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In this paper, we consider a family of n-dimensional, higher-curvature theories of gravity whose action is
given by a series of dimensionally extended conformal invariants. The latter correspond to higher-order
generalizations of the Branson Q curvature, which is an important notion of conformal geometry that has
been recently considered in physics in different contexts. The family of theories we study here includes
special cases of conformal invariant theories in even dimensions. We study different aspects of these
theories and their relation to other higher-curvature theories present in the literature.
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I. INTRODUCTION

Quantum effects induce higher-curvature modification to
the gravitational action. This is well understood in the
context of string theory, where the ultraviolet corrections
to the low-energy effective action can be systematically
computed [1]. On general grounds, higher-curvature
modifications render the theory of gravity renormalizable,
but at the cost of introducing ghost instabilities [2] and
other pathologies [3–5]. This implies that, whatever higher-
curvature correction to Einstein theory to be proposed, it
has to satisfy very special constraints in order to be physically
acceptable [6]. One may still ask whether such constraints
are restrictive enough to define the theory uniquely or, on
the contrary, there exist more than one consistent way of
modifying general relativity (GR). In fact, there are known
higher-curvature actions that define theories with interesting
properties and which, under certain conditions, no longer
have ghosts.
One such example is the so-called critical gravity1 (CG),

which is defined by supplementing the Einstein-Hilbert

action on anti–de Sitter (AdS) space with a conformally
invariant linear combination of R2 terms with a specific
value of the coupling constant [8]. The precise linear
combination corresponds to the square of the Weyl tensor,
i.e., L2

R
d4x

ffiffiffiffiffiffi−gp
CαβμνCαβμν, where the coupling constant

L2, having mass dimension −2, is adjusted in terms of the
cosmological constant Λ. In dimension n ¼ 4, the theory
includes GR as a particular subsector, is free of the massive
spin-0 mode that quadratic theories typically engender,
and acquires a second massless spin-2 mode apart from the
GR graviton. The presence of a second massless spin-2
field produces low-decaying modes and it causes the black
holes and other solutions of the theory to have vanishing
gravitational energy.
Critical gravity theories can also be defined in higher

dimension, n > 4 [9]. This amounts to dimensionally
continue the four-dimensional conformal invariant by
simply replacing the action with L2

R
dnx

ffiffiffiffiffiffi−gp
CαβμνCαβμν

and choosing the coupling constants in such a way that the
maximally symmetric vacuum is unique. As in four
dimensions, CG in n > 4 has no massive modes; the
spin-0 conformal mode decouples and the extra spin-2
mode becomes massless. However, in contrast to n ¼ 4, in
dimension n > 4 CG does not generically admit Einstein
spaces as solutions; the reason being the presence of the
Kretschmann scalarRμνρσRμνρσ in the action, which in n > 4

contributes dynamically. This does not happen for n ¼ 4
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in virtue of the Chern-Weil-Gauss-Bonnet theorem [10].
The latter represents the main difference between CG in
n ¼ 4 and n > 4.
Another higher-curvature theory that exhibits special

features is the Lovelock theory [11,12], which is defined by
dimensionally extending topological invariants to higher n.
The resulting theory coincides with GR only in dimension
n ≤ 4, while in n > 5 presents higher-curvature corrections
up to order Rk, with k < n=2. Despite involving contrac-
tions of more than one Riemann tensor in the Lagrangian,
Lovelock action yields second-order field equations. In
fact, Lovelock field equations are the most general cova-
riantly conserved symmetric rank-2 tensor in dimension n
that is of second order in the metric and torsion free. For
n ¼ 4 the latter requirements single out the Einstein tensor,
while in n ≥ 5 they allow for more tensor structures.
Lovelock field equations, however, contain higher powers
of the second derivatives of the metric, unlike GR. This
makes the dynamical structure of the theory exhibit special
features that give rise to peculiar physical phenomena [13].
Here, we will investigate a class of higher-curvature

theories which are different from CG and Lovelock theories
but nonetheless share some features with both of them. In
fact, the family of theories we propose to explore can be
thought of as a hybrid between CG and Lovelock models,
in the sense that they are defined by dimensionally
extending conformal invariants, in opposition to topologi-
cal invariants. In dimension 4, these theories include
conformal gravity and CG as particular cases. In dimen-
sions greater than 4, in contrast, they do not agree with the
n-dimensional generalization of [9] and they can rather be
regarded as a different way of extending the CG of [8] to
arbitrary n. They do include, nevertheless, other higher-
dimensional theories recently considered in the literature;
in particular, for n ¼ 6 they include the cubic theories
studied in Ref. [14].
Other differences with CG and Lovelock theories are the

