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We show that second-generation gravitational-wave detectors at their design sensitivity will allow us to
directly probe the ringdown phase of binary black hole coalescences. This opens the possibility to test the
so-called black hole no-hair conjecture in a statistically rigorous way. Using state-of-the-art numerical
relativity-tuned waveform models and dedicated methods to effectively isolate the quasistationary
perturbative regime where a ringdown description is valid, we demonstrate the capability of measuring
the physical parameters of the remnant black hole and subsequently determining parameterized deviations
from the ringdown of Kerr black holes. By combining information from Oð5Þ binary black hole mergers
with realistic signal-to-noise ratios achievable with the current generation of detectors, the validity of the
no-hair conjecture can be verified with an accuracy of ∼1.5% at 90% confidence.
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I. INTRODUCTION

The detection of gravitational waves (GWs) by the LIGO
and Virgo Collaborations [1,2] has opened up a variety of
avenues for the observational exploration of the dynamics
of gravity and of the nature of black holes. GW150914 [3]
and subsequent detections [4–9] have enabled unique tests
of general relativity (GR) [5,6,8,10]. Among the several
detections, GW150914 still holds a special place, not only
because it was the first and the loudest binary black hole
event detected, but also because it was the kind of textbook
signal that allowed measurements of the frequency and
damping time of what has been interpreted as the least
damped quasinormal mode (QNM) of the presumed rem-
nant black hole (BH) resulting from a binary black hole
merger [10]. This sparked considerable interest in the
community, since it opened up the prospect of more in-
depth empirical studies of quasistationary Kerr black holes
[11,12] in the near future, as the sensitivity of the Advanced
LIGO and Advanced Virgo detectors is progressively
improved [1,13]. Consistency with the prediction of GR

hinted that the end result of GW150914 was indeed a Kerr
black hole [14], but inability to detect more than one QNM
did not yet allow tests of some key GR predictions for these
objects. As first predicted by Vishveshwara [15] and further
investigated by Press [16], and Chandrasekhar and
Detweiler [17], in the regime where linearized general
relativity is valid, the strain of the emitted gravitational-
wave signal, at large distances from the BH and neglecting
subdominant power-law tail contributions, takes the form

hðtÞ ¼
X
lmn

Almne−t=τlmn cosðωlmntþ ϕlmnÞ: ð1Þ

For black holes in GR, all frequencies ωlmn and damp-
ing times τlmn are completely determined by the black
hole’s mass and spin.1 This can be viewed as a manifes-
tation of the black hole no-hair conjecture, which essen-
tially states that in GR, a stationary axisymmetric black
hole is determined uniquely by its mass, intrinsic angular
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1BH perturbation theory alone cannot predict the amplitudes
Almn and relative phases ϕlmn; in the case of black holes resulting
from a binary merger, these are set by the properties of the parent
binary black hole system; see e.g., [18].
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momentum, and electric charge (with the latter expected to
be zero for astrophysical objects) [19–26]; see [27] for a
review. This connection is key to several tests that have
been proposed in the literature [28–36]. So far the pos-
sibility to verify (or refute) experimentally the no-hair
conjecture has been explored mostly in the context of third-
generation ground-based [37,38] or space-based [39]
gravitational-wave detectors. In this work, we show that
the existing advanced interferometric detector network,
when operating at design sensitivity, will be capable of
testing the no-hair conjecture with an accuracy of a few
percent with the observation of the ringdown signal already
for Oð5Þ GW events.
All the mass quantities quoted in the remainder of the

paper are defined in the reference frame of the detector.
These are related to the masses in the source rest frame by a
factor of (1þ z), with z the source redshift [40].

II. RINGDOWN MODEL

Our ringdown waveform model is that of Ref. [18],
where a robust method was developed to characterize
QNMs up to l ¼ 5, including overtones (labeled by the
n index), by making use of numerical relativity (NR)
waveforms. The Weyl scalar ψ4 can be expanded as

