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Until now, the critical behavior of Lifshitz black holes, in an extended P − v space, has not been studied,
because it is impossible to find an analytical equation of state, P ¼ Pðv; TÞ, for an arbitrary Lifshitz
exponent z. In this paper, we adopt a new approach toward thermodynamic phase space and successfully
explore the critical behavior of (nþ 1)-dimensional Lifshitz dilaton black holes. The most important
advantage of this approach is that we keep the cosmological constant as a constant without needing to vary
it. For this purpose, we write down the equation of state asQs ¼ QsðT;ΨÞ, whereΨ ¼ ð∂M=∂QsÞS;P is the
conjugate of Qs, and construct a Smarr relation based on this new phase space asM ¼ MðS;Qs; PÞ, where
s ¼ 2p=ð2p − 1Þ, with p the power of the power-law Maxwell Lagrangian. We justify such a choice
mathematically and show that with this new phase space, the system admits the critical behavior and
resembles the van der Waals fluid system when the cosmological constant (pressure) is treated as a fixed
parameter, while the charge of the system varies. We obtain the Gibbs free energy of the system and find a
swallowtail shape in Gibbs diagrams, which represents the first-order phase transition. Finally, we calculate
the critical exponents and show that although thermodynamic quantities depend on the metric parameters
such as z, p, and n, the critical exponents are the same as the van der Waals fluid-gas system. This
alternative viewpoint of the phase space of a Lifshitz dilaton black hole can be understood easily since one
can imagine such a change for a given single black hole, i.e., acquiring charge, which induces the phase
transition. Our results further support the viewpoint suggested in [A. Dehyadegari, A. Sheykhi, and
A. Montakhab, Phys. Lett. B 768, 235 (2017)].
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I. INTRODUCTION

Historically, Maldacena was the first who suggested,
two decades ago, the correspondence between gravity in
an anti–de Sitter (AdS) spacetime and the conformal
field theory (CFT) living on the boundary of spacetime,
known as AdS=CFT correspondence [1]. According to
Maldacena’s conjecture, the effects of string theory in a
d-dimensional AdSnþ1 × Sd−n−1 spacetime can appear in
the form of a field theory on an n-dimensional r-constant
brane which is the boundary of an AdSnþ1 spacetime. This
idea has attracted a lot of enthusiasm and has been
investigated from various points of view [2]. The metric
of the AdS spacetime is given by

ds2 ¼ −
r2

l2
dt2 þ l2

r2
dr2 þ r2

Xn−1
i¼1

dx2i ; ð1Þ

which is invariant under an isotropic conformal trans-
formation as follows:

t → λt; xi → λxi; r → λ−1r: ð2Þ

Here, we further propose the gravitational dual description
of a class of critical phenomena exhibiting unconventional
scaling of the following form, which is essential for
generalized gauge-gravity duality:

t → λzt; xi → λxi; r → λ−1r; ð3Þ

where z is a dynamical critical exponent and is restricted as
z > 1. This parameter shows the degrees of anisotropy
between space and time. The Lifshitz spacetime was first
introduced in [3,4] as

ds2 ¼ −
r2z

l2z
dt2 þ l2dr2

r2
þ r2

Xn−1
i¼1

dx2i : ð4Þ

The Lifshitz spacetime is not a vacuum solution of
Einstein gravity and so needs a matter source. Usually a
massive gauge field plays the role of this matter source,
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but it is nearly impossible to obtain an analytic solution
for arbitrary z in such models. As shown in Ref. [5],
considering a dilaton field, instead of a massive gauge
field with more than one electromagnetic field, can
lead to exact analytical solutions in Lifshitz spacetime
(see also [6]). Another motivation is that string theory
in its low energy limit reduces to Einstein gravity with a
scalar dilaton field coupled to gravity and other
fields [7].
On the other hand, studies of the critical behavior of

black holes have received a great deal of attention in a
wide range of gravity theories. For example, the critical
behavior of charged AdS black holes has been studied
in [8] and the author completed the analogy between
Reissner-Nordström-AdS black holes with the van der
Waals liquid-gas system, with the same critical expo-
nents. The key assumption is to enlarge the thermody-
namic phase space to include the cosmological constant
as a thermodynamic pressure and its conjugate quantity
as a thermodynamic volume [9–14]. When the gauge
field is the Born-Infeld nonlinear electrodynamics, one
needs a more extended phase space to introduce a new
thermodynamic quantity conjugate to the Born-Infeld
parameter which is necessary for the consistency of
both the first law of thermodynamics and the corre-
sponding Smarr relation [15]. Treating the cosmological
constant as a thermodynamic pressure, thermodynamics
and the P − v criticality of black holes in an extended
phase space in the presence of power Maxwell [16] and
exponential nonlinear electrodynamics [17] have been
explored. The studies were also generalized to other
gravity theories. In this regard, the phase structure of
asymptotically AdS black holes with higher curvature

