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A nonlinear equation obtained by adding gravitational self-interaction terms to the Poisson equation
for Newtonian gravity is here employed in order to analyze a static spherically symmetric homogeneous
compact source of given proper mass and radius and the outer vacuum. The main feature of this picture is
that, although the freedom of shifting the potential by an arbitrary constant is of course lost, the solutions
remain qualitatively very close to the Newtonian behavior. We also notice that the negative gravitational
potential energy is smaller than the proper mass for sources with small compactness, but for sources that
should form black holes according to general relativity, the gravitational potential energy becomes of the
same order of magnitude of the proper mass, or even larger. Moreover, the pressure overcomes the energy
density for large values of the compactness, but it remains finite for finite compactness; hence there exists
no Buchdahl limit. This classical description is meant to serve as the starting point for investigating
quantum features of (near) black hole configurations within the corpuscular picture of gravity in future
developments.
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I. INTRODUCTION

It is well known that Newtonian gravity can be recovered
from general relativity in the weak field and nonrelativistic
regime [1]. It was also shown long ago that general
relativity is in turn the simplest among the (diffeomorphism
invariant) consistent completions of the linear Newtonian
gravity with the graviton self-coupling [2]. This can be
more easily demonstrated in the first order Palatini for-
malism, in which the metric g and the connection Γ are
initially treated as independent variables. The relation that
makes Γ compatible with the metric is then derived and
contains the inverse of g, which makes it apparent why this
completion is essentially nonperturbative. Later on, it was
shown [3] that there in fact exists a larger class of Lorentz
invariant theories for interacting massless gravitons which
are consistent with quantum physics (see also Refs. [4–6]).
In the present work we tackle a much more modest task

than recovering classical general relativity and all of its
fundamental symmetries; namely we study an effective
equation for the gravitational potential of a static source
which contains a gravitational self-interaction term besides
the usual coupling with the matter density. Following an
idea from Ref. [7], this equation was derived in detail from
a Fierz-Pauli Lagrangian in Ref. [8], and it can therefore be

viewed as stemming from the truncation of the fully
relativistic theory at some “post-Newtonian” order (for
the standard post-Newtonian formalism, see Ref. [9]).
The main motivation for this study is provided by the
quantum model of corpuscular black holes [10], in which
the constituents of black holes are assumed to be gravitons
marginally bound in their own gravitational potential well.
The typical size of this well is given by the characteristic
Compton-de Broglie wavelength λG ∼ RH, where

1

RH ¼ 2GNM ð1:1Þ

is the Schwarzschild (gravitational) radius of the black hole
of mass M, and whose depth is proportional to the very
large number

NG ∼
M2

m2
p
∼
R2
H

l2
p

ð1:2Þ

of soft quanta in this condensate. When the contribution
of gravitons is related to the necessary presence of
ordinary matter, the picture appears connected to the
post-Newtonian approximation [7]. This can be seen by
considering that the (negative) gravitational energy of a
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1We mostly use units with c ¼ 1 and the Newton constant
GN ¼ lp=mp, where lp is the Planck length and mp the Planck
mass (so that ℏ ¼ lpmp).
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source of mass M localized inside a sphere of radius R is
given by

UN ∼MVN ∼ −
GNM2

R
; ð1:3Þ

where VN ∼ −GNM=R is the (negative) Newtonian poten-
tial. This potential can be represented by the expectation
value of a scalar field over a coherent state jgi, whose
normalization then yields the graviton number (1.2), which
reproduces Bekenstein’s area law [11]. In addition to that,
assuming most gravitons have the same wavelength λG,
the (negative) energy of each single graviton is correspond-
ingly given by

ϵG ∼
UN

NG
∼ −

mplp

R
; ð1:4Þ

which yields the typical Compton-de Broglie length
λG ∼ R. The graviton self-interaction energy hence repro-
duces the (positive) post-Newtonian energy,

