∞
n1;n2;n3¼0

� ffiffiffi
ℏ

p

c

�
n
a†n1−iγ

5γðaÞan2−jγ
5γðaÞan3−k

�
;

ð73Þ
where n ¼ n1 þ n2 þ n3. This term modifies Eq. (61) as
follows:

e
ic2S
ℏ

c3

ℏ3=2

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
�
man−1þi _an−3þi

ffiffiffi
ℏ

p
α⃗ · ∇⃗an−2

−βman−1−β
mFðr;tÞ

2
an−3

þ3G
8

� X∞
n1;n2;n3¼0

� ffiffiffi
ℏ

p

c

�
n
a†n1−iγ

5γðaÞan2−jγ
5γðaÞan3−k

��
¼0;

ð74Þ
where n¼n1þn2þn3 and iþjþk¼5, with i ≤ n1, j≤n2
and k ≤ n3. Further, i; j; k; n1; n2; n3 ∈ ð0; 1; 2; 3; 4; 5Þ. The
nonlinear term contributes only at order n ¼ 5 and higher.
As a result, the analysis for n ¼ 0, 1, 2, and 3 (considered in
Sec. III E) holds good. Thus a>0 satisfies the Schrödinger

equation, i.e., iℏ ∂a>
0∂t ¼ − ℏ2

2m∇2a>0 þ mℏFðr;tÞ
2

a>0 .
Einstein’s equations on U4 read GμνðfgÞ ¼

kTμν − 1
2
k2gμνSαβλSαβλ. GμνðfgÞ and Tμν have already been

analyzed in Sec. III E. The second term on the right-hand
side, i.e.,− 1

2
k2gμνSαβλSαβλ, involves a contraction of the spin

density tensor (24). We consider only the first term in the
series expansion of the metric, because the other terms
together with the coupling constant are of orders not relevant
for the NR limit. We thus obtain

−1
2

k2g00SαβλSαβλ

¼ −g00
2π2G2ℏ2

c6
X∞
N¼0

�X∞
k¼0

X∞
l¼0

a†kγ
0γ½cγaγb�

�

×

�X∞
m¼0

X∞
n¼0

a†mγ0γ½cγaγb�nm

�
¼

X∞
n¼6

O

�
1

cn

�
; ð75Þ
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which implies that this additional term does not contribute
at the order ð 1c2Þ on the right-hand side of Eq. (25). Hence,
we once again recover Poisson’s equation. Thus the
Schrödinger-Newton equation also happens to be the NR
limit of the ECD theory, which implies that torsion does not
contribute at the leading order.

V. CONCLUSIONS

While the nonrelativitic limit of the Einstein-Dirac
equations for a self-gravitating Dirac field has been
calculated by Giulini and Großardt [6], we relax the
assumption of a spherically symmetric metric in our present
work. The Schrödinger-Newton equation is obtained as the
nonrelativistic limit for a general metric, by considering
a perturbative series in the parameter ð

ffiffi
ℏ

p
c Þ, for the spinor,

the metric, and other relevant quantities. This scheme for
obtaining the nonrelativistic limit follows the WKB-like
expansion given by Giulini and Großardt [6].
The Einstein-Cartan-Dirac equations provide an elegant

system for coupling matter to the geometry of space-time,
where torsion arises due to the spin of the Dirac field. The
nonrelativistic limit of this system of equations (derived in
Sec. IV) yields the Schrödinger-Newton equation, at the
leading order of the parameter ð1cÞ. This suggests that
torsion does not manifest itself at this order.
The effect of torsion in the higher order corrections to the

Schrödinger-Newton equation can be obtained from the
Einstein-Cartan-Dirac equations, by considering a WKB-
type expansion for the spinor and other relevant quantities,
as was done in the present work. However, in this paper, we
have restricted ourselves to the analysis at the leading order,
which gives us the nonrelativistic limit. A similar pre-
scription may also be employed to obtain the higher order
corrections to the Schrödinger equation (starting from
Dirac’s equation) and Newton’s equation for gravitation
(starting from Einstein’s equations).
The Einstein-Cartan-Dirac equations with the unified