corrections such as Gauss-Bonnet [18,19] and Lovelock
gravity [20] have also been investigated. The studies
were also extended to the rotating black holes, where
the phase transition and critical behavior of Myers-
Perry black holes have been investigated [21]. Other
studies on the critical behavior of black hole spacetimes
in an extended phase space have been carried out in
[22–26].
The critical behavior of the Einstein-Maxwell dilaton

black holes has been studied in [27]. When the gauge field
is in the form of a Born-Infeld [28] and power Maxwell
[29] field, the critical behavior of (nþ 1)-dimensional
dilaton black holes in an extended phase space has been
investigated. Taking into account the dilaton field in the
presence of logarithmic and exponential forms of nonlinear
electrodynamics, and considering the cosmological con-
stant and nonlinear parameter as thermodynamic quantities
which can vary, it was shown that there is indeed a complete
analogy between the nonlinear dilaton black holes with a
van der Waals liquid-gas system [30]. In all the studies
mentioned above, one assumes the charge of the black hole
as an external fixed parameter and treats the cosmological
constant as the pressure of the system, which can vary.
In the present work, we would like to investigate the

critical behavior of Lifshitz black holes in Einstein-dilaton
gravity in the presence of a power-law Maxwell field.
It is worthwhile to mention that the (nþ 1)-dimensional
Lagrangian in power Maxwell theory is conformally
invariant provided p ¼ ðnþ 1Þ=4, where p is the power
of the Lagrangian. Let us first plot a three-dimensional
diagram for the equation of state of a Lifshitz black hole
to understand the phase behavior of this system and
show its analogy with a van der Waals liquid-gas system

FIG. 1. The 3D diagrams of equations of state for a van der Waals fluid system and Lifshitz black holes. Comparing two diagrams
indicates that these systems have a similar phase transition.
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(see Fig. 1). A close look at the temperature expression of
Lifshitz dilaton black holes [see [31] and Eq. (27) of the
present paper] shows that it is nearly impossible to solve
this equation for P (or more precisely for l). Therefore, we
cannot have an analytical equation of state, P ¼ Pðv; TÞ,
to investigate the critical behavior or calculate critical
quantities of Lifshitz black holes. It is important to note
that as one can see from the three-dimensional diagram in
Fig. 1, there is indeed a P − v criticality for the Lifshitz
dilaton black holes, similar to the van der Waals liquid-gas
system. This implies that one may use the numerical
calculations to investigate P − v criticality of this system
and obtain the critical quantities in an extended phase
space, at least approximately. However, in this work, we
would like to consider a more fascinating and straightfor-
ward way to investigate the critical behavior of this
general type of black hole, which includes dilaton, power
Maxwell field, and Lifshitz effects. In particular, we shall
show that the system admits a critical behavior similar to
the van der Waals fluid, without needing to extend the
phase space.
Another way to investigate the critical behavior of the

black holes is to use the method of Refs. [32,33], but as
shown in [34], such a view of thermodynamic conjugate
variables (Q and Φ ¼ Q=rþ) which are not mathemati-
cally independent can lead to physically irrelevant quan-
tities such as ð∂Q=∂ΦÞT , which is supposed to be a
thermodynamic response function, but mathematically ill
defined.
To address this problem, an alternative viewpoint toward

the thermodynamic phase space of black holes was
developed in [34] by treating the cosmological constant
as a fixed parameter and considering the charge of the black
hole as a thermodynamic variable [35,36]. The cosmologi-
cal constant is assumed as a constant related to the
background of AdS geometry in general relativity or the
zero point energy of the background of spacetime in field
theory. So, from a physical standpoint, it is difficult to
consider the cosmological constant as a pressure of the
black hole which can take an arbitrary value. It seems more
physical to consider the variation of charge Q of a black
hole instead of the cosmological constant, because the
charge of the black hole is really a natural external variable
which can vary by absorbing or emitting charged particles.
It was argued that, with a fixed cosmological constant, the
critical behavior indeed occurs in the Q2 − Ψ plane, where
Ψ ¼ 1=2rþ is the conjugate ofQ2, and thus the equation of
state is written as Q2 ¼ Q2ðT;ΨÞ. We find out that in the
case of Lifshitz dilaton black holes, the system admits a
critical behavior provided we take the electrodynamics in
the form of a power Maxwell field and considering Qs as
a thermodynamic variable with Ψ ¼ ð∂M=∂QsÞS;P as its
conjugate, where s ¼ 2p=ð2p − 1Þ. In this case we can
define a new response function which naturally leads to a
physically relevant quantity. Thus, the equation of state is

written in the form of Qs ¼ QsðT;ΨÞ and a Smarr relation
based on this new phase space as M ¼ MðS;Qs; PÞ.
Clearly, for p ¼ 1, the power Maxwell field reduces to
the standard Maxwell field and Qs → Q2. Following [34],
in this approach we keep the cosmological constant (pres-
sure) as a fixed quantity, while the charge of the system can
vary.
This paper is outlined as follows. In the next section, we

present the action and the basic field equations of Lifshitz
dilaton black holes, and we review thermodynamic proper-
ties of this system. In Sec. III A, we study the phase
structure of the solution and present the modified Smarr
relation. In Sec. III B, we obtain the equation of state and
study the critical behavior of the solutions and compare
them with a van der Waals fluid system. We investigate the
Gibbs free energy and the critical exponents of the system
in Secs. III C and III D, respectively. The last section is
devoted to a summary and conclusion.