following: Unlike the Lovelock theory, the one we propose
to study here modifies GR even for n ≤ 4. On the other
hand, unlike the n > 4 CG theories of [9], our theory does
admit generic Einstein spaces as solutions. The price to be
paid is that the spin-0 massive excitation around AdSn does
not decouple and dealing with this requires further imagi-
nation. There exists, however, a choice of coupling constant
that renders the extra spin-2 mode massless. In addition to
Einstein spaces, which persist as solutions up to a renorm-
alization of the cosmological constant, the theory also
admits non-Einstein solutions, as we will see.
The fundamental building block to construct the action of

the theory will be the so-called Q curvature, which is an
important notion of conformal geometry [15,16]. Originally
introduced by Branson in [17], the Q curvature is a local
scalar quantity that plays an important role in topics as
diverse as spectral geometry, conformal geometry, differ-
ential topology, and the theory of higher-order differential

equations, amongothers. Recently,Q curvature has also been
studied in theoretical physics; in particular, to study anoma-
lies in quantum field theory [18], higher-derivative field
theories [19], and other related problems. In Sec. II, we
will review the definition and the main properties of the Q
curvature, together with its higher-dimensional and higher-
order generalizations. In Sec. III, we will discuss its con-
nection to conformal invariants in even dimensions. Thiswill
provide us with the ingredients to construct, in Sec. IV, the
gravitational action of our theory. In Sec. V, we will discuss
the simplest solutions of the theory: their maximally sym-
metric vacua. We will derive the conditions to have a unique
such vacuum and for the linear excitations around it to
become massless. Section VI contains comments about the
black hole solutions, the expressions of their charges, and
the associated thermodynamics variables. In Sec. VII, we
will explore the nonlinear gravitational wave solutions. Non-
Einstein spaces will be discussed in Sec. VIII, where wewill
provide explicit examples in dimension n ¼ 5. These exam-
ples include black holes, product of spherical spaces and their
squashed deformations, andAdS2 ×M solutions. In Sec. IX,
we will comment on other higher-curvature actions also
associated with the Q curvature. We will comment on the
relation between these theories and othermodels such as new
massive gravity, critical gravity, and the counterterms that
appear in the context of holographic renormalization.

II. Q CURVATURE

In order to introduce the notion of Q curvature and
motivate its definition, we will begin by revisiting proper-
ties of higher-curvature terms under conformal transforma-
tions: given the Weyl rescaling of an n-dimensional metric

gμν → g̃μν ¼ e2φgμν; ð1Þ
we consider a linear differential operator Pm;n with
m ∈ 2Z≥0, n ∈ Z≥0 that transforms covariantly as follows:

P̃m;nðfÞ ¼ e−
nþm
2
φPm;nðen−m

2
φfÞ; ð2Þ

with P0;n ≔ 1. Here, f represents an arbitrary differentiable
function. In other words, P̃m;n is an mth-order linear
differential operator of conformal bidegree ðn−m

2
; nþm

2
Þ.

This operator Pm;n has the form

Pm;n ¼ Δm;n þ
n −m
2

Qm;n; Δm;n ¼ □
m
2 þ � � � ; ð3Þ

with □ ¼ gμν∇μ∇ν being the Laplace-Beltrami operator.
The ellipsis stand for terms with no constant term, i.e., Δm;n

is a linear differential operator satisfying Δm;n1 ¼ 0. Qm;n

is a scalar curvature that transforms as follows:

Q̃m;n ¼ e−
nþm
2
φ

�
Qm;n þ

2

n −m
Δm;n

�
e
n−m
2
φ ð4Þ
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and is what is called the mth-order, n-dimensional Q
curvature, which satisfies ðn −mÞQm;n ¼ 2Pm;nð1Þ.
The transformation laws above uniquely define the linear

operators Pm;n and the scalars Qm;n. The simplest example
of the hierarchy (3) and (4) (i.e., m ¼ 2) is

Q2;n ¼ −
1

2ðn − 1ÞR;

P2;n ¼ □þ n − 2

2
Q2;n;

Δ2;n ¼ □: ð5Þ

That is, Q2;n corresponds to the Gaussian curvature and
P2;n to the Yamabe operator

P2;n ¼ □ −
n − 2

4ðn − 1ÞR: ð6Þ

Branson’s Q curvature corresponds to the case m ¼ 4,
which takes the form

Q4;n ¼ −
1

2ðn − 1Þ□R −
2

ðn − 2Þ2 RμνRμν

þ n2ðn − 4Þ þ 16ðn − 1Þ
8ðn − 1Þ2ðn − 2Þ2 R2; ð7Þ

where P4;n is the so-called Paneitz operator; see (10) below.
Operator P4;n was originally defined by Fradkin and
Tseytlin in [20] and independently by Riegert in [21].
The case m ¼ 6 takes the form

