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Gravity theories beyond general relativity (GR) can change the properties of gravitational waves: their
polarizations, dispersion, speed, and, importantly, energy content are all heavily theory dependent. All these
corrections can potentially be probed by measuring the stochastic gravitational-wave background. However,
most existing treatments of this background beyond GR overlook modifications to the energy carried by
gravitational waves, or rely on GR assumptions that are invalid in other theories. This may lead to
mistranslation between the observable cross-correlation of detector outputs and gravitational-wave energy
density, and thus to errors when deriving observational constraints on theories. In this article, we lay out a
generic formalism for stochastic gravitational-wave searches, applicable to a large family of theories beyond
GR. We explicitly state the (often tacit) assumptions that go into these searches, evaluating their generic
applicability, or lack thereof. Examples of problematic assumptions are as follows: statistical independence of
linear polarization amplitudes; which polarizations satisfy equipartition; and which polarizations have well-
defined phase velocities. We also show how to correctly infer the value of the stochastic energy density in the
context of anygiven theory.Wedemonstratewith specific theories inwhich someof the traditional assumptions
break down: Chern-Simons gravity, scalar-tensor theory, and Fierz-Pauli massive gravity. In each theory, we
show how to properly include the beyond-GR corrections, and how to interpret observational results.

DOI: 10.1103/PhysRevD.98.104025

I. INTRODUCTION

Besides transient signals, like those detected so far [1–7]
by the Advanced Laser Interferometer Gravitational-wave
Observatory (aLIGO) [8] and Virgo [9], gravitational-wave
(GW) detectors are also expected to be sensitive to a
persistent stochastic background [10–17]. This background
signal is expected from primordial cosmological processes
[18–28], or the incoherent addition of a myriad of indi-
vidually unresolvable astrophysical sources, like compact
binary coalescences [29–36] or exotic topological defects
[37–40]. Among many other rich scientific goals (see [41]
for a review), detection of a stochastic background would
provide an invaluable opportunity to study the fundamental
nature of gravitational waves as they propagate over
cosmological distances.
In the past decade or so, the formalism underlying

stochastic GW searches has been extended to theories of
gravity beyond general relativity (GR), primarily to account
for the potential presence of nontensorial polarizations.
Generic metric theories of gravity allow for up to six
polarizations, corresponding to scalar (helicity 0), vector

(helicity �1) and tensor (helicity �2) metric perturbations
[42,43]. The effect of these extra polarizations on the
stochastic background has been studied, in particular, for
theories with scalar modes [44–46] and, in general, for all
possible modes in a theory-agnostic way [47,48]. The
problem of detecting nontensorial modes in the background
has been studied in the context of pulsar timing [49–52] and
GW measurements using astrometry [53]. Beyond these
proposals, a comprehensive data analysis framework has
recently been implemented to search LIGO and Virgo data
for GWs of any polarization, tensorial or otherwise, and
some first upper limits have been placed on their ampli-
tudes [54,55].
The goal of searches for stochastic backgrounds, within

GR or beyond, is to measure the amount of energy that the
Universe contains in the form of gravitational waves.
Consequently, treatments of stochastic GW signals are
predominantly parametrized in terms of their effective
energy-density spectrum [ΩGW, defined in Eq. (29) below].
The latest constraints on this quantity, assuming GR, yield
ΩGW < 1.7 × 10−7 with 95% confidence [17]. However, a
parametrization in terms ofΩGW is only possible thanks to a
standard set of assumptions about the properties of gravita-
tional waves, the detectors, and the statistics of the back-
ground itself. Although generally justified within GR, the
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fundamental structure of beyond-GR theories may not
always warrant all (or any) of those standard assumptions—
even without considering modifications to specific emis-
sion mechanisms, or expected source populations. One
must therefore be careful in applying the usual premises to
searches for stochastic waves that aim to be theory
agnostic, and one should be aware that adopting any of
these assumptions may comewith additional observational
restrictions.
Perhaps the most important example of an assumption

that has been dubiously applied beyond GR concerns
the form of the effective stress energy of GWs. Multiple
studies of stochastic signals beyond GR assume that the
fractional energy density spectrum in GWs is related to
the wave amplitudes in the same way as it is in GR
[46–48,50,52,53,56]. Yet, as pointed out in [57], the
expression for the effective GW stress energy need not
be the same in all theories of gravity. This means that it is
inadvisable to parametrize putatively model-independent
searches for beyond-GR backgrounds assuming the GW
energy density has the same functional form as in GR:
doing so will result in the use of a quantity that should not
generally be interpreted as the energy density in GWs. This
is not only misleading, but (most importantly) can lead to
incorrect comparisons between observational limits and
theoretical predictions.
Besides this, some of the simplifying assumptions about

the properties of the stochastic background that are usually
justified in GR are not acceptable in general and should not
be extended to model-independent analyses. This is the
case even without considering changes to the potential
sources of the background in beyond-GR theories, which
may themselves break more of the assumed symmetries.
For instance, it is not reasonable to always assume that the
usual linear GW polarization amplitudes will be sta-
tistically independent, as this will not be true unless the
chosen polarization basis diagonalizes the kinetic matrix of
the underlying theory of gravity (defined below). Similar
arguments can be made about the assumptions that the
polarizations are equipartitioned, or even that they have
well-defined phase velocities—let alone that they propa-
gate at the speed of light.
In view of this, our goal is to straighten out the

framework underlying searches for stochastic gravitational
backgrounds, to make it formally valid and easily appli-
cable to a large family of theories beyond GR. In Sec. II, we
lay out a generic formalism for such searches, review the
most commonplace assumptions in standard analyses, and
evaluate their degree of applicability to other frameworks;
along the way, we also clarify some relevant differences in
conventions used by the theory and data analysis literatures.
In Sec. III, we provide a series of examples of theories that
break the premises behind one or more of these assump-
tions, and show the impact this has on the analysis—we
focus on differences in the predicted form of the effective

GW stress energy, but also discuss other problematic
points. In particular, we use these examples to show
how to go from the action defining a theory to (1) a
relation between the fractional GW energy density spec-
trum and the correlation of polarization amplitudes, and
(2) the cross-correlation of GW detector outputs—which is
the relevant observable for ground-based detectors. We
review the derivation for general relativity in Sec. III A, and
then move on to Chern-Simons gravity in Sec. III B, scalar-
tensor theories in Sec. III C, and Fierz-Pauli massive
gravity in Sec. III D. Finally, we offer a summary and
conclusions in Sec. IV.

II. FORMALISM

In this section, we provide the framework required to
search for stochastic GW backgrounds without assuming
GR is correct. In Sec. II A, we review the four-dimensional
Fourier transform of a generic GW, lay out its decom-
position into polarizations, and provide some useful iden-
tities for later use in Sec. III. In Sec. II B, we focus on the
properties of stochastic backgrounds, carefully reviewing
the assumptions made in traditional analyses to determine
whether they hold in theories beyond GR. In Sec. II C, we
describe the measurement process, including complications
that may arise in generic theories. Finally, in Sec. II D, we
sketch the calculations needed to relate the effective
stochastic GW energy in any given theory to the polariza-
tion amplitudes measurable by a detector.
Here, and throughout this paper, spatial three-vectors are

identified by an arrow (e.g., k⃗), or a circumflex accent if
they have unit norm (e.g., k̂). Four-vectors and higher-rank
tensors are denoted by boldface, or abstract index notation
(e.g., k or ka). For tensor coordinate components, space-
time Greek indices (α; β; γ;…) take values in the range 0–3,
while spatial Latin indices (i; j; k;…) span 1–3. We use
metric signature þ2, using gab for generic background
metrics and ηab for the Minkowski metric. Our conventions
for the Levi-Civita tensor follow [58]: ϵabcd ¼ ffiffiffiffiffiffi−gp ½abcd�
where g is the determinant of the metric, and ½abcd� is the
Levi-Civita symbol, with ½0123� ¼ þ1; similarly, ϵijk ¼ffiffiffi
γ

p ½ijk�where γ is the determinant of the spatial metric, and
½123� ¼ þ1. We normalize (anti)symmetrizations as idem-
potent projection operations, e.g., TðabÞ ¼ ðTab þ TbaÞ=2
and T ½ab� ¼ ðTab − TbaÞ=2.

A. Decomposition of the metric perturbation

In any metric theory of gravity, as long as the observation
region is small compared to the curvature radius, an
arbitrary GW metric perturbation habðxÞ at a spacetime
point xmay be expressed as a plane-wave expansion by the
compact expression:

habðxÞ ¼
1

2π

Z
h̃abðkÞeik·xfdk; ð1Þ
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integrating over all directions of propagation, and over both
positive and negative frequencies. Here h̃abðkÞ is the
complex-valued Fourier amplitude for the wave vector
k≡ ðω=c; k⃗Þ; we let ω ¼ 2πf be the angular frequency,
and k⃗ ¼ jk⃗jk̂≡ −jk⃗jn̂ the spatial wave vector, implicitly
defining n̂ as the sky location of the source. To simplify our
notation in Eq. (1), we have defined the four-dimensional
integral over the measure

fdk≡ 2cδðjk⃗j2 − jk⃗ωj2Þjk⃗j−1dk ¼ dωdn̂; ð2Þ

where δðxÞ is the Dirac delta function, and the last equality
assumes an implicit integration over the magnitude of k⃗. In
order towrite this, we assume that there is just one dispersion
relation, ω ¼ ωðk⃗Þ≡ ωk, that determines the modulus of k
and implicitly defines jk⃗ωj≡ jk⃗jðωÞ.1 The dispersion rela-
tion is specific to the theory of gravity: e.g., ωk ¼ cjk⃗j and
jk⃗ωj ¼ ω=c in GR.
With the integration measure defined as in Eq. (2), in a

local Lorentz frame (so that x · y ¼ x⃗ · y⃗ − x0y0), Eq. (1)
can be recast in a form most common in stochastic GW
literature (see, e.g., [14,16,60]):

habðt; x⃗Þ ¼
Z

∞

−∞

Z
sky

h̃abðf; n̂Þe−2πifðtþn̂·x⃗=vpÞdn̂df; ð3Þ

where vp ≡ jk⃗=ωj−1 is the (potentially frequency-
dependent) phase velocity of the wave (vp ¼ c in GR).
Finally, to guarantee that habðxÞ is real, we must neces-
sarily have

h̃�abðf; n̂Þ ¼ h̃abð−f; n̂Þ; ð4Þ

where the asterisk indicates complex conjugation. In
Appendix A, we elucidate the equivalence between
Eqs. (1) and (3), derive the second equality in Eq. (2),
and discuss differences between our Fourier conventions
and those from the field theory literature.
For any given frequency and direction of propagation, the

Fourier amplitudes may bewritten as a linear combination of
at most six tensors corresponding to the six polarizations
supported by generic metric theories of gravity [42,43], even
if the wave speed is slightly different from the speed of light
[61]. Therefore, the most generic gravitational wave in this
large category of theories may be written as a function of six
amplitudes. We may consequently define six orthogonal
polarization tensors, eAab, such that

h̃abðkÞ ¼ h̃AðkÞeAabðn̂Þ; ð5Þ

where the sum is over six polarizations indexed by A, and the
h̃AðkÞ’s are the Fourier transforms of the six scalar fields,
hAðxÞ, encoding the amplitude of each mode, as defined by
means of Eq. (1). Importantly, the hA’s in an arbitrary frame
will generally not be linearly independent: this will only be
the case if frame and gauge are chosen such that the metric
degrees of freedom (d.o.f.) (polarizations) map to the
physical d.o.f. of the underlying theory.
In order to study interactions between waves and

detectors, it is usually convenient to pick a “synchronous”
gauge2 such that the perturbation is purely spatial in the
frame of interest (h0ν ¼ 0), and correspondingly so are
the polarization tensors. For instance, in an orthogonal
frame in which the z axis is aligned with the direction of
propagation (so that k̂i ¼ δ3i in that frame), we may write
the six d.o.f. as

ðhijÞ ¼

0
B@

hb þ hþ h× hx
h× hb − hþ hy
hx hy hl

1
CA; ð6Þ

in terms of the linear tensor polarizations (þ, ×), linear
vector polarizations (x, y), and scalar breathing (b) and
longitudinal (l) modes. As mentioned above, these need not
be linearly independent; e.g., in GR, there are only two, not
six, physical d.o.f., which correspond to the plus and cross
polarizations in the transverse-traceless gauge—in any
other gauge, the six hA’s can all be expressed as functions
of those two quantities.
For the purpose of analyzing the output of multiple GW

detectors, it is often convenient to write the polarization
tensors in terms of unit vectors tangent and normal to the
celestial sphere at each sky location. A standard linear
polarization basis is given by

eþabðn̂Þ ¼ ϕ̂aðn̂Þϕ̂bðn̂Þ − θ̂aðn̂Þθ̂bðn̂Þ; ð7aÞ

e×abðn̂Þ ¼ ϕ̂aðn̂Þθ̂bðn̂Þ þ θ̂aðn̂Þϕ̂bðn̂Þ; ð7bÞ

exabðn̂Þ ¼ ϕ̂aðn̂Þk̂bðn̂Þ þ k̂aðn̂Þϕ̂bðn̂Þ; ð7cÞ

eyabðn̂Þ ¼ θ̂aðn̂Þk̂bðn̂Þ þ k̂aðn̂Þθ̂bðn̂Þ; ð7dÞ

ebabðn̂Þ ¼ ϕ̂aðn̂Þϕ̂bðn̂Þ þ θ̂aðn̂Þθ̂bðn̂Þ; ð7eÞ

elabðn̂Þ ¼ k̂aðn̂Þk̂bðn̂Þ; ð7fÞ

1Some theories violate this assumption; e.g., bimetric gravity
[59] has one massless and one massive gravitational wave
mode—we will allow for this briefly in Sec. II C only.

2In a diffeomorphism invariant theory, one may always gauge
transform into synchronous gauge by solving an initial value
problem. If the theory is not diff-invariant, the Stückelberg trick
can be used to restore the symmetry and then gauge transform.
We provide an example of this in Sec. III D.
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where θ̂ðn̂Þ and ϕ̂ðn̂Þ are, respectively, the celestial polar
and azimuthal coordinate vectors for a given source sky
location determined by n̂; by design, these vectors satisfy
θ̂ðn̂Þ × ϕ̂ðn̂Þ ¼ −k̂ðn̂Þ ¼ n̂. Other frame choices are pos-
sible, and multiple conventions abound in the literature. In
particular, note that these metric polarizations will corre-
spond to those in [42,43] only for an equivalent choice of
eAab’s and in a gauge such that R0i0j ¼ −∂2

0hij=2, where
Rabcd is the Riemann tensor (in GR, this is just the
transverse-traceless gauge).
As an example of the polarization decomposition of

Eq. (5), consider theories in which gravitational perturba-
tions carry spin-weight 2, like GR. In that case, we may
choose to work with the two transverse-traceless linear
polarization tensors corresponding to the plus (þ) and cross
(×) amplitudes shown in Eqs. (6), and (5) becomes simply

h̃abðkÞ ¼ h̃þðkÞeþabðn̂Þ þ h̃×ðkÞe×abðn̂Þ: ð8Þ

Because the linear polarization tensors are real-valued by
definition [cf. Eq. (7)], the reality condition for the
amplitudes, Eq. (4), implies

h̃þ=×ð−f; n̂Þ ¼ h̃�þ=×ðf; n̂Þ: ð9Þ

Alternatively, instead of the linear modes of Eq. (6), we
could choose to work with eigenmodes of the helicity
operator, i.e., the right- and left-handed circular polariza-
tion tensors (denoted “R” and “L,” respectively). These
modes satisfy an eigenvalue equation

ϵijkk̂keÂlj ¼ iεÂe
Â
l
i; ð10Þ

for Â ∈ fR;Lg (not summed on the right-hand side), where
we have defined the factor εR=L ¼ �1, with the plus
(minus) sign corresponding to the R (L) mode. Then,
the circular polarization tensors can be written in terms of
the ones for the plus and cross as

eR=L ¼ 1ffiffiffi
2

p ðeþ þ iεR=Le×Þ: ð11Þ

Using the circular tensors as a basis, we would write,
instead of Eq. (8),

h̃abðkÞ ¼ h̃RðkÞeRabðn̂Þ þ h̃LðkÞeLabðn̂Þ; ð12Þ

and the reality condition, Eq. (4), would now imply (note
the “L/R” subscript on the right-hand side)

h̃R=Lð−f; n̂Þ ¼ h̃�L=Rðf; n̂Þ; ð13Þ

instead of Eq. (9). The circular polarization modes can be
similarly defined for the vector polarizations to obtain
eigenmodes of helicity �1. On the other hand, the scalar

modes have helicity 0, so in a sense, they are already
circular.
For future reference, note that the spin-weight 2, spin-

weight 1 and the transverse spin-weight 0 linear polariza-
tion tensors are normalized as usual such that, for a given
direction of propagation,

eAijeA
0
ij ¼ 2δAA

0
; ð14Þ

for A ∈ fþ;×; x; y; bg, and δAA0
the Kronecker delta; on the

other hand, the longitudinal tensor satisfies ðelÞijðeAÞij ¼
δlA. Similarly, the spin-weight 2 circular polarization
tensors of Eq. (11) satisfy

ðeÂijÞ�eÂ0
ij ¼ 2δÂÂ

0
: ð15Þ

The basis tensors for the circularly polarized vector modes
also satisfy Eq. (15).
Although the two linear and circular bases discussed

above are probably the most common in the GW literature
(modulo normalizations), we are of course free to pick any
other. For instance, in the analysis of differential-arm
instruments, it is generally convenient to instead work
with the traceless linear combination of hb and hl, since that
is what such detectors can measure. Similarly, different
theories may also define their own preferred polarization
bases, composed of the GW eigenstates that are preserved
during propagation. Such a basis will be the one that
diagonalizes the “kinetic matrix” of any given theory. By
this we mean the Hermitian matrix KIJðkÞ in the free,
quadratic, Fourier-space action S ¼ R

1
2
KIJðkÞΦ̃I†Φ̃Jd4k,

where Φ̃I is the vector of all the linearized fields, indexed
by I. This matrix also includes mass (potential) terms.