II. THERMODYNAMICS OF LIFSHITZ
DILATON BLACK HOLES

In this section we are going to review the solutions of
charged Lifshitz black holes with a power Maxwell field
[31], with an emphasis on their thermodynamic properties.
The (nþ 1)-dimensional action of Einstein-dilaton gravity
in the presence of a power Maxwell electromagnetic and
two linear Maxwell fields can be written as

S ¼ −
1

16π

Z
M

dnþ1x
ffiffiffiffiffiffi
−g

p �
R −

4

n − 1
ð∇ΦÞ2

− 2Λþ ð−e−4=ðn−1Þλ1ΦFÞp −
X3
i¼2

e−4=ðn−1ÞλiΦHi

�
;

ð5Þ

whereR is the Ricci scalar on manifoldM,Φ is the dilaton
field, and λ1 and λi are constants. In Eq. (5) F ¼ FμνFμν

and Hi are the Maxwell invariants of electromagnetic
fields, where Fμν ¼ ∂ ½μAν� and ðHiÞμν ¼ ∂ ½μðBiÞν�, with
Aμ and ðBiÞμ the electromagnetic potentials. Varying the
action (5) with respect to the metric gμν, the dilaton field Φ,
with electromagnetic potentials Aμ and ðBiÞμ, leads to the
following field equations [31]:

Rμν ¼
gμν
n − 1

�
2Λþ ð2p − 1Þð−Fe−4λ1Φ=ðn−1ÞÞp

−
X3
i¼2

Hie−4λiΦ=ðn−1Þ
�
þ 4

n − 1
∂μΦ∂νΦ

þ 2pe−4λ1pΦ=ðn−1Þð−FÞp−1FμλFν
λ

þ 2
X3
i¼2

e−4λiΦ=ðn−1ÞðHiÞμλðHiÞνλ; ð6Þ
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∇2Φ −
pλ1
2

e−4λ1pΦ=ðn−1Þð−FÞp

þ
X3
i¼2

λi
2
e−4λiΦ=ðn−1ÞH ¼ 0; ð7Þ

▿μðe−4λ1pΦ=ðn−1Þð−FÞp−1FμνÞ ¼ 0; ð8Þ

▿μðe−4λiΦ=ðn−1ÞðHiÞμνÞ ¼ 0: ð9Þ

We assume the line element of the higher-dimensional
asymptotic Lifshitz spacetime has the following form [31]:

ds2 ¼ −
r2zfðrÞ
l2z

dt2 þ l2dr2

r2fðrÞ þ r2dΩ2
n−1; ð10Þ

where dΩ2
n−1 is an (n − 1)-dimensional hypersurface with

constant curvature ðn − 1Þðn − 2Þk and volume ωn−1.
Following the method of [31], one can find the solutions
of the field equations (6)–(9) as

fðrÞ ¼ 1 −
m

rn−1þz þ
kl2ðn − 2Þ2

ðzþ n − 3Þ2r2 þ
q2p

rΓþzþn−1 ; ð11Þ

ΦðrÞ ¼ ðn − 1Þ ffiffiffiffiffiffiffiffiffiffi
z − 1

p

2
ln

�
r
b

�
; ð12Þ

ðA1Þt ¼ −
q1b2ðz−1Þ

ΓrΓ
; ð13Þ

ðA2Þt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z − 1

2ðnþ z − 1Þ

s
rnþz−1

lzbn−1
; ð14Þ

ðA3Þt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðn − 1Þðn − 2Þðz − 1Þp

rzþn−3ffiffiffi
2

p ðzþ n − 3Þ3=2lz−1bn−2 ; ð15Þ

where

Γ ¼ z − 2þ ðn − 1Þ=ð2p − 1Þ; ð16Þ

q2p ¼ ð2p − 1Þb2ðz−1Þ
ðn − 1Þl−2pðz−1Þ−2Γ ð2q21Þp; ð17Þ

Λ ¼ −
ðzþ n − 1Þðzþ n − 2Þ

2l2
: ð18Þ

It was argued in [31] that p and z are restricted as
follows:

for p < 1=2; z − 1 > ðn − 2pÞ=ð1 − 2pÞ;
for 1=2 < p ≤ n=2; all zð≥ 1Þ values are allowed;

for p > n=2; z − 1 > ð2p − nÞ=ð2p − 1Þ: ð19Þ

Using the modified Brown and Yorkformalism [37], one
can calculate the mass of the solution per unit volume ωn−1
as [31]