Q6;n ¼ −
1

32ðn − 4Þðn − 2Þ2ðn − 1Þ3 ððn
5 − 8n4 þ 64n3 − 240n2 þ 1008n − 960ÞR3

þ 512ðn − 1Þ3Rμν
□Rμν − 4ðn − 1Þðn4 − 14n3 þ 100n2 − 168nþ 96ÞR□R

− 64ðn − 1Þ2ðn2 − 4nþ 28ÞRRμνRμν þ 1024ðn − 1Þ3RαβRμνRαμβνÞ: ð8Þ

In n ¼ 6 and up to boundary terms, (8) coincides with the
particular combination of conformal invariants proposed in
[14], which has the property of being the unique conformal
invariant combination in six dimensions that admits generic
Einstein manifolds as solutions. This provides us with a
criterion to select our theory and define the general
Lagrangian of order m, in dimension n: we will consider
Lagrangians consisting of dimensionally extended con-
formal invariants and that preserve Einstein spaces as
solutions. The generalization of the Paneitz operator to
n ¼ 6 has been discussed, for example, in [22].
The hierarchy Qm;n continues ad infinitum, although the

expressions become cumbersome for m > 6. The case
m ¼ 8, for example, is a dimension 8 operator involving
quartic operators such as R4, R2RμνRμν, ðRμνRμνÞ2,
RRμανβRαβRμν;…Rμν□

2Rμν, R□2R, whose explicit form
can be found in [23]. Written in terms of the Schouten tensor
Pμν ¼ ðRμν − Rgμν=ð2n − 2ÞÞ=ðn − 2Þ and the Weyl tensor
Cμναβ ¼ Rμναβ þ gανPμβ − gαμPνβ þ gβμPνα − gβνPμα, the
expression for Q8;n simplifies notably, but the number of
terms still rises to more than 40.

III. CONFORMAL INVARIANTS

Now, let us comment on the connection between Q
curvature and conformal invariants. We begin by reviewing
well-known facts of two-dimensional manifolds: Consider
a closed Riemann surface with Euclidean signature ðM2; gÞ.
According to the Gauss-Bonnet theorem, its Euler charac-
teristic, χðM2Þ, is computed by the integral

I ¼−
1

2π

Z
M2

d2x
ffiffiffi
g

p
Q2;2¼

1

4π

Z
M2

d2x
ffiffiffi
g

p
R¼ χðM2Þ; ð9Þ

where g is the determinant of the Euclidean metric gμν, and
R is the Ricci scalar (i.e., the Gaussian curvature). This is a
topological invariant. In dimension 2, all metrics are locally
conformally equivalent and we also have the following
properties: provided one rescales the metric as gμν → e2φgμν
the Ricci scalar transforms as R → e−2φðR − 2Δ2;2φÞ
while the Laplace-Beltrami operator transforms simply as
Δ2;2 → e−2φΔ2;2. These transformations are important to
understand in what sense the Branson Q curvature is the
natural generalization of Gauss curvature to dimension 4.
To motivate the definition of the Q curvature [17,24], let us
explicitly write the Paneitz operator [25],

P4;4 ¼ Δ4;4 ¼ ð□Þ2 þ 2Gμν∇μ∇ν þ 1

3
ð∇μRμνÞ∇ν þ 1

3
R□;

ð10Þ
whereGμν ¼ Rμν − ð1=2ÞRgμν is the Einstein tensor. This is
a linear fourth-order, four-dimensional differential operator
that under the rescaling of the metric gμν → e2φgμν trans-
forms asΔ4;4 → e−4φΔ4;4. From this, the definition of theQ
curvature is natural: it is the fourth-order, four-dimensional
curvature invariant that, having the same scaling dimension
as Δ4;4, transforms simply as Q4;4 → e−4φðΔ4;4φþQ4;4Þ.
This has the form

Q ≔ Q4;4 ¼ −
1

6
□R −

1

2
RμνRμν þ 1

6
R2: ð11Þ
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To reinforce the analogy with what Gaussian curvature
R ∝ Q2;2 means in dimension n ¼ 2, let us mention that in
the sameway as howQ2;2 computes the Euler characteristic
in two dimensions, Q4;4 computes the Euler characteristic
χðM4Þ of a four-dimensional Riemann manifold ðM4; gÞ
within a particular conformal class. More precisely,

I ¼ 1

8π2

Z
M4

d4x
ffiffiffi
g

p
Q4;4 þ

1

32π2

×
Z
M4

d4x
ffiffiffi
g

p
CμναβCμναβ ¼ χðM4Þ; ð12Þ

where Cμ
ν
αβ is the Weyl tensor. Notice that both terms on

the left-hand side are conformal invariants. That is, Q
curvature computes a topological invariant within a given
conformal class. In dimension 2, of course, there is only
one conformal class and thus (12) turns out to be a natural
generalization of (9).
Branson also provided [17] a definition of the Q

curvature in arbitrary dimension n > 3. For n ≠ 4, its
definition is given in terms of its transformation rules
under Weyl rescaling and not by its topological meaning.
This is given by