ψ4ðι;φ; r; tÞ ≃
M
r

X
l;m;n

ψ lmnðtÞ½−2Slmðafω̃lmn; ι;φÞ�; ð2Þ

with

ψ lmnðtÞ≡ Almneiω̃lmnt: ð3Þ

In the above, r is the distance from source to detector, ðι;φÞ
give the orientation of the ringing black hole with respect to
the line of sight and −2Slm are spin-weighted spheroidal
harmonics. For the dependence of the complex mode
frequencies ω̃≡ ωlmn þ i=τlmn on the massMf and dimen-
sionless spin af of the final black hole one can use the
expressions from [31]. The amplitudes Almn of the various
modes are set by the properties of the initial black holes that
gave rise to the remnant object. As shown in [18], in the
case of nonspinning progenitor objects, these are well
captured by series expansions in the symmetric mass ratio
η≡m1m2=ðm1 þm2Þ2, with m1 and m2 the individual
masses. The coefficients in these expansions are obtained
by fitting against NR waveforms starting from a time t ¼
10M after the peak luminosity of the (2,2) component of
ψNR
4 , with M ¼ m1 þm2; for details of the fitting pro-

cedure we refer to [18]. In this setup, the Almn are complex,
so that they include relative phases between the modes,
which were neglected in previous models [41] and sub-
sequent Bayesian analyses that were based on them
[29,32]; their inclusion leads to a significant improvement
in faithfulness against NR waveforms [42]. At large

distances from the source, the gravitational-wave polar-
izations hþ and h× are obtained from Eq. (2) through
ψ4 ≃ ḧþ − iḧ×. The waveform model has recently been
extended to the case of initial black holes with nonzero but
aligned spins [42]. In this work we want to provide a proof
of principle that linearized general relativity around a Kerr
background can be directly probed with gravitational-wave
observations with the current interferometric network, and
the nonspinning model of [18] suffices to demonstrate this.

III. SIMULATIONS

Both to establish the effective ringdown start time and in
subsequent simulations of no-hair conjecture tests,
Bayesian parameter estimation is performed. The simulated
signals are numerical inspiral-merger-ringdown waveforms
taken from the publicly available Simulating eXtreme
Spacetimes (SXS) catalog [43,44], with mass ratio q ¼
m1=m2 in the interval [1,3] and negligible initial spins as
well as negligible residual eccentricity (SXS:BBH:0001,
SXS:BBH:0030, SXS:BBH:0169, SXS:BBH:0198). These
are coherently injected into synthetic, stationary, Gaussian
noise for a network of Advanced LIGO and Advanced
Virgo detectors at design sensitivity [1,13]. The injected
total mass is uniformly distributed in the interval
½50; 90� M⊙, and the sky position as well as the orientation
of the orbital plane at some reference time are uniformly
distributed on the sphere. Luminosity distances DL are
chosen such that the total signal-to-noise ratio (SNR) in the
inspiral-merger-ringdown signal approximately equals 100,
which is a plausible value for signals similar to GW150914
[3] assuming the Advanced LIGO-Virgo network at full
sensitivity. This sets the average SNR contained just in the
ringdown phase of our data set to 15, if the start time is
chosen to be 16M after the time at which the GW strain
peaks (as will be demonstrated below, this is indeed a
reasonable choice). By comparison, with the same choice
of start time, the SNR in the ringdown of GW150914
with detectors at design sensitivity would have been
SNRring ≃ 17 [10].
The template waveforms used in our Bayesian analyses

follow the aforementioned ringdown model, augmented
with a windowing procedure for the start time, as explained
below. Sampling is done over ten parameters:

fMf; af; q; α; δ; ι;ψ ; DL; tc;φcg; ð4Þ

where ðα; δÞ determine the sky location, ψ is the polari-
zation angle and tc and φc, respectively, are a reference time
and phase. Hence only parameters associated with the
ringdown waveform are sampled over, with the mass ratio q
determining the mode amplitudes. Bayesian inference is
done using the LALInference library [45]. Priors are
chosen to be uniform in ½5; 200� M⊙ for Mf, uniform in
½−1; 1� for af, and uniform in [1,15] for q. A constant
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number density in comoving volume sets the prior for the
sky location angles and the distance, with a distance range
of [1, 1000] Mpc. The priors on ðι;ψÞ are chosen to be
uniform on the 2-sphere (with these angles being generated
from the same distribution also for the simulation set). (For
the SNRs considered, the impact of the specific shapes of
the prior distributions has little impact on our results.) The
time of coalescence is uniformly distributed within
½tc − 0.1 s; tc þ 0.1 s�, where tc is a reference time at
which the signal is detected.