B. Stochastic signals

In the case of stochastic signals, the Fourier amplitudes
h̃ijðkÞ are, by definition, random variables and, as such, can
be fully characterized by themoments of some (multivariate)
probability distribution. Most standard searches for a sto-
chastic GW background make the following assumptions
about the random process that produced these amplitudes
(see, e.g., [60] for a review): the random process is
(i) Gaussian, (ii) ergodic, and (iii) stationary, with no
correlation between amplitudes from different (iv) sky
locations or (v) polarizations, and with (vi) equipartition
of power across polarizations; furthermore, the process is
commonly (althoughnot universally) assumed tobe (vii) iso-
tropic. We break down these assumptions below, and
introduce some important definitions along the way.
Stochastic backgrounds are expected to arise from pri-

mordial cosmological processes [18–28], or by the incoher-
ent superposition of a great number of signals from
contemporary astrophysical events [29–41]. The assumption
(i) that the astrophysical background is produced by a
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Gaussian random process is motivated by the central limit
theorem—this guarantees that the properties of any large
number of incoherently added GW signals will be
normally distributed, regardless of the specific characteristics
of any given source. A similar argument can be applied
to primordial signals by considering the independent evo-
lution of waves from causally disconnected regions [15].
Although waves from inflation will technically have non-
Gaussianities, they will be small as long as inflation satisfied
the slow-roll approximation [15,28,62].
For Gaussian processes, all properties of the probability

distribution are determined by its first two moments
(correlation functions)—namely, the mean and power
spectrum (respectively, the one- and two-point correlation
functions). The first moment of the distribution, the mean
hh̃ðfÞi, will not appear explicitly in any of the expressions
below, so we ignore it.3 Here and below, the expectation
value, denoted by angle brackets h·i, corresponds to
ensemble averages, as well as space/time averages by
assumption (ii) of ergodicity. The expectation of ergodicity
itself comes from the assumption that the Universe is
homogeneous (for more discussion on this topic, see [28]).
The second moment of the distribution will end up being

an important observable. In order to write down an
expression for it, we can make use of assumptions (iii)
and (iv). First, stationarity (iii) is motivated by the fact that
observation times (order of months to years) are extremely
small relative to the dynamical timescales intrinsic to the
cosmological processes that could change the properties of
the background (order of billions of years); therefore, any
changes in the stochastic background would be unnotice-
able to us. Formally, stationarity means that the first
moment is constant, while the second moment depends
only on time differences (see, e.g., [63]). As a consequence,
the Fourier transform of a stationary random variable can
be shown to be such that amplitudes at different frequencies
will be statistically independent and, therefore, uncorre-
lated (Appendix B).
Next, the assumption (iv) that amplitudes from different

sky locations will be uncorrelated is justified for primordial
waves because signals from different points in the sky are
only coming into causal contact now at Earth, under
ordinary topological assumptions. One could potentially
search for nonstandard spatial topologies in a sufficiently
“small” universe through angular correlations in gravita-
tional waves [64], in much the same way as in the cosmic
microwave background (CMB) [65,66]. A small universe
with nonstandard spatial topology would induce circles of
excess correlation in both the CMB and gravitational-wave

background. As there has been no evidence of this
phenomenon in the CMB, in this article we consider
primordial signals from different sky directions to be
uncorrelated.
For contemporary (“astrophysical”) backgrounds, (iv)

comes from the assumption that the contributions from
multiple sources throughout the sky (say, binary systems)
are added “incoherently”—that is, sources are not perfectly
aligned and timed as would be needed for signals from
different directions to reach us with matching phase
and amplitude evolution. Even though such astrophysical
sources were in causal contact at some point in the past, they
are embedded in chaotic astrophysical environments (with
e.g., turbulent magnetohydrodynamics) with Lyapunov
times sufficiently short that, in practice, they can be treated
as uncorrelated. In principle, strong gravitational lensing
may introduce correlations between sky bins into the
stochastic background, whether primordial or contempo-
rary, but we can expect this effect to be negligible in
practice [67].
With assumptions (iii) and (iv) in place, we may write the

second moment of the amplitude distribution in the form
(Appendix B):

hh̃�AðkÞh̃A0 ðk0Þi ¼ 1

2
δðf − f0Þδðn̂ − n̂0ÞSAA0 ðkÞ: ð16Þ

This equation defines the one-sided cross-power spectral
density, SAA0 ðkÞ≡ SAA0 ðf; n̂Þ, for two signals, h̃A=A0 ðkÞ,
sharing a wave vector k but with potentially different
polarizations A and A0. For linear polarizations, this
quantity satisfies SAA0 ðf; n̂Þ ¼ SA0Að−f; n̂Þ, because of
the reality condition of Eq. (4). Since we are usually
interested in the total measured power at a given frequency,
regardless of sky direction, we also define the integral of
SAA0 ðkÞ over the sky,

SAA0 ðfÞ≡
Z
sky

SAA0 ðf; n̂Þdn̂; ð17Þ

which carries units of strain2=Hz. For A ¼ A0, this is
nothing more than the one-sided power spectral density
(PSD) in polarization A, which we denote SAðfÞ≡ SAAðfÞ.
In general, for any real-valued random variable XðtÞ, the
PSD can be approximated as twice the square of the band-
limited Fourier transform [63],

SXðfÞ ¼ lim
T→∞

2

T

����
Z

T=2

−T=2
XðtÞe2πiftdt

����2; ð18Þ

which, in practice, is always computed for some long but
finite integration time T on the order of months to years for
observations of the stochastic background. As usual, the
factor of 2 in Eq. (18) accounts for the fact that this is the
one-sided PSD, SðfÞ≡ SðjfjÞ.

3Some authors explicitly set this value to zero because the
contribution from a nonvanishing mean would take the form of a
coherent offset in the Fourier amplitudes as a function of
frequency, which not only would be hard to justify physically,
but would also hardly classify as “stochastic” (see, e.g., [16,60]).
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Assumption (v) that the different polarizations are
statistically independent may be used to discard off-
diagonal terms in the cross-power spectrum, so that
SAA0 ðfÞ ¼ δAA0SAðfÞ. However, one must be careful with
this simplification: the assumption is valid if and only if one
works in a polarization basis that diagonalizes the kinetic
matrix of the theory. Importantly, as we will show with
specific examples, such a basis need not be the linear
polarization basis used in most GR analyses. Even when
working within GR, it is generally better, from a theoretical
standpoint, to work in terms of the circular modes, as they
are eigenstates of the helicity operator, and they might be
produced with different intensities in the early universe
[68–70].
Besides assuming that the polarizations are uncorrelated,

it is also common to assume that there is equipartition of
power between them—assumption (vi) in our list above.
Under this presumption, the background is said to be
unpolarized and the polarization PSDs may be written in
terms of the total GW spectral density, SðfÞ ¼ P

SAðfÞ,
such that SA ¼ SðfÞ=N, where N is the number of polar-
izations allowed to propagate in a given theory. In general,
this assumption is only justified if the polarizations both
diagonalize the kinetic matrix and interact similarly with
matter, so that they are sourced in equal amounts. This is
not always the case: e.g., in both massive gravity [71,72]
and dynamical Chern-Simons gravity [73–75], different
polarizations couple to sources with different strengths.
Finally, the simplest searches for a stochastic back-

ground also adopt assumption (vii) of isotropy, in which
case Sðf; n̂Þ ¼ SðfÞ=4π, by Eq. (17). In GR, if one
disregards the proper motion of the solar system, this
assumption is expected to hold well for most foreseeable
sources of a stochastic background detectable by existing
ground-based observatories, since they are expected to
originate from cosmological distances [15,16,60].4 For
cosmological sources, isotropy is likely also a good
assumption in many beyond-GR theories; however, isot-
ropy should not be expected to hold in theories with
a preferred frame, which are intrinsically anisotropic
[77–84]. For simplicity, the rest of this document will treat
only the case of an isotropic background, but this does not
affect the spirit of the results, which can be easily
generalized to the anisotropic case. For predictions of
the angular power spectrum of astrophysical GR back-
grounds see [85], and for corresponding observational
limits that do not assume isotropy, see [86].
Assuming both (viii) an isotropic background and (v)

uncorrelated polarizations, on top of (iii) stationarity and
(iv) uncorrelated sky bins, Eq. (16) can be written directly
in terms of the power spectral density,

hh̃�AðkÞh̃A0 ðk0Þi ¼ 1

8π
δðf − f0Þδðn̂ − n̂0ÞδAA0SAðfÞ: ð19Þ

If one further assumed (vi) equipartition, SAðfÞ would be
replaced with SðfÞ=N, as explained above. This is the form
of the expression most common in recent literature about
detection of stochastic gravitational-wave backgrounds
(e.g., [60]).

C. Detection

Because the output of ground-based GW detectors is
largely dominated by stochastic instrumental and environ-
mental noise [87,88], it is not possible to measure the power
spectrum of the polarization amplitudes, SAðfÞ, directly
with a single detector at any level of interest. However, this
quantity may be inferred by looking instead at the cross-
correlation of the output of two or more instruments
(see, e.g., [60] for a comprehensive review of data analysis
methods).
We assume that each GW detector has a purely linear

response to gravitational waves. Therefore, in the Fourier
domain, the response of detector I to a plane wave h̃abðkÞ
must be expressible as

h̃IðkÞ ¼ D̃ab
I ðkÞh̃abðkÞ; ð20Þ

for some tensor D̃ab
I ðkÞ≡ D̃ab

I ðf; n̂Þ representing the
detector’s frequency- and direction-dependent transfer
function. This tensor encodes all relevant information about
the detector and the physics of the measurement process
[89–96] (for considerations specific to gravity beyond GR,
see e.g., [43,51,97–100]). The detector’s output h̃IðkÞ (e.g.,
the calibrated current out of a photodiode) is a gauge-
invariant observable. However, the metric perturbation
h̃abðkÞ is gauge dependent; therefore, the detection tensor
D̃ab

I ðkÞ must also depend on the gauge choice, so that the
overall gauge dependence on the right-hand side of Eq. (20)
exactly cancels.
Assuming a basis of polarization states A that have well-

defined phase velocities (i.e., they diagonalize the kinetic
matrix of the theory), we may use Eq. (20) to write the
Fourier transform of the signal at detector I explicitly as a
sum over polarizations and an integral over sky directions,

h̃IðfÞ ¼
Z X

A

F̃A
I ðf; n̂Þh̃Aðf; n̂Þe−2πifn̂·x⃗I=vAp dn̂; ð21Þ

defining the Fourier-domain response functions as the
contraction between the detector and polarization tensors,
F̃A
I ðf; n̂Þ≡ D̃ab

I ðf; n̂ÞeAabðn̂Þ, which must also be gauge
dependent.
The time-domain analogue of Eq. (20) is given by a

convolution,

4The same will not necessarily be true for LISA, which will be
sensitive to galactic stochastic sources, like the “confusion noise”
from white-dwarf binaries [76].
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hIðt; x⃗IÞ ¼
Z

∞

−∞
Dab

I ðtÞhabðt − τ; x⃗IÞdτ; ð22Þ

with x⃗I the location of detector I, and Dab
I ðtÞ its impulse

response. Since D̃ab
I ðkÞ is gauge dependent, the same must

be true for Dab
I ðtÞ. For an ideal differential arm-length

instrument, it is easiest to write down this detector tensor in
a synchronous gauge (h0ν ¼ 0 in the detector frame),
wherein the end test masses’ coordinate locations will
not change [58]. In such a gauge, the resulting differential-
arm detector tensor is the purely geometric factor

DabðtÞ ¼
1

2
ðX̂aX̂b − ŶaŶbÞ; ð23Þ

with X̂ and Ŷ spacelike unit vectors pointing along the
detector arms. For real interferometric detectors, like LIGO
and Virgo, Eq. (23) is valid only in the small-antenna limit
(arm length ≪ GW wavelength) [92–96].
For any realistic detector, the tensor of Eq. (23) will vary

in time due to the motion of the instrument with respect to
the inertial frame of the wave (e.g., due to Earth’s rotation,
for ground-based observatories). However, for the cases we
are interested in, we can take this variation to be slow with
respect to the period of the waves, so that it can be ignored
if Eq. (21) is implemented via short-time Fourier trans-
forms. In this ideal “slow-detector” limit, we may then treat
the response as time and frequency independent to write
D̃ab

I ðkÞ ¼ Dab
I ðtÞ≡Dab

I , so Eq. (21) simplifies to

h̃IðfÞ ¼
Z X

A

FA
I ðn̂Þh̃Aðf; n̂Þe−2πifn̂·x⃗I=vAp dn̂; ð24Þ

with the frequency-independent antenna patterns defined in
full analogy to our definition of F̃A

I ðf; n̂Þ above,

FA
I ðn̂Þ≡Dab

I eAabðn̂Þ: ð25Þ

For details on this simplification, and nuances applicable to
anisotropic backgrounds, see Sec. IV in [101].
In the Fourier domain, the cross-correlation between the

output of two detectors may then be written in terms of the
second moment of the distribution of polarization ampli-
tudes as

hh̃�I ðfÞh̃I0 ðf0Þi ¼
Z

dn̂dn̂0
X
AA0

hh̃�AðkÞh̃A0 ðk0Þi

× F�A
I ðn̂ÞFA0

I0 ðn̂0Þeiðk⃗A0 ·x⃗I0−k⃗A·x⃗IÞ; ð26Þ

where, again, assumption (ii) of ergodicity is tacitly implied.
If we also assume, as we will throughout this paper, that the
background is (iii) stationary and (vii) isotropic, and (iv) that
sky bins are uncorrelated, we may then use Eq. (19) to
simplify this to

hh̃�I ðfÞh̃I0 ðf0Þi ¼
1

2
δðf − f0ÞSAA0 ðfÞΓAA0

II0 ðfÞ; ð27Þ

where we have defined the generalized overlap reduction
function for polarizations A, A0 and detectors I, I0,

ΓAA0
II0 ðfÞ≡ 1

4π

Z
dn̂F�A

I ðn̂ÞFA0
I0 ðn̂Þe−2πifn̂·ξ

AA0
II0 ; ð28Þ

in terms of the phase factor ξAA
0

II0 ðfÞ≡ x⃗I=vAp − x⃗I0=vA
0

p ,
which acquires a potential frequency dependence through
the phase velocities. If there is one dispersion relation
shared by all polarizations (true throughout the rest
of this paper), the exponent in Eq. (28) can be written
as −2πifn̂ · ξAA

0
II0 ¼ −ik⃗ · Δx⃗II0 , in terms of the separation

between detectors Δx⃗II0 ≡ x⃗I − x⃗I0 . The overlap reduction
functions encode all relevant information pertaining to
GW polarizations and speed, as well as detector geom-
etry. The specific definition and normalization chosen
here are intended to facilitate generalization of the
analysis beyond GR, and are not necessarily standard
(see, e.g., Sec. V. 3 of [60] for a review of these functions
and their properties).
Because the noise in different instruments will generally

be statistically independent [87,88], by cross-correlating
the output of a pair of detectors, one may directly measure
the signal cross-correlation of Eq. (27), and hence infer the
polarization power spectra SAA0 ðfÞ (as proposed by [10,11],
and studied in multiple works since). In a theory that
allows for N independent polarizations, there will be up to
NðN þ 1Þ=2 different SAA0 terms (only N if the correlation
matrix is diagonal), and at least as many detector pairs
(“baselines”) will be needed to break all degeneracies
between them.