UGGðRÞ ∼ NGϵGVN ∼
G2

NM
3

R2
; ð1:5Þ

and the fact that gravitons in a black hole are marginally
bound is reflected by the “maximal packing” condition
[10], which roughly reads UN þUGG ≃ 0 for R ¼ RH
[7,8,12].
The above quantum picture was previously tested by

studying small (post-Newtonian) perturbations around the
Newtonian potential in Ref. [8]. However, since the post-
Newtonian correction VPN ∼ 1=r2 is positive and grows
faster than the Newtonian potential near the surface of
the source, one is allowed to consider only matter sources
with radius R ≫ RH for this approximation to hold. This
consistency condition clearly excludes the possibility to
study very compact matter sources and, in particular, those
on the verge of forming a black hole, that is withR ≃ RH. For
the ultimate purpose of including such cases, we here study
the nonlinear equation of the effective theory derived in
Ref. [8] at face value, without requiring that the corrections it
introduces with respect to the Newtonian potential remain
small. We nonetheless show that the qualitative behavior
of the complete solutions to our nonlinear equation resem-
bles rather closely the Newtonian counterpart. This result,
which essentially stems from including a gravitational self-
interaction in the Poisson equation, is what we call boot-
strapping the Newtonian gravity.
The paper is organized as follows: in the next section we

briefly review the derivation of the effective equation for
the gravitational potential obtained by including a potential
self-interaction; in Sec. III, we find the exact solution in
the vacuum and, in Sec. IV, we analyze the case of a
homogenous spherical source; a possible connection with

the corpuscular model and future perspectives are then
discussed in the concluding Sec. V.

II. EFFECTIVE THEORY FOR THE
GRAVITATIONAL POTENTIAL

We start by briefly recalling the main steps in the
derivation of the nonlinear equation which reproduces
the Newtonian potential to leading order and includes
the effects of gravitational self-interaction obtained in
Ref. [8]. First of all, one assumes the local curvature is
small, so that the metric can be written as gμν ¼ ημν þ hμν,
where ημν is the flat Minkowski metric with signature
ð−;þ;þ;þÞ and jhμνj ≪ 1. In addition to this weak field
limit, we must assume that all matter in the system moves
with a characteristic velocity much slower than the speed of
light in the (implicitly) chosen reference frame xμ ¼ ðt;xÞ.
In fact, we just consider (static) spherically symmetric
systems, so that ρ ¼ ρðrÞ and the only relevant component
of the metric is therefore h00ðrÞ≡ −2VðrÞ. In this approxi-
mation, the Einstein-Hilbert Lagrangian with matter
reduces to

LN½V� ≃ −4π
Z

∞

0

r2dr

�ðV0Þ2
8πGN

þ ρV

�
; ð2:1Þ

where f0 ≡ df=dr. The corresponding equation of motion
is just the Poisson equation,

r−2ðr2V 0Þ0 ≡△V ¼ 4πGNρ; ð2:2Þ

for the Newtonian potential V ¼ VN.
In order to go beyond the Newtonian approximation, we

modify the latter functional by adding a nonlinear term.
This term can be obtained by noting that the Hamiltonian

HN½V�¼−LN½V�¼4π

Z
∞

0

r2dr

�
−
V△V
8πGN

þρV

�
; ð2:3Þ

computed on shell by means of Eq. (2.2), yields the
Newtonian potential energy

UNðrÞ ¼ 2π

Z
r

0

r̄2dr̄ρðr̄ÞVðr̄Þ

¼ 1

2GN

Z
r

0

r̄2dr̄Vðr̄Þ△Vðr̄Þ

¼ −
1

2GN

Z
r

0

r̄2dr̄½V 0ðr̄Þ�2; ð2:4Þ

where we used Eq. (2.2) and then integrated by parts
discarding boundary terms. One can view the above UN as
given by the interaction of the matter distribution enclosed
in a sphere of radius r with the gravitational field.
Following Ref. [7] (see also Ref. [13]), we then define a
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self-gravitational source JV proportional to the gravita-
tional energy UN per unit volume, that is [8]

