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In three dimensions, there exist modifications of Einstein’s gravity akin to the topologically massive
gravity that describe massive gravitons about maximally symmetric backgrounds. These theories are built
on the three-dimensional version of the Bach tensor (a curl of the Cotton-York tensor) and its higher
derivative generalizations; and they are on-shell consistent without a Lagrangian description based on the
metric tensor alone. We give a generic construction of these models, find the spectra and compute the
conserved quantities for the Bañados-Teitelboim-Zanelli black hole.
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I. INTRODUCTION

It would be pedantic to stress the importance of Einstein
metrics (Ric ¼ λg): in four dimensions, to the best of the
present day knowledge, the Universe without matter is
locally an Einstein manifold with all the interesting stuff
(such as black holes, their mergers and gravitational
waves). However, even after more than a century’s work,
we still do not have a good grip of the Einstein metrics in
four dimensions and beyond. This state of affairs affects our
understanding of some problems of classical gravity; but,
more importantly it complicates a possible construction of
the quantum version of the theory. For this purpose, the
(2þ 1)-dimensional gravity, which is locally much simpler,
has always attracted attention. But it is easy to see that pure
general relativity (GR) in 2þ 1 dimensions is locally too
simple to be of much help: locally Einstein metrics are
Riemann flat (or constant curvature) since in this dimension
we have the following identity:

Rμανβ ¼ ϵμασϵνβρGσρ; ð1Þ
where ϵμασ is a totally antisymmetric tensor and Gρσ is the
Einstein tensorGρσ ¼ Rρσ − 1

2
gρσR. This basically says that

in a vacuum there is no gravity and no gravitation. When a

negative cosmological constant is introduced, local trivi-
ality is not lifted, but there is the all important Bañados-
Teitelboim-Zanelli (BTZ) black hole [1] that can carry
mass, spin and pretty much all the properties of its four-
dimensional analog Kerr black hole, save the curvature
singularity and the speed-of-light surface. So some of the
Einstein metrics are highly nontrivial (when considered in
2þ 1 GR) but one of course still needs local nontriviality,
gravitation, gravitational waves etc., to be able to learn
something from this lower-dimensional setting.
Fortunately, this can still be achieved with Einstein

metrics but not as solutions to GR but as solutions to
modified gravity theories, such as the topologically massive
gravity (TMG) [2], new massive gravity (NMG) [3,4] or
Born-Infeld extension of NMG [5]. All these theories
accommodate Einstein metrics and more general metrics
that are not Einstein. But the good thing is that in these
theories, perturbation about an Einstein metric can be
interpreted as gravitons (usually massive) or gravitational
waves. Hence these theories are much richer than Einstein’s
pure 2þ 1 GR and simpler than the 3þ 1 GR. The
immediate aim is to be able to define and understand a
version of quantum gravity in a 2þ 1-dimensional setting.
For this purpose, our current best hope is the AdS/CFT
duality [6] which reduces the problem to a construction of a
two-dimensional boundary conformal field theory for the
AdS bulk of a given 3D theory.
In this context,whatwe currently knowcanbe summarized

as follows: NMG (a nonlinear extension of the Fierz-Pauli
massive spin-2 model) does not provide such a theory: it is
unitary either in the bulk or on the boundary [4] and so suffers
from the so-called “bulk-boundary unitarity clash.” In fact it
was proven in [7] that no theory that has the same particle
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content asNMGcan be bulk and boundaryunitary at the same
time. This is a strong theorem which also rules out any f
(Ricci)-type higher curvature extensions of the NMG such as
the cubic and quartic theories obtained by demanding the
existence of a holographic c function in [8,9] and the infinite
order Born-Infeld extension [5]. On the other hand, TMG is
different, it falls out of this “no go” theoremas it has a “single”
massive spin-2 graviton (with either positive or negative
helicity). But we know that except for the “chiral” point,
where the topological mass (μ) and AdS radius (l) are related
as μl ¼ 1, this theory cannot be unitary in the bulk and on the
boundary [10,11]. That leaves us with the chiral gravity case
only which needs a longer discussion; but let us just note that
at the chiral point at first sight the theory seems to be bulk and
boundary unitary but then exactly at those parameter values of
the theory, the linearized equations has a ghostlike newmode
[12]. This new mode can be dual to an operator in a log-CFT
which is nonunitary. So, in trying to get a viable dynamical
theory of 2þ 1-dimensional gravity, we seem to be hovering
in limbo. But it was argued in [11,13] that the log mode may
not survive linearization; namely, it is an artifact of the
linearized theory and does not come from the linearization of
an exact solution. In fact this expectationwasproven tobe true
recently [14,15]. Therefore, the status of the chiral gravity
now is that it is a potentially viable classical and quantum
theory, but one must still show the latter by actually finding
the corresponding CFT on the boundary.
To overcome the bulk-boundary unitarity clash of the 3D