M ¼ ðn − 1Þm
16πlzþ1

; ð20Þ

where the mass parameter m can be written in term of the
horizon radius rþ by using the fact that fðrþÞ ¼ 0. We find

mðrþÞ ¼ rzþn−1
þ þ kl2ðn − 2Þ2rzþn−3

þ
ðzþ n − 3Þ2 þ q2p

rΓþ
: ð21Þ

One can also calculate the charge of the black hole by
applying the Gauss law

Q ¼ 1

4π

Z
rn−1e−4λ1pΦ=ðn−1Þð−FÞp−1FμνnμuνdΩ; ð22Þ

where nμ and uν are the unit spacelike and timelike normals
to the hypersurface of radius r given as

nμ ¼ 1ffiffiffiffiffiffiffiffi−gtt
p dt ¼ lz

rz
ffiffiffiffiffiffiffiffiffi
fðrÞp dt;

uν ¼ 1ffiffiffiffiffiffi
grr

p dr ¼ r
ffiffiffiffiffiffiffiffiffi
fðrÞp
l

dr:

Using (22), we obtain the charge per unit volume ωn−1 as

Q ¼ 2p−1ðq1lz−1Þ2p−1
4π

: ð23Þ

The electric potential U, measured at infinity with respect
to the horizon, is defined by

U ¼ Aμχ
μjr→∞ − Aμχ

μjr¼rþ
; ð24Þ

where χ ¼ p∂t is the null generator of the horizon. Using
(13), we can obtain the electric potential

U ¼ pq1b2ðz−1Þ

ΓrΓþ
: ð25Þ

The entropy of the black holes can be calculated by using
the area law of the entropy which is applied to almost all
kinds of black holes in Einstein gravity including dilaton
black holes. Thus, the entropy of our solutions per unit
volume ωn−1 is

S ¼ rn−1þ
4

: ð26Þ

The Hawking temperature can also be obtained as

Tþ ¼ rzþ1
þ f0ðrþÞ
4πlzþ1

¼ 1

4π

�ðn− 1þ zÞrzþ
lzþ1

þ kðn− 2Þ2rz−2þ
lz−1ðzþ n− 3Þ−

Γq2p

lzþ1rΓþn−1
þ

�
:

ð27Þ
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As one can see from expression (27), it is nearly impossible
to solve this equation for P (or more precisely for l) and
write an analytical equation of state, P ¼ Pðv; TÞ, for an
arbitrary Lifshitz exponent z. This implies that, for the
Lifshitz dilaton black holes, one cannot investigate the
critical behavior of the system through an extended P − v
phase space by treating the cosmological constant (pressure)
as a thermodynamic variable. However, as we shall see in the
next section, it is quite possible to investigate the critical
behavior of this system through a new Qs −Ψ phase space
and show its similarity with a van der Waals fluid system.

III. CRITICAL BEHAVIOR OF LIFSHITZ
DILATON BLACK HOLES

A. Phase structure

It is now generally accepted that charged black holes in
AdS spaces allow critical behavior similar to the van der
Waals fluid system, provided one treats the cosmological
constant as a thermodynamic variable (pressure) in an
extended phase space [8]. Also it has been shown in [34]
that there is a deeper connection between charged AdS
black holes and a van der Waals fluid system. Indeed, it was
argued that similar behavior can be found without extend-
ing the phase space [34] by keeping the cosmological
constant as a fixed parameter. The key assumption in
this picture is to treat the square of the charge of the black
hole, Q2, as a thermodynamic variable instead of charge Q
[34]. Also, the equation of state has been written as
Q2 ¼ Q2ðT;ΨÞ, where Ψ ¼ 1=v (conjugate of Q2) is the
inverse of the specific volume. With this new picture, the
authors completed the analogy of charged AdS black holes
as a van der Waals fluid system with exactly the same
critical exponents. In this section, we would like to consider
Lifshitz dilaton black holes with a power-lawMaxwell field
and investigate their critical behavior, as well as an analogy
with a van der Waals fluid for this system.
The usual first law of thermodynamics in an extended

phase space is in the form of

dM ¼ TdSþ VdPþUdQ: ð28Þ
From this point of view, the usual Smarr relation which
was obtained from thermodynamic variables (25)–(27) and
mass (20) can be written as