Q4;n ¼ An□Rþ BnRμνRμν þ CnR2; ð13Þ

with An ¼ −1=ð2ðn − 1ÞÞ, Bn ¼ −2=ðn − 2Þ2, Cn ¼
ðn2ðn − 4Þ þ 16ðn − 1ÞÞ=ð8ðn − 1Þ2ðn − 2Þ2Þ.
This is the second term in the list of scalars Qm;n

we discussed in the previous section. In particular, all
the integrals

R
dnx

ffiffiffiffiffiffi−gp
Qn;n are conformal invariants.

The scalars Qm;n will constitute the Lagrangian density
of the theory we propose to explore.

IV. THE ACTION

The gravity action we will consider is defined by the sum
of the dimensionally continued conformal invariants;
namely,

I ¼
Z

dnx
ffiffiffiffiffiffi
−g

p X∞
k¼0

L2k−2bkP2k;nð1Þ; ð14Þ

where P2k;nð1Þ ¼ ðn=2 − kÞQ2k;n, with k ∈ Z≥0, and
where P0;n ¼ 1 ¼ ðn=2ÞQ0;n. We are now considering
n-dimensional pseudo-Riemannian manifold ðMn; gÞ with
Lorentzian mostly plus signature. L is a constant of mass
dimension −1. This sets the length scale L at which the
ultraviolet corrections due to the higher-curvature terms
Qm>2;n start to contribute significantly. The dimensionless
coupling constants bk are usually normalized in such a way
that b0 ¼ −ΛL2=ð8πGÞ and b1 ¼ −ðn − 1Þ=ð4πGðn − 2ÞÞ,
where G is the n-dimensional Newton constant. Our

conventions will be such that b2 ¼ −1=ð4πGðn − 4Þ2Þ.
That is,

I ¼ 1

16πG

Z
Mn

dnx
ffiffiffiffiffiffi
−g

p �
R − 2Λþ 4L2

ðn − 2Þ2ðn − 4Þ

×

�
RμνRμν −

n3 − 4n2 þ 16n − 16

16ðn − 1Þ2 R2

�
þ � � �

�
;

ð15Þ

where the ellipsis stand for higher-curvature, higher-
derivative terms.
Of course, for bk>1 ¼ 0 action (14) reduces to Einstein

theory. Other particular choices are also interesting: The
case bk ¼ δ2;k for n ¼ 4 corresponds to four-dimensional
conformal gravity. The special case b0 ¼ −ΛL2=ð8πGÞ,
b1 ¼ −3=ð8πGÞ, b2 ¼ −L2=ð4πGðn − 4ÞÞ with L2 ¼
3=ð2ΛÞ in the limit n → 4 reduces to the critical gravity-
theory proposed in [8]; see also [26]. The case bk ¼ δ3;k
for n ¼ 6 corresponds to the cubic theory defined in [14],
whose action is given by the linear combination of
conformal invariants in six dimensions that supports
Einstein manifolds as solutions. In general, action (14) with
bk ¼ δn=2;k defines a conformal invariant theory, classically.
The theory described by (14) with bk ¼ δ2;k in arbitrary

dimension n is also special: defined on a closed Euclidean
n-dimensional manifold ðMn; gÞ, it corresponds to the
variational problem of minimizing the BransonQ curvature
on Mn. For n > 4, the Euler-Lagrange equations derived
from such action, Eμν ≔ δI=δgμν ¼ 0, have trace equal to
Q4;n. (Therefore, turning on b0 ≠ 0 yields field equations
whose solutions solve the uniformization problem
Q4;n ¼ const on Mn). For bk ¼ δ2;k in dimension n > 4,
the tensor Eμν obeys the following three properties:
E ≔ gμνEμν ¼ Q4;n, Eμν ¼ Eνμ, and ∇μEμν ¼ 0. That is,
it is a covariantly conserved, symmetric rank-2 tensor
whose trace is the Q curvature. These properties are
reminiscent of the properties that Lin and Yuan required
to define their J-tensor in [27], i.e., a symmetric rank-2
tensor canonically associated with the Q curvature.
However, the divergence of the J-tensor does not vanish
but it turns out to be proportional to the gradient ofQ. More
precisely, the Lin-Yuan J-tensor obeys: J ≔ gμνJμν ¼ Q4;n,
Jμν ¼ Jνμ, and ∇μJμν ¼ ð1=4Þ∇μQ4;n. The motivation to
define such a tensor is the following: if one insists with
the idea that Q curvature is the fourth-order analog of the
Gaussian curvature R, then a natural question is what is
the analog of the Ricci tensor Rμν and of its derived notions
such as Ricci flatness, Einstein manifolds, etc. To answer
this question, one recalls the basic properties of R and Rμν,
namely, gμνRμν ¼ R, Rμν ¼ Rνμ and ∇μRμν ¼ ð1=2Þ∇μR.
Then, the analogy becomes evident: in the same manner
as how the Q curvature can be regarded as the fourth-
order generalization of R, the tensor Jμν turns out to be the
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generalization of the Ricci tensor Rμν. From this, definitions
such as J flatness, J Einstein, etc. follow naturally. Along
the same lines, our tensor Eμν should be regarded as the
natural fourth-order generalization of Einstein tensor Gμν,
and thus it is natural to consider it as the completion of our
gravity field equations. The precise relation between our
tensor Eμν and the Lin-Yuan tensor is