new length scale [19] provide for the possibility of a
solitonic solution that interpolates between a black hole and
a Dirac fermion. This is one of the primary motivations for
us to study this system of field equations. The search for
such solutions has been attempted in [21] and further work
is in progress. One could well ask if Derrick’s theorem [23]
could compel such solitonic solutions to be unstable. The
theorem suggests that stationary localized solutions to
nonlinear wave equations such as those considered here
are unstable. In the present situation, however, the inclusion
of torsion (which has a dispersive effect) makes it more
plausible to achieve a stable balancing solution where
the dispersive aspect due to torsion balances the collapse
aspect due to gravity. Moreover, a way out of Derrick’s
no-go theorem is that the sought-for solitonic solutions
are periodic in time, rather than time independent. Such
solutions were actually reported by us in [21]. Rigorously
speaking, the so-called Vakhitov-Kolokolov stability

criterion [24] provides a precise condition for the linear
stability of a periodic solitary wave solution. This require-
ment continues to hold for the Einstein-Cartan-Dirac
equations as well.
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APPENDIX A: FORM OF THE EINSTEIN
TENSOR EVALUATED USING THE GENERIC

METRIC UP TO SECOND ORDER

The ansatz for the metric is given by [Eq. (30)]

gμνðxÞ ¼ ημν þ
X∞
n¼1

� ffiffiffi
ℏ

p

c

�
n
g½n�μνðxÞ:

To the second order, the metric and its inverse is then
given by

gμν¼ημνþ
� ffiffiffi

ℏ
p

c

�
g½1�μνþ

�
ℏ
c2

�
g½2�μνþ

X∞
n¼3

O
�
1

cn

�
and ðA1Þ

gμν ¼ ημν −
� ffiffiffi

ℏ
p

c

�
gμν½1� −

�
ℏ
c2

�
½gμ½1�β gβν½1� þ gμν½2��

þ
X∞
n¼3

O

�
1

cn

�
: ðA2Þ

We evaluate Christoffel symbols, Riemann curvature
tensor, Ricci tensor, and scalar curvature to obtain the
Einstein tensor Gμν up to the second order as follows:

GμνðfgÞ ¼
� ffiffiffi

ℏ
p

c

�
G½1�

μνðfgÞ þ
�
ℏ
c2

�
G½2�

μνðfgÞ; ðA3Þ

where

G½1�
μνðfgÞ¼−

1

2
□ḡ½1�μν ; ḡ½1�ij ¼g½1�μν−

1

2
ημνg½1�; g½1� ¼ðημνg½1�μνÞ;

ðA4Þ

G½2�
μνðfgÞ ¼ −

1

2
□ḡð2Þμν þ fðg½1�μνÞ; ḡ½2�ij ¼ g½2�μν −

1

2
ημνg½2�

and g½2� ¼ ðημνg½2�μνÞ: ðA5Þ
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In Eq. (A5), f is a function of g½1�μν , which is given by

fðg½1�μνÞ ¼ −
1

4
½2∂λg½1�∂νg

½1�
λμ − 2∂λg½1�∂λg

½1�
μν − ∂ρg

λ½1�
ν ∂μg

ρ½1�
λ − ∂ρg

λ½1�
ν ∂λg

ρ½1�
μ

þ ∂ρg
λ½1�
ν ∂ρg½1�λμ þ ∂νg

λ½1�
ρ ∂μg

ρ½1�
λ þ ∂νg

λ½1�
ρ ∂λg

ρ½1�
μ − ∂νg

λ½1�
ρ ∂ρg½1�λμ �

−
1

8
½2∂λg½1�∂νg

½1�
λμ − 2ημν∂λg½1�∂λg½1� − ∂ρg

λ½1�
ν ∂μg

ρ½1�
λ − ∂ρg

λ½1�
μ ∂λg

ρ½1�
ν þ ∂ρg

λ½1�
μ ∂ρg½1�λν

þ ∂μg
λ½1�
ρ ∂νg

ρ½1�
λ þ ∂μg

λ½1�
ρ ∂λg

ρ½1�
ν − ∂νg

λ½1�
ρ ∂ρgλμ½1��:

Gμν happens to be the same as GμνðfgÞ for V4. For U4 on
the other hand, GμνðfgÞ is the Riemannian part of Gμν

(a symmetric tensor constructed from the Christoffel
symbols).

