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Recently we have introduced a nonrelativistic cosmological model (NRCM) exhibiting a dynamical
spatial curvature. For this model the present day cosmic acceleration is not attributed to a negative pressure
(dark energy), but it is driven by a nontrivial energy flow leading to a negative spatial curvature. In this
paper, we generalize the NRCM in two different ways to the relativistic regime and present analytical
solutions of the corresponding Einstein equations. These relativistic models are characterized by two
inequivalent extensions of the Friedmann-Lemaître-Robertson-Walker metric with a time-dependent
curvature function KðtÞ and an expansion scalar aðtÞ. The fluid flow is supposed to be geodesic. The model
V1 is shear free with isotropic pressure and therefore conformally flat. It shows some common properties
with the spherically symmetric Stephani models, but it exhibits also some specific differences. In contrast to
V1, the second model V2 shows a nontrivial shear and an anisotropic pressure. For both models, the
inhomogeneous solutions of the corresponding Einstein equations will agree in leading order at small
distances with the NRCM if aðtÞ and KðtÞ are each identical with those determined in the NRCM. This will
be achieved by the demand of vanishing isotropic pressure and its first derivative with respect to r2 at the
coordinate origin r ¼ 0. Then the metric is completely fixed by three constants. The arising energy
momentum tensor contains a nontrivial energy flow vector. Our models violate locally the weak energy
condition. As this may be caused by some averaging, we speculate about to view each of our models as a
local average of some other more fundamental model. Global volume averaging leads to explicit
expressions for the effective scale factor and the expansion rate HðzÞ. Backreaction effects cancel each
other for the model V2 but they are nonzero and proportional to the square of the magnitude of the energy
flow for the model V1. The large-scale (relativistic) corrections to the NRCM results are small for the
model V2 for a small-sized energy flow. We have reproduced a corresponding adjustment of the three free
constants from [1] to cosmic chronometer data, leading to the prediction of an almost constant, negative
value for the dimensionless curvature function kðzÞ ∼ −1 for redshifts z < 2.
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I. INTRODUCTION

There is no doubt that the present Universe goes through
a phase of (real or apparent) accelerated expansion (see [2]
and the literature cited therein). According to recent claims,
almost all observations are in good agreement with the
standard Λ cold dark matter (ΛCDM) cosmological model,
only some disagreements are recorded (see [3]). But in
some very recent papers [4,5] even the validity of the
standard model has been put into question.
Two alternative strategies to the standard model are

under discussion. In the first category, one introduces some
kind of “new physics” by changing Einstein’s equations
(EEs) either by modifying the geometrical part of EEs
(called modified gravity) or by changing the matter part.
In the second category, one considers the accelerated

expansion as an apparent effect due to averaging over

inhomogeneities in the Universe (called backreaction, see
[6] for a recent review). For cosmological models based on
averagingover inhomogeneities, one comes to the conclusion
that the present day cosmic acceleration is due to a negative
spatial curvature [7,8]. A comparison of such backreaction
effects with observations has been undertaken in [9].
Furthermore, numerical solutions of Einstein’s equations
for a silent Universe show “that the spatial curvature emerges
due to nonlinear evolution of cosmic structures” [10].
Inhomogeneous cosmological models containing a time-

dependent curvature function have been first introduced by
Stephani [11] (see also [12] and the literature cited therein).
Stephani models are the most general conformally flat
perfect fluid solutions of Einstein’s equations with non-
trivial expansion [12]. They are characterized by an
inhomogeneous pressure and a homogeneous energy den-
sity. If one chooses a Friedman-like time coordinate [13],
the model contains two unknown functions of time, an
expansion scalar aðtÞ and a curvature function KðtÞ. For a*peter@physik.uni-bielefeld.de
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subclass of the spherical symmetric case, KðtÞ and aðtÞ are
postulated to be proportional to each other (called
Dabrowski models [14]). But this assumption fixes the
sign of the curvature function KðtÞ. Quite recently, com-
parisons of such models with observational data have been
performed in [15,16]. It turns out that such models are only
observationally acceptable if the inhomogeneity parameter
is assumed to be small and the model contains, in addition,
a standard dark energy component [15,16].
Recently we have shown that a nonrelativistic cosmo-

logical model (NRCM) introduced in [17], reviewed in
[18], and derived as the nonrelativistic limit (approximation
at sub-Hubble scales) of a general relativistic model,
exhibits a dynamical curvature function with a negative
value at the present cosmological epoch [19,20]. In a very
recent paper [1], we have fixed the three constants (initial
conditions) of the model by adjusting them in two different
ways to a second-order polynomial fit by Montanari and
Räsänen [21] to the observed expansion rate HðzÞ. In the
particular case of scenario 2 in [1], we obtain for the
dimensionless curvature function the prediction kðzÞ ∼ −1
for z < 2.
In the present paper, we consider two different relati-

vistic generalizations of the NRCM. These models are
characterized by two inequivalent extensions of the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric
with a time-dependent curvature function and a geodesic
fluid flow. Each of the models contain again two functions
of time, a scale factor aðtÞ and the curvature function KðtÞ.
The solutions of the corresponding Einstein equations turn
out to be inhomogeneous. They will agree in leading order
at small distances with the NRCM if aðtÞ and KðtÞ are
each identical to those found in the NRCM. Therefore, the
metric as well as the energy momentum tensor become
completely fixed.
It turns out that ourmodels violate locally theweak energy