M ¼ n − 1

zþ n − 3
TSþ −2

zþ n − 3
VP

þ 2p − 1

2p

�
1þ Γ

zþ n − 3

�
UQ; ð29Þ

where

P ¼ nðn − 1Þrz−1þ
16πlzþ1

; V ¼
Z

4Sdrþ ¼ rnþωn−1

n
: ð30Þ

The definition of pressure and volume are chosen such
that they can satisfy the Smarr formula and reduce to the
definitions in [8,27–30] in limiting cases. One may
define P ¼ −Λ=8π such as [38,39], but in this way the
volume should be redefined, too. It was shown in [34]
that by replacing the term UdQ in the first law with the
term ΨdQ2, the system allows critical behavior similar
to the van der Waals fluid system. First of all, let us
review the motivation of this selection. The well-known
thermodynamic quantities of AdS black holes are given
as [8,34]

M ¼ rþ
2
þ Q2

2rþ
þ r3þ
2l2

; ð31Þ

T ¼ 1

4πrþ

�
1þ 3r2þ

l2
−
Q2

r2þ

�
; ð32Þ

U ¼ Q
rþ

⇒ QU ¼ Q2

rþ
; ð33Þ

and the usual Smarr formula is [8,34]

M ¼ 2ðTS − VPÞ þQU: ð34Þ

It is clear that M, T, and the term (QU) in the Smarr
formula include terms proportional to the square of the
charge of a black hole Q2 (not the black hole charge Q).
Therefore, when pressure (Λ) is a fixed parameter, Q2 is
the best choice as a new variable [34] and one may
replace UdQ with Ψd2Q, where Ψ ¼ 1=2rþ is the
conjugate of Q2 [34]. Therefore, inspired by the
expression (32), one may write the equation of state
as [34]

Q2ðT;ΨÞ ¼ r2þ þ 3r4þ
l2

− 4πr3þT: ð35Þ

As mentioned before, in the case of constant l (or Λ),
the equation of state (35) leads to a critical behavior
similar to a van der Waals fluid system [34]. Now, we
are going to employ this approach for charged Lifshitz
black holes with a power Maxwell field. Let us write
thermodynamic quantities in terms of Q (the charge of a
black hole) instead of q (the charge parameter). It is a
matter of calculation to show by using Eqs. (17) and
(23) that the mass (20), temperature (27), and electric
potential (25) are the same as

M ¼ ðn − 1Þωn−1

16πlzþ1

�
rzþn−1
þ þ kl2ðn − 2Þ2rzþn−3

þ
ðzþ n − 3Þ2

þ ð2p − 1Þb2z−2l2πsQs

ðn − 1ÞΓ2−5s
2 ωs

n−1r
Γþ

�
ð36Þ
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Tþ ¼ 1

4π

�ðn − 1þ zÞrzþ
lzþ1

þ kðn − 2Þ2rz−2þ
lz−1ðzþ n − 3Þ

−
ð2p − 1Þb2z−225s

2 πsQs

ðn − 1Þlz−1ωs
n−1r

Γþn−1
þ

�
ð37Þ

U ¼ pb2ðz−1Þ

Γlz−1rΓþ

�
πQ

23−pw

�ðs−1Þ

⇒ QU ¼ pb2ðz−1Þ

Γlz−1rΓþ

�
π

23−pw

�ðs−1Þ
Qs; ð38Þ

where

s ¼ 2p=ð2p − 1Þ: ð39Þ

It is clear that the charge of a black hole appears as Qs

in the above equations. This motivates us to choose the
new thermodynamic variable as Qs, which can simplify
all the calculations. Also, from Eq. (37) we see that any
other choice except Qs makes the equation of state so
complicated that it cannot be solved analytically to
investigate its critical behavior and critical quantities,
while selecting Qs as a new variable creates a simple
and solvable equation of state. Fortunately, in the limit
of p ¼ z ¼ 1 and n ¼ 3, Qs → Q2; i.e., our result
reduces to that of [34]. As we will show in the next
sections, the system allows critical behavior similar to
the van der Waals fluid with a fixed cosmological
constant by replacing UdQ with ΨdQs. Thus, we write
down the first law in the form

dM ¼ TdSþ VdPþΨdQs; ð40Þ

where T ¼ ð∂M=∂SÞP;Qs , V ¼ ð∂M=∂PÞS;Qs , and the
conjugate of Qs is

Ψ ¼
�∂M
∂Qs

�
S;P

¼ ð2p − 1Þω 1
2p−1bð2z−2Þπ

1
2p−1

16Γlz−1r
η

2p−1
; ð41Þ

while η ¼ 2pzþ n − 4p − zþ 1. When p ¼ z ¼ 1 and
in three dimensions, the above definition for Ψ reduces
to Ψ ¼ 1=ð2rþÞ [34]. In this new picture, we can write
the Smarr formula for the charged Lifshitz dilaton black
hole as

M ¼ n − 1

zþ n − 3
TSþ −2

zþ n − 3
VP

þ 2p − 1

2p

�
1þ Γ

zþ n − 3

�
ΨQs: ð42Þ

It is worth noting that we have replaced the usual ΦdQ
term in the first law with ΨdQs. The extended phase
space associated with P ¼ −Λ=ð8πÞ is still the same.