APPENDIX B: CONSTRAINTS ON THE
METRIC DUE TO THE ASYMPTOTIC

FLATNESS CONDITION

1. Constraint on g½1�μν

From the analysis of Sec. III C one can argue that all the

components ofG½1�
μν are 0, which implies□ḡ½1�μν ¼ □g½1�μν ¼ 0,

from Eq. (A4) for μ ≠ ν (off-diagonal terms). Gravitational
waves are the nontrivial solutions to this equation.
However, they do not respect asymptotic flatness. We
are therefore obliged to consider the trivial solution, i.e.,

g½1�μν ¼ 0 for the off-diagonal terms. In order to evaluate the
diagonal terms, we consider the following general form of
the metric:

g½1�μν ¼

0
BBBBB@

f½1�1 0 0 0

0 f½1�2 0 0

0 0 f½1�3 0

0 0 0 f½1�4

1
CCCCCA
: ðB1Þ

Hence,

ḡ½1�00 ¼
f½1�1 þ f½1�2 þ f½1�3 þ f½1�4

2
; ðB2Þ

ḡ½1�11 ¼
f½1�1 þ f½1�2 − f½1�3 − f½1�4

2
; ðB3Þ

ḡ½1�22 ¼
f½1�1 þ f½1�3 − f½1�2 − f½1�4

2
and ðB4Þ

ḡ½1�33 ¼
f½1�1 þ f½1�4 − f½1�2 − f½1�3

2
: ðB5Þ

Using the above equations, we get

□ḡ½1�00 ¼ □
f½1�1 þ f½1�2 þ f½1�3 þ f½1�4

2
¼ 0

⇒ □f½1�1 þ□f½1�2 þ□f½1�3 þ□f½1�4 ¼ 0; ðB6Þ

□ḡ½1�11 ¼ □
f½1�1 þ f½1�2 − f½1�3 − f½1�4

2
¼ 0

⇒ □f½1�1 þ□f½1�2 ¼ □f½1�3 þ□f½1�4 ; ðB7Þ

□ḡ½1�22 ¼ □
f½1�1 þ f½1�3 − f½1�2 − f½1�4

2
¼ 0

⇒ □f½1�1 þ□f½1�3 ¼ □f½1�2 þ□f½1�4 and ðB8Þ

□ḡ½1�33 ¼ □
f½1�1 þ f½1�4 − f½1�2 − f½1�3

2
¼ 0

⇒ □f½1�1 þ□f½1�4 ¼ □f½1�2 þ□f½1�3 : ðB9Þ

Equations (B7)–(B9) imply

□f½1�2 ¼ □f½1�1 ⇒ f½1�2 ¼ f½1�1 þ c1; ðB10Þ

□f½1�3 ¼ □f½1�1 ⇒ f½1�3 ¼ f½1�1 þ c2 and ðB11Þ

□f½1�4 ¼ □f½1�1 ⇒ f½1�4 ¼ f½1�1 þ c3: ðB12Þ

The constants c1, c2, and c3 must be 0, as any one of
them not being equal to 0 would violate the condition of

asymptotic flatness. Hence, Eq. (B6) implies 4□f½1�1 ¼
0 ⇒ f½1�1 ¼ 0 (wave solutions and nonzero constants also
satisfy the equation, but do not respect asymptotic flatness).

Hence, f½1�i ¼ 0 ∀ i, which in turn implies

g½1�μν ¼ 0 ∀ μ; ν: ðB13Þ

2. Constraint on g½2�μν

From the analysis of Sec. III C one can argue that the

off-diagonal components ofG½2�
μν are 0. This implies□ḡ½2�μν ¼

□g½2�μν ¼ 0 (μ ≠ ν), from Eq. (A4). Following the same
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arguments of Appendix B 1, g½2�μν ¼ 0 (μ ≠ ν) is the only
allowed solution to the above equation. Once again, we
consider the following general form of the metric in order
to evaluate the diagonal terms:

g½2�μν ¼

0
BBBBB@

f½2�1 0 0 0

0 f½2�2 0 0

0 0 f½2�3 0

0 0 0 f½2�4

1
CCCCCA
: ðB14Þ

Hence,

ḡ½2�00 ¼
f½2�1 þ f½2�2 þ f½2�3 þ f½2�4

2
; ðB15Þ

ḡ½2�11 ¼
f½2�1 þ f½2�2 − f½2�3 − f½2�4

2
; ðB16Þ

ḡ½2�22 ¼
f½2�1 þ f½2�3 − f½2�2 − f½2�4

2
and ðB17Þ

ḡ½2�33 ¼
f½2�1 þ f½2�4 − f½2�2 − f½2�3

2
: ðB18Þ

At the second order, all the components of the Einstein
tensor are 0, except for the 00 component. This implies