condition. But due to the fact that averaging may lead to a
violation of energy conditions [6], we speculate about to
view each of our models as a local average of some other yet
unknown but more fundamental cosmological model.
To compare the outcome of our models with observa-

tional results, we consider a global volume average of our
inhomogeneous analytical solutions.
The paper is organized as follows: In Sec. II, we

summarize the essentials of the NRCM and recapitulate
the determination of the three free constants from scenario
2 in [1]. In Sec. III, we describe the two relativistic
generalizations. Variant 1 consists of a shear-free fluid
with isotropic pressure (Sec. III A). This model will be
compared with the spherically symmetric Stephani models
in Sec. III A 1. A shearing model with anisotropic pressure
(variant 2) will be discussed in Sec. III B. Spatial averaging,
backreaction, and the size of the large-scale (relativistic)
corrections will be considered in Sec. IV. We finish the
paper with some concluding remarks (Sec. V).

II. SUMMARY OF THE NONRELATIVISTIC
COSMOLOGICAL MODEL

In the following we summarize the essentials of our
NRCM with dynamical curvature. We will present only the
resulting equations but give a full account of their physical
interpretation. Here and throughout the whole paper wewill
consider only spherical symmetric geometry. Then the fluid
flow is irrotational.
We start with EEs for a self-gravitating geodesic fluid

(velocity field uμ; we use units c ¼ 1 ¼ 8πG)

Gμν ¼ Tμν; ð1Þ

with an energy-momentum tensor (EMT) containing in the
comoving frame only energy density and an energy flow
vector qμðuμqμ ¼ 0Þ,

Tμν ¼ ρuμuν þ qμuν þ qνuμ: ð2Þ

In the nonrelativistic and shear-free limit [19] (or at small
distances [20]), we obtain from the EEs, after having
eliminated the energy flow vector, the following system
of two coupled ordinary differential equations for the
cosmological scale factor aðtÞ and the active gravita-
tional mass density (for any details we refer to [19,20],
respectively):

ρ ¼ −
6ä
a

ð3Þ

and

_ρþ 3
_a
a
ρþ 6K1

a5
¼ 0; ð4Þ

where the constant K1 measures the strength of the energy
flow (see [1]).
For the curvature function KðtÞ ≔ a2

6
R� (R� is the spatial

curvature) we obtain from the Hamiltonian constraint (we

define ρ̂ ≔ a3ρ
6
)

KðtÞ ¼ − _a2 þ 2ρ̂

a
: ð5Þ

In the limit of vanishing energy flow ðK1 ¼ 0Þ our model
reduces to the flat FLRW dust model. The dynamical
system (3) and (4) possesses two constants of motion Qi
(i ¼ 2, 3),

Q2 ¼ K1 _a −
1

2
ρ̂2; Q3 ¼ −

ρ̂3

6
−Q2ρ̂þ

K2
1

a
: ð6Þ

On the solution space of (3) and (4), the Qi take constant
values Ki, which are determined by the initial value of ρ
and by the Hubble parameter. Introducing the redshift
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z ¼ a−1 − 1 (the validity of this relation will be discussed
in Sec. IVA) instead of time t as the independent variable,
we get finally from (6) analytic expressions for the
expansion rate HðzÞ ≔ _a=a and for the curvature function
KðzÞ. In dimensionless units,

k1 ≔
K1

H3
0

; k2 ≔
K2

H4
0

; k3 ≔
K3

H6
0

;

hðzÞ ≔ HðzÞ
H0

; kðzÞ ≔ KðzÞ
H2

0

; ð7Þ

we get [1] a cubic equation for hðzÞ

½k21ð1þ zÞ − k3�2 ¼
2

9

�
k1hðzÞ
1þ z

− k2

��
k1hðzÞ
1þ z

þ 2k2

�
2

ð8Þ
and kðzÞ in terms of hðzÞ

kðzÞ ¼ −
�
hðzÞ
1þ z

�
2

� 23=2ð1þ zÞ
�
k1hðzÞ
1þ z

− k2

�1
2

; ð9Þ

with the þ sign for z > zt and the—sign for z < zt, where
zt defines the transition redshift [given in terms of the ki
by (12)].
The constants ki are related to observable quantities as

follows:
(i) k1 determines the magnitude of the derivative of the

curvature function kðzÞ with respect to z

k0ðzÞ ¼ 2k1ð1þ zÞ2
hðzÞ : ð10Þ

(ii) the deceleration parameter q0 ≔ qð0Þ½qðzÞ ≔ − ä
aH2�

is given in terms of k1 and k2 by

q0 ¼ −
ffiffiffi
2

p
ðk1 − k2Þ1=2: ð11Þ

(iii) zt þ 1 is proportional to k3

zt þ 1 ¼ k3=k21: ð12Þ

The ki are not independent of each other. By taking (8) at
z ¼ 0 we obtain the relation

ðk3 − k21Þ2 ¼
2

9
ðk1 − k2Þðk1 þ 2k2Þ2; ð13Þ

leading to the constraint

k1 > k2: ð14Þ

What about the signs of the ki? We require that for z > zt
our model describes a decelerating phase and for z < zt an
accelerating phase of the Universe. Then, according to (3)

and (6), k2 and k3 must be positive [17,18] leading by the
constraint (14) to k1 > 0.
We conclude [19,20] the following:
(i) According to our model the present day cosmic

acceleration is not attributed to any kind of negative
pressure (dark energy), but it is driven by a non-
trivial, radially directed energy flow.