Using (38) and (41), straightforward calculations show
QU ¼ ΨQs and so the Smarr equations (29) and (42)
are the same.

B. Equation of state

Using Eq. (41) and treating pressure or more precisely l
as a fixed parameter, Eq. (27) can be written as

Qs ¼ ðzþ n − 1ÞY2β

Xlzþ1
Ψ

−2ð2p−1Þβ
η þ kðn − 2Þ2Y2δ

ðzþ n − 3ÞXlz−1Ψ
−2ð2p−1Þδ

η

−
4πT
X

Y
α

2p−1Ψ−α
η; ð43Þ

where

α ¼ 2npþ 2pz − 6p − zþ 2;

β ¼ npþ 2pz − 3p − zþ 1

2p − 1
;

δ ¼ npþ 2pz − 5p − zþ 2

2p − 1
;

η ¼ 2pzþ n − 4p − zþ 1; ð44Þ

and

X ¼ ð2p − 1Þb2z−2πs25s
2

lz−1wsðn − 1Þ ;

Y ¼
�ð2p − 1Þb2ðz−1Þ25s

2 π
s
2p

16lz−1Γw
s
2p

�2p−1
η

: ð45Þ

In order to compare the critical behavior of the system with
a van der Waals gas, one may plot isotherm diagrams
Qs −Ψ, which are displayed in Figs. 2–4. As we know, a
second-order phase transition occurs in the point with the
following conditions:

∂Qs

∂Ψ
����
Tc

¼ 0;
∂2Qs

∂Ψ2

����
Tc

¼ 0: ð46Þ

Solving Eqs. (46) yields the coordinates of the critical
point as

Ψc ¼
�

kðn − 2Þ2δl2ð−zþ 2Þ
y2ðzþ n − 3Þβðzþ n − 1Þz

� −η
2ð2p−1Þ

; ð47Þ

Tc ¼
ð2p−1Þðn−2Þz

lπα

�ðzþn−1Þβ
−zþ2

�
1−z

2

�
kδ

zðzþn−3Þ
�z

2

;

ð48Þ
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Qs
c ¼

wsð−zþ 2Þð2p − 1Þb−2zþ2ðn − 1Þ
2

5s
2απs

×

�
l2ð−zþ 2Þð2p − 1Þδ

zðzþ n − 1Þ
�

δ

×

�
kðn − 2Þ2

ðzþ n − 3Þð2p − 1Þβ
�

β

: ð49Þ

Following the new definition ρc ¼ QsTcΨc [34], the
energy density of a Lifshitz black hole at the critical
point is

ρc ¼
ð2p − 1Þ2wðn − 1Þðn − 2Þnþ2z−1

l3−nπ2Γα2
ðzþ n − 1Þ5−nþ2z

2

×

�ð−zþ 2Þδ
zβ

�n−3þ2z
2

�
k

zþ n − 3

�n−1þ2z
2

: ð50Þ

Since ρc should be a positive quantity, we can determine the
range of the parameters which satisfy this condition. In the
general case it is difficult to calculate it, but using diagram
(Fig. 5), we show that ρc is positive provided Eq. (19)
is satisfied. For n ¼ 3, ρc is independent of the value of l.
As we expect when n ¼ 3, z ¼ 1 ¼ p, our results reduce to
those of Reissner-Nordström-AdS black holes [34]:

Ψc ¼
ffiffiffiffiffiffi
3

2l2

r
; Q2

c ¼
l2

36
;

Tc ¼
1

πl

ffiffiffi
2

3

r
; ρ ¼ 1

36π
: ð51Þ

To see how the critical quantities change with p and z, one
may plot Figs. 6–8. It is clear that in the limit of z ¼ 2, ρc
and Qs

c are equal to zero, while Ψc goes to infinity. Indeed,
Tc has a minimum value at z ¼ 2, while for z > 2, Tc may
have an imaginary value.

C. Gibbs free energy

Gibbs free energy is one of the most important items
which can help us to study the phase transition of a

FIG. 4. Qs − Ψ diagram of Lifshitz black holes for b ¼ 1,
n ¼ 3, q ¼ 1, l ¼ 1, p ¼ 1.2, and z ¼ 1.4.

FIG. 3. Qs − Ψ diagram of Lifshitz black holes for b ¼ 1,
n ¼ 3, q ¼ 1, l ¼ 1, p ¼ 1.2, and z ¼ 1.