D. Energy density

Searches for a stochastic gravitational-wave background
attempt to measure the Universe’s total energy density in
gravitational waves as a function of frequency. However,
inferring this quantity from direct observables requires
theoretical assumptions. Furthermore, the equivalence
principle precludes being able to localize energy density
in gravitational waves, so this is in fact an effective energy
density. We elaborate on these important points below, and
sketch the general procedure to link the effective GW
energy density to observables at the detector in (almost) any
given theory. Concrete examples of how to apply this are
provided in Sec. III.
With an eye to cosmology, the quantity of interest in

stochastic searches is usually chosen to be the log-fractional
spectrum of the effective GW energy density [11–14,16],

ΩGWðfÞ≡ 1

ρcritical

dρGW
d ln f

; ð29Þ
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with ρGW the effective GW energy density as a function of
frequency, and ρcritical the critical density required to close
the universe,

ρcritical ≡ 3c2H2
0

8πG
; ð30Þ

where H0 is the present Hubble parameter [16]. Presenting
results of a stochastic background search in terms of this
quantity facilitates their cosmological interpretation. More
importantly, using an energy density (however parame-
trized) allows for direct comparisonwith theoretical models:
in order to predict the properties of the GWbackground, one
computes the typical GW power emitted by the system of
interest (e.g., compact binaries, cosmic strings, or primordial
fluctuations) and then obtains an energy spectrum by
incoherently adding many such contributions (e.g., using
the quadrupole formula with merger rates from population
synthesis) [18–41].
However, GW detectors do not measure the effective

physical GWenergy density, but rather the amplitude of the
waves at each instrument. In particular, searches for a
stochastic background are sensitive to the (incoherent) strain
amplitude power, Eq. (16). This will remain true for future
detection methods, like space missions or pulsar timing.
In the case of ground-based observatories, as outlined in
Sec. II C, the stochastic strain amplitudes are probed through
the cross-correlation of detector outputs across a network,
Eq. (26). Thus, whatever the detection method, wewill need
an object that relates gravitational-wave amplitudes to
energies—a mapping that is theory dependent.
The frequency-domain effective stress-energy tensor

(ESET) for gravitational waves lets us translate between
the more accessible two-point amplitude correlation func-
tion, Eq. (16) [or the two-detector-output cross-correlation,
Eq. (26)], and the GW contribution to the energy density,
Eq. (29). InGR theESETis given by a simple expression first
derived by Isaacson [102,103] (see Sec. III A below), which
enables stochastic searches to be parametrized directly in
terms of ΩGWðfÞ [11–14,16]. Interestingly, the same rela-
tionship has been assumed to hold in most stochastic GW
data analysis schemes that allow for departures from GR
[46–48,50,52,53,56], even though the Isaacson formula will
not necessarily hold in arbitrary theories [57]. Using the
Isaacson formula when inappropriate will lead to a mistrans-
lation between detector cross-correlations and GW energy
densities.This is not onlymisleading, but canalso lead to errors
when deriving constraints on theories from observations.
In the context of any specific theory of gravity, the ESET

can be derived directly from the action. The ESET is given
by a space-time average of the variation of the second-order
perturbation of the action with respect to the background
(inverse) metric [57],

Teff
ab ¼ ⟪ −

2ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p δSð2Þ
eff

δgð0Þab
⟫; ð31Þ

where the double angular brackets ⟪ · ⟫ indicate an
averaging procedure over a spacetime region on the order
of several wavelengths [e.g., Brill-Hartle (B-H) averaging,
though other procedures [104] agree when there is a
separation of length scales]. We briefly summarize the
approach here; we refer the interested reader to [57] for
more exposition.
The second-order Lagrangian Lð2Þ

eff is obtained from the
action S½g;ψ � after perturbing the metric gab and other
dynamical fields ψ via

gab ¼ gð0Þab þ ϵhð1Þab þ ϵ2hð2Þab þOðϵ3Þ; ð32Þ

ψ ¼ ψ ð0Þ þ ϵψ ð1Þ þ ϵ2ψ ð2Þ þOðϵ3Þ; ð33Þ

and collecting terms in the action order by order in the
small parameter ϵ. This gives the expansion

S½g;ψ � ¼ Sð0Þ½gð0Þ;ψ ð0Þ� þ ϵSð1Þ½hð1Þ;ψ ð1Þ; gð0Þ;ψ ð0Þ�
þ ϵ2Sð2Þ½hð1;2Þ;ψ ð1;2Þ; gð0Þ;ψ ð0Þ� þOðϵ3Þ; ð34Þ

where hð1;2Þ means both hð1Þ and hð2Þ are present. At order
ϵ0, the action Sð0Þ generates the ordinary nonlinear back-
ground equations of motion for gð0Þ and ψ ð0Þ. At order ϵ1,
the action Sð1Þ is purely a “tadpole” term which vanishes
when ðgð0Þ;ψ ð0ÞÞ are on shell, and therefore does not
contribute to any equations of motion. The same is true
for the second-order perturbations ðhð2Þ;ψ ð2ÞÞ, which
appear linearly in Sð2Þ. However, ðhð1Þ;ψ ð1ÞÞ appear quad-
ratically in Sð2Þ: the quadratic action Sð2Þ then generates the
linear equations of motion for ðhð1Þ;ψ ð1ÞÞ when varied with
respect to ðhð1Þ;ψ ð1ÞÞ; at the same time, the variation with
respect to gð0Þ will be a quadratic functional of ðhð1Þ;ψ ð1ÞÞ,
and results in the ESET.
From now on we drop the order-counting superscript,

letting h ¼ hð1Þ, since we will not encounter hð2Þ. In a local
Lorentz frame whose time direction is aligned with the
Hubble flow, we can define the position-space effective
GW energy density as

ρGW ≡ Teff
00 ½h; h�; ð35Þ

where the double argument ½h; h� is just to remind us that
Teff is a quadratic functional of h. To use Eq. (29), we want
ρGW in momentum space, so we need to make use of a
plane-wave expansion like Eq. (1). The result will always
be a momentum-space integral of the form

ρGWðxÞ ¼
Z fdkfdk0Qabcdðk;k0Þ

× hh̃�abð−kÞh̃cdðk0Þieiðkþk0Þ·x; ð36Þ
where the (gauge-dependent) tensor Qabcd encodes infor-
mation about the kinetic matrix of the theory in momentum
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space, andwe have used Eq. (4) towrite h̃abðkÞ ¼ h̃�abð−kÞ.
Notice that herewe have replaced the spacetime averaging of
Eq. (31) with ensemble averaging, based on assumption (ii)
ergodicity. When the two-point function hh̃�AðkÞh̃A0 ðk0Þi is
of the form of Eq. (16), the double integral will collapse to a
single integral, and the physical energy density will be
related to the power spectral density SAA0 ðkÞ, with some
potentially nontrivial frequency dependence arising from
Qabcd (we will see several examples below).
When this double integral collapses to a single integral,

we can then define the fractional energy density per
frequency bin via

ρGW ¼
Z

dρGW
df

df ¼
Z

dρGW
d ln f

df
f
: ð37Þ

With this definition of dρGW=d ln f, and the relationship
between the energy density Eq. (36) and a two-point
function like Eq. (16), it will be possible to relate the
power spectral density SAA0 ðkÞ to the cosmological frac-
tional energy density ΩGWðfÞ, Eq. (29). The relationships
between all these key quantities are illustrated in Fig. 1.
Once we have this, we may work directly with ΩGWðfÞ;

in particular, data analysis searches usually assume a
power-law model like

ΩGWðfÞ ¼ Ω0

�
f
f0

�
α

; ð38Þ

for some spectral index α, and Ω0 the characteristic
amplitude at some arbitrary reference frequency f0. This
is how LIGO generally parametrizes its searches, e.g., [17];
for a discussion of the validity of this parametrization,
see [105].

III. EXAMPLE THEORIES

In this section, we show how different gravitational
theories imply different functional relations between the
effective fractional energy density spectrum, ΩGWðfÞ in

Eq. (29), the strain cross-power spectrum, SðfÞ in Eq. (16),
and, consequently, the cross-correlation between detector
outputs, Eq. (26). As discussed in Sec. II C, this last
quantity is the relevant observable for ground-based instru-
ments, on which we focus. The relationships between all
the key quantities are illustrated in Fig. 1. Along the way,
we also discuss the expected statistical properties of the
polarization amplitudes under each framework, as required
purely by the basic structure of the theory (that is, not
considering specific source models).
We first demonstrate the procedure by rederiving the

standard GR expressions from the Einstein-Hilbert action
(Sec. III A), and then offer a series of beyond-GR examples
for which the analogous result is different: we consider the
case of Chern-Simons gravity, a theory which is not parity-
symmetric (Sec. III B); this is followed by Brans-Dicke
gravity, the prototypical example of a scalar-tensor
theory (Sec. III C); finally, we study Fierz-Pauli gravity
(Sec. III D), in which the graviton is endowed with a mass.
The last two examples support nontensorial modes of the
metric perturbation (see Sec. II A).
For all the examples we consider, we find it reasonable to

simplify our equations by assuming the stochastic back-
ground is (i) Gaussian, (ii) ergodic, (iii) stationary and
(vii) isotropic, with (iv) no correlation between different
sky locations. In all cases, then, we find that we can write
the cross-correlation between the output of two ideal
differential-arm detectors I and I0 in the form

hh̃�I ðfÞh̃I0 ðf0Þi ¼
3H2

0

4π2jfj3 δðf − f0Þ

×
X
A

ΞAðfÞΩAðfÞΓA
II0 ðfÞ; ð39Þ

where the sum is over some polarization basis A that
diagonalizes the kinetic matrix of the theory. Here the
ΓA
II0 ðfÞ’s are the generalized overlap reduction functions of

Eq. (28), ΩAðfÞ is the effective fractional energy spectrum
in polarization A defined by analogy to Eq. (29), and ΞAðfÞ
is a model-dependent factor encoding deviations from GR.

FIG. 1. Key quantities appearing in stochastic searches, and how they are related to each other. The relationships between them are
theory dependent. The primary observable is the detector cross-correlation, but inferences are often stated in terms of the fractional
cosmological GW energy density, or a parametrization thereof. Arrows point from more fundamental quantities to derived quantities.
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In Einstein’s theory, ΞAðfÞ ¼ 1 for tensor polarizations and
vanishes otherwise, as we show below.
Many of the results in this section are derived on a flat

background, and will therefore be erroneous in a cosmo-
logical setting. However, because of the vast separation of
scales between the gravitational wavelength λGW and the
Hubble parameter today H0, the error between the flat
space results and the cosmologically correct results will be
of fractional order OðλGWH0=cÞ. This correction has been
explicitly computed in GR [106], and while we are not
aware of the same computation in beyond-GR theories, it
should remain true as long as the theory of gravity respects
the separation of scales.

A. General relativity

The vacuum Einstein field equations can be derived from
the Einstein-Hilbert (EH) action,

SEH ¼ κ

Z
dx

ffiffiffiffiffiffi
−g

p
R; ð40Þ

where κ ¼ c4=ð16πGÞ, g is the determinant of the metric
gab, and R is the Ricci scalar [58]. We may now expand the

metric around some background, gab ¼ gð0Þab þ ϵhab þ � � �,
as in Eq. (32). The source-free linearized equations of
motion, on a flat background (so that Riemann vanishes),
and in the transverse-traceless gauge (∇ahab ¼ 0 and
haa ¼ 0), take the simple form

□hab ¼ 0; ð41Þ
where □≡∇a∇a is the d’Alembertian with respect to the
background metric. Equation (41) leads to the standard
geometric optics approximation to GW propagation, from
which it follows that GWs show no birefringence and
always propagate at the speed of light.
Focus now on the second-order perturbation of Eq. (40).

On a flat background, the second-order Lagrangian density
is given by [57,107]

Lð2Þ
GR ¼ κ

ffiffiffiffiffiffi
−g

p �
1

2
ð∇ah̄bcÞð∇bh̄acÞ −

1

4
ð∇ah̄cdÞð∇ah̄cdÞ

þ 1

8
ð∇ah̄Þð∇ah̄Þ

�
; ð42Þ

where all derivatives are taken with respect to the back-
ground metric gab, and h̄ab ≡ hab − gabhcc=2 is the trace-
reversed metric perturbation. This piece of the Lagrangian
density corresponds to Sð2Þ in Eq. (34).
We now apply the transverse-traceless gauge conditions

and evaluate the perturbations on shell (that is, we enforce
the first-order equations of motion). Then, varying with
respect to the inverse background metric gab as in Eq. (31),
we obtain, far away from sources,

TðGRÞ
ab ¼ c4

32πG
⟪∇ahcd∇bhcd⟫: ð43Þ

This is the well-known expression for the effective stress
energy carried by a gravitational wave, first derived by
Isaacson (and, consequently, known as the Isaacson for-
mula) [102,103].
We may now use Eq. (43) to relate SðfÞ and ΩGWðfÞ, as

outlined in Sec. II D. The Isaacson expression implies that,
in a local Lorentz frame,

ρGW ¼ TðGRÞ
00 ¼ c2

32πG
⟪∂thij∂thij⟫; ð44Þ

where we have used the fact that the transverse-traceless
metric perturbation will be purely spatial. Plugging in
the plane-wave expansion of Eq. (1), using the reality
condition of Eq. (4), and invoking (ii) ergodicity, we may
rewrite this as

ρGW ¼ −c2

128π3G

Z fdkfdk0ωω0hh̃�ijð−kÞh̃ijðk0Þi

× eiðkþk0Þ·x: ð45Þ

This means that, in GR and in our gauge, ρGW takes the
form of Eq. (36) with

Qabcd
GR ¼ −c2

128π3G
gacgbdωω0: ð46Þ

It is convenient at this point to expand the Fourier
amplitudes into polarizations. Because GR is parity sym-
metric, in this theory all modes are generated and propagate
equally, so one is free to choose between linear and circular
polarizations; however, working with the former is slightly
simpler because the corresponding polarization tensors,
Eqs. (7a) and (7b), are real-valued. Then, summing over A,
A0 ∈ fþ;×g,

ρGW ¼ −c2

128π3G

Z fdkfdk0ωω0hh̃�Að−kÞh̃A0 ðk0Þi

× eAijeA
0ijeiðkþk0Þ·x: ð47Þ

We now use the fact that the Fourier amplitudes are given
by a random process to simplify our expression for ρGW via
Eq. (16). Following common practice and for the sake of
simplicity, we will assume that the stationary Gaussian
background is also (vii) isotropic and (vi) unpolarized, with
equal contributions from the linear polarizations. Letting
the total PSD in tensor polarizations be St ≡ Sþ þ S× with
Sþ ¼ S× ¼ St=2, this means

SAA0 ðf; n̂Þ ¼ 1

8π
δAA0StðfÞ: ð48Þ
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Again, the assumption (vi) of equipartition is justified
because GR conserves parity. The correlation of the Fourier
polarization amplitudes, Eq. (19), then becomes

hh̃�AðkÞh̃A0 ðk0Þi ¼ 1

16π
δðf − f0Þδðn̂ − n̂0ÞδAA0StðfÞ: ð49Þ

With this in place, and noting that Eq. (14) implies
eAijeAij ¼ 4 when summing over A ¼ fþ;×g, the effective
energy density of Eq. (47) simplifies to

ρGW ¼ πc2

4G

Z
∞

0

StðfÞf2df: ð50Þ

Comparing with Eq. (37), we can immediately read off
dρGW=d ln f, and then, from the definition of ΩGWðfÞ,
Eq. (29), we conclude

StðfÞ ¼
3H2

0

2π2jfj3ΩGWðfÞ: ð51Þ

As discussed in Sec. II C, the actual observable for
stochastic-background searches in data from ground-based
observatories is the cross-correlation between the outputs
of pairs of detectors. For an isotropic background, this is
given by Eq. (27), which can be written in terms of the
fractional energy density by means of Eq. (51):

hh̃�I ðfÞh̃I0 ðf0Þi ¼
3H2

0

8π2jfj3 δðf − f0ÞΩGWðfÞΓt
II0 ; ð52Þ

where we have defined the total tensor overlap-reduction
function as Γt

II0 ≡ Γþþ
II0 ðfÞ þ Γ××

II0 ðfÞ. This is the desired
expression relating the observable strain cross-correlation
to the fractional effective-energy density spectrum, which
will be predicted by theory. Equation (52) is used in most
LIGO and Virgo searches for a stochastic background, via
parametrizations like the ΩGWðfÞ power law of Eq. (38).
Comparing to Eq. (39), and recalling ΩGW ¼ Ωþ þ Ω×
with Ωþ ¼ Ω× ¼ ΩGW=2, we see that in GR, ΞðfÞ ¼ 1 for
tensor polarizations, and vanishes otherwise, as expected.