(ii) At least for z < zt we have, according to (9), a
negative spatial curvature (hyperbolic space). But
kðzÞ is an increasing function of z and we have
kðztÞ < 0. Therefore, at some z ¼ z0 > zt we should
have a transition from a hyperbolic to a spherical
space.

(iii) According to (3), the energy density turns out to be
positive in the decelerating phase and negative in the
accelerating phase of the Universe. So at present the
weak energy condition is violated in our nonrela-
tivistic model [20]. But the situation becomes more
complicated for the relativistic generalizations of our
model, which are of an inhomogeneous type (see
Sec. III). Hence, we postpone the discussion of the
validity or violation of energy conditions to Sec. III.

A. Estimation of the ki by observations

We have to fix two independent constants ki and the
Hubble parameter H0 ≔ Hð0Þ by means of some data for
the expansion rate HðzÞ. The only data for HðzÞ that are
independent of any cosmological model are the cosmic
chronometer data (see Table I in [21]). But these data
possess still rather large error bars. Hence, we dispense
with a least-squares fit. Instead we try to get a reasonable fit
with a very small value of k1, which would keep the
relativistic corrections for the model V2 small (Sec. IV).
This has been done for scenario 2 in (1) by using the value
of HðzÞ at decoupling, leading to

k1 ¼ 0.002082: ð15Þ
Here we adopt this value as a viable estimate for k1 and
follow for the determination of k2;3 the procedure in [1].
From (8), taken at z ¼ zt, we obtain

k2
k1

¼ hðztÞ
1þ zt

: ð16Þ

By inserting the second-order polynomial fit [22] to the
cosmic chronometer data (Table I in [21])

hðzÞ ¼ h1zþh2z2 with h1 ¼ 0.8368 and h2 ¼ 0.1082

ð17Þ

into (16) and taking (13) together with k1 from (15) into
account, we obtain a coupled system of two algebraic
equations for zt and k2. From its solution and the relation
(12) we obtain finally
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k2 ¼ 0.0020773 and k3 ¼ 1.072 × 10−5: ð18Þ

With these values for the ki we get from (8) numerical
results for hðzÞ, which are compared with observational
data and the polynomial fit (17) in Table I.
In addition, we have listed our predictions for the

curvature function kðzÞ, which show an almost constant
behavior kðzÞ ∼ −1 for all z < 2, in agreement with the
FLRW consistency conditions [21].
Our results show that the observation of such an almost

constant behavior of kðzÞ is not automatically evidence for
the validity of the FLRW model where a constant k is an
ad hoc parameter. Of course, the FLRW model is one
possible model showing such a behavior, but it is not the
only one.
In contrast to the cosmic chronometer data for HðzÞ, the

use of supernova Ia data and baryon acoustic oscillation
data, respectively, rests upon a distance-redshift relation,
which depends heavily on the underlying cosmological
model. For a generic model, the area distance satisfies a
differential equation [see Eq. (49) in [23]]. In [19] we have
adjusted this equation to our nonrelativistic model, but we
were not able to solve it analytically. To proceed, one has to
take the relativistic (inhomogeneous) corrections (see
Sec. III) into account and use numerical methods (or at
least an expansion in powers of z for low redshifts; see [24]

for the case of the Stephani models). But this is outside the
scope of the present paper.
To compare our model with the measurement of the

cosmic microwave background shift parameter, we should
have some knowledge on the matter part of the energy
density. But our model does not allow for the separation of
the energy density into a matter and a dark energy part [17].

III. RELATIVISTIC GENERALIZATIONS
OF THE NRCM

Unfortunately, we did not succeed to get an analytic
solution for the full relativistic EEs with the EMT (2) in
spherical symmetric space-time. But in order to get in
leading order at small distances, the results described in
Sec. II, it is not necessary to use the EMT (2). Instead, we
may start with an extended EMT containing, in addition,
nontrivial pressure terms

Tμν ¼ðρþptÞuμuνþptgμνþðpr−ptÞsμsνþqμuνþqνuμ;

ð19Þ

where pr denotes the radial pressure, pt is the transversal
pressure, and sμ is a unit spacelike vector with uμsμ ¼ 0.
But then the pressure terms must behave for small distances
such that in leading order the NRCM results (see Sec. II)
are valid. Of course such a requirement has no unique
answer. To realize it, we have to distinguish between two
options.

(i) Variant 1 (V1): the fluid flow is shear free. Our aim
is to find a solution of the EEs with a time varying
curvature function. But, as shown in [19], this
requires for a shear-free and geodesic fluid flow
necessarily nontrivial pressure terms in the EMT. In
Sec. III A, we consider only the case of isotropic
pressure.

(ii) Variant 2 (V2): the fluid flow has nonvanishing
shear. This case will be considered in Sec. III B.