□ḡ½2�00 ¼ □
f½2�1 þ f½2�2 þ f½2�3 þ f½2�4

2

⇒ □f½2�1 þ□f½2�2 þ□f½2�3 þ□f½2�4 ≠ 0; ðB19Þ

□ḡ½2�11 ¼ □
f½2�1 þ f½2�2 − f½2�3 − f½2�4

2

⇒ □f½2�1 þ□f½2�2 ¼ □f½2�3 þ□f½2�4 ; ðB20Þ

□ḡ½2�22 ¼□
f½2�1 þf½2�3 −f½2�2 −f½2�4

2

⇒□f½2�1 þ□f½2�3 ¼□f½2�2 þ□f½2�4 and ðB21Þ

□ḡ½2�33 ¼ □
f½2�1 þ f½2�4 − f½2�2 − f½2�3

2

⇒ □f½2�1 þ□f½2�4 ¼ □f½2�2 þ□f½2�3 : ðB22Þ

Equations (B20)–(B22) imply

□f½2�2 ¼ □f½2�1 ⇒ f½2�2 ¼ f½2�1 ; ðB23Þ

□f½2�3 ¼ □f½2�1 ⇒ f½2�3 ¼ f½2�1 and ðB24Þ

□f½2�4 ¼ □f½2�1 ⇒ f½2�4 ¼ f½2�1 : ðB25Þ

The absence of constants in the above equations follows
from the arguments of Appendix B 1. Using Eqs. (B23)–
(B25), we get f½2�1 ¼ f½2�2 ¼ f½2�3 ¼ f½2�4 ¼ Fðr; tÞ, hence,

g½2�μν ¼

0
BBB@

Fðr; tÞ 0 0 0

0 Fðr; tÞ 0 0

0 0 Fðr; tÞ 0

0 0 0 Fðr; tÞ

1
CCCA: ðB26Þ

APPENDIX C: METRIC AND
CHRISTOFFEL SYMBOLS

The metric defined in Eq. (60) is of the form

gμν ¼

0
BBBBB@

1þ ℏFðr;tÞ
c2 0 0 0

0 −1þ ℏFðr;tÞ
c2 0 0

0 0 −1þ ℏFðr;tÞ
c2 0

0 0 0 −1þ ℏFðr;tÞ
c2

1
CCCCCA

þ
X∞
n¼3

O

�
1

cn

�
ðC1Þ

and gμν¼

0
BBBBB@

1−ℏFðr;tÞ
c2 0 0 0

0 −1−ℏFðr;tÞ
c2 0 0

0 0 −1−ℏFðr;tÞ
c2 0

0 0 0 −1−ℏFðr;tÞ
c2

1
CCCCCA

þ
X∞
n¼3

O

�
1

cn

�
: ðC2Þ

Christoffel connections: For the above metric the nonzero
Christoffel connections are

Γ0
0μ ¼

ℏ∂μFðr; tÞ
2c2

þ
X∞
n¼3

O

�
1

cn

�
;

Γμ
00 ¼

ℏ∂μFðr; tÞ
2c2

þ
X∞
n¼3

O

�
1

cn

�
and

Γμ
μμ ¼ −ℏ∂μFðr; tÞ

2c2
þ
X∞
n¼3

O

�
1

cn

�
; ðC3Þ

where μ runs from 1 to 3 (spatial coordinates only). It is
worth noting that the zeroth and first order terms in ð1cÞ are
absent in Eq. (C3). The other nonzero Christoffel con-
nections are of order 3 and higher in ð1cÞ, which we do not
mention here.
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APPENDIX D: TETRADS

Tetrads were introduced in Sec. II. For the metric
defined by

dS2 ¼
�
1þ ℏFðr; tÞ

c2

�
c2dt2 −

�
1 −

ℏFðr; tÞ
c2

�
dr2; ðD1Þ

the tetrad fields over the entire manifold are given by

êð0Þ ¼
1

c

�
1þ ℏF

c2

�1
2∂t; êð1Þ ¼

�
1 −

ℏF
c2

�1
2∂x;