Eμν ¼
4

ð4 − nÞ
�
Jμν −

1

4
gμνJ

�
;

Jμν ¼
ð4 − nÞ

4
Eμν þ

1

4
gμνE; ð16Þ

with J ¼ E ¼ Q4;n. Summarizing, our action (14) provides
a definition of the Einstein-Hilbert variational problem for
the Lin-Yuan J-tensor, i.e., it gives an action functional
definition of Jμν (for n > 4).
The classification of conformally invariant and confor-

mally covariant higher-curvature actions is an interesting
problem to which different authors have contributed.
Some interesting results are scattered in the literature.
For instance, six-derivative Lagrangians with interesting
conformal properties were studied in [28,29]. In [30], a
purely algebraic method to classify the locally Weyl
invariant scalar densities in dimension 8 has been given.
Higher-curvature gravity theories with conformal invari-
ance have been also discussed in [31].

V. VACUA

Now, we go back to the interpretation of action (14) as
defining a theory of gravity. For concreteness, we focus on
the case that includes higher-curvature terms up to the
quadratic order Qm≤4;n. In this case, the action is given by

I ¼ 1

16πG

Z
dnx

ffiffiffiffiffiffi
−g

p ðR − 2Λþ αR2 þ βRμνRμνÞ; ð17Þ

with

α ¼ −L2
ðn3 − 4n2 þ 16n − 16Þ
4ðn − 1Þ2ðn − 2Þ2ðn − 4Þ ;

β ¼ L2
4

ðn − 2Þ2ðn − 4Þ : ð18Þ

This theory admits solutions of constant curvature,
namely,

Rμανβ ¼ −
1

l2
ðgμνgαβ − gμβgανÞ; ð19Þ

which are maximally symmetric spaces obeying the
Einstein equations

Rμν ¼ −
ðn − 1Þ
l2

gμν; ð20Þ

with a curvature radius l given by

Λl4 þ ðn − 1Þðn − 2Þl2

2
þ ðnþ 2Þðn − 2ÞL2

8
¼ 0: ð21Þ

This equation, for n > 4, yields two values for l2.
Generically, the theories with Q2k;n contain k maximally
symmetric vacua with different curvature radii. For special
choices of the coupling constants bk, however, some of
these vacua degenerate. For instance, the condition for (21)
to yield a unique vacuum reads

L2 ¼ −2l2
ðn − 1Þ
ðnþ 2Þ : ð22Þ

In this case, the theory has a unique maximally symmetric
solution with an effective cosmological constant Λeff ¼
−ðn − 2Þðn − 1Þ=ð4l2Þ. The condition for this unique
vacuum to be AdSn is l2 > 0, i.e., L2 < 0, α > 0, β < 0.
For arbitrary l2=L2, the degrees of freedom of fluctua-

tions about AdSn include a massless spin-2 mode and a
massive spin-0 mode. These modes are typically tachyonic
(for conventions of the generalized Breitenlohner-Freedman
bound for spin-s fields in n-dimensional AdS space, see,
for instance, Ref. [32]). In fact, demanding the effective
Newton constant to be positive one finds that one of the
two spin-2 fields has a mass m2

s¼2¼−ðn−2Þ2ððn2−4Þ þ
2ðl2=L2Þðn−1Þðn−4ÞÞ=ð8l2ðn−1ÞÞ; (hereafter 16πG¼1,
unless explicitly declared). One can easily choose thevalue of
the coupling constant L2 such thatm2

s¼2 ¼ 0. In that case, as
wewill see, also the black hole solutions of the theory become
massless. The massive spin-0 mode, on the other hand, has
mass m2

s¼0 ¼ ðn − 1Þð4m2
s¼2 − ð2=L2Þðn − 2Þ2Þ=ðn − 2Þ2.