FIG. 2. Qs − Ψ diagram of Lifshitz black holes for b ¼ 1,
n ¼ 3, q ¼ 1, l ¼ 1, p ¼ 1, and z ¼ 0.6.
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thermodynamical system. As we know, there is no phase
transition when Gibbs free energy is a continuous function.
Any discontinuity in Gibbs free energy is known as a zero-
order phase transition. Also, a first-order phase transition
occurs when the Gibbs free energy is continuous, but its
first derivative with respect to the temperature and pressure

is discontinuous. At first, we calculate the Gibbs free
energy of a Lifshitz dilaton black hole. Then, we try to plot
Gibbs diagrams to find out more details about the phase
transition of the system. We associate the energy of the
system with the Gibbs free energy G ¼ M − TS [9]. The
Gibbs free energy can be obtained as

FIG. 6. Tc diagram of Lifshitz black holes. (a) Tc versus z for b ¼ 1, n ¼ 3, q ¼ 1 and p ¼ 1, (b) Tc versus p for b ¼ 1, n ¼ 3, q ¼ 1
and z ¼ 1.

FIG. 5. ρC diagram of Lifshitz black holes. (a) ρc − z for b ¼ 1, n ¼ 3, q ¼ 1 and p ¼ 1, (b) ρc − p for b ¼ 1, n ¼ 3, q ¼ 1 and
z ¼ 1. As we see ρC is positive in the range 1=2 < ρ < 3=2.
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G ¼ GðQs; TÞ ¼ −
kðn − 2Þ2wðz − 2Þl1−zrnþz−3

16πðnþ z − 3Þ2 −
wl−z−1ðnþ 2z − 1Þrnþz−1

16π

þ 2
4−3p
2p−1ð2p − 1Þπ 1

2p−1b2z−2l1−zQsw
1

1−2pð2npþ nþ 2pð2z − 5Þ − 2zþ 3Þrnþ2pðz−2Þ−zþ1

1−2p

ðn − 1Þη : ð52Þ

FIG. 7. ψc diagram of Lifshitz black holes. (a)Ψc versus z for b ¼ 1, n ¼ 3, q ¼ 1 and p ¼ 1, (b)Ψc versus p for b ¼ 1, n ¼ 3, q ¼ 1
and z ¼ 1.

FIG. 8. Qs
c diagram of Lifshitz black holes. (a) Qs

c versus z for b ¼ 1, n ¼ 3, q ¼ 1 and p ¼ 1, (b) Qs
c versus p for b ¼ 1, n ¼ 3,

q ¼ 1 and z ¼ 1.
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In the limiting case where p ¼ z ¼ 1 and n ¼ 3, the Gibbs
free energy reduces to [34]

G ¼ GðT;Q2Þ ¼ rþ
4
þ 3Q2

4rþ
−
r3þ
4l2

; ð53Þ

where rþ ¼ rþðT;Q2Þ. We have plotted the Gibbs energy
diagrams in Figs. 9–11. These diagrams have been shifted

for more clarity. The swallowtail behavior of Figs. 9–11
shows that a first-order phase transition occurs in the
system.

D. Critical exponents

The behavior of the physical quantities in the vicinity of
a critical point can be characterized by the critical expo-
nents. Following the approach of [15], one can calculate the
critical exponents α0, β0, γ0, and δ0 for the phase transition of
charged Lifshitz black holes in the presence of a power
Maxwell field. To obtain the critical exponents, we define
the reduced thermodynamic variables as

Tr ¼
T
Tc

; ψ r ¼
ψ

ψc
; Qs

r ¼
Qs

Qs
c
: ð54Þ

Since the critical exponents should be studied near the
critical point, we write the reduced variables in the form
Tr ¼ 1þ t and ψ r ¼ 1þ ϕ, indicating deviation from the
critical point. One may expand Eq. (43) near the critical
point as

Qs
r ¼ 1þ At − Btϕ − Cϕ3 þOðtϕ2;ϕ4Þ; ð55Þ

where

A ¼ −4δβ
zð−zþ 2Þ ; B ¼ −4αδβ

zð−zþ 2Þη ;

C ¼ 2ð2p − 1Þ2αβδ
3η3

: ð56Þ

FIG. 9. G −Qs diagram of Lifshitz black holes for b ¼ 1,
n ¼ 3, q ¼ 1, l ¼ 1, p ¼ 0.8, and z ¼ 1.4.

FIG. 10. G −Qs diagram of Lifshitz black holes for b ¼ 1,
n ¼ 3, q ¼ 1, l ¼ 1, p ¼ 1, and z ¼ 1.1.

FIG. 11. G −Qs diagram of Lifshitz black holes for b ¼ 1,
n ¼ 3, q ¼ 1, l ¼ 1, p ¼ 1.2, and z ¼ 1.2.
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To calculate the critical exponent α0, we consider the
entropy S given in Eq. (26) as a function of T and ψ .
Using Eq. (41) we have

S ¼ SðT;ΨÞ ¼ Yn−1

4π
Ψð−2pþ1Þ=η:

Obviously, this is independent of T and therefore the
specific heat vanishes, Cψ ¼ Tð∂S=∂TÞψ ¼ 0. Since the
exponent α0 governs the behavior of the specific heat at
fixed ψCv ∝ jtjα0 , hence the exponent α0 ¼ 0.
Differentiating Eq. (55) at a fixed t < 0with respect to ϕ,

we get

dQs
r ¼ −ðBtþ 3Cϕ2Þdϕ: ð57Þ

Now, we apply the Maxwell’s equal area law [40].
Denoting the variable ϕ for small and large black holes
with ϕs and ϕl, respectively, we obtain