A. Shear-free model with isotropic pressure (V1)

We consider only the case of isotropic pressure
ðpr ¼ pt≕pÞ. Then the EMT (19) may be written as

Tμν ¼ ρuμuν þ phμν þ qμuν þ qνuμ; ð20Þ
where hμν ≔ uμuν þ gμν projects onto the space orthogonal
to uμ.
The geodesic and shear-free fluid motion allows the

consideration of a comoving coordinate system with
uμ ¼ δμ0, which may be written as (see [25])

ds2 ¼ −dt2 þ V−2ðt; rÞðdr2 þ r2dΩ2Þ: ð21Þ
The condition of the isotropy of the pressure, inserted into
the EEs (1), leads to a differential equation for V with
respect to x ≔ r2 [26,27]

TABLE I. Expansion rate dataHob (second column, taken from
Table 1 in [21] with errors σH) versus polynomial fit Hpol [21]
[fourth column; see Eq. (17)] and predictions for HðzÞ (fifth
column). For the polynomial fit as well as for the predictions, we
have used H0 ¼ 64.2 km=s=Mpc [21]. The sixth column shows
the predictions for the curvature function kðzÞ.
z HobðzÞ σH HpolðzÞ HðzÞ kðzÞ
0.07 69 19.6 67.995 68.679 −1.00582
0.12 68.6 26.2 70.747 71.880 −1.00559
0.179 75 4 74.039 75.653 −1.00531
0.199 75 5 75.166 76.932 −1.00521
0.2 72.9 29.6 75.222 76.996 −1.00520
0.28 88.8 36.6 79.787 82.112 −1.00478
0.352 83 14 83.971 86.715 −1.00438
0.3802 83 13.5 85.629 88.518 −1.00422
0.4004 77 10.2 86.824 89.810 −1.00410
0.4247 87.1 11.2 88.269 91.363 −1.00396
0.4497 92.8 12.9 89.764 92.960 −1.00381
0.4783 80.9 9.0 91.485 94.789 −1.00363
0.48 97 62 91.587 94.898 −1.00362
0.593 104 13 98.500 102.121 −1.00289
0.680 92 8 103.943 107.682 −1.00228
0.781 105 12 110.394 114.130 −1.00154
0.875 125 17 116.526 120.147 −1.00081
0.88 90 40 116.855 120.466 −1.00077
1.037 154 20 127.380 130.505 −0.99945
1.363 160 33.6 150.329 151.362 −0.99559
1.965 186.5 50.4 196.587 189.969 −0.99004
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d2

dx2
Vðt; xÞ ¼ 0; ð22Þ

whose solution is conveniently written as [27]

V−1ðt; rÞ ¼ aðtÞ
1þ r2

4
KðtÞ : ð23Þ

We note that vanishing anisotropy of the pressure implies
that the space-time is conformally flat (see [25]).
Insertion of (23) into the line element (21) leads to a

metric that differs from the usual FLRW metric only by the
time dependence of K [27].
For the moment, the functions aðtÞ and KðtÞ are not yet

specified, but later we will see that they can be identified
with the corresponding functions of the NRCM (see Sec. II).
Introducing the metric (21) with (23) together with the

EMT (20) into the EEs (1) we obtain (see [27]) for the
energy flow q½qμ ¼ qsμ; sμ ¼ ð0; 1=VÞ�

q ¼ −
r _K

að1þ r2
4
KÞ ; ð24Þ

for the energy density ρ

ρ ¼ 3
K
a2

þ 1

3
Θ2; ð25Þ

and for the pressure p

p ¼ −
2

3
_Θ −

1

3
Θ2 −

K
a2

; ð26Þ

with the volume expansion Θ ≔ ∇μuμ ¼ −3 _V
V given by

Θ ¼ 3

�
_a
a
−

r2
4
_K

1þ r2
4
K

�
; ð27Þ

where a dot represents differentiation with respect to time t.
So, the spatial scalar curvature R�, obtained from the

Hamiltonian constraintR� ¼ 2ρ − 2
3
Θ2, turns out to be only

a function of time (see [28], [25])

R� ¼ 6KðtÞ
a2ðtÞ : ð28Þ

Let us now look at the behavior of the dynamical quantities
at small distances r.
For the energy density ρ we obtain from (25) and (27)

ρ ¼
r→0

3

�
K
a2

þ
�
_a
a

�
2
�
þ 0ðr2Þ: ð29Þ

To bring (21) in leading order for small distances into
agreement with the NRCM result (3), we have to require

K ¼ −ð2äaþ _a2Þ: ð30Þ

Next we have to consider the local energy conservation
equation

_ρþ Θðρþ pÞ þ 1

r2B3
ðr2qB2Þ0 ¼ 0; ð31Þ

where a prime represents differentiation with respect to r.
The last term in (23), the expansion Θ, and the pressure

p, respectively, behave at small distances as

1

r2B3
ðr2B2Þ0 ¼

r→0
−
3 _K
a2

þ0ðr2Þ; Θ ¼
r→0

3
_a
a
þ0ðr2Þ; ð32Þ

and

p ¼ −
�
2
ä
a
þ
�
_a
a

�
2

þ K
a2

�
þ r2

2

�
3
_a
a
_K þ K̈

�
þ 0ðr4Þ:

ð33Þ

Therefore, to bring (31) at leading order at small
distances in agreement with the NRCM result (4), we have
to require, according to (32) and (33) and taking into
account (30),

_K ¼ −
2K1

a3
; K1 ¼ const: ð34Þ

From the behavior of the pressure for small distances,
Eq. (33), we observe that the conditions (30) and (34)
may be formulated exclusively in terms of pðt; xÞ ðx ≔ r2Þ
for x → 0,

pðt; 0Þ ¼ 0 and p0ðt; 0Þ ¼ 0: ð35Þ

Combining (30) and (34) we obtain

ðäa2Þ· ¼ K1

a2
; ð36Þ

which is identical to the differential equation for aðtÞ
obtained in the NRCM [eliminate ρ in (4) by means of (3)].
The aforementioned results lead finally to the following

conclusion: Variant 1 of the relativistic model agrees in
leading order at small distances with the NRCM if and only
if the pressure pðt; xÞ satisfies the conditions (A)

pðt; 0Þ ¼ 0 ðA1Þ and p0ðt; 0Þ ¼ 0 ðA2Þ;

which implies (36). So, due to the results presented in
Sec. II [see Eqs. (8) and (9)], we obtain exact analytic
expressions for _a and K as functions of the NRCM scale
factor a. Then aðtÞ may be obtained by quadrature (see
[17], Appendix A).
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1. Conclusion

With the known expressions for aðtÞ and KðtÞ, our
metric (21) and (23) is completely fixed in terms of the
three constants Kiði ¼ 1; 2; 3Þ. Therefore, by using (30)
and (34) in (24)–(26) we obtain the following inhomo-
geneous solution of Einstein’s equations:

q ¼ 4

ar
f; ð37Þ

ρ ¼ 3

�
K
a2

þ
�
_a
a
þ f

�
2
�
; ð38Þ

and

p ¼ −5f2; ð39Þ
where we have defined

fðt; rÞ ≔ K1
r2
2

a3ðtÞ½1þ r2
4
KðtÞ� : ð40Þ

In terms of f we get for the volume expansion

Θ ¼ 3

�
_a
a
þ f

�
: ð41Þ

Readers who are more familiar with the system of
evolution and constraint equations (see [25] for our case)
instead of the EEs may easily check that the results
(37)–(39) and (41) for q, ρ, p, and Θ together with (30)
and (34) identically satisfy the conservation equations

_ρþ Θðρþ pÞ þ q0

B
þ 2q

ðrBÞ0
rB2

¼ 0 ð42Þ

and

_qþ p0

B
þ 4

3
Θq ¼ 0; ð43Þ

and the Raychaudhuri-Ehlers equation

_Θþ 1

3
Θ2 þ 1

2
ðρþ 3pÞ ¼ 0; ð44Þ

as well as the constraint equations

ρ0 ¼ ΘqB ð45Þ
and

2

3
Θ0 ¼ qB: ð46Þ

Our results exhibit the following interesting features:
(i) The large-scale (relativistic) corrections are deter-

mined by only one function fðt; rÞ, which is propor-
tional to the energy flow, vanishes at the coordinate
origin and becomes singular for r→2jKj−1=2≕r∞ðtÞ
in the case of a negative spatial curvature.

(ii) The pressure turns out to be negative.
(iii) The spatial curvature shows no relativistic correction

[see Eq. (28)].
What about the sign of the energy density ρ? Let us rewrite
(38) by means of (30) as

ρðt; rÞ ¼ −
6ä
a

þ 3f

�
2
_a
a
þ f

�
: ð47Þ

Then, in the accelerating phase of the Universe, ρ turns
out to be negative for small r but it becomes singular,
together with f, for r → r∞ðtÞ. Hence, by continuity, it
exists for each fixed t in the accelerating regime some finite
value r0ðtÞ < r∞ðtÞ such that

ρðt; rÞ < 0 for 0 ≤ r < r0ðtÞ and

ρðt; rÞ > 0 for r0ðtÞ < r < r∞: ð48Þ

After (48) three remarks are in order.
(i) The weak energy condition (WEC) is locally (for

small distances) violated. This should not bother us
as there are many viable general relativistic models
violating some energy condition (e.g., scalar field
coupling to gravity [29]). On the other hand, it is
well known that averaging may lead to a violation of
energy conditions [6]. So one may speculate about to
view our model as an average of another yet
unknown model (which satisfies the WEC) over
scales below the homogeneity scale of the Universe
(local average [30]). But it is outside the scope of the
present paper to discuss this idea in more detail.

(ii) The division of space into one part containing a
positive energy density and another part containing a
negative energy density reminds us of the Dirac-
Milne universe [31,32]. But it is outside the scope of
the present paper to amplify this point.

(iii) Let us consider the subset of r0 < r < r∞ for which
the f term in (38) dominates all other terms. For r
values in this subset, we have

ρ ∼ −3=5p and therefore ρþ 3p ∼
12

5
p < 0:

ð49Þ

Then, according to the Raychaudhuri-Ehlers equa-
tion (44), the accelerated expansion of the Universe
is locally (for this subset) given by dark energy, i.e.,
a negative pressure. But the pressure p is propor-
tional to the square of the magnitude of the energy
flow. So the primary cause for the accelerated
expansion is still the nontrivial energy flow.