êð2Þ ¼
�
1 −

ℏF
c2

�1
2∂y and êð3Þ ¼

�
1 −

ℏF
c2

�1
2∂z: ðD2Þ

The transformation matrices [defined in Eq. (13)] that relate
the world components with the anholonomic components
are given by

eðiÞμ ¼

0
BBBBB@

1þ ℏFðr;tÞ
2c2 0 0 0

0 1 − ℏFðr;tÞ
2c2 0 0

0 0 1 − ℏFðr;tÞ
2c2 0

0 0 0 1 − ℏFðr;tÞ
2c2

1
CCCCCA

þ
X∞
n¼3

O

�
1

cn

�
; ðD3Þ

eμðiÞ ¼

0
BBBBB@

1 − ℏFðr;tÞ
2c2 0 0 0

0 1þ ℏFðr;tÞ
2c2 0 0

0 0 1þ ℏFðr;tÞ
2c2 0

0 0 0 1þ ℏFðr;tÞ
2c2

1
CCCCCA

þ
X∞
n¼3

O

�
1

cn

�
; ðD4Þ

eνðkÞ ¼

0
BBBBB@

1þ ℏFðr;tÞ
2c2 0 0 0

0 −1þ ℏFðr;tÞ
2c2 0 0

0 0 −1þ ℏFðr;tÞ
2c2 0

0 0 0 −1þ ℏFðr;tÞ
2c2

1
CCCCCA

þ
X∞
n¼3

O

�
1

cn

�
and ðD5Þ

eνðkÞ ¼

0
BBBBB@

1− ℏFðr;tÞ
2c2 0 0 0

0 −1− ℏFðr;tÞ
2c2 0 0

0 0 −1− ℏFðr;tÞ
2c2 0

0 0 0 −1− ℏFðr;tÞ
2c2

1
CCCCCA

þ
X∞
n¼3

O

�
1

cn

�
: ðD6Þ

APPENDIX E: RIEMANNIAN PART OF THE
SPIN CONNECTIONS (γoðaÞðbÞðcÞ)

Using the relation between Christoffel connections and
tetrad transformation matrices [Eq. (16)], the Riemannian
part of the spin connections [defined by Eq. (14)] is
obtained as follows:

γoð0Þð0Þð0Þ ¼
−ℏ∂0F
2c2

ð1þ ℏF
2c2Þ

ð1− ℏF
2c2Þ

þ
X∞
n¼3

O

�
1

cn

�
;

γoðiÞð0Þð0Þ ¼
�
−ℏ∂iF
2c2

�
ℏF=2c2

ð1þ ℏF
2c2Þ

þ
X∞
n¼5

O

�
1

cn

�
;

γoð0ÞðiÞð0Þ ¼
−ℏ∂iF
2c2

ð1þ ℏF
2c2Þ

ð1− ℏF
2c2Þ

þ
X∞
n¼3

O

�
1

cn

�
;

γoð0Þð0ÞðiÞ ¼
ℏ∂iF
2c2

1

ð1þ ℏF
2c2Þ

;

γoðiÞðiÞðiÞ ¼
ℏ∂iF
2c2

ℏF=2c2

ð1þ ℏF
2c2Þ

þ
X∞
n¼5

O

�
1

cn

�
;

γoðiÞðiÞð0Þ ¼ γoðiÞð0ÞðiÞ ¼þ
X∞
n¼3

O

�
1

cn

�
;

γoð0ÞðiÞðiÞ ¼
−ℏ∂0F
2c2

þ
X∞
n¼3

O

�
1

cn

�
;

γoð0ÞðiÞðjÞ ¼ γoi0j¼ γoij0¼þ
X∞
n¼3

O

�
1

cn

�
;

γoðiÞðjÞðjÞ ¼
−ℏ∂0F
2c2

ð1− ℏF
2c2Þ

ð1þ ℏF
2c2Þ

þ
X∞
n¼3

O

�
1

cn

�

and γoðiÞðjÞðkÞ ¼ γoðiÞðjÞðiÞ ¼ γoðjÞðjÞðiÞ ¼þ
X∞
n¼3

O

�
1

cn

�
: ðE1Þ

The torsional part of the spin connections [defined by
Eq. (14)] manifests itself as a nonlinear term in the Hehl-
Datta equation. This term, being completely expressible in
terms of the Dirac spinor, is evaluated using the spinor
ansatz while deriving the nonrelativistic limit of the ECD
system of equations.
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APPENDIX F: EINSTEIN TENSOR

In this section, we aim to evaluate the Einstein tensor.