JVðrÞ ¼
4

4πr2
d
dr

UNðrÞ ¼ −
1

2πGN
½V 0ðrÞ�2: ð2:5Þ

Upon including this new source term, and the analogous
higher order term Jρ ¼ −2V2 which couples with the
matter source, we obtain the total Lagrangian [8]

L½V� ¼ LN½V� − 4π

Z
∞

0

r2drðqΦJVV þ qΦJρρÞ

¼ −4π
Z

∞

0

r2dr

� ðV 0Þ2
8πGN

ð1 − 4qΦVÞ

þ ρVð1 − 2qΦVÞ
�
: ð2:6Þ

Finally, the Euler-Lagrange equation for V is thus given by

ð1 − 4qΦVÞð△V − 4πGNρÞ ¼ 2qΦðV0Þ2; ð2:7Þ

where qΦ is a self-coupling parameter. In particular, it was
shown in Ref. [8] that the first post-Newtonian expansion
of the Schwarzschild metric is recovered for qΦ ¼ 1, and
we therefore assume this value in the following (we briefly
come back to this point in the conclusions).
In the next sections, we analyze Eq. (2.7) as an effective

description of the static gravitational field V generated by a
static source of density ρ in flat space-time. In other words,
we abandon, or disregard, its geometric origin given by the
Einstein-Hilbert action and proceed by assuming there
exists a reference frame in which the motion of test particles
is described by Newton’s law with a potential that solves
Eq. (2.7). Before we try and solve this equation, it is then
important to note that the freedom to shift the Newtonian
potential by an arbitrary constant, say V0, is now lost in
general. In fact, if Vc solves Eq. (2.7), for any V̄ ¼ Vc þ V0

one finds

½1 − 4ðVc þ V0Þ�ð△Vc − 4πGNρÞ − 2ðVc
0Þ2

¼ −4V0ð△Vc − 4πGNρÞ; ð2:8Þ

which therefore means that V̄ would still be a solution only
if Vc ¼ VN. This property clearly parallels general rela-
tivity. We however note that Eq. (2.6) does not yet contain
the pressure as a source, which will have to be added in
order to ensure energy conservation in general, as we
comment on more extensively in Sec. V.
On a qualitative ground, one might expect that the term

in the rhs of Eq. (2.7) becomes less important for Vc
negative and large, and one approximately recovers the
Poisson equation (2.2) in this case. We in fact see that the
solution to Eq. (2.7) can be conveniently expressed as a
(somehow small) perturbation about the Newtonian

potential where ρ ≠ 0. On the other hand, in the vacuum
ρ ¼ 0 and the effect of the new gravitational self-coupling
in Eq. (2.7) leads to (possibly) significant departures from
the Newtonian behavior.

III. SPHERICAL VACUUM SOLUTION

In the vacuum, where ρ ¼ 0, Eq. (2.7) with qΦ ¼ 1 reads

△V ¼ 2ðV 0Þ2
1 − 4V

; ð3:1Þ

which is exactly solved by

Vc ¼
1

4

�
1 − c1

�
1þ c2

r

�
2=3

�
; ð3:2Þ

where c1 and c2 are integration constants, and we note
again that one cannot shift Vc by an arbitrary constant V0.
The two integration constants can still be fixed by

requiring the expected Newtonian behavior in terms of
the ADM mass [14] M for large r. One must then have
c1 ¼ 1 and c2 ¼ 6GNM, which yield

Vc ¼
1

4

�
1 −

�
1þ 6GNM

r

�
2=3

�
: ð3:3Þ

The large r expansion now reads

Vc ≃
r→∞

−
GNM
r

þ G2
NM

2

r2
−
8G3

NM
3

3r3
; ð3:4Þ

and contains the expected post-Newtonian term VPN of
order G2

N without any further assumptions [8]. Moreover,
unlike its truncation at order G2

N, the above Vc tracks the
Newtonian solution for all values r > 0 (see Fig. 1). In
particular, Vc remains (increasingly) negative like VN, but
diverges slower than VN for r → 0, since

Vc

VN
∼
r→0

�
r

GNM

�
1=3

; ð3:5Þ

as is also displayed by the relative difference in the right
panel of Fig. 1. This shows that the added source in the rhs
of Eq. (3.1) acts as a (partial) regulator. In Fig. 1, we also
plot the large r expansion (3.4) up to the first post-
Newtonian approximation of order G2

N, which describes
a repulsive force for r < 2GNM. Of course, gravity is
attractive and one must view this result as indicating that
the post-Newtonian expansion fails at such short distances.