PETER C. STICHEL PHYS. REV. D 98, 104022 (2018)

104022-6



2. Comparison with the spherically
symmetric Stephani models

The spherically symmetric Stephani models (SSSMs) are
defined by the metric [11] (see also [12,13])

ds2 ¼ −
a2

_a2

�
_V
V

�2
dt2 þ V−2ðdr2 þ r2dΩ2Þ; ð50Þ

where Vðt; rÞ is defined by (23) and we have chosen the
Friedman-like time coordinate [13].
Our model V1 and the SSSMs possess the following

common properties:
(i) They are fully characterized by two time-dependent

functions, an expansion scalar aðtÞ, and a curvature
function kðtÞ.

(ii) They are shear free, have isotropic pressure, and are
therefore conformally flat.

(iii) They are inhomogeneous and reduce for vanishing
inhomogeneity to the flat FLRW dust model.

(iv) In the case of our model and for a subclass of the
SSSMs, the pressure vanishes at the origin [13,33].

The differences between both models are as follows:
(i) For the SSSMs, the energy density is homogeneous

and the pressure is inhomogeneous. In the case of
our model, the energy density and the pressure are
both inhomogeneous.

(ii) The fluid flow for our model is geodesic but it is
nongeodesic in the case of the SSSMs.

(iii) The energy flow is nontrivial for our model, but it
vanishes for the SSSMs.

(iv) The accelerated expansion of the Universe is driven
primarily by the energy flow for our model, but it is
driven by the inhomogeneity in case of the SSSMs
[32–34].

(v) The expansion scalar aðtÞ and the curvature function
kðtÞ are a priori free functions in the case of the
SSSMs. For a subclass, they are postulated to be
proportional to each other. These are the so-called
Dabrowski models [14] (see also [13,15,16,33–35])
that, however, do not allow a sign change of kðtÞ.
Contrary to the SSSMs, our model fixes both
functions in terms of three constants Ki by the
NRCM dynamics (see Sec. II), which allows a
dynamically determined sign change of kðtÞ.

B. Shearing model with anisotropic pressure (V2)

We are not interested to study the most general shearing
model with anisotropic pressure. Instead, we will define our
model by a metric that is as close as possible to the FLRW
metric. This metric is given in comoving coordinates with
uμ ¼ δμ0 by

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − KðtÞr2 þ r2dΩ2

�
: ð51Þ

This is the usual FLRW metric except that the constant
curvature is replaced by a function of time KðtÞ. Insofar as
it is similar to the metric (21) and (23) considered in
Sec. III A. Both are equivalent for K ¼ const. as can be
seen by the coordinate transformation

r →
r

1þ r2
4
K
; ð52Þ

which converts the metric (51) into the metric (21) and (23).
But for a time-dependent curvature KðtÞ both metrics
are inequivalent [36]. The easiest way to see this is by
considering the shear of the comoving fluid, which for the
metric (51) is different from zero and proportional to the
time derivative of KðtÞ.
The metric (51) appeared already as a subcase of a

more general metric in [36]; it was later considered as an
effective metric for cosmological models with spatial
averaging [37], [9].
Introducing the metric (51) and the EMT (19) into the

EEs (1), we obtain (see [38])

ρ ¼ 3

��
_a
a

�
2

þ KðtÞ
a2

�
þ _a
a

_KðtÞr2
1 − KðtÞr2 ; ð53Þ

pr ¼ −
2ä
a

−
�
_a
a

�
2

−
KðtÞ
a2

; ð54Þ

pt ¼ −2
ä
a
−
�
_a
a

�
2

−
KðtÞ
a2

−
3

2

_a
a

K̈ðtÞr2
1 − KðtÞr2

−
3

4

_KðtÞ2r4
½1 − KðtÞr2�2 −

1

2

K̈ðtÞr2
1 − KðtÞr2 ; ð55Þ

and

q ¼ −
1

a

_KðtÞr
½1 − KðtÞr2�1=2 ; ð56Þ

Furthermore, volume expansion Θ and shear σ, defined
by the decomposition of the covariant derivative of
uμðσ2 ≔ 1

2
σμνσ

μνÞ

∇μuν ¼
1

3
Θhμν þ σμν; ð57Þ

are given by

Θ ¼ 3
_a
a
þ 1

2

_Kr2

1 − Kr2
ð58Þ

and
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σ ¼ 1

2
ffiffiffi
3

p
_Kr2

1 − Kr2
: ð59Þ

Then the spatial curvature R�, obtained from the
Hamiltonian constraint R� ¼ 2ρ − 2

3
Θ2 þ 2σ2, is again a

function of time only and is given by the same expression
(28) as for model V1,

R� ¼ 6KðtÞ
a2ðtÞ : ð60Þ

Now, by looking for the small distance behavior, we could
duplicate in detail the considerations from Sec. III A
applied to the present case. We will not do so, but instead
we shorten the discussion and start with the following
supposition.

1. Supposition

Variant 2 of the relativistic model agrees in leading order
at small distances with the NRCM if the total pressure
pðt; xÞ½p ¼ 1=3ðpr þ 2ptÞ� satisfies the conditions (A)

pðt; 0Þ ¼ 0 ðA1Þ and p0ðt; 0Þ ¼ 0 ðA2Þ:

Proof.—
(i) (A1) leads to [see (30)]

K ¼ −ð2äaþ _a2Þ; ð61Þ

and therefore the energy density ρ (53) approaches
for r → 0 the expression given by Eq. (3).