B. Chern-Simons gravity

Chern-Simons (CS) theory is an extension of GR with
motivations ranging from anomaly cancellation in curved
spacetime, low-energy limits of both string theory and loop
quantum gravity, effective field theory of inflation, and
more [73,108–118]. The theory is characterized by the
presence of a parity-odd, axionlike scalar field, which
couples to curvature through a parity-odd interaction (see
[74] for a review). This modification introduces the addi-
tional axionic d.o.f., but does not introduce any additional
propagating GW d.o.f. The ESET in this theory was derived
in [57], in an asymptotically flat spacetime and approach-
ing future null infinity (Iþ). As noted before, by promoting

flat-space results to a cosmological setting, we are making
an extremely small error of fractional order OðλGWH0=cÞ.
Below, we provide a sketch of this derivation and show
what the result implies for the stochastic background.
As a consequence of its lack of parity symmetry, CS

gravity generally predicts birefringent propagation and
generation of the metric perturbations, so that one of the
circular tensor polarizations is amplified at the expense of
the other [119]. Consequently, as is true for any theory
lacking parity symmetry, it is not appropriate to assume
that the stochastic background is unpolarized [120].
Furthermore, as we will see, the nondynamical version of
the theory predicts an expression for the effective GW stress
energy different from the Isaacson formula of Eq. (43), and
consequently differs from GR via a factor of ΞðfÞ ≠ 1
in Eq. (39).
In the absence of matter, CS gravity is given by the

Einstein-Hilbert action of Eq. (40), plus terms describing
the axion-curvature coupling (Sint), and dynamics (Sϑ) of
the scalar field ϑ [73,74],

SCS ¼ SEH þ Sint þ Sϑ; ð53Þ

Sint ¼
α

4

Z
dx

ffiffiffiffiffiffi
−g

p
ϑ�RR; ð54Þ

Sϑ ¼ −
β

2

Z
dx

ffiffiffiffiffiffi
−g

p
gabð∇aϑÞð∇bϑÞ: ð55Þ

In the above, α is the constant determining the coupling of
the CS field to the gravitational sector, while β controls the
kinetic energy of the scalar; �RR is the Pontryagin density,
which is defined in terms of the Riemann tensor Rabcd by

�RR ¼ 1

2
ϵabefRabcdRcd

ef; ð56Þ

with ϵabcd the Levi-Civita tensor. This term is parity odd,
and gives CS gravity much of its richness.
Studying the dynamics of the theory, one may show that

gravitational waves in CS gravity will present only the same
tensor (spin-weight 2) propagating d.o.f. as in GR [73,75].
On a flat background and in Lorenz gauge (∇ah̄ab ¼ 0),
metric perturbations follow the first-order equations of
motion [57,74],

□h̄ab ¼ −
1

κ
T̃ðϑÞ
ab þ α

κ
½∇cϑ̄∇d□h̄eðaϵcdebÞ

þ∇c∇dϑ̄ϵ
c
efða∇fð∇bÞh̄de −∇dh̄ebÞÞ�; ð57Þ

where we split ϑ into a smooth background piece ϑ̄ and a

perturbation ϑ̃, and T̃ðϑÞ
ab is the stress energy sourced

quadratically by ϑ̃,

T̃ðϑÞ
ab ¼ β

�
ð∇aϑ̃Þð∇bϑ̃Þ −

1

2
gabð∇cϑ̃Þð∇cϑ̃Þ

�
: ð58Þ
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Again on a flat background, CS gravity admits an approx-
imately traceless gauge [57], so that h̄ab can be replaced by
hab in these equations, as was done for GR in Eq. (41).
In the weak-coupling limit (i.e., α∇ϑ̄ ≪ κλGW, for GW

perturbation wavelength λGW ¼ c=f), it can be shown that
the quadratic Lagrangian density corresponding to Sð2Þ in
Eq. (34) can be written as [57]

Lð2Þ
CS ¼ Lð2Þ

GR þ ΔLð2Þ
CS ; ð59Þ

where Lð2Þ
GR is the effective Lagrangian density derived from

the Einstein-Hilbert action, Eq. (42), and

ΔLð2Þ
CS ≡ α

4

ffiffiffiffiffiffi
−g

p
ϵabcdð∇e∇fϑ̄∇ah̄

f
b∇ch̄ed

þ∇aϑ̄∇eh̄fb∇d∇eh̄fcÞ: ð60Þ

From this we may derive the effective GW stress energy,
and relate the energy to the strain cross-correlation, for both
the nondynamical and dynamical versions of the theory, as
outlined in Sec. II D.

1. Nondynamical theory

The nondynamical version of CS gravity is obtained
from Eqs. (53)–(55) by setting β ¼ 0. This removes the
dynamics of the scalar field, fixing it to some a priori value.
Furthermore, in the canonical embedding of this theory
[74], we set the field’s gradient to be purely timelike in
some global frame,

∇αϑ̄ ¼ μ−1δtα; ð61Þ

for some constant μ. When expanding hab as a power series
in α in the weak coupling limit, the first-order equations of
motion on a flat background, Eq. (57), reduce to a simple
wave equation, □h̄ab ¼ 0þOðα2Þ, as in GR. This implies
that the Lorenz gauge is compatible with synchronous
gauge (i.e., we can satisfy both ∇μhμν ¼ 0 and h0ν ¼ 0 in
the same frame).
In spite of its name, there is nothing special about the

canonical embedding other than its simplicity [74].
Although in the following we assume this particular form
for the background scalar field, the qualitative features of
our result should be similar in general, possibly with extra
terms stemming from any nonzero higher-order derivatives
of ϑ̄.
In the canonical embedding of nondynamical CS gravity,

it can be shown that the only non-GR contribution to
the on-shell ESET comes from the second term in Eq. (60),
in regions at a great distance from the source [57].
Consequently, we can write

TðCSÞ
ab ¼ TðGRÞ

ab þ ΔTðCSÞ
ab ; ð62Þ

where TðGRÞ
ab is the Isaacson tensor from Eq. (43), and

ΔTðCSÞ
ab is the surviving contribution from Eq. (60), with

components

ΔTðCSÞ
μν ¼ α

2μ
⟪ϵi

jk∇ðμhiσ∇νÞ∇khσj⟫ ð63Þ

in the global frame. The corresponding non-GR energy

density, ΔρðCSÞ ≡ ΔTðCSÞ
00 , over a flat background is

ΔρðCSÞ ¼ −iα
8π2μc2

Z fdkfdk0ωω0ϵijkk0ke
iðkþk0Þ·x

× hh̃�li ð−kÞh̃ljðk0Þi; ð64Þ

after expanding over planewaves in a synchronous gauge, as
done in Eq. (45), and using the reality condition of Eq. (4) to
substitute h̃i

lðkÞ → h̃�li ð−kÞ. In the notation of Eq. (36),
Qabcd ¼ Qabcd

GR þ ΔQabcd, where in dCS and in our gauge
choice, the components of the correction are given by

ΔQαβγδ ¼ −iα
8π2μc2

gβγϵαδik0iωω
0: ð65Þ

Wewant to expand the perturbation into polarizations, as
we did for the GR case in Eq. (45). However, it would be
inconvenient to do so in terms of the linear plus and cross
modes, since these are not actual eigenmodes of the kinetic
matrix in CS gravity, and hence their amplitudes will
generally be correlated [119]. Instead, we will work with
the right- and left-handed modes of Eq. (11), which do
diagonalize the CS kinetic matrix. Letting Â ∈ fR;Lg, then

ΔρðCSÞ ¼ −iα
8π2μc2

Z fdkfdk0ωω0jω0jϵijkk̂0kðeÂli Þ�ðeÂ
0
ljÞ

× hh̃�
Â
ð−kÞh̃Â0 ðk0Þieiðkþk0Þ·x: ð66Þ

Here we have used the fact that, to first order, the GW
dispersion relation in canonical nondynamical CS gravity is
the same as in GR, so that k0i ¼ jω0jk̂i0.
As a consequence of the birefringence of GWs in

CS gravity, it is also no longer reasonable to assume an
(vi) unpolarized background; rather, we should expect
SRðfÞ ≠ SLðfÞ. (Although in the canonical embedding
there is no amplitude birefringence in GW propagation,
wave generation should still be expected to break parity
symmetry.) However, we are justified in taking the two
polarizations to be uncorrelated in this basis, i.e.,
SRLðfÞ ¼ SLRðfÞ ¼ 0, which is not true in the linear basis.
With the above considerations in mind, we may write the

correlation factor in terms of the PSD in each mode as in
Eq. (19), so that Eq. (66) becomes (ω0 → −ω):
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ΔρðCSÞ ¼ iαπ2

2μc3

Z
dfdn̂jωj3SÂðfÞδÂÂ0ϵijkk̂k

× ðeÂli Þ�ðeÂ0
ljÞ: ð67Þ

With the help of Eqs. (15) and (10), this simplifies to our
final expression for the additional energy density, after
integrating over the source direction n̂:

ΔρðCSÞ ¼ −
α8π3

μc3

Z
∞

0

½SRðfÞ − SLðfÞ�f3df: ð68Þ

Writing the GR contribution also in terms of circular
polarizations and adding it to the purely CS part, it is then
straightforward to obtain the total energy density in non-
dynamical CS gravity:

ρGW ¼ πc2

4G

Z
∞

0

X
Â

λÂðfÞSÂðfÞf2df; ð69Þ

where the sum is over circular polarizations, and for
convenience we defined

λÂðfÞ≡ 1 − 32π2εÂ
αG
μc5

f; ð70Þ

with εR=L ¼ �1, as in Eq. (10). Because the energy is
diagonal in the circular modes, this may also be written as
ρGW ¼ ρR þ ρL, with each term defined as the correspond-
ing summand (pulling the sum up front) in Eq. (69).
Using the definition of the fractional energy density

spectrum, Eq. (29), this means that the strain power in each
polarization can be written as

SÂðfÞ ¼
3H2

0

2π2jfj3 λ
−1
Â
ðfÞΩÂðfÞ ð71Þ

where ΩR=LðfÞ represents the energy density in each
polarization, defined in full analogy to Eq. (29) such that
ΩGW ¼ ΩRðfÞ þ ΩLðfÞ. The observable cross-correlation
between the output of two detectors, Eq. (27), can then be
written as in Eq. (39), if we choose the circular tensor
polarization basis and let

ΞÂðfÞ ¼ λ−1
Â
ðfÞ ≈ 1þ 32π2εÂ

αG
μc5

f; ð72Þ

with the approximation being valid in the weak-coupling
limit that we have been working in (α=μ ≪ κc=f). As
expected, the usual GR expression of Eq. (52) is recovered
in the limit that the coupling of the scalar field vanishes
(α → 0), if we further assume SR ¼ SL.

2. Dynamical theory

Perhaps surprisingly, the case of dynamical CS gravity is
simpler for our purposes. This is because, in the dynamical
theory, the functional form of the effective GW stress-
energy tensor (about flat spacetime and with ∇ϑ̄ → 0 far
away from sources) is given by the Isaacson formula of
Eq. (43), as in GR [57]. This notwithstanding, dynamical
CS gravity still breaks parity symmetry, featuring birefrin-
gent propagation and generation of gravitational waves.
Therefore, just as in the nondynamical theory, it would not
be justified to take the stochastic background to be
unpolarized. Instead, using the circular polarization states,
in which the CS kinetic matrix diagonalizes, we find that in
the dynamical case

hh̃�I ðfÞh̃I0 ðf0Þi ¼
3H2

0

4π2jfj3 δðf − f0ÞΩÂðfÞΓÂ
II0 ðfÞ; ð73Þ

with Â ∈ fL;Rg, but now allowingΩL ≠ ΩR. Here we also
have ΞÂðfÞ ¼ 1, as in GR. With at least two detector pairs
(e.g., LIGO-Livingston–Virgo and LIGO-Hanford–Virgo),
it should be possible to use this to measure the energy
density in each circular mode. Equation (73) may also be
used to parametrize a polarized background in GR, and
hence probe polarized cosmological backgrounds like
those predicted in [68].

C. Scalar-tensor theories

Scalar-tensor (ST) theories are defined by the presence of
one or more scalar fields that couple to the gravitational
sector nonminimally. From a field-theoretic point of view,
this family of theories is a natural extension of GR, and, as
such, has been extensively studied [121–128]. Scalar-
tensor theories are also well motivated as effective field
theories encapsulating the low-energy behavior of quantum
gravity completions, like string theory [129–132], or
braneworld scenarios [133,134]. These theories also have
important applications to cosmology [135,136].
The literature contains several formulations of ST

theories, with varying degrees of generality and complex-
ity. For simplicity, we will focus on the most basic case,
which was introduced by Brans and Dicke in an attempt to
make Einstein’s theory fully compatible with Mach’s
principle [121]. Scalar stochastic GW backgrounds have
been previously studied in the context of this theory
[44]—we revisit some of those results here from the
ESET point of view presented in Sec. II D.
The vacuum action for Brans-Dicke scalar-tensor gravity

can be expressed as

SST ¼ κ

Z
dx

ffiffiffiffiffiffi
−g

p �
ϕR −

ωBD

ϕ
∇aϕ∇aϕ

�
; ð74Þ

for a scalar field ϕ, some constant ωBD, and where, as
before, κ ¼ c4=ð16πGÞ and R is the Ricci scalar. Matter
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will follow geodesics of the metric associated with
Eq. (74); this representation is known as the Jordan frame
of the theory. Notice that the scalar field has a “scaling
symmetry,” where if we take ϕ → Cϕ for some nonzero
real constant C, this constant can be absorbed into κ. If the
scalar field asymptotes to a constant ϕ0 far away from all
sources, we can use this scaling symmetry to change the
value of ϕ0 to whatever is most convenient for our
calculations; e.g., we can set ϕ0 ¼ 1 (note that [44] chooses
a different asymptotic value).
Alternatively, it is often useful to recast the STaction in a

conformal frame in which the scalar is only minimally
coupled to the metric sector. This can be achieved by
defining the conformal metric:

̰g ab ≡ ϕ

ϕ0

gab: ð75Þ

In terms of this metric and a redefined scalar field φ, Brans-
Dicke theory can be recovered from the action

̰S ST ¼ κ

Z
dx

ffiffiffiffiffiffi
−̰g

p ½̰R − 2̰∇aφ̰∇ aφ�; ð76Þ

where the under-tilded quantities are to be computed using
the metric of Eq. (75). The new scalar field φ is related to ϕ
from Eq. (74) by

ϕ=ϕ0 ≡ e−2α0ðφ−φ0Þ; ð77Þ

α0 ≡ ð3þ 2ωBDÞ−1=2; ð78Þ

where φ0 is some constant analogous to ϕ0. Because of its
resemblance to the Einstein-Hilbert action of Eq. (40), this
is known as the Einstein representation of the theory. As we
will see, Eq. (76) is more convenient for theoretical
manipulations than Eq. (74)—although it should be kept
in mind that matter follows geodesics in Eq. (74), but not
in Eq. (76).
As usual, we will perturb the Jordan metric and field to

first order by letting gab → gab þ hab and ϕ → ϕ0 þ δϕ,
with hab ≪ gab and δϕ ≪ ϕ0, like in Eq. (32). For
convenience, we will also define