G½1�
μν has already been shown to be 0. Since g½1�μν is 0, f½g½1�μν�

[defined in Eq. (A5)] is also 0. Using g½2�μν (defined in

Appendix B 2), G½2�
μν [Eq. (A5)] is evaluated as follows:

G½2�
μν ¼ −

1

2
□ḡ½2�μν where

ḡ½2�μν ¼ g½2�μν −
1

2
ημνðηαβhαβÞ; now ðF1Þ

ημνhμν ¼

0
BBB@
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA

0
BBBBB@

ℏFðr;tÞ
c2 0 0 0

0
ℏFðr;tÞ

c2 0 0

0 0
ℏFðr;tÞ

c2 0

0 0 0
ℏFðr;tÞ

c2

1
CCCCCA

¼−2ℏFðr; tÞ
c2

; ðF2Þ

thus Gμν ¼ 0 for μ ≠ ν. The diagonal components are
given by

G00 ¼ −
1

2
□ḡ½2�00 ¼ −

ℏ
c2

□Fðr; tÞ

¼
�
−
ℏ∂2

t Fðr; tÞ
c4

þ ℏ∇2Fðr; tÞ
c2

�
ðF3Þ

and Gαα ¼ 0 because ḡ½2�αα ¼ 0 for α∈ ð1;2;3Þ: ðF4Þ

Thus,

Gμν ¼
ℏ
c2

0
BBB@

∇2Fðr; tÞ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCCAþ

X∞
n¼3

O
�
1

cn

�
: ðF5Þ

APPENDIX G: ANALYSIS OF THE
COMPONENTS OF THE
METRIC EM TENSOR

This section contains the calculations and proofs for
some of the results used in Sec. III C.

1. Analysis of kT0μ

After excluding the terms containing the spin coeffi-
cients γμðiÞðjÞ, kT0μ [Eq. (53)] is given by

kT0μ ¼
2iπGℏ
c4

½cψ̄γ0∂μψ − cψ̄γμ∂0ψ

− c∂μψ̄γ
0ψ þ c∂0ψ̄γ

μψ � ðG1Þ

¼ −2iπGℏ
c3

�
1þ

X∞
n¼1

� ffiffiffi
ℏ

p

c

�
n
e0½n�ð0Þ

�

× ½ψ̄γð0Þ∂μψ − ∂μψ̄γ
ð0Þψ �

þ 2iπGℏ
c4

�
1þ

X∞
n¼1

� ffiffiffi
ℏ

p

c

�
n
eμ½n�ðaÞ

�

× ½∂tψ̄γ
ðaÞψ − ψ̄γðaÞ∂tψ �: ðG2Þ

The first term on the right-hand side of Eq. (G2) is

¼ 2iπGℏ
c3

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
ða†n1∂μan2 −∂μa

†
n1an2Þ ðn¼ n1þn2Þ

¼
X∞
n¼3

O

�
1

cn

�
; ðG3Þ

while the second term is

¼2iπG
c2

��X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
a†n

�
αðaÞ

�X∞
m¼0

� ffiffiffi
ℏ

p

c

�
m
½i _Samþ _am−2�

�

þ
�X∞

n¼0

� ffiffiffi
ℏ

p

c

�
n
½i _Sa†n− _a†n−2�

�
αðaÞ

�X∞
n¼0

� ffiffiffi
ℏ

p

c

�
m
am

��

þ
X∞
n¼3

O

�
1

cn

�

¼4πGm
c2

ða†0αðaÞa0Þþ
X∞
n¼3

O

�
1

cn

�

¼4πGm
c2

��
a>0 0

�†� 0 σðaÞ

σðaÞ 0

��
a>0
0

��
þ
X∞
n¼3

O

�
1

cn

�

¼
X∞
n¼3

O

�
1

cn

�
: ðG4Þ

H ence, there is no contribution at the second order.

2. Analysis of kTμν

After excluding the terms containing the spin coeffi-
cients γμðiÞðjÞ, kTμν [Eq. (55)] is given by
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kTμν ¼
2iπGℏ
c3