(ii) The local energy conservation equation, which reads
in our case [see Eq. (34) in [39]; B2 ≔ a2

1−Kr2]

_ρþ ðρþ prÞ
_B
B
þ 2ðρþ ptÞ

_a
a
þ q0

B
þ 2q

1

rB
¼ 0;

ð62Þ

approaches for r → 0, according to (A2) together
with (61) and (56), the NRCM form Eq. (4).

Note that (A2) takes again the same explicit form as for
model V1 [see (33)],

K̈þ3
_a
a
_K¼0 with the solution _K¼−

2K1

a3
; K1¼ const:;

ð63Þ

so that (61) together with (63) imply again the NRCM
condition (36). Hence, we get the same analytic expressions
for aðtÞ and KðtÞ as for V1 and obtain finally the following
inhomogeneous solution of Einstein’s equations

ρ ¼ −6
ä
a
− 2

_a
a
g; ð64Þ

pr ¼ 0; ð65Þ

pt ¼ −3g2; ð66Þ

and

q ¼ 2K1r

a4ð1 − Kr2Þ1=2 ; ð67Þ

where we have defined

gðt; rÞ ≔ K1r2

a3ðtÞ½1 − KðtÞr2� : ð68Þ

In terms of g we obtain for the volume expansion

Θ ¼ 3
_a
a
− g ð69Þ

and for the shear

σ ¼ −
gffiffiffi
3

p : ð70Þ

These results exhibit some interesting features which are
similar to those found for V1 (cf. Sec. III A).

(i) The large-scale (relativistic) corrections are deter-
mined by only one function gðt; rÞ, which is propor-
tional to the strength K1 of the energy flow,
vanishes, in accordance with the NRCM, at the
coordinate origin, and becomes singular for r →
K−1=2 in the case of a positive spatial curvature.

(ii) The radial pressure vanishes.
(iii) The transversal pressure turns out to be negative.
(iv) The spatial curvature shows no relativistic correction.
(v) The electric part Eμν of the Weyl tensor, which may

be written as

Eμν ¼ E

�
sμsν −

1

3
hμν

�
; ð71Þ

is different from zero.
From the shear evolution equation, which in our

case reads [cf. Eq. (44) in [40]; note the different
normalization of σ]

ffiffiffi
3

p
_σ þ σ2 þ 2ffiffiffi

3
p Θσ ¼ −

�
Eþ 1

2
pt

�
; ð72Þ

we obtain
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E ¼ −
_a
a
g −

3

2
g2: ð73Þ

What about the sign of the energy density ρ? According
to (64) and (68), ρ is always negative in the accelerating
phase of the Universe. In the decelerating phase and for
K > 0, ρ is positive for small r but then it turns over to
become negative for large r and going to −∞ for
r → K−1=2. So the situation is very different from the
one found for model V1.
For our solutions (64)–(70), we may check again all the

evolution and constraint equations for the kinematical and
matter variables following from the Einstein equations.
Because of the large number of these equations for a
shearing anisotropic fluid (see [41]) we have restricted
these checks to the two conservation equations: (i) the local
energy conservation equation (62) and (ii) the momentum
conservation equation, which reads in our case [see
Eq. (35) in [39]]

_qþ 2q

�
2
_a
a
− g

�
−
2pt

rB
¼ 0: ð74Þ

Both are identically satisfied.

IV. GLOBAL AVERAGING, BACKREACTION,
AND SIZE OF THE LARGE-SCALE

CORRECTIONS

Because we have found for both of our models V1 and
V2 inhomogeneous solutions of Einstein’s equations, we
should perform a global averaging before we are able to
compare our findings with observational results. For
reasons of simplicity, we consider in the following exclu-
sively model V2.
Spatial averaging of one scalar field ψ over a compact

domain D with volume VD is defined by

hψiD ≔
1

VD

Z
D
ψðt; rÞJðt; rÞd3x; ð75Þ

where J denotes the square root of the three-metric
determinant.

A. Backreaction

Because of the noncommutativity between time-
derivative and spatial averaging, the evolution equations
for the averaged kinematical and matter variables are
different from the corresponding local equations. The
difference can be described by additional source terms,
called backreaction terms (see [7]). Most interesting is the
backreaction term appearing in the averaged Raychaudhuri-
Ehlers equation

hθi· þ 1

3
hθi2 ¼ −2hσi2 − 1

2
ðhρi þ 3hpiÞ

þ 2

3
hðθ − hθiÞ2i − 2hðσ − hσiÞ2i: ð76Þ

The backreaction term [last line of (64)] describes a
correction to the effective gravitational energy density
ρþ 3p. For model V1, the backreaction takes the form
2=3hðf − hfiÞ2i. It is therefore a negative (dark energy)
correction to the effective gravitational energy density. On
the other hand, for model V2, the backreaction vanishes
due to a cancellation between the fluctuations of expansion
rate and shear.