Φ≡ −δϕ=ϕ0: ð79Þ

Equivalently, we may perturb the Einstein-frame quantities
by writing ̰g ab → ̰g ab þ ̰h ab and φ → φ0 þ δφ. The two
perturbations will be related by the transformation of
Eq. (77), yielding to first order

̰h ab ¼ hab −Φgab; ð80aÞ

δφ ¼ Φ
2α0

; ð80bÞ

̰g ab ¼ gab: ð80cÞ

Studying linearized perturbations in the Jordan frame, it
is possible to show that there exists a gauge in which the
vacuum linear equations of motion reduce to simple wave
equations, □hab ¼ 0 and □Φ ¼ 0, with the trace of the
perturbation satisfying h ¼ 2Φ [122]. This implies that the
metric perturbation may be locally decomposed into spin-
weight 2 and spin-weight 0 contributions, in the spirit of
Eq. (5), such that

h̃abðkÞ ¼ h̃þðkÞeþabðn̂Þ þ h̃×ðkÞe×abðn̂Þ þ Φ̃ðkÞebabðn̂Þ
ð81Þ

with the polarization tensors as given by Eqs. (7a), (7b) and
(7e). It is easy to check, using the linear transformations of
Eq. (80), that in the Einstein frame this is equivalent to a
gauge in which the trace-reversed Einstein metric is given
by the same expression as the Jordan metric, i.e.,

¯̰h ab ≡ ̰h ab − ̰hηab=2 ¼ hab: ð82Þ

Consequently, ¯̰h ab is divergenceless (∇a ¯̰hab¼0), although
it is not traceless ( ¯̰h ¼ h ¼ 2Φ).
We now derive an expression for the GWeffective stress

energy in the Einstein frame, and will then reexpress this in
terms of the Jordan quantities that are measurable at the
detector. The reason for this choice is that, by definition of
the Einstein frame, the metric and scalar field separate in
the action of Eq. (76). This nice feature not only makes our
computations easier, but also those in the modeling of
observational scenarios for the stochastic background—
which will generally also offer a prediction of the energy
spectrum in the Einstein frame. In any case, there is no
difference between the Jordan and Einstein energies to
linear order, as given by Eq. (80).
From the variation of the second-order perturbation of

the Einstein-frame Lagrangian density, Eq. (76), with
respect to the inverse background metric ̰g μν, we can
show, as in Sec. II D, that the effective GW stress-energy
tensor will be given by two terms:

̰T ðSTÞ
ab ¼ ̰T ðEHÞ

ab þ Δ ̰T ðSTÞ
ab : ð83Þ

The first, ̰T ðEHÞ
ab , is the contribution from the Einstein-

Hilbert part of the action in Eq. (76)—this is analogous to

TðGRÞ
ab in Eq. (43), but is not identical to it due to the

presence of the scalar and the necessarily different gauge
choice with ̰h̄ ¼ 2Φ. In fact, starting from the quadratic
Lagrangian density of Eq. (42), after evaluating on shell, it
may be shown that

̰T ðEHÞ
ab ¼ κ

2
⟪∇ahcd∇bhcd − 2∇aΦ∇bΦ⟫; ð84Þ
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in a synchronous gauge for hab (Appendix C). Recall that
the metric perturbation appearing in this equation can be
equivalently taken to be the trace-reversed perturbation in
the Einstein frame, or the regular perturbation in the Jordan
frame (hab ¼ ̰h̄ ab), because we are working to linear
order [Eq. (82)].
The second contribution to the stress energy comes from

the variation of the second term in Eq. (76), and can be
shown to be

Δ ̰T ðSTÞ
ab ¼ ð3þ 2ωBDÞκ⟪∇aΦ∇bΦ⟫; ð85Þ

after applying the equations of motion (Appendix C 1).
In both Eqs. (84) and (85), we have simplified the
notation by letting ̰∇ → ∇, because these derivatives are
taken with respect to the background metric, ̰g ab ¼ gab,
to linear order [Eq. (80c)]. Adding together the two
contributions, we obtain the total Einstein frame stress
energy:

̰T ðSTÞ
ab ¼ κ

2
⟪∇ahcd∇bhcd⟫þ 2κð1þ ωBDÞ⟪∇aΦ∇bΦ⟫:

ð86Þ

This agrees with the expression originally found in [122] by
a different procedure.
As in previous sections, we may now expand the

corresponding effective energy density, ρGW ≡ T00, into
plane waves to obtain an expression like Eq. (36) with
Qabcd ¼ Qabcd

GR þ ΔQabcd and

ΔQabcd ¼ −
c2ωω0

128π3G
ðωBD þ 1Þgabgcd; ð87Þ

where we have used the fact that Φ ¼ gabhab=2, as implied
by Eq. (81). The energy density can also be written
explicitly in terms of the polarization amplitudes as

ρGW ¼ −
κ

2c2

Z fdkfdk0ωω0eiðkþk0Þ·x

×
X
A

λAhh̃�Að−kÞh̃AðkÞi; ð88Þ

with a sum over the polarizations A ∈ fþ;×; bg. To make
the notation more compact, we have also defined the
auxiliary factor

λA ¼
� ð3þ 2ωBDÞ if A ¼ b;

1 if A ¼ þ;×:
ð89Þ

For more details, see Appendix C 2.
We must now make some assumptions about the

statistical properties of the Fourier amplitudes. As before,
we will assume the simplest case of (vii) an isotropic
background, with (v) uncorrelated polarizations and (iv)

sky bins. We can then use the corresponding expression for
the correlations, Eq. (19), to get

ρGW ¼ πc2

4G

X
A

Z
∞

0

dff2λASAðfÞ: ð90Þ

From the definition of the fractional energy spectrum,
Eq. (29), this in turn implies [cf. Eq. (37)]

SAðfÞ ¼
3H2

0

2π2jfj3 λ
−1
A ΩAðfÞ; ð91Þ

where ΩA represents the energy content in polarization A,
with ΩGW ¼ P

ΩA for A ∈ fþ;×; bg, because we took
the different modes to be uncorrelated. This is justified
because the kinetic matrix of the theory is diagonal
for A ∈ fþ;×; bg.
We may use this expression for the power spectral

density in each polarization to write the observable
cross-correlation between the output of a pair of detectors
(I and I0). Using the cross-correlation expression of
Eq. (27), we find again that we can write this as in
Eq. (39) with a summation over polarizations A∈fþ;×;bg,
and the factor

ΞAðfÞ ¼ λ−1A ¼
� ð3þ 2ωBDÞ−1 if A ¼ b;

1 if A ¼ þ;×:
ð92Þ

The GR result of Eq. (52) is recovered, as expected, in the
limit that ωBD becomes infinitely large.

D. Massive gravity

From a field theory perspective, general relativity is
nothing but the theory of a nontrivial massless spin-2
particle—the graviton. Therefore, theories of massive
gravity, which endow the graviton with a mass, are a
natural (and, in some sense, the simplest) extension of
Einstein’s theory (see [71,72] for reviews). In its most basic
form, linearized massive gravity is given by the Fierz-Pauli
(FP) action [137],

SFP ¼ Sð2Þ
EH þ Sm; ð93Þ

where Sð2Þ
EH is the quadratic piece of the Einstein-Hilbert

action of Eq. (40), and Sm is the Fierz-Pauli mass term,

Sm ¼ 1

2
κ

Z
dx

ffiffiffiffiffiffi
−g

p
μ2habhcdga½bgc�d; ð94Þ

for a graviton mass m ¼ ℏμ=c, and where hab is a linear
perturbation over the background metric gab, as before. For
background diffeomorphism invariance, we explicitly
include the

ffiffiffiffiffiffi−gp
term in Eq. (94), though the background

metric in this action should be thought of as Minkowski
(yet potentially in curvilinear coordinates).
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Extending this linear theory to a more general, nonlinear
one is far from trivial (for reviews see e.g., [71,72]).
Therefore, we will focus only on the linear theory of
Eq. (93), and will only comment on the relevance of the
linearized analysis for the nonlinear completion at the end
of this section. Until then, we will write “massive gravity”
to mean Fierz-Pauli theory.
Massive gravity has many interesting features, including

the fact that it supports five independent GW polarizations
corresponding to the helicity states available to a massive
particle: two tensor modes (helicity �2), two vector modes
(helicity �1), and one scalar mode (helicity 0). Over a flat
background, these d.o.f. propagate following the Klein-
Gordon equations of motion describing a massive graviton,

ð□ − μ2Þhab ¼ 0; ð95Þ

and are divergenceless and traceless,

∇ahab ¼ 0; ð96aÞ

h ¼ gabhab ¼ 0: ð96bÞ

These three equations follow from the variation of Eq. (93)
with respect to the inverse metric perturbation hab [71,72],
and contain all relevant properties of GWs in this theory.
Equation (95) immediately gives the dispersion rela-
tion ω2 ¼ c2ðjk⃗j2 þ μ2Þ.
Before proceeding, we must discuss the length scales

which appear in this calculation. Around a flat background,
there are only two length scales of importance: the wave-
length of radiation, λGW, and the graviton’s Compton
wavelength, λm ¼ h=mc. Generally speaking, the relevance
of corrections to GR due to a nonvanishing graviton mass
will depend on the value of the ratio of these two,

αðfÞ≡ λGW
λm

¼ cμ
2πf

; ð97Þ

or, equivalently, the ratio of the norm of the wave’s spatial
wave vector to its angular frequency,

βðfÞ≡ jk⃗jc
2πf

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
: ð98Þ

This last quantity is just the graviton group velocity in
natural units, which is the same as the ratio of the speed of
light to the graviton phase velocity (β ¼ vg=c ¼ c=vp). We
should expect to recover GR results for vanishing graviton
mass, when μ → 0 and, consequently, α → 0 and β → 1.
Note that for propagating GWmodes, we must have α < 1,
and consequently, β is real-valued.
When we move to the cosmological setting (or a more

general curved background), there is a third length scale at
each point: the curvature radius of the background, LBG. In

order for the Brill-Hartle averaging procedure to be valid,
we need a separation of scales, λGW ≪ LBG, since the B-H
average makes errors of order λGW=LBG (this is clearly
satisfied when comparing the LIGO/Virgo frequency band
with the cosmological curvature radius cH−1

0 ). Now, in the
following, we want to keep the dependence on μ, so we
keep terms at the length scale λm. This is only compatible
with the B-H averaging procedure if we demand the
additional separation of scales λm ≪ LBG.
We now return to a flat background to develop the results

which we later promote to a cosmological background. In a
generic frame (that is, without special boosts) with rec-
tangular coordinates, and with the z-axis aligned along the
wave’s direction of propagation, the equations of motion
can be shown to restrict the components of a massive GW
to be of the form (Appendix D 1 a):

ðhμνÞ ¼

0
BBBBB@

β2hl −βhx −βhy −βhl
−βhx − 1

2
α2hl þ hþ h× hx

−βhy h× − 1
2
α2hl − hþ hy

−βhl hx hy hl

1
CCCCCA;

ð99Þ

for the five linear polarization amplitudes hA, with
A ∈ fþ;×; x; y; lg. Here, we have parametrized the single
scalar mode allowed by the theory in terms of the
longitudinal amplitude (rather than the breathing ampli-
tude, or some linear combination thereof), treating it as the
fundamental d.o.f.5 It is straightforward to check that the
metric of Eq. (99) is traceless and divergenceless, as
required by the equations of motion (Appendix D 1 a).
The GR case is recovered in the limit of vanishing graviton
mass, if we also reenforce the requirements of trans-
versality and tracelessness by setting hx ¼ hy ¼ hl ¼ 0.
We must now determine the functional form of the GW

effective stress-energy tensor in FP theory. Varying the
effective Lagrangian density from Eq. (93) with respect to
gab, as in Eq. (31), we may write the effective GW stress-
energy tensor in massive gravity as (Appendix D 2)

TðFPÞ
ab ¼ TðEHÞ

ab þ ΔTðFPÞ
ab : ð100Þ

As in previous examples, TðEHÞ
ab is derived from the

Einstein-Hilbert piece of the action, but now evaluated
with the new on-shell condition Eq. (95), rather than the
GR requirement of Eq. (41). This gives

5Importantly, note that our definition of the longitudinal mode
follows the standard in the GW literature, and does not neces-
sarily agree with the conventions from the massive-gravity theory
literature; e.g., Ref. [72] defines the longitudinal tensor as
proportional to our elab − ebab=2, instead of just elab.
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TðEHÞ
ab ¼ κ

2
⟪∇ahcd∇bhcd⟫

þ κμ2⟪hdahbd þ
1
4
gabhcdhcd⟫: ð101Þ

The second term in Eq. (101) is derived from the Fierz-
Pauli mass term of Eq. (94) and reduces to

ΔTðFPÞ
ab ¼ −κμ2⟪hdahbd þ

1
4
gabhcdhcd⟫; ð102Þ

for on-shell perturbations (Appendix D). This result
includes no derivatives of the metric, as is to be expected
from Eq. (94). Perhaps surprisingly, the mass terms
appearing in Eqs. (101) and (102) exactly cancel, resulting
in the same functional form for the ESET as in GR,

TðFPÞ
ab ¼ κ

2
⟪∇ahcd∇bhcd⟫: ð103Þ

This result is in agreement with the one derived in [138]
based on Noether’s theorem on a Minkowski background
(though note that Ref. [138] had a slightly different mass
term, but this difference cancels out after evaluating the
ESET on shell). Despite the fact that the two functionals
have the same on-shell expressions, the solutions hab on
which they will be evaluated differ, because they satisfy
different linearized equations of motion, Eq. (41) vs
Eq. (95). We caution that, as discussed at the end of this
section, the Isaacson expression Eq. (103) should not be
expected to hold in a nonlinear completion of the theory
over arbitrary backgrounds.
Decomposing the metric components into plane

waves, the above expressions imply that the energy density
ρGW ≡ T00, in some frame, may be written as in Eq. (36)
with Qabcd ¼ Qabcd

GR . Breaking up the Fourier amplitudes
into polarizations and applying all the usual assumptions
(i)–(vii) about the background, it may then be shown that
we can use Eq. (19) to write the energy density in terms of
the polarization PSDs as (Appendix D 2):

ρGW ¼ πc2

4G

Z
∞

0

X
A

λAðfÞSAðfÞf2df; ð104Þ

where the sum is over the five linear polarizations A ∈
fþ;×; x; y; lg as they appear in Eq. (99), and we have
defined

λAðfÞ≡

8>><
>>:

1 if A ¼ þ;×;

α2 if A ¼ x; y;
3
4
α4 if A ¼ l:

ð105Þ

Clearly, higher powers of α will be strongly suppressed in
the limit of small mass we are working in, but we leave
them in for now nonetheless. Note again that we have

assumed that the polarization amplitudes of Eq. (99) are
statistically independent because they are the fundamental
d.o.f. that diagonalize the kinetic matrix of the theory.
With this expression for ρGW in hand, the definition of

the fractional energy density spectrum, Eq. (29), then
implies that

ΩGWðfÞ ¼
2π2jfj3
3H2

0

X
A

λAðfÞSAðfÞ; ð106Þ

and, as we have done in previous sections, we may call
each summand in this equation ΩAðfÞ, with ΩGWðfÞ ¼P

AΩAðfÞ, so that we can write the corresponding polari-
zation spectral density as

SAðfÞ ¼
3H2

0

2π2jfj3 λ
−1
A ðfÞΩAðfÞ: ð107Þ

We now want to relate the GW energy density to the
cross-correlation of the outputs of two interferometric
detectors. Instead of Eq. (99), we would like to be able
to write the GW as a purely spatial metric perturbation
(h0ν ¼ 0) in arbitrary frames (i.e., without the need for
special boosts). This is so we can have the perturbation be
purely spatial in the proper frame of the detector, which
would then allow us to use our usual expression for the
detector tensor, Eq. (23), when computing the output of a
measurement.
In GR, the required gauge freedom is afforded by

diffeomorphism invariance, which is not directly available
to us in massive gravity [71,72]. However, we may
circumvent this restriction by introducing auxiliary fields
into the action, designed to reintroduce gauge freedom to
the theory (the so-called Stückelberg trick). We would then
obtain a generalized version of massive gravity that is
invariant under infinitesimal coordinate transformations,
and which reduces to the usual theory after fixing to a
particular gauge (see Appendix D 1 b).
We refer to the gauge that returns the FP action of