One can in principle accept the values m2
s < 0 and compare

them with the Breitenlohner-Freedman (BF) bound2: m2
s ≥

m2
BF ¼ −ððn − 1Þ2 þ 4sÞ=ð4l2Þ. This poses a bound for

L2, which is n dependent. The scalar conformal mode is
frequently the most problematic. Wewill discuss in Sec. IX a
series of theories that permits us to decouple this mode. There
exist differentways of dealingwith it: Oneway is considering
values of the coupling constant such that the mass of this
mode becomes infinite and it eventually decouples [33–36].
Another possibility is to look for boundary conditions that
suffice to eliminate themode in a dynamically consistentway,
cf. [14,37–39]. One could also investigate a special type of
matter to which the theory can be coupled without the scalar

2Here, for the scalar field we are using conventions coming
from the Klein-Gordon theory, while for the spin-2 field we are
using the bound coming from the Pauli-Fierz theory. In relation to
that, it can be argued that the generalization of BF bound for
arbitrary spin proposed in [32] is actually surplus, the reason
being that the unitary bound for the massive spin-s field results
stronger than the generalization of the generalized BF inequality
proposed in [32]. We thank the referee of The Physical Review for
pointing this out.
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mode to introduce pathologies. Another logical possibility is
invoking nonlinear effects that cure the theory. Last, one can
also look for backgrounds around which the propagating
modes result well-defined.

VI. BLACK HOLES

Theory (14) admits Einstein spaces (20) as solutions,
provided l satisfies (21). In particular, it contains black
holes. The metric of an AdS-Schwarzschild black hole is
given by

ds2 ¼ −
�
1 −

rn−30

rn−3
þ r2

l2

�
dt2 þ

�
1 −

rn−30

rn−3
þ r2

l2

�
−1

× dr2 þ r2dΩ2
n−2; ð23Þ

where dΩ2
n−2 is the metric on the unit (n − 2)-sphere and r0

is an integration constant associated with the mass. In fact,
the mass of this black hole solution is given by [40–44]

MBH¼
1

8πG

�
1þ L2ðn−2Þðnþ2Þ

2l2ðn−1Þðn−4Þ
�
ðn−2ÞVolðΩn−2Þrn−30 ;

ð24Þ

where we have reinserted the overall normalization
ð16πGÞ−1 in the action. VolðΩn−2Þ in (24) stands for
the volume of the (n − 2)-sphere, namely, VolðΩn−2Þ ¼
2π

n−1
2 =Γðn−1

2
Þ.

The Hawking temperature associated with the black hole
solution (23) is

TH ¼ ðn − 1Þr2þ þ ðn − 3Þl2

4πl2rþ
; ð25Þ

which is a geometrical quantity and consequently inde-
pendent of the presence of higher-curvature terms. In
contrast, the entropy does depend on the coupling constant
L in a way that can be computed by different methods.
The result reads

SBH ¼ VolðΩn−2Þrn−2þ
4G

�
1þ L2ðn − 2Þðnþ 2Þ

2l2ðn − 1Þðn − 4Þ
�

¼ Area
4G

þOðL2=l2Þ; ð26Þ

where the first term between brackets gives the Bekenstein-
Hawking contribution Area=ð4GÞ, accompanied by higher-
curvature corrections to the prefactor. Notice that the
entropy SBH and the mass MBH satisfy the first principle
dMBH ¼ THdSBH. It is also easy to check that both SBH and
MBH vanish when the mass of the spin-2 fluctuating mode
m2

s¼2 is zero.

VII. GRAVITATIONAL WAVES

Now, we move to explore exact gravitational wave
solutions. We consider the ansatz

ds2 ¼ l2

r2
ð−ð1þ 2HÞdt2 þ 2dtdξþ dr2 þ δijdxidxjÞ;

ð27Þ
where H is a function that does not depend on the lightlike
coordinate ξ. Here, δij is the (n − 3)-dimensional Kronecker
delta that defines the Euclidean metric onRn−3. We consider
deformations of the universal covering of AdSn, so the
coordinates take values t ∈ R, ξ ∈ R, and r ∈ R≥0. H ¼
const corresponds to AdSn space in Poincaré coordinates,
with its boundary located at r ¼ 0. For the deformation, we
consider the null geodesic vector kμ∂μ ¼ ðr=lÞ∂ξ, which
enables us to interpret these backgrounds as Kerr-Schild
transformations of AdSn; namely,

gμν ¼ gAdSμν − 2H kμkν; ð28Þ

where gAdSμν is the metric of AdSn; recall kμkμ ¼ 0.
The Ricci tensor for a metric like (28) takes the form

Rμν ¼ −
ðn − 1Þ
l2

gμν þ kμkν□H; ð29Þ

and it yields constant scalar curvature R ¼ −nðn − 1Þ=l2,
which turns out to be independent of H. It also yields the
dimension 6 operators