theories, an interesting idea was put forward in [16] where
the authors introduced the so-called minimal massive
gravity (MMG). The crux of the idea is that instead of a
Lagrangian, based on the metric only, one can define the
theory with the field equations that are on-shell consistent
(see also [17] for a discussion of the main idea). A detailed
analysis of the MMG theory in the metric formulation (not
in the first order formulation) [18] showed that, just like
TMG, the theory is free of the bulk-boundary unitarity
clash only at the chiral point [19,20]. The matter coupling
in such theories was achieved in [21] and another on-shell
consistent theory named exotic massive gravity (EMG) was
recently given in [22]. Some solutions of this theory were
given in [23]. Such on-shell consistent theories offer
interesting possibilities: a cursory look may lead one to
think that these theories are too unwieldy, but this is not the
case as we shall explore some further such theories here.
The layout of the paper is as follows. In the next section,

we give a construction of the 3DBachian gravity. In Sec. III,
we consider the version of the theory coming from quadratic
gravity, and in Sec. IV we construct the conserved charges
and compute them for the rotating BTZ metric.

II. 3D BACH TENSOR AND ON-SHELL
CONSISTENCY

Let us go back to the discussion of Einstein metrics that
was alluded to above: perhaps the next “nice” set of metrics

are the ones conformally related to the Einstein metrics.
Succinctly stated the problem is this: given a metric g
(which is not necessarily Einstein) can one construct a
metric, g̃≡ Ω2g, which is Einstein given that Ω is smooth
and Ω > 0? In n dimensions, the generic necessary and
sufficient conditions for such a metric g̃ to exist are too
difficult to handle. But, in four dimensions the problem
simplifies a little bit in the sense that the necessary
condition is the vanishing of the so-called “Bach tensor”

Bμν ≡
�
∇α∇β þ 1

2
Rαβ

�
Wμανβ; ð2Þ

where Wμανβ is the Weyl tensor. The Bach tensor is
symmetric, traceless B≡ gμνBμν ¼ 0, divergence-free
∇μBμν ¼ 0 and conformally invariant (in four dimensions).
Moreover, one can show that Bμν comes from the variation
of the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
WμναβWμναβ: ð3Þ

This so-called conformal gravity admits all the Einstein
metrics as solutions, but there are non-Einstein solutions.
Remarkably, with some simple (Neumann) boundary con-
ditions, one can show that out of all the Bach flat manifolds,
only Einstein manifolds can be selected [24].
One can naturally wonder the simpler problem, that is,

the problem of the conformal Einstein metrics in three
dimensions. As the Weyl tensor vanishes identically in
three dimensions, the naive dimensional continuation of the
Bach tensor as defined by (2) to three dimensions does not
yield any further information. But as was realized in
[25,26], using the 3-index Cotton tensor as a potential to
the Weyl tensor yields a meaningful 3D Bach tensor. Recall
that the n-dimensional Cotton tensor is

Cαμν ¼ ∇αRμν −∇μRαν −
1

2ðn − 1Þ ðgμν∇αR − gαν∇μRÞ;

ð4Þ

which is antisymmetric in the first two indices. This
tensor is conformally invariant only in three dimensions.
Using this, we define the analog of the n-dimensional Bach
tensor as

Bμν ≡ 1

2
∇αCαμν þ

1

2
RαβWμ

α
ν
β: ð5Þ

In particular, for n ¼ 3, we can express the Cotton tensor in
terms of the Cotton-York tensor (Cμν ≡ ϵμ