Eq. (93) as the unitary gauge, as opposed to the synchro-
nous gauge, in which the metric perturbation can take a
purely spatial form without special boosts. In this gauge, a
measurement via an interferometric detector in the small-
antenna limit can be represented by the double contraction
of the metric with the detector tensor of Eq. (23), and the
metric perturbation can be decomposed as in Eq. (6), as
explained in Sec. II C.
Unfortunately, the synchronous polarizations will not be

statistically independent in the linear basis of Eq. (6), which
is commonly used in data analysis (e.g., [54]). In fact, the
six polarization amplitudes in the synchronous gauge, ̰h A,
can be obtained from the five in the unitary gauge of
Eq. (99), hB, via a (polarization-basis-dependent) trans-
formation matrix M ̰A

B given by
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ðM ̰A
BÞ≡

0
BBBBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 α2 0 0

0 0 0 α2 0

0 0 0 0 − 1
2
α2

0 0 0 0 α4

1
CCCCCCCCA
; ð108Þ

so that ̰h A ¼ M ̰A
BhB, and where ̰A ∈ fþ;×; x; y; b; lg

indexes synchronous polarization amplitudes ̰h A ∈
f̰h þ; ̰h ×; ̰h x; ̰h y; ̰h b; ̰hlg, while B ∈ fþ;×; x; y; lg indexes
unitary polarization amplitudes hB ∈ fhþ; h×; hx; hy; hlg.
Had we started with a basis for the unitary metric
components different than Eq. (99), all our results would
still apply after redefiningM ̰A

B accordingly. We provide an
explicit expression for ̰h ab in terms of the unitary ampli-
tudes in Eq. (D24) in Appendix D 1 b. The fact that the five
unitary amplitudes determine six synchronous amplitudes
makes it immediately clear that the latter are not statistically
independent.
Taking advantage of the synchronous gauge to

compute detector responses and taking the unitary polar-
izations to be uncorrelated, the cross-correlation of two
detector outputs may be written directly in terms of the
fractional energy spectrum for each unitary polarization via
Eq. (107),

hh̃�I ðfÞh̃I0 ðf0Þi ¼
3H2

0

4π2jfj3 δðf − f0Þ
X
B

ΩBðfÞ

× λ−1B ðfÞM ̰ABðfÞM ̰A0BðfÞΓ̰A ̰A0
II0 ðfÞ;

ð109Þ

with λBðfÞ as in Eq. (105), MAB as in Eq. (108), and
Γ ̰A̰A0

II0 ðfÞ the generalized overlap reduction functions
for the synchronous polarizations. These functions are
defined as in Eq. (28), with a delay factor corresponding
to vp ¼ c=β [cf. Eq. (98)], i.e.,

ξAA
0

II0 ¼ ΔxII0
c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
≈
ΔxII0
c

�
1 −

1

2
α2
�
; ð110Þ

after expanding for small α. The resulting overlap-reduction
functions will not be the same (even ignoring differences in
normalization) as those used in existing stochastic searches
beyond GR [54,55], because those assume vp ¼ c.
However, we should expect it to be a good approximation
as long as the extra delay in the time of flight due to the
nonvanishing mass, δξAA

0
II0 ≡ − 1

2
α2ΔxII0=c, is small with

respect to the timing accuracy of the instruments. For a
treatment of overlap-reduction functions without ignoring
this correction, see [46].

Regardless of whether we neglect dispersive corrections
to the overlap-reduction functions or not, it turns out that,
for differential-arm detectors, we have that

Γ ̰A̰A0
II0 ¼

( ð2δ ̰A̰A0 − 1ÞΓl
II0 if ̰A or ̰A0 in fb; lg;

δ ̰A̰A0Γ ̰A
II0 otherwise;

ð111Þ

as long as differences in the phase velocities of different
polarizations are negligible (which is exactly the case for
the Fierz-Pauli theory). This relation may be used to put our
result of Eq. (109) in the form of Eq. (39) with

ΞAðfÞ ≈

8>><
>>:

1 if A in fþ;×g;
α2 if A in fx; yg;
1
3
ð2α2 þ 1Þ2 if A ¼ 1;

ð112Þ

plus terms of order α6 and higher. Here, ΞAðfÞ goes
smoothly to the GR limit as α → 0 (vanishing graviton
mass) for the tensor and vector modes. However, notice that
ΞlðfÞ → 1

3
(rather than vanishing) in this same limit. This is

reminiscent of the vDVZ (van Dam, Veltman, Zakharov)
discontinuity [139,140] (see also [141] for a similar effect,
and [72] for more discussions). For interesting details on
the derivation of Eqs. (109)–(112), we refer the reader to
Appendix D 3.

1. Relation to nonlinear massive gravity

There is no problem in thinking of the action Eq. (93) as
describing a linear spin-2 field hab on a curved background
gab. However, if we want hab to represent metric fluctua-
tions of the gravitational field, the theory must have a
nonlinear completion, which is known to have several
problems (see e.g., [71,72] for more discussions). One
which we have already mentioned [below Eq. (112)] is the
vDVZ discontinuity, by which the limit of vanishing
graviton mass μ → 0 does not recover GR (e.g., the scalar
d.o.f. does not decouple).
Another major problem is the Boulware-Deser ghost

[142], which must be excised order by order in the graviton
self-interaction. Controlling this ghost d.o.f. to all orders is
possible with a specific set of self-interactions, known as de
Rham-Gabadadze-Tolley (dRGT) massive gravity [143].
This has been extended to a theory of two interacting
metrics by Hassan and Rosen [59], which has dRGT as a
careful scaling limit. Bigravity propagates one massive and
one massless spin-2 field (7 total d.o.f.), whereas taking the
dRGT limit eliminates the massless mode (leaving only 5
dynamical d.o.f., as in the linearized theory).
Indeed, when expanded about a Minkowski background

to linear order (quadratic in the Lagrangian), dRGT agrees
with Fierz-Pauli theory. This might lead one to believe that
the preceding FP analysis can be directly lifted to dRGT, or
even to bigravity, but this conclusion is unwarranted. The
quadratic Lagrangian about nontrivial background-field
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configurations [144–148] can look rather different from the
simple FP Lagrangian.6

In fact, the difference from the FP Lagrangian is crucial
for the health of such theories, because otherwise the
nonlinear theories would also exhibit problematic phenom-
enology, like the vDVZ discontinuity. However, healthy
nonlinear massive gravity theories are protected from
vDVZ phenomenology by the Vainshtein screening mecha-
nism [149]. The Vainshtein mechanism leads to a non-
trivial, nonlinear field configuration (like a condensate)
with a new length scale, the Vainshtein radius. Within this
radius, the effective couplings for the massive d.o.f. can be
very different from what is seen when expanded about the
Minkowski background, thus reverting to the phenomenol-
ogy of general relativity.
In short, the ESET for nonlinear massive gravity on a

general background (e.g., one exhibiting Vainshtein screen-
ing) should be considered an open problem. It seems
unlikely that the FP result applies to the general case.

IV. CONCLUSION

The detection of a stochastic gravitational-wave back-
ground will provide a unique opportunity to study the
properties of gravitational waves as they propagate through
cosmological distances, and will thus be an invaluable tool to
study extensions of general relativity. Properly interpreting
the theoretical implications of such a detection will require a
detailed understanding of the assumptions that go into the
usual searches for a stochastic background, and how the
measurement process might be modified in theories beyond
general relativity. Towards that goal, in this paperwe have laid
out the formalism underlying searches for stochastic signals
in a generic fashion that makes it easily applicable to a large
family of theories. We have also surveyed the standard set of
assumptions that go into these searches, evaluating their
generic applicability, or lack thereof.
First and foremost, we find that most existing treatments

of stochastic backgrounds beyond GR fail to consider
possible modifications to the effective stress energy carried
by a gravitational wave of a given amplitude and frequency
[46–48,50,52,53,56]. This is important because the goal of
searches for stochastic backgrounds, within GR or beyond,
is precisely to measure the amount of energy that exists in
the form of stochastic gravitational waves. Accordingly,
data analysis strategies tend to be parametrized directly in
terms of an effective energy spectrum, Eq. (29). However,

this is only possible if one knows the relation between the
energy density and the observables at the detector (e.g., the
cross-correlation of strain detector outputs)—this will
depend on the specific structure of the underlying theory
of gravity and, in general, need not be the same as in GR.
Therefore, parametrizing model-independent searches for
backgrounds beyond GR as traditionally done will result in
the use of a quantity that should not generally be interpreted
as the GW energy density, and may thus lead to incorrect
comparisons between theory and experiment. Instead, we
find it advisable to parametrize theory-agnostic searches
using the power spectrum of polarization amplitudes,
Eq. (16), which have a (mostly) model-independent inter-
pretation. One can always translate amplitudes into effec-
tive energies for any specific theory, as sketched in
Sec. II D.
We also reviewed the standard set of simplifying

assumptions that the stochastic background is
(i) Gaussian, (ii) ergodic, and (iii) stationary, with no
correlation between amplitudes from different (iv) sky
locations or (v) polarizations, and with (vi) equipartition
of power across polarizations, and also, commonly
(although not universally) assumed to be (vii) isotropic.
While we find that the first four of these premises are
generally applicable beyond GR, the same is not true for the
rest—this is without considering changes to the potential
sources of the background in beyond-GR theories, which
may themselves break more of the assumed symmetries.
In particular, it is not reasonable to always assume that the
usual linear GW polarization amplitudes of Eq. (6) will be
statistically independent and have well-defined phase
velocities, as this will not be true unless the chosen
polarization basis diagonalizes the kinetic matrix of the
underlying theory of gravity. Similarly, one should be
careful in assuming that power will be equipartitioned
among polarizations, even for modes with the same spin
weight, as parity-asymmetric theories may predict dif-
ferences in the generation and propagation of modes with
different helicities. Deviations from isotropy should be
expected in theories with intrinsically preferred frames.
Finally, we have provided specific examples of beyond-

GR theories in which these traditional assumptions break
down, and in which the GR expression for the stress energy
of a gravitational wave may receive a correction: Chern-
Simons gravity, scalar-tensor theories, and massive gravity.
For all these theories, we find that the cross-correlation of
the outputs of two ideal differential-arm detectors can be
written in terms of the effective GW stress energy as in
Eq. (39), with different ΞðfÞ factors encoding how each
theory departs from GR. This set of examples is not
intended to be exhaustive, but merely to show that it is
possible to construct viable theories that violate standard
assumptions in stochastic searches. This will be important
in the interpretation of results like [54,55] once a stochastic
signal is detected.

6For a special subclass of “proportional” background configu-
rations in bigravity [145,148], two linear combinations of the two
metrics’ perturbations can be combined into the massless and
massive eigenstates which diagonalize the kinetic matrix of the
quadratic Lagrangian. In this case, the massive mode does have a
FP Lagrangian. However, this is likely a special case—as far
as we have been able to discern, the transformation to the
mass eigenstates has not been performed for a more general
background.
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APPENDIX A: PLANE-WAVE DECOMPOSITION

Begin with our compact expression for the plane-wave
expansion of the metric components, Eq. (1):

habðxÞ ¼
1

2π

Z
h̃abðkÞeik·xfdk; ðA1Þ

with the integral over the four-wave-vector k as prescribed
by our definition of fdk in Eq. (2),

fdk≡ 2cδðjk⃗j2 − jk⃗ωj2Þjk⃗j−1dk: ðA2Þ
This definition of the four-dimensional Fourier transform is
designed to yield Eq. (3), and thus follows the convention
of recent stochastic GW background literature (e.g.,
[14,16,60]). This choice, however, differs from the
Lorentz-invariant measure most common in field theory
[see e.g., Eq. (3.18) in [150] or Eq. (4.4) in [151]],

fdkQFT ¼ cδðjk⃗j2 − jk⃗ωj2Þdk=ð2πÞ3

¼ jk⃗jfdk=2=ð2πÞ3: ðA3Þ
Note that this difference in measures results in a difference
in conventions for the Fourier amplitudes. Specifically, this
means that h̃ðkÞ ∝ jk⃗jh̃ðkÞQFT (the factor of proportionality
depends on prefactors outside of the integral).
With the help of Eq. (A2), Eq. (A1) can be immediately

rewritten as an explicit integral over the four-vector k,
transforming each component independently,

habðxÞ ¼
c
π

Z
h̃abðkÞeik·xδðjk⃗j2 − jk⃗ωj2Þjk⃗j−1dk: ðA4Þ

Here k⃗ω ≡ k⃗ðωÞ encodes the functional dependence
of k⃗ on ω imposed by the specific dispersion relation

required by the underlying theory of gravity—in GR, this
is just the usual demand that jk⃗ωj ¼ ω=c). For clarity, we
may split the four-vector k into the frequency and spatial
k⃗-vector,

habðt; x⃗Þ ¼
1

π

Z
∞

−∞

Z
S2

Z
∞

0

h̃abðω; k⃗Þeiðk⃗·x⃗−ωtÞ

× δðjk⃗j2 − jk⃗ωj2Þjk⃗jdjk⃗jdk̂dω; ðA5Þ
where we have written the spatial three-integral in polar
coordinates such that

dk⃗ ¼ jk⃗j2djk⃗jdk̂; ðA6Þ
with angular domain over the 2-sphere, S2. In this step, we
have also used the fact that jk⃗j is non-negative by definition
to set its integration limits.
We may now use the fact that, for any continuously

differentiable function gðxÞ with real roots xi,

δðgðxÞÞ ¼
X
i

δðx − xiÞ
jg0ðxiÞj

; ðA7Þ

to further simplify the integrand to

habðt; x⃗Þ ¼
1

2π

Z
∞

−∞

Z
S2

Z
∞

0

h̃abðω; k⃗Þeiðk⃗·x⃗−ωtÞ

×
1

jk⃗ωj
δðjk⃗j − jk⃗ωjÞjk⃗jdjk⃗jdk̂dω; ðA8Þ

where the integration limits have allowed us to ignore the
negative root, jk⃗j ¼ −jk⃗ωj. It is now straightforward to
carry out the integral over the norm jk⃗j to obtain

habðt; x⃗Þ ¼
1

2π

Z
∞

−∞

Z
S2
h̃abðω; k⃗Þeiðk⃗·x⃗−ωtÞdk̂dω; ðA9Þ

where now k⃗ is necessarily on shell (jk⃗j ¼ jk⃗ωj). Writing
this in terms of f ¼ ω=2π, n̂ ¼ −k̂ and vp ≡ jk⃗=ωj−1, we
immediately recover Eq. (3), as promised,

habðt; x⃗Þ ¼
Z

∞

−∞

Z
sky

h̃abðk; n̂Þe−2πifðtþn̂·x⃗=vpÞdn̂df; ðA10Þ

thus justifying the second equality in Eq. (2),

fdk ¼ dωdn̂: ðA11Þ

APPENDIX B: CORRELATION AND
SPECTRAL DENSITY

We will reproduce the standard result that assumptions
(iii) of stationarity and (iv) of uncorrelated sky locations
allow us to write the cross-correlation of the Fourier
amplitudes as in Eq. (16),
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hh̃�AðkÞh̃A0 ðk0Þi ¼ 1

2
δðf − f0Þδðn̂ − n̂0ÞSAA0 ðkÞ; ðB1Þ

with SAA0 the cross-power spectral density of stochastic
signals of polarizations A and A0.
The second delta function in Eq. (B1) is just a direct

statement of assumption (iv), so focus on the rest of the
equation by suppressing the dependence on n̂. We are then
left with simple one-dimensional Fourier transforms in the
expression for the cross-correlation,

hh̃�AðfÞh̃A0 ðf0Þi ¼
	Z

hAðtÞe2πiftdt

×
Z

hA0 ðt0Þe−2πif0t0dt0


: ðB2Þ

Defining τ≡ t0 − t, this can be put in the form

hh̃�AðfÞh̃A0 ðf0Þi ¼
Z Z

hhAðtÞhA0 ðtþ τÞi

× e−2πif
0τe2πiðf−f0Þtdτdt: ðB3Þ

Now note that the term in brackets is simply the correlation
of hAðtÞ and hA0 ðt0Þ, which by assumption of stationarity
depends only on the time difference τ, i.e.,

hhAðtÞhA0 ðtþ τÞi ¼ hhAð0ÞhA0 ðτÞi; ðB4Þ

where we have set t ¼ 0 for concreteness. We may there-
fore carry out the integral over t to obtain

hh̃�AðfÞh̃A0 ðf0Þi ¼ δðf − f0Þ
Z

hhAð0ÞhA0 ðτÞie−2πifτdτ:

ðB5Þ

Now, the Wiener-Khinchin theorem [63] guarantees that, if
the cross-correlation is continuous, we can always define a
function of frequency to give the Fourier transform of the
cross-correlation (the integral above); that can be taken as
the definition of the one-sided cross-power spectral density,

SXYðfÞ≡ 2

Z
hXð0ÞYðτÞie−2πifτdτ; ðB6Þ

for any two stationary random processes, XðtÞ and YðtÞ,
and where the prefactor is chosen so that SðfÞ≡ SðjfjÞ is
the one-sided spectral density. All this means is that we
may write

hh̃�AðfÞh̃A0 ðf0Þi ¼ 1

2
δðf − f0ÞSAA0 ðfÞ; ðB7Þ

or, restoring the n̂ dependence,

hh̃�AðkÞh̃A0 ðk0Þi ¼ 1

2
δðf − f0Þδðn̂ − n̂0ÞSAA0 ðkÞ: ðB8Þ

APPENDIX C: SCALAR-TENSOR
COMPUTATIONS

Here we provide details on the computations of the
ESET and correlation functions in Brans-Dicke gravity
(Sec. III C). In order to do so, first consider the trans-
formations between the Jordan and Einstein frames. By
definition of the Einstein frame, in a generic scalar-tensor
theory these can be written as [e.g., Eqs. (34)–(36) in [152]]

gab ≡ A2ðφÞ ̰g ab; ðC1aÞ

ϕ≡ A−2ðφÞ; ðC1bÞ

for some auxiliary function AðφÞ. We can then use this to
define the coupling αðφÞ as

αðφÞ≡ d lnAðφÞ
dφ

: ðC2Þ

To recover the Brans-Dicke theory, we simply expand this
coupling to linear order by setting

αðφÞ ¼ α0 ≡ ð2ωBD þ 3Þ−1=2; ðC3Þ

so that lnAðφÞ ¼ α0ðφ − φ0Þ for some fiducial value φ0,
and Eqs. (C1) become (Jordan to Einstein)

gab ¼ e2α0ðφ−φ0Þ ̰g ab; ðC4aÞ

ϕ ¼ e−2α0ðφ−φ0Þ: ðC4bÞ

For later convenience, define δφ≡ φ − φ0 and rescale
the Jordan field by letting ϕ → ϕ=ϕ0 for some background
value ϕ0. After doing so, Eqs. (C4) imply (Einstein to
Jordan)

̰g ab ¼
ϕ

ϕ0

gab; ðC5aÞ

δφ ¼ −
lnðϕ=ϕ0Þ

2α0
: ðC5bÞ

With the above notation in place, let us perturb the two
metrics and scalar fields to first order, and then obtain the
relationship between the perturbations in the two frames.
Letting gab → gab þ ̰h ab and ϕ → ϕ0 þ δϕ in the Jordan
frame, and ̰g ab → ̰g ab þ ̰h ab and φ → φ0 þ δφ in the
Einstein frame, we can then apply the transformations
from Eq. (C5) to write
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̰g ab þ ̰h ab ¼ ϕ−1
0 ðϕ0 þ δϕÞðgab þ habÞ

≈ gab þ ðhab þ gabδϕ=ϕ0Þ: ðC6Þ

Collecting terms of the same order, this implies that, to first
order in the perturbations,

gab ¼ ̰g ab; ðC7aÞ

hab ¼ ̰h ab þ 2α0δφ̰g ab; ðC7bÞ

Φ ¼ 2α0δφ; ðC7cÞ

where we have defined Φ≡ −δϕ=ϕ0 for convenience.
Using this definition to replace the second expression by
̰h ab ¼ hab −Φgab, it becomes clear that these are Eqs. (80)
provided in the main text.

1. Effective stress-energy tensor

We wish to compute the effective GW stress energy in
the Einstein frame. We will do so by taking advantage of
the gauge proposed in [122], in which the trace-reversed
Einstein-frame perturbation ¯̰h ab satisfies

¯̰h ¼ 2Φ; ðC8aÞ

∇a ¯̰h ab ¼ 0; ðC8bÞ

and follows simple free-wave equations of motion,

□ ¯̰h ab ¼ 0; ðC9aÞ

□Φ ¼ 0: ðC9bÞ

In this gauge, the Einstein-frame trace-reversed metric
perturbation is equal to the regular (non-trace-reversed)
perturbation in the Jordan frame: ¯̰h ab ¼ hab. Thus, ¯̰h ab
may be decomposed into synchronous polarizations as
in Eq. (81).
To obtain an expression for the GW stress energy in the

Einstein frame, we may follow the procedure outlined in
Sec. II D starting from the action of Eq. (76). Perturbing the
metric and scalar as described above, and discarding terms
higher than second order, we may obtain the quadratic
Lagrangian density corresponding to Sð2Þ in Eq. (34),

̰Lð2Þ ¼ ̰L ð2Þ
EH þ κ

ffiffiffiffiffiffi
− ̰g

p ½−2 ̰gab∇aðδφÞ∇bðδφÞ�; ðC10Þ

where ̰L ð2Þ
EH is the Einstein-Hilbert piece of Eq. (42), but in

terms of ̰g, ̰h. The variation of this quantity with respect to
¯̰hab and δφ will lead to the ESET per Eq. (31). This will be
given by a contribution from the Einstein-Hilbert part of the
action (the Ricci terms above), and another from the rest.

We will call those two terms ̰T ðEHÞ
ab and Δ ̰T ðSTÞ

ab , respec-

tively, so that ̰T ðSTÞ
ab ¼ ̰T ðEHÞ

ab þ Δ ̰T ðSTÞ
ab .

Focus first on the EH term. This will not be identical to
Eq. (43) in GR, because there will be an extra contribution
from the nonvanishing trace of ¯̰h ab, Eq. (C8a). To compute
it, we may take a shortcut and begin from an expression
obtained by MacCallum and Taub for the effective EH
quadratic Lagrangian contributing to the GW stress energy
far away from the source [107]. The corresponding stress-
energy tensor can be written as

̰T ðEHÞ
ab ¼ κ

		
1

2
∇a

¯̰hcd∇b
¯̰h cd −∇c

¯̰h da∇c ¯̰h b
d −

1

4
∇a

¯̰h∇b
¯̰h

þ 1

2
∇c

¯̰h ab∇c ¯̰hþ ̰g ab

�
1

2
∇e

¯̰hfc∇f
¯̰h e

c

−
1

4
∇e

¯̰h cd∇e ¯̰hcd þ 1

8
∇e

¯̰h∇e ¯̰h
�



: ðC11Þ

This expression is valid whenever separation of length
scales allows for a clear definition of the waves over some
background. In GR, application of the equations of motion
in a transverse-traceless gauge reduces Eq. (C11) to the
Isaacson formula, Eq. (43). We proceed similarly here but
keeping the trace, using Eqs. (C9) and (C8).
First note that the second term in Eq. (C11) may be

rewritten by integrating by parts “under the average.” This
is because the Brill-Hartle average of a total derivative is
smaller by a factor of order OðλGW=LaveÞ than nonvanish-
ing averages, where Lave is the averaging length scale (see
e.g., Sec. II A in [57]). This then implies that

⟪ −∇a
¯̰h bc∇a ¯̰h d

b⟫ ¼ ⟪ð∇a∇a
¯̰h bcÞ ¯̰h d

b⟫

�
1þO

�
λGW
Lave

��
:

ðC12Þ

Therefore, the second term in Eq. (C11) vanishes via the
equations of motion [Eq. (C9a)], up to this order. The same
logic may be applied to all terms in the second and third
lines of Eq. (C11), which will vanish due to Eq. (C9a) or
Eq. (C8b). We are then only left with the first and third
terms in Eq. (C11). The first term is just the same quadratic
contribution that appears in Eq. (43) for GR. Meanwhile,
the third term involves the trace of ¯̰h ab, and may thus be
written in terms of the scalar field using Eq. (C8a). The
contribution of the Einstein-Hilbert part of the action to the
ESET, Eq. (C11), in ST gravity then reduces to

̰T ðEHÞ
ab ¼ 1

2
κ⟪∇a

¯̰hcd∇b
¯̰h cd⟫ − κ⟪∇aΦ∇bΦ⟫: ðC13Þ

Switch now to the contribution from the kinetic term of
the scalar field, Δ ̰T ðSTÞ

ab . This will be obtained from the
corresponding part of the quadratic Lagrangian of
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Eq. (C10), namely Δ ̰Lð2Þ ≡ −2
ffiffiffiffiffiffi
−̰g

p
κ ̰gab∇aðδφÞ∇bðδφÞ.

The variation of this quantity may be written as

δΔ̰Lð2Þ

δ̰gab
¼ κ

ffiffiffiffiffiffi
−̰g

p ½̰g ab ̰gcd − δcðaδdbÞ�∇cδφ∇dδφ; ðC14Þ

using the usual fact that δ
ffiffiffiffiffiffi
−̰g

p ¼ −
ffiffiffiffiffiffi
−̰g

p
̰g abδ̰gab=2, and

explicitly symmetrizing the variation of the metric.
Therefore, Eq. (31) implies that

Δ ̰T ðSTÞ
ab ¼ 2κ⟪ð−̰g ab ̰gαβ þ 2δαaδβbÞ∇αδφ∇βδφ⟫

¼ 4κ⟪∇aδφ∇bδφ⟫; ðC15Þ

where the first term vanished due to Eq. (C9b), by
integration by parts under averaging as before.
We may now write an expression for the total effective

stress energy of a scalar-tensor GW in the Einstein frame:

̰T ðSTÞ
ab ¼ ̰T ðEHÞ

ab þ Δ ̰T ðSTÞ
ab

¼ κ⟪
1
2
∇a

¯̰hcd∇b
¯̰h cd þ ðα−20 − 1Þ∇aΦ∇bΦ⟫;

ðC16Þ

where we have used the fact that δφ ¼ Φ=ð2α0Þ to first
order, Eq. (C7c). This may also be written in terms of the
Brans-Dicke parameter using the definition of α0, Eq. (C3),
to obtain our final result presented in Eq. (86).

2. Energy density spectrum

Taking the time-time component of Eq. (86) and assum-
ing (ii) ergodicity, we immediately obtain an expression for
ρGW in a local Lorentz frame ( ̰g ab ¼ ηab) from Eq. (86),

ρGW ¼ κ

2c2
½h∂t

¯̰hij∂t
¯̰h iji þ 4ðωBD þ 1Þh∂tΦ∂tΦi�; ðC17Þ

or equivalently, because Φ ¼ ̰gab ̰h ab=2 by Eq. (81),

ρGW ¼ κ

2c2
½gikgjl þ ðωBD þ 1Þgijgkl�

× h∂t
¯̰h ij∂t

¯̰h kli: ðC18Þ

Expanding out ¯̰h ij into plane waves, ρGW can then be put
in the form of Eq. (36) with Qabcd as in Eq. (87) of the
main text.
For convenience, denote each of the two terms in

Eq. (C17) ρEH and ρST, respectively, so that ρGW ¼
ρEH þ ρST. Making use of all the usual assumptions
(i)–(vii) about the background, we can use Eq. (19) to
write ρEH in the same form as Eq. (50) in GR,

ρEH ¼ πc2

4G

X
A

Z
∞

0

SAðfÞf2df; ðC19Þ

except that now the sum is over A ∈ fþ;×; bg with Sb ¼
SΦ by Eq. (81). For ρST, a similar derivation to the one for
ρEH gives the analogous result that

ρST ¼ πc2

4G
ð2þ 2ωBDÞ

Z
∞

0

SbðfÞf2df: ðC20Þ

Adding both contributions together, we may then write the
total energy spectrum compactly as we did in Eqs. (89) and
(90) in the main text.

APPENDIX D: MASSIVE GRAVITY
COMPUTATIONS

Here we provide more details for the computation of
the GW stress-energy density and correlation functions
presented in Sec. III D. In Appendix D 1 we derive the
expressions for the unitary and synchronous metric com-
ponents, presented, respectively, in Eqs. (99) and (108) in
the main text. In Appendix D 2, we obtain an expression for
the ESET in Fierz-Pauli massive gravity, and one for the
energy density ρGW in terms of the unitary PSDs, making
use of statistical assumptions about the background.
Finally, in Appendix D 3 we compute an expression for
the cross-correlation of the output of two differential-arm
detectors in the form of Eq. (39). Wewill make repeated use
of the massive Klein-Gordon equation of motion of
Eq. (95), as well as the fact that the metric perturbation
must be divergenceless, Eq. (96a), and traceless, Eq. (96b).
Throughout this Appendix, “massive gravity” refers to the
Fierz-Pauli theory of Eq. (93).

1. Polarizations

a. Unitary gauge

We would like to decompose a massive plane GW into a
basis of polarization tensors. In GR, diffeomorphism
invariance guarantees that we may always find a gauge
in which the perturbation is purely spatial, as in Eq. (6).
Although this is not possible in FP gravity, we may still
write a generic metric perturbation propagating in the
z-direction, hμν, as

ðhμνÞ ¼

0
BBB@

h00 h01 h02 h03
h10 hb þ hþ h× hx
h20 h× hb − hþ hy
h30 hx hy hl

1
CCCA; ðD1Þ

and then apply the constraints from Eqs. (96) to cut down
the number of d.o.f.
First, for a GW with wave vector ka, Eq. (96a) implies

kahab ¼ 0. Thus, picking a frame in which the wave travels
in the z-direction,

ðkμÞ ¼ ðω=c; 0; 0; jk⃗jÞ; ðD2Þ
lack of divergence, together with symmetry, must mean
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h0μ ¼ hμ0 ¼ −βh3μ ¼ −βhμ3; ðD3Þ

with β as in Eq. (98). Equation (D3) also implies that

h00 ¼ −βh30 ¼ −βh03 ¼ β2h33: ðD4Þ

However, tracelessness, Eq. (96b), also demands

h ¼ ημνhμν ¼ −h00 þ 2hb þ hl ¼ 0: ðD5Þ
Therefore, if we choose to get rid of the time-time d.o.f. by
writing h00 ¼ 2hb þ hl, Eq. (96) requires

2hb þ hl ¼ β2hl ⇒ hb ¼
1

2
ðβ2 − 1Þhl; ðD6Þ

so we will only need one scalar polarization. This could
have been anticipated from the fact that a symmetric rank-2
tensor in four dimensions can have at most ten independent
components, five of which are necessarily constrained by
Eq. (96), leaving only five d.o.f. These correspond to the
five possible helicities of a massive spin-2 particle.
Choosing to work in terms of the longitudinal scalar

amplitude, our final expression for the metric perturbation
in the unitary gauge native to FP gravity is Eq. (99), i.e.,

ðhμνÞ ¼

0
BBB@

β2hl −βhx −βhy −βhl
−βhx − 1

2
α2hl þ hþ h× hx

−βhy h× − 1
2
α2hl − hþ hy

−βhl hx hy hl

1
CCCA;

ðD7Þ

where we have used the fact that ðβ2 − 1Þ ¼ α2 by Eq. (98).
For later convenience, note that the metric perturbation

of Eq. (D7) satisfies

habðkÞh0abðk0Þ ¼ 2
X
A

CAðω;ω0ÞhAðkÞh0Aðk0Þ; ðD8Þ

with a sum over unitary polarizations A, and for some
frequency-dependent normalization coefficients CA defined
by

CAðω;ω0Þ≡

8>><
>>:

1 if A ¼ þ;×;

1 − ββ0 if A ¼ x; y;
3
2
ð1 − ββ0Þ2 − 1

2
ðβ − β0Þ2 if A ¼ l:

ðD9Þ
The form of these coefficients should not come as a
surprise, since they are just terms of the form eAabeAab,
analogous to those in Eq. (14), times extra factors arising
from the trace and timelike components of Eq. (D7). Note
that CA acquires its frequency dependence via β and
β0, Eq. (98).