IV. HOMOGENEOUS BALL IN VACUUM

Since we are interested in compact sources, we consider
the simplest case in which the matter density is
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homogeneous and vanishes outside the sphere of radius
r ¼ R, that is,

ρ ¼ 3M0

4πR3
ΘðR − rÞ; ð4:1Þ

where Θ is the Heaviside step function, and

M0 ¼ 4π

Z
R

0

r2drρðrÞ: ð4:2Þ

Even with this static and very simple matter density, it is
impossible to find analytic solutions to Eq. (2.7), so we first
solve it numerically and then proceed to find analytical
approximations.
For the numerical solutions, it is useful to introduce

dimensionless units by considering the size R of the source
as the reference length, that is we define

r≡ Rr̃; GNM0 ≡ RM̃0; ð4:3Þ

so that Eq. (2.7) for Ṽ ¼ Vðr̃Þ reads

ð1 − 4ṼÞð△̃ Ṽ −4πρ̃Þ ¼ 2ðṼ 0Þ2; ð4:4Þ

where f̃0 ≡ df̃=dr̃, the operator △̃ ¼ r̃−2∂ r̃ðr̃2∂ r̃Þ and

ρ̃ ¼ R2GNρ≡ 3M̃0

4π
Θð1 − r̃Þ: ð4:5Þ

A. Newtonian solution

As a reference, we first consider the Newtonian potential
for this homogeneous sphere, and then analyze the different
regions of space separately for the complete Eq. (2.7).
Equation (2.2) with the density (4.1) in dimensionless

units reads

△̃ Ṽ ¼ 3M̃0Θð1 − r̃Þ: ð4:6Þ

Its complete solution can be easily obtained by matching
the (asymptotically regular) vacuum solution for r̃ > 1,

Ṽþ
N ¼ −

M̃
r̃
; ð4:7Þ

whereGNM ≡ RM̃, with the solution (regular in the center)
for 0 ≤ r̃ < 1,

Ṽ−
N ¼ M̃0

2
ðr̃2 − 3CÞ; ð4:8Þ

where C is a constant to be determined. In particular,
requiring that both ṼN and its derivative Ṽ 0

N be continuous
across r̃ ¼ 1 fixes the integration constant C ¼ 1 and
M̃ ¼ M̃0, that is,

ṼN ¼
(

M̃0

2
ðr̃2 − 3Þ for 0 ≤ r̃ < 1

− M̃0

r̃ for r̃ > 1:
ð4:9Þ

B. Fully numerical solutions

The above Newtonian solution ṼN is obtained from the
boundary conditions

Ṽðr̃Þ⟶
r̃→∞

0

Ṽ 0ð0Þ ¼ 0; ð4:10Þ
which fix all of the integration constants and only leave a
dependence on M̃0 ¼ M̃. The same boundary conditions
are then required for the solution Ṽc to Eq. (4.4), which we
therefore expect will be uniquely determined by M̃0.
Some numerical solutions Ṽc computed for given values

of M̃0 are shown in Fig. 2, where they are also compared
with the corresponding Newtonian potentials (4.9).

2 4 6 8 10
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–0.6

–0.4

–0.2

0.2

V

2 4 6 8 10
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0.1

0.2
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0.4

0.5

0.6

V

V

FIG. 1. Left panel: potential Vc (solid line) vs Newtonian potential (dashed line) vs order G2
N expansion of Vc (dotted line) for r > 0.

Right panel: relative difference ðVN − VcÞ=VN for r > 0 (all quantities are in units of GNM).
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The main features of the numerical solutions Ṽc are that
they systematically lie below their Newtonian counterparts
ṼN, but their shapes are qualitatively very close.