σρ∇σSνρ with
Sμν ¼ Rμν − 1

4
gμνR) as

Cσρ
ν ¼ −ϵσρμCμν; ð6Þ
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where

Cμν ≡ 1

2
ϵμ

αβCαβν: ð7Þ

Therefore, the 3D Bach tensor can be defined as1

Bμν ≡ 1

2
ϵμ

αβ∇αCβν þ
1

2
ϵν

αβ∇αCβμ: ð8Þ

The Cotton-York tensor plays the role of the Weyl tensor in
3D: namely it vanishes if and only if the metric is
conformally flat. But an interesting situation arises in
3D: unlike the Weyl tensor (a four-index object) that does
not come from the variation of an action, the Cotton-York
tensor does come from the variation of the topological
Chern-Simons action and it behaves regularly: C̃μνðg̃Þ ¼
Ω−2CμνðgÞ under conformal transformations. This says that
conformally flat metrics in 3D are conformally Einstein.
So, the 3D Bach tensor vanishes for conformally Einstein
metrics. It is possible that its vanishing can be a sufficient
condition, which we do not know. What is interesting is
that, even though Bμν (8) is symmetric and traceless
(B≡ gμνBμν ¼ 0), it is not divergence-free. In fact one has

∇μBμν ¼ ϵναβRασCβ
σ; ð9Þ

which vanishes for Einstein metrics and/or conformally flat
or Einstein metrics. This also says that the 3D Bach tensor
cannot come from the variation of an action. In fact, one has
the following variational result [25]:

δ

Z
d3x

ffiffiffiffiffiffi
−g

p �
RμνRμν −

3

8
R2

�

¼
Z

d3x
ffiffiffiffiffiffi
−g

p ðJμν þ BμνÞδgμν; ð10Þ

with

Jμν ¼
1

2
ϵμ

αβϵν
ρσSαρSβσ: ð11Þ

One has ∇μBμν ¼ −∇μJμν and J ≡ gμνJμν ¼ RμνRμν−
3
8
R2. So the variation of the purely quadratic theory with

the NMG coefficients (this is the K theory introduced in
[27]) naturally splits into two parts: the Bach tensor and the
J tensor; and the latter does not have the derivatives of the
curvature. With this rather natural splitting in hand, one can
deform Einstein’s theory or TMG with these new tensors
Jμν and Bμν which have been done to obtain MMG and
MMG2 as on-shell consistent theories. Now our task is to
extend these models.

First, let us now find some generalizations of the 3D
Bach tensor (8) and use them to construct on-shell con-
served theories. Consider a 2-tensor Eμν that comes from
the variation of an action such that ∇μEμν ¼ 0 and assume
that we have a symmetric 2-tensor Φμν that does not come
from the variation of an action and ∇μΦμν ≠ 0. Now,
consider the following potentially viable on-shell consis-
tent equations:

Eμν þ
1

μ
ϵμ

αβ∇αΦβν þ
k
μ2

ϵμ
αβϵν

σρΦασΦβρ ¼ 0; ð12Þ

where μ and k are parameters at this stage but k will be
fixed from consistency. Inspired by the construction of
MMG, this form of the field equations was first introduced
in [22], where the authors choose Φμν ¼ Cμν to obtain
EMG. The middle term is a generalization of the Bach
tensor, while the last term is a generalization of the J tensor.
The first and the third terms are symmetric under the
interchange of indices μ and ν. The second one is
symmetric only if

∇σΦ ¼ ∇αΦσ
α; ð13Þ

where Φ≡ gμνΦμν. This is the first condition on the theory.
Another condition comes from the vanishing of the
divergence which yields

∇ν

�
Eμν þ 1

μ
ϵμαβ∇αΦβν þ

k
μ2

ϵμαβϵνσρΦασΦβρ

�

¼ 1

μ
ϵμαβΦβλ

�
Rα

λ þ 2k
μ
ϵα

βγ∇βΦγ
λ

�
: ð14Þ

Clearly this expression is not generically zero and the
theory is generically inconsistent. But the explicit expres-
sion tells as that we must include Einstein’s gravity in the
Eμν to any hope of constructing an on-shell-consistent
theory; hence, we choose