IV. WHEN DOES THE RINGDOWN START?

The time at which the transition between the nonlinear to
the linear regime happens is not well defined. For instance,
Ref. [10] shows how the inference on the QNM central
frequency and characteristic time changes quite dramati-
cally depending on the assumed time at which the transition
occurs. Therefore it is critical to make a reasonable choice
for the time at which the remnant black hole can be treated
perturbatively and assess the effectiveness of such a choice.
We choose the start time for the ringdown tstart from the

analysis of numerical inspiral-merger-ringdown waveforms
added to stationary Gaussian noise with a power spectral
density as expected for Advanced LIGO and Virgo at
design sensitivity [46]. To isolate the ringdown, we apply to
the data a Planck [47] window whose starting time is varied
in discrete steps over a range ½10; 20�M after the peak time
of the strain in each detector, with M the total mass for the
simulated signal.2 The peak time tpeak itself can be
estimated using analysis methods that can measure ampli-
tudes and arrival times of a signal inside a detector, without
relying on specific GR waveform models, such as
BayesWave [48]. We choose a rise time for the Planck
window of 1 ms, as we find that this choice gives a good
compromise between the need to preserve the signal-to-
noise-ratio and to avoid Gibbs phenomena. Consider a
simulated signal with total mass M and mass ratio q, and a
choice of window start time, e.g., tstart ¼ tpeak þ κM for
some κ ∈ ½10; 20�. We then apply a similar window on the
ringdown template waveforms, letting them start at κM0
after the peak strain, where the mass M0 is obtained from
the sampled valuesM0

f and q
0 through fitting formulas [49].

This leads to posterior density functions for all parameters
and, in particular, forMf and af. Our criterion to select the
start time for the ringdown is built by minimizing the bias in
the recovered parameters of the final object, while avoiding
to select an arbitrarily large start time. Although large start
times would ensure the validity of the linearized approxi-
mation employed in the waveform template, they would
also drastically reduce the signal SNR, thus resulting in a

poor estimation of the final parameters. The equilibrium
point in this trade-off, arrived at as explained below, will
ensure the analysis to take place in the linearized regime
where our model is valid while still allowing a precise
estimation of the measured parameters. By looking at the
covariance betweenMf and af and at the distance (induced
by the covariance metric) between the true values MI

f and
aIf and the mean values M̄I

fðκÞ and āIfðκÞ, for each
simulated signal I, we define the functions:

Bðκ; IÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

I ðκÞ þ detCðκÞI
q

; ð5Þ
D2

I ðκÞ≡ tΔx⃗ðκÞIC−1ðκÞIΔx⃗ðκÞI; ð6Þ
where CðκÞI is the two-dimensional covariance matrix
between the posterior samples for Mf and af, DIðκÞ is the
(covariance induced) distance between the mean and the
injected values and we defined the vector tΔx⃗ðκÞI ¼
ððM̄I

fðκÞ −MI
fÞ=M⊙; āIfðκÞ − aIfÞ. The statistical uncertai-

nty (larger for large start times), quantified by detCðκÞI, is
controlled by the signal-to-noise left in the ringdown part of
the signal when the preceding stages are cut from the
analysis. The distance DIðκÞ quantifies the systematic
uncertainty in the recovered parameters and is a proxy
for the mismatch between the linear ringdown model and
the nonlinear signal. We thus let the effective ringdown start
time be the one that minimizes BðκÞ (thus minimizing the
combination of statistical and systematic uncertainties),
defined as the average of Bðκ; IÞ over all simulated signals.
The data set consisted of 12 simulations at 11 different,
equally spaced, values of κ ∈ ½10; 20�, thus employing a
total of 132 simulations. Figure 1 illustrates the procedure
by showing 90% credible regions for Mf and af, together
with the value of the averaged BðκÞ as a function of the
ringdown start time, for a particular system which had
initial total mass M ¼ 72 M⊙ and mass ratio q ¼ 1. The
value of κ minimizing BðκÞ is κ ¼ 16, which implies an
effective ringdown start time of tstart ¼ tpeak þ 16M after
the peak strain of the signal. This is consistent with the
conclusions stated in a independent study by Bhagwat
et al., using a “Kerrness” measure on a single GW150914-
like numerical signal [11]. The selection of the ringdown
start time at tstart ¼ tpeak þ 16M uniquely determines the
placement of the time-domain Planck window. When
dealing with real signals, the window is initially applied
once to the data with tstart ¼ tpeak þ 16MIMR, with tpeak
from a model-independent reconstruction as explained
above and MIMR from a routine estimate (before perform-
ing our ringdown-only analysis) using an inspiral-merger-
ringdown model.3 While the posterior distribution for M

2The choice of a specific windowing function has no signifi-
cant impact on the analysis as long as the frequency range of
interest is not altered. We indeed verified that different tapering
functions give nearly identical results.