C. Analytical approximations

The features found numerically will now guide us to find
analytical approximations for the interior of the homo-
geneous source. First of all, outside the source ρ ¼ 0, and
the exact solution (3.3) in dimensionless units reads

Ṽc ¼
1

4

�
1 −

�
1þ 6M̃

r̃

�
2=3�

: ð4:11Þ

In the following, it is also useful to consider the value of
this potential at r̃ ¼ 1,

Ṽþ
c ¼ 1

4
½1 − ð1þ 6M̃Þ2=3�; ð4:12Þ

and of its derivative,

Ṽ 0þ
c ¼ M̃ð1þ 6M̃Þ−1=3 ¼ Ṽ 0þ

N ð1þ 6M̃Þ−1=3; ð4:13Þ

where ṼN is the Newtonian potential, and the term in
brackets contains the corrections to the Newtonian force at
the surface of the sphere.

1. Inside the homogeneous source

Let us next consider the interior of the matter source, that
is, 0 ≤ r̃ < 1. An exact solution for the homogeneous
density can be found which is however positive everywhere
and cannot be used for describing a ball immersed in an
outer vacuum (see Appendix C).
Since it is hard to find exact analytical solutions where

the density ρ > 0, we first write

Ṽc ¼ ṼN þ W̃; ð4:14Þ

and assume jW̃j ≪ jṼNj for r̃ ≃ 0. Upon replacing into
Eq. (4.4), we obtain

△̃ W̃ ¼ 2ðṼ 0
N þ W̃0Þ2

1 − 4ṼN − 4W̃
≃

2ðṼ 0
NÞ2

1 − 4ṼN
; ð4:15Þ

where ṼN is given in Eq. (4.8), with C being arbitrary. The
solution around r̃ ¼ 0 can be written as
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R
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–0.05

V
M0=1/10
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–20
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V
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FIG. 2. Numerical solution Ṽc (solid line) vs Newtonian potential ṼN (dashed line) for M̃0 ¼ 1=10 (top left), M̃0 ¼ 1 (top right),
M̃0 ¼ 2 (bottom left) and M̃0 ¼ 10 (bottom right).
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W̃ ≃
M̃2

0r̃
4

10ð1þ 6CM̃0Þ
�
1þ 20M̃0r̃2

21ð1þ 6CM̃0Þ
�

≡ W̃4 þ W̃6; ð4:16Þ

so that

���� W̃4

ṼN

���� ≤ M̃0

15Cð1þ 6CM̃0Þ
; ð4:17Þ

where we assumed C > 1, since the numerical solutions
suggest that jṼcð0Þj > jṼNð0Þj. We then find that our
approximation should be rather accurate for any values
of M̃0 as long as C ≥ 1.
The accuracy of the above analytical results is compared

with the numerical solutions Ṽn in Fig. 3, which again
shows that the extra source in the rhs of Eq. (2.7) acts as
a regulator, and whose effects are significantly dumped
where ρ > 0. It is important to remark that the above
expansion about the Newtonian potential ṼN holds for any
value of ṼNð0Þ, which is determined by the constant C in
Eq. (4.8). Since the latter is arbitrary, and can only be fixed

by matching with the outer Newtonian potential, the above
results show that we can in fact have a solution Ṽc with
Ṽ 0
cð0Þ ¼ 0 and Ṽcð0Þ such that it matches the outer

solution (3.3) at r̃ ¼ 1.