Eμν ≡ Rμν −
1

2
gμνRþ Λ0gμν; ð15Þ

and then the following equation:

Rμν −
1

2
gμνRþ Λ0gμν þ

1

μ
ϵμ

αβ∇αΦβν

þ 1

2μ2
ϵμ

αβϵν
σρΦασΦβρ ¼ 0; ð16Þ

with any Φμν ¼ Φνμ satisfying ∇μΦμ
ν ¼ ∇νΦ, is consis-

tent. Observe that consistency required the constant
k ¼ 1=2.
The next obvious question is how to find a 2-tensor Φμν

that satisfies the desired properties. This is also remarkably

1To conform with the original definition [25] where the tensor
was denoted as Hμν, we drop an overall factor of 1=2.
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simple to answer: consider any action, vary it with respect
to the metric and obtain a 2-tensor which is covariantly
conserved. Let us call this tensor to be Ψμν, and then one
can choose [22]

Φμν ≔ Ψμν −
1

2
gμνΨ; Ψ ¼ gμνΨμν; ð17Þ

which satisfies the desired property ∇σΦ ¼ ∇αΦσ
α. Using

the Ψμν field, we can recast (16) as

Rμν −
1

2
gμνRþ Λ0gμν þ

1

μ
ϵμ

αβ∇α

�
Ψβν −

1

2
gβνΨ

�

þ 1

2μ2

�
gμν

�
Ψ2

αβ −
3

4
Ψ2

�
þ ΨμνΨ − 2ΨμαΨν

α

�
¼ 0:

ð18Þ

So the upshot is that we can deform Einstein’s gravity with
any covariantly conserved Ψμν in such a way that we get a
nontrivial on-shell-consistent theory.
One might wonder if one can further deform (16) or (18)

with OðΦ3Þ and OðΦ4Þ terms. Even though we have not
done this for this general case, for the MMG case, where
Φμν ¼ Sμν, it was shown in [26] that no further terms can be
added. On-shell consistency is highly restrictive and
truncates the theory at the second order.

III. QUADRATIC GRAVITY

So far, we have only proved the consistency of field
equations, whose final form are given in (18). For the
general construction of theories with only spin-2 modes and
no extra scalar mode, we need to study the linearized
equations around the AdS3 spacetime. Although, the tensor
Ψμν can be chosen to be any tensor derived from an action
for the consistency of the field equations, the absence of the
scalar mode puts further restrictions. We start our analysis
by considering an action with the quadratic curvature terms.
As we shall see, it allows us to study wider range of
possibilities where the tensor Ψμν is derived from an action
which is an arbitrary function of the Ricci tensor f (Ricci).
Therefore, let us first consider the following action:

S ¼ 1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p ðσRþ αR2 þ βR2
μνÞ; ð19Þ

whose variation yields

δS ¼ 1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p
Ψμνδgμν; ð20Þ

where

Ψμν ¼ σGμν þ α

�
2RRμν −

1

2
gμνR2 þ 2gμν□R − 2∇μ∇νR

�

þ β

�
3

2
gμνRρσRρσ − 4Rμ

ρRνρ þ□Rμν

þ 1

2
gμν□R −∇μ∇νRþ 3RRμν − gμνR2

�
: ð21Þ

Since it is derived from the variation of an action, the tensor
Ψμν is symmetric, is covariantly conserved, and therefore
yields consistent field equations. We now consider the
linearization around the AdS3 spacetime as

gμν ¼ ḡμν þ hμν; ð22Þ

where the background AdS3 metric satisfies

R̄μνρσ ¼ Λðḡμρḡνσ − ḡμσ ḡνρÞ; R̄μν ¼ 2Λḡμν;

R̄ ¼ 6Λ; Ḡμν ¼ −Λḡμν; ð23Þ

and the tensor hμν describes the perturbations around the
AdS3 background. The linearized versions of Ricci tensor,
Ricci scalar and the cosmological Einstein tensor are given,
respectively, by

RL
μν ¼ ∇̄ρ∇̄ðμhνÞρ −

1

2
□̄hμν −

1

2
∇̄μ∇̄νh;