B. Size of the relativistic corrections

In the present paper, we focus our attention on small-
sized relativistic corrections. Hence, we restrict our con-
siderations to model V2 and to the case KðtÞ < 0, relevant
for the present day Universe (see [3]). Then we consider for
the averaging domain in (75) a sphere of radius R and take
the limit R → ∞. For that we need the asymptotic behavior
of the following integrals:

Z
R

0

r2þn

ð1þ jKjr2Þ1þn
2

∼
R→∞

1

2

R2

jKj1þn
2

: ð77Þ

Hence, we obtain the following for the most important
effective quantities:

(i) The scale factor, defined by

a∞ðzÞ ≔ lim
R→∞

�
VDðzÞ
VDð0Þ

�
1=3

; ð78Þ

takes the form

a∞ðzÞ ¼
1

1þ z

�
kð0Þ
kðzÞ

�
1=6

: ð79Þ

(ii) Expansion rate

H∞ ≔
1

3
hΘi∞ ¼ H0

�
hðzÞ þ 1

3

k1
kðzÞ ð1þ zÞ3

�
:

ð80Þ
By using (79), we obtain the identity

H∞ ¼ _a∞
a∞

; ð81Þ

which would not hold for a finite averaging radius R.
To illustrate the size of the relativistic corrections, we

consider the case of scenario 2 from [1], reproduced in
Sec. II A of the present paper. In this case, the correction for
the scale factor is negligible. We get for the highest
considered z value, z ¼ 1.965,
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�
kð0Þ

kð1.965Þ
�

1=6
¼ 1.0027 ð82Þ

and for the corresponding expansion rate

H∞ð1.965Þ ¼ 189.97 − 1.17 ¼ 188.80: ð83Þ

The first number is the NRCM result and the second
number gives the relativistic correction.
The results (82) and (83) confirm a general statement by

Räsänen [42] that redshift and average expansion rate
remain close to their background values if the metric
and its first derivatives are close to the FLRW case.
To be complete, we note also the results for the averaged

transversal pressure

hpti∞ ¼ −3H2
0

k21ð1þ zÞ6
k2ðzÞ ð84Þ

and the magnitude E of the electric Weyl tensor

hEi∞ ¼ H2
0hðzÞ

k1
kðzÞ ð1þ zÞ3 þ 1

2
hpti∞: ð85Þ

We recall that the curvature function KðtÞ experiences no
correction.
We conclude that the relativistic corrections for scenario

2 from [1] are small for the considered z values z < 2.

V. CONCLUDING REMARKS

In this paper, we have constructed two different relativ-
istic generalizations of a NRCM, whose solutions are fixed
by three constants (initial conditions). These relativistic
models rely on two inequivalent extensions of the FLRW
metric containing, besides a time-dependent curvature
function KðtÞ, a scale factor aðtÞ as free functions. The
corresponding Einstein equations are supposed to contain
an energy momentum tensor with nontrivial pressure terms
and energy flow. Then we have required that the now
inhomogeneous solutions of the EEs agree in leading order
at small distances with those of the NRCM. In technical
terms, this has been achieved by the demand of vanishing
isotropic pressure and its first derivative at x ≔ r2 ¼ 0. In
conclusion, aðtÞ and KðtÞ will agree with their counterparts
in the NRCM. Hence, they are fixed by the three constants
appearing in the NRCM and, therefore, we have obtained
exact analytic solutions of the EEs for each of the two
relativistic models.
In Sec. II A, we have shown that the nonrelativistic

version of our model can describe satisfactorily the cosmic

chronometer data for the expansion rate. The very
small value chosen for the constant k1 leads, at least for
model V2, to negligible inhomogeneities and negligible
relativistic corrections and predicts an almost constant
negative curvature function for redshifts z < 2.
Our models are different from the lemaitre-Tolman-

Bondi models, as well as from the Stephani models.
Whereas in the former case the spatial curvature depends
on the spatial coordinates only, our models share with the
Stephani models the property of having a time-dependent
spatial curvature of either sign. Stephani models are
characterized by a perfect fluid with a homogeneous energy
density, an inhomogeneous pressure, and an accelerating
fluid flow. In contrast, our models rely on an imperfect fluid
(nontrivial energy flow) with energy density and pressure
being inhomogeneous and the fluid flow being geodesic.
But the basic difference between our models and the
Stephani models is the mechanism causing the accelerated
expansion of the Universe. For that, Stephani models need
a large inhomogeneity. For our models, it is sufficient to
have an energy flow of small magnitude that drives the
accelerated expansion and, besides, leads only to a small
inhomogeneity in the case of model V2.
To proceed with the models presented in this paper, one

should consider the following open problems:
(i) Look for at least plausibility arguments that each of

our models can be viewed as a local average of some
more fundamental cosmological model.

(ii) Perform the global averaging procedure for both
models V1 and V2 and for both signs of the
curvature function.

(iii) To decide whether our models can be more than toy
models, they should pass more cosmological tests.
In particular, one should elaborate the distance-
redshift relation for the averaged dynamics for both
models.

Besides the expansion rate and curvature function
treated in the present paper, we have until now only
found the stationary solution of the EEs [for the
EMT (2)] in noncomoving spherical coordinates
given by one nonlinear ordinary differential equation
for the gravitational potential [43]. The correspond-
ing weak field limit [20] describes successfully
galactic halos as shown in [18].
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