2. Matching at the surface

In order to determine the potential for all values of r̃ > 0,
we can start from the approximate solution (4.14) for the
interior of the source and match it with the exact outer
solution (4.11), at r̃ ¼ 1 (corresponding to r ¼ R). In
particular, with ṼN in Eq. (4.8) and W̃ in Eq. (4.16),
continuity of the potential and of its derivative at r̃ ¼ 1 (see
Appendix B) results in the two conditions

Ṽ−
N þ W̃− ¼ Ṽþ

c

Ṽ 0−
N þ W̃0− ¼ Ṽ 0þ

c ; ð4:18Þ

for the three parameters M̃0, M̃ andC.We can thus determine
C and M̃ in terms of M̃0. The numerical solutions forC and M̃
in the range 1=10 ≤ M̃0 ≤ 10 are shown in Fig. 4.
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0.2 0.4 0.6 0.8 1.0
r

0.005

0.010

0.015

0.020

V/V
M0=10

FIG. 3. Relative error ðṼc − ṼnÞ=Ṽn with respect to the numerical solution Ṽn for Ṽc ¼ ṼN þ W̃4 þ W̃6 (solid line) vs Ṽc ¼ ṼN þ W̃4

(dashed line) vs Newtonian case Ṽc ¼ ṼN (dotted line) for C ¼ 1 and M̃0 ¼ 1=10 (top left), M̃0 ¼ 1 (top right), M̃0 ¼ 2 (bottom left)
and M̃0 ¼ 10 (bottom right).
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Since neglecting W̃6 does not introduce a large error, we
can estimate C and M̃ analytically just using W̃ ≃ W̃4, so
that continuity of the potential at r̃ ¼ 1 reads

2M̃0ð1−3CÞþ 2M̃2
0

5ð1þ6CM̃0Þ
≃1−ð1þ6M̃Þ2=3; ð4:19Þ

whereas continuity of the derivative of the potential at
r̃ ¼ 1 requires

M̃0 þ
2M̃2

0

5ð1þ 6CM̃0Þ
≃

M̃

ð1þ 6M̃Þ1=3 : ð4:20Þ

For M̃0 ≪ 1, Eq. (4.20) yields the same result of Ref. [8],
to wit

M̃ ≃ M̃0

�
1þ 12

5
M̃0

�
; ð4:21Þ

and from Eq. (4.19) one then finds

C ≃ 1þ M̃0; ð4:22Þ

which reproduce the Newtonian solution C ≃ 1 and
M̃ ≃ M̃0 at lowest order, and are in agreement with the
numerical solutions (see, e.g., the top left panel of Fig. 2).
In the opposite limit M̃0 ≫ 1, Eq. (4.20) yields

M̃ ≃
ffiffiffi
6

p
M̃3=2

0 ; ð4:23Þ

and Eq. (4.19) gives the asymptotic value

C ¼ Ṽcð0Þ
ṼNð0Þ

≃ 1.34: ð4:24Þ

From the left panel of Fig. 4, we see that the above estimate
of C is just a bit short of the value

C ≃ 1.4 ð4:25Þ

obtained from solving Eq. (4.4) numerically for
M̃0 ≃ 1000. This behavior of C and M̃ is also in agreement
with the fully numerical solutions described in Sec. IV B.
It is now important to recall that M̃0 ¼ GNM0=R ≫ 1

corresponds to a source with very large density, asymp-
totically approaching a Dirac delta function. On the
opposite, M̃0 ¼ GNM0=R ≪ 1 represents a source with
small density for which one expects that the weak field
approximation holds. In the next section, we specifically
look at this case.

D. Weak field regime

The above picture simplifies significantly in the weak
field regime, which was already studied in Ref. [8]. In fact
Eq. (4.4) can be approximated for jṼj ≪ 1 as

△̃ṼWF ≃ 4πρ̃þ 2ðṼ 0
WFÞ2; ð4:26Þ

and the main feature of this equation is that one regains the
freedom to shift the potential by an arbitrary constant, like
in purely Newtonian gravity.
In the vacuum, Eq. (4.26) reads

△̃ṼWF ≃ 2ðṼ 0
WFÞ2; ð4:27Þ

and is exactly solved by

ṼWF ¼ −
1

2
ln

�
1þ 2M̃

r̃

�
; ð4:28Þ

in which two arbitrary integration constants were fixed
again by requiring the expected Newtonian behavior in
terms of the ADM mass M̃ for large r̃. The large r
expansion of the above solution is the same as Eq. (3.4)
up to, and including, order G2