RL ¼ −□̄hþ ∇̄ρ∇̄σhρσ − 2Λh;

Gμν ≡ ðGμν þ ΛgμνÞL ¼ RL
μν −

1

2
ḡμνRL − 2Λhμν: ð24Þ

Under the linearization (22), the background value of the
tensor Ψμν is given by

Ψ̄μν ¼ aḡμν; a ¼ −Λσ þ 2Λ2ð3αþ βÞ; ð25Þ

and its linearization yields

ΨL
μν ¼ σ̄Gμν þ ð2αþ βÞðḡμν□̄ − ∇̄μ∇̄ν þ 2ΛḡμνÞRL

þ βð□̄Gμν − ΛḡμνRLÞ þ ahμν; ð26Þ

with

σ̄ ¼ σ þ 12Λαþ 2Λβ: ð27Þ

We will also need the linearization of its trace
ΨL ≡ ðgμνΨμνÞL, which can be computed as

ΨL ¼
�
4αþ 3

2
β

�
□̄RL þ

�
−
σ

2
þ 2Λð3αþ βÞ

�
RL: ð28Þ

In the next section, we will constrain the parameters
(σ, α, β) by requiring the existence of only the spin-2 modes
in the theory. Before we engage in that discussion, let us
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first explain the importance of the quadratic Lagrangian for
obtaining a wider range of theories with this property. As
shown in [7], for any action which is given as an arbitrary
function of the Ricci tensor f (Ricci), one can obtain an
equivalent quadratic action which yields the same linear-
ized equations. Once we determine the quadratic action
with the desired properties, all the theories having this
action as the equivalent quadratic action will have the same
nice properties. For example, the cubic action

I ¼
Z

d3x
ffiffiffiffiffiffi
−g

p ½σ̃ðR − 2λ̃0Þ þ α̃R2 þ β̃R2
μν

þ a1R
μ
νRν

ρR
ρ
μ þ a2RR2

μν þ a3R3� ð29Þ

and the quadratic action

I ¼
Z

d3x
ffiffiffiffiffiffi
−g

p ½σðR − 2λ0Þ þ αR2 þ βR2
ab� ð30Þ

yield the same linearized equations if their parameters are
related by the following equations:

σ ¼ σ̃ − 12Λ2ða1 þ 3a2 þ 9a3Þ;

λ0 ¼
σ̃

σ
λ̃0 þ Λ

�
1 −

σ̃

σ

�
;

α ¼ α̃þ 2Λð2a2 þ 9a3Þ;
β ¼ β̃ þ 6Λða1 þ a2Þ: ð31Þ

Although a cosmological constant λ0 is introduced in the
equivalent quadratic action (30), it yields a term propor-
tional to the metric tensor in Ψμν (22), which as a result
shifts the parameter Λ0 in the field equations (18). The
change in the parameter Λ0 is trivial in our subsequent
discussion and indeed one can obtain infinitely many
higher curvature actions of f (Ricci) type whose variation
gives a Ψμν tensor leading to a pure spin-2 theory.

IV. BACHIAN GRAVITY

In this section, we constrain the coefficients in the most
generic quadratic action (19) such that the field equa-
tions (16) describe spin-2 modes only. For this purpose, we
consider the trace of the field equations which is given by

R − 6Λ0 þ
1

μ2
ðΦ2 −ΦμνΦμνÞ ¼ 0; ð32Þ

which, in terms of the Ψμν tensor, reads

R − 6Λ0 þ
1

μ2

�
1

2
Ψ2 −Ψ2

μν

�
¼ 0: ð33Þ

Using the equality ḡμνΨL
μν ¼ ΨL þ ah, linearization of the

last equation yields

RL þ a
μ2

ΨL ¼ 0: ð34Þ

The expression forΨL was given in (28), making use of that
one finds an wave equation for RL:

RLþ a
μ2

��
4αþ3

2
β

�
□̄RLþ

�
−
σ

2
þ2Λð3αþβÞ

�
RL

�
¼0:

ð35Þ

In order to avoid the propagating scalar mode, we should
set the coefficient of the □̄RL term to zero, which yields
two possibilities:

4αþ 3

2
β ¼ 0 or a ¼ Λð−σ þ 6Λαþ 2ΛβÞ ¼ 0: ð36Þ

In both cases, we have RL ¼ 0, and as a result we can
choose the compatible transverse-traceless (TT) gauge
(∇̄μhμν ¼ 0 ¼ h).
Having studied the linearization of the trace equation and

the constraints coming from the absence of the scalar mode,
we can now linearize the full field equations (16) to find the
particle content of the theory and their masses. The back-
ground value the tensor Φμν is given as

Φ̄μν ¼ −
a
2
ḡμν; ð37Þ

and its linearization yields

ΦL
μν ¼ ΨL

μν −
1

2
hμνΨ̄ −

1

2
ḡμνΨL: ð38Þ

The vacuum equation determining the effective cosmologi-
cal constants is

Λ0 − Λ −
a2

4μ2
¼ 0; ð39Þ

where, of course, a is given in (25). The linearization of the
field equations can be obtained as

Gμν þ
�
Λ0 − Λþ a2

4μ2

�
hμν −

a
2μ2

ΨL
μν

þ 1

μ
ϵ̄ðμαβ∇̄jαΨL

βjνÞ −
a
μ
ϵ̄ðμαβ∇̄jαhβjνÞ ¼ 0; ð40Þ

which looks like a complicated equation, but it can be
handled with several observations. Using ΨL

μν (26) in the
TT gauge, one has

ΨL
μν ¼ σ̄Gμν þ βð□̄Gμν − ΛḡμνRLÞ þ ahμν; ð41Þ

which reduces the field equations to a fifth-order equation
in hμν:
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�
1 −

σ̄a
2μ2

�
Gμν þ

σ̄

μ
ϵ̄μ

αβ∇̄αGβν −
βa
2μ2

□̄Gμν

þ β

μ
ϵ̄μ

αβ∇̄α□̄Gβν ¼ 0: ð42Þ

In order to identify the spin-2 modes, we introduce the
mutually commuting operators [10]

ðDL=RÞμν ≔ δμ
ν � lϵ̄μαν∇̄α;

ðDpiÞνμ ≔ δνμ þ
1

pi
ϵ̄μ

αν∇̄α; i ¼ 1; 2; 3: ð43Þ

In the TT gauge, we have ∇̄ρ∇̄μhρν ¼ − 3
l2 hμν and the

linearized cosmological Einstein tensor can be written as

Gμν ¼ −
1

2

�
□̄þ 2

l2

�
hμν ¼

1

2l2
ðDLDRhÞμν: ð44Þ

For the remaining three operators, one can show the
following identity:

ðDp1Dp2Dp3hÞμν
¼ hμν þ

�
1

p1

þ 1

p2

þ 1

p3

�
ϵ̄μ

αβ∇̄αhβν

þ 1

p1p2p3

ϵ̄μ
αβ∇̄α

�
□̄þ 3

l2

�
hβν

þ
�

1

p1p2

þ 1

p1p3

þ 1

p2p3

��
□̄þ 3

l2

�
hμν: ð45Þ

Since all the operators commute, it is now easy to apply all
of them to hμν, which yields

1

2l2
ðDLDRDp1Dp2Dp3hÞμν

¼ Gμν þ
�
1

p1

þ 1

p2

þ 1

p3

�
ϵ̄μ

αβ∇̄αGβν

þ 1

p1p2p3

ϵ̄μ
αβ∇̄α

�
□̄þ 3

l2

�
Gβν

þ
�

1

p1p2

þ 1

p1p3

þ 1

p2p3

��
□̄þ 3

l2

�
Gμν: ð46Þ

By inspection, one can see that the linearized equations (42)
can be written in this form if the parameters (p1, p2, p3) are
chosen such that

p1 þ p2 þ p3 ¼ −
a
2μ

;

p1p2 þ p1p3 þ p2p3 ¼
σ̄

β
−

3

l2
;

p1p2p3 ¼
2μ2 − σ̄a

2βμ
þ 3a
2μl2

: ð47Þ

For generic values of the parameters, there is one set of real
roots for (p1, p2, p3), whose explicit expressions are
complicated and not very illuminating to depict here as
they solve a cubic equation. Since the operators defined in
(43) commute, the most general solution for Eq. (46) can be
written as

hμν ¼ hLμν þ hRμν þ hm1
μν þ hm2

μν þ hm3
μν ; ð48Þ

where

ðDLhLÞμν ¼ 0; ðDRhRÞμν ¼ 0;