b. Synchronous gauge

As mentioned in Sec. II C, it is easiest to compute the
influence of a gravitational wave on a LIGO-style detector
in the synchronous gauge, because the coordinate locations
of the mirrors do not change in this gauge [58]. However,
massive gravity lacks the linearized diffeomorphism free-
dom needed to transform into synchronous gauge.
Fortunately, we circumvent the lack of linearized diffeo-
morphism invariance in massive gravity by using the
Stückelberg trick: we can add extra auxiliary fields to
write the FP action, Eq. (93), as a gauge-fixed version of a
gauge-invariant theory [153]. After adding the Stückelberg
fields ξa, we will have the usual freedom to carry out
infinitesimal coordinate transformations,

̰h ab ¼ hab þ∇aξb þ∇bξa: ðD10Þ

We want to choose the fields ξa such that we can go from
the unitary gauge hab of Eq. (D7) to a synchronous gauge
̰h ab in which ̰h 0ν ¼ 0. To do this, pick the same frame as
before, in which k is given by Eq. (D2), and use linearity to
consider the transformation of the d.o.f. in Eq. (D7),
fhþ; h×; hx; hy; hlg, one by one. Below, we will tempo-

rarily let c ¼ 1 and k≡ jk⃗j for simplicity, but the final
result of Eq. (D24) is insensitive to this. For simplicity, we
also let gab ¼ ηab. (For more details on the application of
this technique to massive gravity, see e.g., Sec. 2.2.2 in [71]
or Sec. IV in [72].)
Because the two tensor d.o.f., hþ and h×, only appear in

the spatial part of Eq. (D7), these modes already satisfy the
synchronous gauge condition. Next consider the vector-x
amplitude, hx: to determine the transformation that would
make its contributions to timelike components in Eq. (D7)
vanish, suppose the unitary perturbation is given simply by

ðhμνÞ ¼

0
BBB@

0 −βhx 0 0

−βhx 0 0 hx
0 0 0 0

0 hx 0 0

1
CCCA; ðD11Þ

and let the single d.o.f. be a simple plane wave, hx ¼
Ax sinðωt − kzÞ. The goal is to find the form of ξμ in
Eq. (D10) that yields ̰h 0ν ¼ 0 in this frame. For instance,
for the time-time component, Eq. (D10) and our require-
ment that ̰h 00 ¼ 0 imply

∂0ξ0 ¼ 0 ⇒ ξ0 ¼ 0: ðD12Þ

In the last step, we integrated over time and used gauge
freedom to pick initial conditions in which ξ0ðx⃗Þ ¼ 0 for all
x⃗, so that we can ignore the integration constant. Similarly,
using this result for ξ0 and demanding ̰h 01 ¼ 0, we can also
conclude that Eq. (D10) requires
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h01 þ ∂0ξ1 þ ∂1ξ0 ¼ 0 ⇒ ∂tξ1 ¼ βhx; ðD13Þ

which we can integrate, as we did above, to get

ξ1 ¼ −
β

ω
Ax cosðωt − kzÞ: ðD14Þ

Since this is the only nonvanishing component of the
Stückelberg field relevant to the vector-x amplitude,
Eq. (D10) implies that

̰h 13 ¼ ̰h 31 ¼ hx þ ∂zξ1 ¼ ð1 − β2Þhx; ðD15Þ

and ̰h μν ¼ 0 otherwise, for a unitary metric perturbation
whose only nonzero components come from hx, as we
supposed above in Eq. (D11). It can be shown that the same
exact argument, applied to hy instead of hx, yields an
analogous result,

̰h 23 ¼ ̰h 32 ¼ hy þ ∂zξ1 ¼ ð1 − β2Þhy; ðD16Þ

if we had started with a unitary metric perturbation whose
only nonvanishing d.o.f. was hy.
The case of the longitudinal amplitude hl is slightly more

complicated, but can be handled in the same way. Suppose
the perturbation is given simply by

ðhμνÞ ¼

0
BBB@

β2hl 0 0 −βhl
0 1

2
ðβ2 − 1Þhl 0 0

0 0 1
2
ðβ2 − 1Þhl 0

−βhl 0 0 hl

1
CCCA;

ðD17Þ

and let hl ¼ Al sinðωt − kzÞ, as we did above for hx (and,
implicitly, hy). In this case, the requirement that ̰h 00 ¼ 0

implies, via Eq. (D10), that

h00 þ 2∂0ξ0 ¼ 0 ⇒ ∂0ξ0 ¼ −
1

2
β2hl; ðD18Þ

and so, integrating over time, we conclude that

ξ0 ¼
β2

2ω
Al cosðωt − kzÞ; ðD19Þ

where we have neglected integration constants, as before.
Now, the result for ξ0 and the requirement that ̰h 03 ¼ 0
mean that Eq. (D10) also implies

h03 þ ∂0ξ3 þ ∂3ξ0 ¼ 0 ⇒ ∂0ξ3 ¼
�
β −

β3

2

�
hl; ðD20Þ

and so, integrating over time,

ξ3 ¼
β

ω

�
β2

2
− 1

�
Al cosðωt − kzÞ: ðD21Þ

Since ξ0 and ξ3 are the only nonvanishing components of
the Stückelberg field relevant to the longitudinal amplitude,
Eq. (D10) implies that

̰h 11 ¼ h22 ¼ h11 ¼ h22 ¼
1

2
ðβ2 − 1Þhl; ðD22Þ

̰h 33 ¼ h33 þ 2∂zξ3 ¼ ðβ2 − 1Þ2hl; ðD23Þ

for a unitary metric whose only nonzero components come
from hl, as we supposed above in Eq. (D17).
Putting all d.o.f. back together, we obtain our final

expression for the metric perturbation in a synchronous
gauge,

ð̰h μνÞ ¼

0
BBB@

0 0 0 0

0 hþ − 1
2
α2hl h× α2hx

0 h× −hþ − 1
2
α2hl α2hy

0 α2hx α2hy α4hl

1
CCCA;

ðD24Þ

with α as in Eq. (97). In the limit of no graviton mass
(α → 0), we manifestly recover the transverse-traceless
expression familiar from GR without the need for further
gauge fixing.
Finally, it will be useful to define a transformation matrix

to go from unitary to synchronous polarization amplitudes.
The unitary amplitudes are simply the d.o.f. appearing in
Eq. (D7), while the synchronous ones are just

ð̰h μνÞ ¼

0
BBBBB@

0 0 0 0

0 ̰h b þ ̰h þ ̰h × ̰h x

0 ̰h × ̰h b − ̰h þ ̰h y

0 ̰h x ̰h y ̰h 1

1
CCCCCA; ðD25Þ

in full analogy to Eq. (6). Comparing this definition to
Eq. (D24), it can be easily shown that the transformation
matrixM ̰A

B satisfying ̰h A ¼ M ̰A
BhB is given by Eq. (108).

2. Effective stress-energy tensor

Wewish to obtain an expression for the ESETof GWs in
Fierz-Pauli massive gravity, following the procedure out-
lined in Sec. II D. To do so, begin with the total FP action of
Eq. (93), SFP ¼ SEH þ Sm, with SEH the Einstein-Hilbert
action of Eq. (40), and Sm the contribution from the scalar
field given by Eq. (94). All computations in this section will
be carried out in the unitary gauge native to FP gravity,
Eq. (99), since those polarization amplitudes are the
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fundamental d.o.f. that we can take to be uncorrelated in
this theory (since they diagonalize its kinetic matrix).
We will consider the two terms in the FP action

separately. As in the scalar-tensor case (Appendix C),
we may obtain the contribution from the Einstein-Hilbert
part by starting from the MacCallum–Taub expression for
the stress energy, Eq. (C11). Unlike for the scalar-tensor
case, however, we may now ignore all terms showing the
trace and let h̄ab ¼ hab, thanks to Eq. (96b). With these
simplifications, Eq. (C11) becomes

TðEHÞ
ab ¼ κ

DD1
2
∇ahcd∇bhcd −∇chda∇chbd

þ gab
�1
2
∇ehfc∇fhec −

1

4
∇ehcd∇ehcd

�EE
: ðD26Þ

The first term in this expression yields the Isaacson tensor
obtained in GR, Eq. (43), except now the sum must include
all five polarizations allowed in Eq. (99), not just the
transverse-traceless ones. The second term may be rewrit-
ten via integration by parts “under the average,” as
discussed around Eq. (C12), so that it becomes7

⟪ −∇chda∇chbd⟫ ¼ μ2⟪hdahbd⟫þ ðavg errorÞ; ðD27Þ

after applying the equations of motion, Eq. (95). A similar
argument shows that the third term vanishes due to
Eq. (96a), while the fourth and final terms take a similar
form as the second one,

⟪ −∇ehcd∇ehcd⟫ ¼ μ2⟪hcdhcd⟫þ ðavg errorÞ: ðD28Þ

Altogether, this means that the contribution to the ESET
from the Einstein-Hilbert part of the action is

TðEHÞ
ab ¼ κ

2
⟪∇ahcd∇bhcd⟫

þ κμ2
DD
hdahbd þ

1

4
gabhcdhcd

EE
: ðD29Þ

Now focus on the contribution from Sm in Eq. (94). This
action is already the quadratic action Sð2Þ needed for
Eq. (34), namely,

Lð2Þ
m ¼ 1

4
κμ2habhcd

ffiffiffiffiffiffi
−g

p ðgabgcd − gacgbdÞ; ðD30Þ

where we have explicitly written out the antisymmetrized
terms. We have also written hab with indices up, to match
the index position convention used in [57] and thus in

deriving Eq. (C11).8 The variation of this quantity with
respect to the inverse metric can be shown to be

δLð2Þ
m

δgcd
¼ 1

2
κμ2

ffiffiffiffiffiffi
−g

p �
hcahda þ

1

4
gcdhabhab

�
; ðD31Þ

where we have used the fact that δgab ¼ −gacðδgcdÞgdb,
δ

ffiffiffiffiffiffi−gp ¼ − ffiffiffiffiffiffi−gp
gabδgab=2, and that, on shell, the pertur-

bation is traceless by Eq. (96b). The contribution of Sm to
the stress energy may be obtained directly from this
variation using Eq. (31):

ΔTðFPÞ
ab ¼ −κμ2

DD
hdahbd þ

1

4
gabhcdhcd

EE
: ðD32Þ

Adding both contributions computed above, the total

ESET in massive gravity, Tab ¼ TðEHÞ
ab þ ΔTðFPÞ

ab , is then

Tab ¼
κ

2
⟪∇ahcd∇bhcd⟫; ðD33Þ

as presented in Eqs. (100)–(103). We further discuss the
interpretation of this result in the main text.
We now compute an expression for ρGW as a function of

the PSD of the unitary polarization amplitudes of Eq. (D7)
[Eq. (99) in the main text]. Expanding the metric pertur-
bation into plane waves in the local Lorentz frame of the
detector (with gab ¼ ηab), as in Eq. (1), and taking the time-
time component of the ESET, we get

ρGW ≡ κ

2c2
h∂thαβ∂thαβi

¼ −κ
2c2

1

4π2

Z
hh̃�αβð−kÞh̃αβðk0Þieiðkþk0Þ·xωω0fdkfdk0;

ðD34Þ

assuming (ii) ergodicity as usual. The second equality was
obtained by proceeding identically as in GR (Sec. III A).
The contraction inside the angular brackets can be rewritten
in terms of the unitary polarizations using Eq. (D8),

hh̃�αβð−kÞh̃αβðk0Þi ¼
X

CAðω;ω0Þ
× hh̃�Að−kÞh̃Aðk0Þi; ðD35Þ

for a sum over the d.o.f. A of Eq. (99), and CA as defined
in Eq. (D9).
Making use of all the usual assumptions (i)–(vii) about

the background, we can then use Eq. (19) to write ρGW as

7The error here arises from the level at which total derivatives
average out to over the length Lave. Naturally, this length needs to
be very large compared to the gravitational wavelength, but its
hierarchy with the Compton wavelength is more subtle. To justify
keeping the μ2 terms, we need the averaging error to be small
compared to the μ2 terms.

8This is a somewhat subtle point, since an incorrect index
position generates implicit dependence on the (inverse) metric.
Ultimately it does not matter whether hab or hab is treated as
the fundamental variable, so long as the same choice is made for
all parts of the action when performing the variation with respect
to gab.
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ρGW ¼ πc2

4G

Z
∞

0

X
A

λAðfÞSAðfÞf2df; ðD36Þ

for λAðfÞ≡ CAðf; fÞ, and SAðfÞ the PSDs of the unitary
polarization amplitudes. Here we have assumed that the
polarization amplitudes in the unitary gauge are statistically
independent, which is justified because, unlike the syn-
chronous amplitudes, they diagonalize the kinetic matrix of
the theory. Note that we recover the GR expression,
Eq. (50), in the limit of vanishing α, if we also force
SAðfÞ ¼ 0 for nontensorial modes, which is appropriate if
these additional d.o.f. are frozen out [71].

3. Cross-correlation

Here we derive an expression, in the form of Eq. (39), for
the cross-correlation of detector outputs as a function of the
fractional energy spectrum of massive gravitational waves,
Eq. (106). Going back to Eq. (26), we may write the cross-
correlation of the outputs of two detectors as

hh̃�I ðfÞh̃I0 ðf0Þi ¼
Z

dn̂dn̂0h ˜̰h �
̰AðkÞ ˜̰h ̰A0 ðk0Þi

× F� ̰A
I ðn̂ÞF ̰A0

I0 ðn̂0Þeiðk̰⃗A0 ·x⃗I0−k̰⃗A·x⃗IÞ; ðD37Þ

where the under-tilded quantities are defined in the syn-
chronous gauge of Eq. (D24). The reason we carry out the
expansion in terms of the synchronous amplitudes is that
only in the synchronous gauge may we write out the
detector response by applying Eq. (23). However, we need
a relation in terms of the unitary d.o.f., which diagonalize
the kinetic matrix of the theory—we obtain such an
expression below.
First, assuming a (iii) stationary and (vii) isotropic

background, with (iv) uncorrelated sky bins, we may
rewrite the above equation as (see Appendix B)

hh̃�I ðfÞh̃I0 ðf0Þi ¼ δðf − f0Þh ˜̰h �
̰AðfÞ ˜̰h ̰A0 ðfÞi

× Γ ̰A̰A0
II0 ðfÞ; ðD38Þ

where we have pushed all the directional dependence into
the generalized overlap reduction functions, Γ ̰A̰A0

II0 ðfÞ, of
Eq. (28). Using the transformation of Eq. (108), we can

now write this directly in terms of the unitary polarization
amplitudes,

hh̃�I ðfÞh̃I0 ðf0Þi ¼ δðf − f0Þhh̃�BðfÞh̃B0 ðfÞi
×M ̰A

BðfÞM ̰A0B
0 ðfÞΓ ̰A̰A0

II0 ðfÞ: ðD39Þ

Here we have explicitly denoted the frequency dependence
in M ̰A

BðfÞ, which is acquired implicitly via α in Eq. (108).
Because the unitary polarizations can be taken to be (v)
statistically independent, we may rewrite the above equa-
tion as a single sum over B,

hh̃�I ðfÞh̃I0 ðf0Þi ¼
1

2
δðf − f0Þ

X
B

SBðfÞ

×M ̰ABðfÞM ̰A0BðfÞΓ ̰A̰A0
II0 ðfÞ: ðD40Þ

Using Eq. (107), this may be written directly in terms of the
fractional energy spectrum for each unitary polarization as
in Eq. (109).
Without more information about the detectors, Eq. (109)

would be our final result for massive gravity. However, we
may further simplify this for the case of a differential-arm
instrument that effects a measurement via the detector
tensor of Eq. (23). In that case, it may be shown from the
definition of the antenna patterns, Eq. (25), that Fb

I ðn̂Þ ¼
−Fl

Iðn̂Þ (e.g., [100]). This means that the generalized
overlap reduction functions, Eq. (28), for the breathing
and longitudinal modes will not be diagonal. In fact, this is
evident from our expression for the Γ ̰A̰A0

II0 factors for
differential-arm detectors, Eq. (111), which follows directly
from Fb

I ðn̂Þ ¼ −Fl
Iðn̂Þ.

Using Eq. (111) and the definitions of λBðfÞ and
MABðfÞ, from Eqs. (105) and (108), respectively, our final
result for the cross-correlation of the detector outputs of
two differential-arm detectors takes the form of Eq. (39)
with ΞAðfÞ implicitly defined by

ΞBðfÞΓB
II0 ¼ λ−1B ðfÞM ̰ABðfÞM ̰A0BðfÞΓ ̰A̰A0

II0 ðfÞ: ðD41Þ

This reduces to the main result of Eq. (112), to quadratic
order in α.
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