RμαRν
α ¼ ðn − 1Þ2

l4
gμν −

2ðn − 1Þ
l2

kμkν□H; ð30Þ

RμανβRαβ ¼ ðn − 1Þ2
l4

gμν −
ðn − 2Þ
l2

kμkν□H; ð31Þ

RμγαβRν
γαβ ¼ 2ðn − 1Þ

l4
gμν −

4

l2
kμkν□H; ð32Þ

and

□Rμν ¼ kμkν□
�
□ −

2

l2

�
H: ð33Þ

Using the expression for the Ricci tensor and the
properties of kμ, one finds that the only nontrivial con-
tribution to the field equations is

kμkνð□ −M2Þ□H ¼ 0; ð34Þ

with M2 being given by

M2 ¼ −
ðn − 2Þ2

8l2ðn − 1Þ
�
ðn2 − 4Þ þ 2

l2

L2
ðn − 1Þðn − 4Þ

�
:

ð35Þ
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The condition for (35) to be zero is

l2 ¼ −L2
ðn − 2Þðnþ 2Þ
2ðn − 1Þðn − 4Þ ; ð36Þ

and we observe that when M2 ¼ 0 the gravitational energy
of the AdS-Schwarzschild black hole is also zero. This is
analogous to what happens in CG in arbitrary dimension
[45]. Another special value for M2 is the one for which the
AdSn vacuum results unique. This happens when

M2
0 ¼ −

ðn − 2Þ2ðnþ 2Þ
4l2ðn − 1Þ : ð37Þ

VIII. NON-EINSTEIN SPACES

Besides Einstein spaces, theory (14) admits a large class
of non-Einstein solutions. Among them, there are solutions
with anisotropic scale invariance, with and without
Galilean symmetry. That is, the theory admits both
Shrödinger [46] and Lifshitz [47] type metrics for specific
values of the dynamical exponent, z. There is another class
of solutions given by the direct product of squashed or
stretched deformations of AdS spaces and constant curva-
ture spaces. This class includes the so-called warped-AdS3
spaces, warped-AdS3 black holes, and AdS2 × S1 spaces.
To be concrete, let us focus on the five-dimensional case for
which such metrics take the form

ds2 ¼ l2

μ2 þ 3

�
−cosh2ðrÞdt2 þ dr2

þ 4μ2

μ2 þ 3
ðdxþ sinhðrÞdtÞ2 þ dΣ2

2;�

�
; ð38Þ

where dΣ2
2;� is a metric of a two-dimensional space of

constant curvature �1; namely,

dΣ2
2;þ ¼ τ2ðdy2 þ sin2ðyÞdz2Þ;

dΣ2
2;− ¼ τ2ðdy2 þ cosh2ðyÞdz2Þ; ð39Þ

with τ2 being a constant that controls the radius of the
internal two-dimensional piece of the geometry, Σ2;�. We
can take t ∈ R, x ∈ R, and r ∈ R. These coordinates
parametrize the three-dimensional part of the geometry
that describes a squashed or stretched deformation of AdS3,
also known as warped-AdS3 spaces or simply WAdS3.
The parameter that controls the deformation is μ; the value
μ ¼ 1 corresponding to the undeformed AdS3 space written
as a Hopf fibration of AdS2. The scalar curvature associated
with the five-dimensional geometry (38) is

R ¼ −
2ð3τ2 ∓ μ2 ∓ 3Þ

τ2l2
; ð40Þ

where the squashing parameter μ is related to the radius
τ by

μ2 ¼ 3ð1� τ2Þ
X�ðτÞ

; with X�ðτÞ ¼ 2τ4 � 5τ2 − 1; ð41Þ

and where the coupling constants take the values

L2 ¼ 48l2
X�ðτÞ
Y�ðτÞ

; Λ ¼ −
3

2l2

Z�ðτÞ
X�ðτÞY�ðτÞ

; ð42Þ

with

Y�ðτÞ ¼ 78τ4 ∓ 267τ2 − 145;

Z�ðτÞ ¼ 156τ8 ∓ 556τ6 − 2661τ4 � 666τ2 þ 1015:

ð43Þ

Warped AdS3 spaces admit black hole solutions [48] that
are asymptotically WAdS3 as well as locally WAdS3 [49],
and they also admit a limit in which the geometry becomes
AdS2 × S1. All these spaces have very interesting proper-
ties and deserve to be studied separately.