ðDpihmiÞμν ¼ 0; i ¼ 1; 2; 3: ð49Þ
Since ðDLDRhÞμν ¼ 0 implies Gμν ¼ 0, hLμν and hRμν are the
two massless excitations in the theory. But these are
the modes that already exist in Einstein’s theory, so they
are pure gauge modes in the bulk. With the help of the
following equation:

ðD−pDphÞμν ¼ −
1

p2

�
□̄þ 3

l2
− p2

�
hμν; ð50Þ

it is easy to see that the remaining solutions describe
massive excitations with the masses

m2
i ¼ p2

i −
1

l2
: ð51Þ

Since we have a real set of solutions for (p1, p2, p3), the
Breitenlohner-Freedman boundm2

i ≥ − 1
l2 [28] is automati-

cally satisfied and we have three nontachyonic massive
excitations.

V. CONSERVED CHARGES

Having identified the spin-2 modes in the theory, we now
compute the energy and the angular momentum of the BTZ
black hole by using the Abbott-Deser-Tekin technique
[29,30]. For a spacetime metric gμν having asymptotically
the same Killing symmetries as the background space, one
can define conserved charges from the linearized field
equations which is of the following generic form:

OðḡÞμναβhαβ ¼ κTμν: ð52Þ

For each background Killing vector ξ̄μ, satisfying
∇̄ðμξνÞ ¼ 0, a conserved current can be formed as

GÖKHAN ALKAÇ, MUSTAFA TEK, and BAYRAM TEKIN PHYS. REV. D 98, 104021 (2018)

104021-6



ffiffiffiffiffiffi
−ḡ

p ∇̄μðξ̄νTμνÞ ¼ ∂μð
ffiffiffiffiffiffi
−ḡ

p
ξ̄νTμνÞ ¼ 0: ð53Þ

By applying Stokes’ theorem, one obtains an expression for
the conserved global charges:

Qμðξ̄Þ ¼
Z
M

dn−1x
ffiffiffiffiffiffi
−ḡ

p
ξ̄νTμν ¼

Z
Σ
dΣiF μi; ð54Þ

where M is the (n − 1)-dimensional spatial manifold, Σ is
its boundary and the antisymmetric tensor F μν satisfies
Tμνξν ¼ ∇̄νF μν. Charge expressions for the G, ϵ∇G and□G
terms in the linearized field equations (42) were obtained in
[29–31], respectively. For the ϵ∇□G term, one can make
use of the equation

2ξ̄νϵ̄μ
αβ∇̄α□̄Gβν ¼ ∇̄αfϵ̄μαβ□̄Gνβξ̄

ν þ ϵ̄ναβ □̄Gμβξ̄ν

þ ϵ̄μνβ□̄Gα
βξ̄νg þ Xβ□̄Gμβ; ð55Þ

and the final result can be written as

Qμðξ̄Þ ¼ 1

2πG3

I
∂Σ

ffiffiffiffiffiffi
−ḡ

p
dliqμiðξ̄Þ; ð56Þ

where

qμiðξ̄Þ ¼
�
1 −

σ̄a
2μ2

�
qμið1Þðξ̄Þ þ

σ̄

2μ
½qμið1ÞðX̄Þ þ qμið2Þðξ̄Þ�

−
βa
2μ2

qμið3Þðξ̄Þ þ
β

2μ
½qμið3ÞðX̄Þ þ qμið4Þðξ̄Þ�;

qμið1Þðξ̄Þ ¼ ξ̄ν∇̄μhiν − ξ̄ν∇̄ihμν þ ξ̄μ∇̄ih − ξ̄i∇̄μhþ hμν∇̄iξ̄ν

− hiν∇̄μξ̄ν þ ξ̄i∇̄νhμν − ξ̄μ∇̄νhiν þ h∇̄μξ̄i;

qμið2Þðξ̄Þ ¼ ϵ̄μiβGνβξ̄
ν þ ϵ̄νiβGμ

βξ̄ν þ ϵ̄μνβGi
βξ̄ν;