Qs
r ¼ 1þ At − Btϕl − Cϕ3

l ¼ 1þ At − Btϕs − Cϕ3
s ;

0 ¼
Z

ϕs

ϕl

ϕdQs
r: ð58Þ

Equation (58) leads to the unique nontrivial solution

ϕl ¼ −ϕs ¼
ffiffiffiffiffiffiffiffiffi
−
Bt
C

r
; ð59Þ

which gives the order parameter as

jϕs − ϕlj ¼ 2ϕs ¼ 2

ffiffiffiffiffiffiffiffi
−
B
C

r
t1=2: ð60Þ

Thus, the exponent β0 which describes the behavior of the
order parameter near the critical point is β0 ¼ 1=2. To
calculate the exponent γ0, one may determine the behavior
of the following function near the critical point:

χT ¼ ∂ψ
∂Qs

����
T
:

Differentiating Eq. (55) with respect to ϕ near the critical
point may be written as

χT ∝ −
ψc

BQs
c

1

t
⟹ γ0 ¼ 1: ð61Þ

Finally, the shape of the critical isotherm t ¼ 0 is given by
Eq. (55). We find

Qs
r − 1 ¼ −Cϕ3 ⟹ δ0 ¼ 3: ð62Þ

IV. SUMMARY AND CONCLUSION

The critical behavior of the Lifshitz dilaton black hole in
an extended phase space, where the cosmological constant
is treated as the thermodynamical pressure, cannot be
studied due to the complicated form of the solution.
Indeed, it can be seen from Eq. (27) that it is almost
impossible to solve this equation for P (or more precisely
for l). Therefore, we cannot analytically investigate the
P − v critically of the black hole (although one may use the
numerical calculations or plotting diagrams to do that).
Also, investigating the phase space of the system in the
U −Q plan leads to physically irrelevant quantities which
are mathematically ill defined [34]. Here, we address,
for the first time, the critical behavior of an (nþ 1)-
dimensional dilaton Lifshitz black hole in the presence
of a power-lawMaxwell field via an alternative phase space
developed in [34]. We have treated the cosmological
constant as a fixed parameter and the charge of the system
as a thermodynamical variable. It was argued in [34] that
without extension of the phase space and by keeping the
cosmological constant (pressure) as a fixed quantity instead
of the charge of the system, it is quite possible to have
critical behavior similar to that of a van der Waals system
provided one takes the equation of state of the form
Q2 ¼ Q2ðT;ψÞ, where Ψ ¼ 1=2rþ is a conjugate of Q2.
In this work, we disclosed that in order to investigate

the critical behavior of Lifshitz black holes with a power
Maxwell field, we should modify the method developed in
[34] by considering Qs as a thermodynamic variable and
write down the equation of state in the form of Qs ¼
QsðT;ψÞ, where s ¼ 2p=ð2p − 1Þ, with p the power of
the power Maxwell Lagrangian. In this approach we keep
the cosmological constant (pressure) as a fixed quantity
and treat the charge of the black hole as a thermodynamic
variable. This is in contrast to the extended phase space of
[8], where the charge is fixed and the cosmological
constant is treated as a thermodynamic variable. The
isotherm diagrams Qs −Ψ show the complete analogy
between our system and a van der Waals liquid-gas
system. Also, the swallowtail behavior of the Gibbs free
energy represents a first-order phase transition occurring
in the system. Furthermore, we calculated the critical
quantities such as Tc, ρc, Pc, and Ψc at the critical point,
which depends on the metric parameters. Finally, we
obtained the critical exponents of the system and found
that they are universal and exactly the same as those of a
van der Waals fluid system. The result obtained here for a
general Lifshitz dilaton black hole coupled to a power
Maxwell field with an arbitrary dilaton coupling α,
Lifshitz exponent z, and power Maxwell parameter p
further supports the arguments given in Ref. [34]. Clearly,
for z ¼ 1, α ¼ 0, and p ¼ 1, our general Lifshitz dilaton
black hole reduces to a charged AdS black hole and our
obtained results recover those obtained in [34]. This
confirms that the approach presented here is independent
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of the power Maxwell, Lifshitz exponent, and dilaton
coupling constant. Indeed, our study shows that the
approach here is powerful enough to study the critical
behavior of any kind of black hole and the system
resembles the van der Waals fluid without needing to
consider the cosmological constant (pressure) as a thermo-
dynamic variable. It could help us to extract
critical exponents of the system without extending the
phase space, which is useful in studying the thermody-
namical properties of black holes. We expect to confirm

that this approach is viable and can be applied to other
gravity theories such as Gauss-Bonnet and Lovelock
gravity.
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