IX. ALTERNATIVE DIMENSIONAL
EXTENSION

There exists another way of dimensionally extending to
n ≥ 4 the theory that, in n ¼ 4, is defined by considering
the sum of scalars Q2k≤4;4 in the Lagrangian density. To see
this, let us be reminded of the fact that in four dimensions
one has

Q4;4 þ
1

4
CμναβCμναβ ¼ 1

4
E4 −

1

6
□R; ð44Þ

where the right-hand side is a total derivative as it includes
□R and the Pfaffian E4 ¼ RμναβRμναβ − 4RμνRμν þ R2.
While Lovelock theory corresponds to dimensionally

extending the right-hand side of (44), the theory discussed
in the preceding sections corresponds to extending the Q
curvature by replacing Q4;4 by Q4;n. However, this is not
the only way in which one can extend (44) to n > 4

dimensions as one could alternatively consider the combi-
nation E4 − CμναβCμναβ and then extend both the Gauss-
Bonnet term E4 and the Weyl tensor Cμ

ν
αβ to n dimensions.

To see that the latter differs from the simple extension
Q4;4 → Q4;n, let us notice that in n dimensions the
following identity holds

Q4;n þ
1

4
CμναβCμναβ −

1

4
E4 ¼ −An□Rþ α̂R2 þ β̂RμνRμν;

ð45Þ
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where

α̂ ¼ −
ðn − 4Þð2n3 − 5n2 þ 6n − 4Þ

8ðn − 1Þ2ðn − 2Þ2 ;

β̂ ¼ ðn − 1Þðn − 4Þ
ðn − 2Þ2 : ð46Þ

We see from this that the right-hand side of (45) is a total
derivative only for n ¼ 4. Therefore, in n > 4 there exist
two possibilities to define a higher-curvature theory based
on the dimensional extensions of identity (44); namely,
either one considers the action

R
dnx

ffiffiffiffiffiffi−gp
Q4;n, as we did

in the preceding sections, or one considers the actionR
dnx

ffiffiffiffiffiffi−gp ðE4 − CμναβCμναβÞ. Let us now explore the latter
possibility; namely, consider the Lagrangian density

L2 ¼ L2ðE4 − CμναβCμναβÞ

¼ nðn − 3ÞL2

ðn − 1Þðn − 2ÞR
2 −

4ðn − 3ÞL2

ðn − 2Þ RμνRμν; ð47Þ

with a coupling constant L2. This theory exhibits interest-
ing properties. In fact, it can be alternatively defined by
minimal requirements: the absence of the conformal mode
□R, the persistence of Einstein manifolds as solutions,
and the uniqueness of the maximally symmetric vacuum.
To see this, let us introduce the notation L2 ¼ αR2 þ
βRμνRμν þ γRμνρηRμνρη with coupling constants α, β, γ. The
requirement of Einstein spaces to persist as solutions
demands the coupling constant of the Kretschmann scalar,
γ, to be zero. Next, the condition of the conformal mode to
decouple yields the relation

α ¼ −
nβ

4ðn − 1Þ ; ð48Þ

which makes □R disappear from the trace of the field
equations. This is exactly the value of the relative
coefficient that appears in the counterterm expansion of
the boundary action in holographic renormalization
[50–53]. Also, related to that, (48) agrees with the relative
coefficient of the action that governs the induced gravity
on a codimension 1 surface in AdSn gravity [54].
Equation (48) has also relation with theories in lower
dimension: For n ¼ 2, it corresponds to α=β ¼ −1=2, for
which the quadratic terms disappear from the action. For
n ¼ 3, it yields α=β ¼ −3=8, which corresponds to the
so-called new massive gravity (NMG) introduced in [55].
For n ¼ 4, (48) yields α=β ¼ −1=3, and the quadratic
piece of the action is, up to a total derivative, the

conformal invariant combination CμνρσCμνρσ. The n > 4

CG theory of [9], however, does not agree with (47) or
(48), but actually corresponds to the values

α ¼ −
β

2ðn − 1Þ ; γ ¼ −
ðn − 2Þβ

4
;

with Λ ¼ −
ðn − 1Þ

2ðn − 3Þβ : ð49Þ

Last, the condition for the maximally symmetric vacuum
of the theory to be unique yields the relation

Λ ¼ ðn − 1Þ
2ðn − 4Þβ ; ð50Þ

which is valid for n ≠ 4. This implies that the effective
curvature radius is given by

l2 ¼ −
ðn − 2Þðn − 4Þ

2
β: ð51Þ

In n ¼ 3, for instance, this agrees with the special point
l2 ¼ β=2 at which NMG exhibits special features [56,57].
In summary, there exists an alternative quadratic theory

of gravity for n > 4 that is special and is originally
motivated by extending the four-dimensional Lagrangian
density Q4;4 to higher dimensions. This is defined by the
coefficients

α ¼ −
nβ

2ðn − 1Þ ; γ ¼ 0; Λ ¼ −
ðn − 1Þ

2ðn − 4Þβ ; ð52Þ

cf. (49). This theory and, in particular, its relation to
holographic renormalization deserve further analysis.
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