qμið3Þðξ̄Þ ¼ ξ̄ν∇̄iGμν − ξ̄ν∇̄μGiν − Gμν∇̄iξ̄ν þ Giν∇̄μξ̄ν;

qμið4Þðξ̄Þ ¼ ϵ̄μiβ□̄Gνβξ̄
ν þ ϵ̄νiβ□̄Gμ

βξ̄ν þ ϵ̄μνβ□̄Gi
βξ̄ν; ð57Þ

and X̄β ¼ ϵανβ∇̄αξ̄ν is also a background Killing vector.
Let us now apply the above construction to find the

charges of the rotating BTZ black hole in this theory. BTZ
is locally AdS3 and hence it is a solution of the theory once
the cosmological constant is adjusted. In the usual ðt; r;ϕÞ
coordinates, the metric reads

ds2 ¼ ðmG3 þ Λr2Þdt2 − jdtdϕþ r2dϕ2

þ dr2

−mG3 − Λr2 þ j2

4r2

; ð58Þ

where the background metric is found by settingm ¼ 0 and
j ¼ 0 as

ds2 ¼ Λr2dt2 þ r2dϕ2 −
dr2

Λr2
: ð59Þ

In the asymptotic region, the linearized cosmological
Einstein tensor vanishes Gμν ¼ 0 and only qμið1Þ terms in (57)

contribute. Killing vectors ξ̄μ¼−ð ∂∂tÞμ and ξ̄μ ¼ ð ∂
∂ϕÞμ yield

the energy and the angular momentum, respectively, as

E ¼ 1

G3

��
1 −

σ̄a
2μ2

�
mþ jΛσ̄

μ

�
;

J ¼ 1

G3

��
1 −

σ̄a
2μ2

�
j −

mσ̄

μ

�
: ð60Þ

VI. CONCLUSIONS

In three dimensions, given a symmetric 2-tensor, say,
Lμν, one can construct another symmetric 2-tensor by
taking the “curl” of the former as

Hμν ≔ ϵμ
αβ∇αLβν þ ϵν

αβ∇αLβμ; ð61Þ

when Lμν is the Einstein tensor (Gμν), the Hμν tensor
becomes the Cotton-York tensor (Cμν) which is traceless,
divergence-free. The latter fact yields the topologically
massive gravity ðGμν þ 1

μCμν ¼ 0Þ as a consistent theory.
But when Lμν is taken as the Cotton-York tensor Cμν, the
resulting Hμν tensor, even though it is traceless, it is not
divergence-free. So the curl of the Einstein tensor (which is
the Bach tensor in 3D) is not a conserved tensor. But here
we have given a full construction of how one can start from
a divergence-free, symmetric tensor (Ψμν) and write an on-
shell covariant theory by taking the curl of Ψμν and by
adding (judiciously chosen) quadratic terms in Ψμν. This
Bachian gravity is highly constrained and it should always
involve Einstein’s theory at the lowest order: hence it is a
deformation of the 2þ 1-dimensional general relativity. We
have given examples of Ψμν coming from the quadratic
gravity, carried out the linearized field equations and
computed the particle content of the theory, as well as
conserved charges of the BTZ black hole. We also
explained how f (Ricci)-type extensions can be found
by giving a cubic theory as an example. A Born-Infeld-type
extension of the quadratic actions that yield consistent field
equations can also be considered. Indeed, one of the
combinations (4αþ 3

2
β ¼ 0) that we found in (36) defines

the NMG theory and Born-Infeld extension of new massive
gravity theory described by the action

IBINMG ¼ −
4m2

κ2

Z
d3x

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det

�
gþ σ

m2
G
�s

−
�
1 −

λ0
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p #
ð62Þ
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was shown to give the same combination with redefined
parameters at the linearized level. For the second combi-
nation in (36), finding a Born-Infeld-type extension is still
an open problem. A naive extension of these ideas, that is

constructing on-shell consistent nontrivial theories say
with massive gravitons, in four dimensions is not imme-
diate: the curl of a symmetric 2-tensor is not a 2-tensor but a
3-tensor.
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