½−ψ̄γμ∂νψ − ψ̄γν∂μψ þ ∂νψ̄γ
μψ þ ∂μψ̄γ

νψ �

¼ 2iπGℏ
c3

�
1þ

X∞
n¼1

� ffiffiffi
ℏ

p

c

�
n
eμ½n�ðaÞ

�
½ψ†αðaÞ∂νψ − ∂νψ

†αðaÞψ � þ 2iπGℏ
c3

�
1þ

X∞
n¼1

� ffiffiffi
ℏ

p

c

�
n
eν½n�ðbÞ

�
½∂μψ

†αðbÞψ −ψ†αðbÞ∂μψ �

¼ 2iπGℏ
c3

X∞
n¼0

� ffiffiffi
ℏ

p

c

�
n
ðeμðaÞa†n1αðaÞ∂νan2 − eμðaÞ∂νa

†
n1α

ðaÞ þ eνðbÞa
†
n1α

ðbÞ∂μan2 − eνðbÞ∂μa
†
n1α

ðbÞan2Þ

¼
X∞
n¼3

O

�
1

cn

�
: ðG5Þ

Hence, there is no contribution at the second order.

APPENDIX H: GENERIC COMPONENTS OF Tμν

Using the spin connections of Appendix E, we analyze the metric energy-momentum tensor [Eq. (23)], whose
components are given below.

Tμν¼
iℏc
4

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

2ψ̄γ0ð∂0ψ ψ̄γ0∂1ψþψ̄γ1ð∂0ψ ψ̄γ0∂2ψþψ̄γ2ð∂0ψ ψ̄γ0∂3ψþψ̄γ3ð∂0ψ

þ1
4
½γ00αγ0γαþγ0α0γ

αγ0�ψÞ þ1
4
½γ00αγ0γαþγ0α0γ

αγ0�ψÞ þ1
4
½γ00αγ0γαþγ0α0γ

αγ0�ψÞ þ1
4
½γ00αγ0γαþγ0α0γ

αγ0�ψÞ
−
	
∂0ψ̄þ1

4
½γ00αγ0γα −∂1ψ̄γ0ψ−

	
∂0ψ̄þ1

4
½γ00αγ0γα −∂2ψ̄γ0ψ−

	
∂0ψ̄þ1

4
½γ00αγ0γα −∂3ψ̄γ0ψ−

	
∂0ψ̄þ1

4
½γ00αγ0γα

þγ0α0γ
αγ0�ψ̄



2γ0ψ þγ0α0γ

αγ0�ψ̄


γ1ψ þγ0α0γ

αγ0�ψ̄


γ2ψ þγ0α0γ

αγ0�ψ̄


γ3ψ

ψ̄γ1ð∂0ψ

þ1
4
½γ00αγ0γαþγ0α0γ

αγ0�ψÞ 2ðψ̄γ1∂1ψ−∂1 ¯ψγ1ψÞ ψ̄γ1∂2ψþψ̄γ2∂1ψ ψ̄γ1∂3ψþψ̄γ3∂1ψ

þψ̄γ0∂1ψ−
	
∂0ψ̄þ1

4
½γ00αγ0γi −∂2ψ̄γ1ψ−∂1ψ̄γ2ψ −∂3ψ̄γ1ψ−∂1ψ̄γ3ψ

þγ0α0γ
iγ0�ψ̄



γ1ψ−∂1ψ̄γ0ψ

ψ̄γ2ð∂0ψ

þ1
4
½γ00αγ0γαþγ0α0γ

αγ0�ψÞ ψ̄γ2∂1ψþψ̄γ1∂2ψ 2ðψ̄γ2∂2ψ−∂2 ¯ψγ2ψÞ ψ̄γ2∂3ψþψ̄γ3∂2ψ

þψ̄γ0∂2ψ−
	
∂0ψ̄þ1

4
½γ00αγ0γi −∂1ψ̄γ2ψ−∂2ψ̄γ1ψ −∂3ψ̄γ2ψ−∂2ψ̄γ3ψ

þγ0α0γ
iγ0�ψ̄



γ2ψ−∂2ψ̄γ0ψ

ψ̄γ3ð∂0ψ

þ1
4
½γ00αγ0γαþγ0α0γ

αγ0�ψÞ ψ̄γ3∂1ψþψ̄γ1∂3ψ ψ̄γ3∂2ψþψ̄γ2∂3ψ 2ðψ̄γ3∂3ψ−∂3 ¯ψγ3ψÞ
þψ̄γ0∂3ψ−

	
∂0ψ̄þ1

4
½γ00αγ0γi −∂1ψ̄γ3ψ−∂3ψ̄γ1ψ −∂2ψ̄γ3ψ−∂3ψ̄γ2ψ

þγ0α0γ
iγ0�ψ̄



γ3ψ−∂3ψ̄γ0ψ

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ðH1Þ
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