3By studying a set of numerical simulations, we verified that
different definitions of the fixed start time of the data window
have a negligible impact on our results, since this choice just sets
the amount of SNR being excluded from the analysis.
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(obtained from the sampled values of Mf and q through
fitting formulas) is being explored, the window on the
template model is instead recalculated and reapplied at each
step, with its starting time set to the proposed value 16M
after the peak strain.

V. TESTING THE NO-HAIR CONJECTURE

As introduced in Refs. [29,32] in the context of third-
generation detectors, we look for violations of the black
hole no-hair conjecture by introducing linear deviations in
the QNM parameters. In particular, we perturb around
the QNM frequencies and damping times as predicted by
GR as

ωlmnðMf; afÞ → ð1þ δω̂lmnÞωlmnðMf; afÞ;
τlmnðMf; afÞ → ð1þ δτ̂lmnÞτlmnðMf; afÞ; ð7Þ

where δω̂lmn and δτ̂lmn are relative deviations that we
include as additional degrees of freedom in our inference.
The parameterization in (7) has the advantages of being
agnostic to specific families of violations and, most
importantly, to be uniquely defined in GR, δω̂lmn ¼
δτ̂lmn ≡ 0 ∀ l; m; n. The no-hair conjecture constrains
the number of independent degrees of freedom of an
axisymmetric black hole in GR to be two; therefore, the
conjecture is tested by measuring at least three independent
parameters characterizing the remnant geometry, which we
chose to be Mf, af, and δω̂220. In addition, the algorithm
also samples all the other parameters as specified above.
The priors are unchanged except on Mf and af, where we
restrict to values contained in the 90% credible intervals
obtained from an earlier analysis including inspiral and

merger. The prior on δω̂220 is chosen to be uniform in
½−1; 1�. We consider GR signals with mass ratio q ≤ 3, for
which the best QNM determined parameter is the frequency
for the least-damped (2,2,0) mode. We thus focus on the
accuracy of the measurement of δω̂220. Figure 2 shows the
results of an analysis performed on a set of inspiral-merger-
ringdown signals added to stationary Gaussian noise as
described above. Upper bounds on the departures from the
predictions of GR for ω220 are smaller than ∼1.5% at the
90% credible level already with six sources, while upper
bounds on deviations from τ220 predictions are smaller than
Oð10%Þ. On the selected data set higher modes deviations
on both frequency and damping time are essentially
unconstrained.

VI. CONCLUSIONS

In this work, we demonstrated that observationally
testing the black hole no-hair conjecture is possible within
the next few years, once the LIGO-Virgo detector network
reaches its design sensitivity. The ability to isolate the
quasilinear ringdown regime from the nonlinear merger
stage of the coalescence process enables estimating the
parameters characterizing the ringdown. This also allows
the identification of the time of the transition to be 16M
after the peak strain,M being the total mass of the merging
system. Following our procedure, we showed that, with just
Oð5Þ plausible signals, violations from the no-hair con-
jecture, seen as changes in the dominant QNM frequency
and damping time, can be constrained to be smaller than,
respectively, ∼1.5% and ∼10% at 90% confidence. The
results presented in this work can be extended to the recent
spin-aligned ringdown model from Ref. [42]. This and
results for actual signals in LIGO and Virgo data are
deferred to a later publication.

FIG. 1. Estimated median values and 90% credible regions for
final massMf (top panel) and spin af (central panel) as a function
of the start time of the ringdown with respect to the strain peak
time tpeak for a simulation with Mf ¼ 68.5 M⊙ and af ¼ 0.686
(corresponding to q ¼ 1). The bottom panel reports the value of
the function BðkÞ, averaged over all simulations. The gray box
highlights the value of tstart − tpeak ¼ 16M for which BðkÞ is at a
minimum.

FIG. 2. Measurement of the departure of δω̂220 characterizing a
departure of the dominant QNM frequency from its GR value, on
a set of numerical simulations as described in the text. Left panel:
Evolution of medians and 90% credible intervals from the joint
posterior distribution. Right panel: Posterior probability densities
for each individual signal (dotted lines) and the joint posterior
distribution (solid line). With six detections the upper bound on
δω̂220 is smaller than ∼1.5% at 90% confidence.
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