N and the correct post-
Newtonian term is again recovered without any further
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FIG. 4. Ratio C ¼ Ṽc=ṼN (left panel) and mass M̃ (right panel) computed numerically using Ṽc ¼ ṼN þ W̃4 þ W̃6 (solid lines) and
using Ṽc ¼ ṼN þ W̃4 (dashed lines).
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assumptions. In Fig. 5, we plot the weak field solution
(4.28) and compare it to the exact nonlinear solution (3.3)
and the Newtonian potential for the same value of the
ADM mass. Clearly, the plot is only meaningful for r ≫
GNM ¼ 1 (in the units of the graph), since the condition
jṼWFj ≪ 1 implies that r̃ ≫ 2M̃.
The interior of a homogeneous source is now approx-

imately described by the equation

△̃ṼWF ≃ 3M̃0 þ 2ðṼ 0
WFÞ2; ð4:29Þ

which is solved exactly by

ṼWF ¼ A −
1

2
ln

�
sin ðBþ

ffiffiffiffiffiffiffiffiffi
6M̃0

p
r̃Þ

r̃

�
; ð4:30Þ

where 0 ≤ r̃ ≤ 1 and M̃0 ≪ 1 in order to preserve the
weak field approximation. Regularity in r̃ ¼ 0 then fixes
the integration constant B ¼ 0 and, upon defining
A − lnð6M̃0Þ=4≡ 3M̃0C=2, one finds

ṼWF ¼ A −
1

2
ln

�
sin ð

ffiffiffiffiffiffiffiffiffi
6M̃0

p
rÞ

r̃

�
≃
M̃0

2
ðr̃2 − 3CÞ þ M̃2

0

10
r̃4;

ð4:31Þ

which indeed agrees with the limit M̃0 ≪ 1 of Eq. (4.16).
Continuity of the derivative of the potential across r̃ ¼ 1

reads

M̃0

�
1þ 2M̃0

5

�
≃ M̃ð1 − 2M̃Þ; ð4:32Þ

and is solved by Eq. (4.21). Upon using this relation
between M̃ and M̃0, continuity of the potential at r̃ ¼ 1
reads

3M̃0

2
ðC − 1Þ ≃ 3M̃2

0

2
; ð4:33Þ

which is again solved by Eq. (4.22). This shows that for
M̃0 ≪ 1, one can just employ the much simpler Eq. (4.26),
like it was done in Ref. [8].

E. Pressure and stability

So far we completely neglected the pressure required
to have a static configuration at fixed radius R. In the
following, we employ a Newtonian argument in order to
estimate the necessary pressure and deduce the correspond-
ing potential energy contribution in a way so as to support
the identification of M as the total energy of the system.

1. Newtonian pressure

It is well known from the Newtonian theory that the
condition of hydrostatic equilibrium for the pressure pN
reads [1]

p0
NðrÞ ¼ −V 0

NðrÞρðrÞ ¼ −
GNmðrÞ

r2
ρðrÞ; ð4:34Þ

where m ¼ mðrÞ is the mass contained within a sphere of
radius r defined in Eq. (D2). This equation can be easily
solved for the homogeneous density (4.1) generating the
Newtonian potential (4.9) inside the source. Upon requiring
that the pressure vanishes at the surface, pNðRÞ ¼ 0, the
solution reads

pNðrÞ ¼
3GNM2

0ðr2 − R2Þ
8πR6

: ð4:35Þ

It is then straightforward to calculate the associated
(Newtonian) potential energy as

UBNðrÞ ¼ BN − 4π

Z
r

0

dr̄r̄2pNðr̄Þ

¼ BN þ GNM2
0ð3r2 − 5R2Þr3
10R6

; ð4:36Þ

where BN is an arbitrary integration constant.
The constant BN can in fact depend on the parameters of

our model, like M0 and R. In particular, the condition of
stability requires that the work done by the pressure pN
cancels against the work done by the gravitational force for
an infinitesimal change in the radius R, that is

dUBN

dR
¼ −

dUN

dR
¼ −

3GNM2
0

5R2
; ð4:37Þ

in which we used Eq. (A3) for the Newtonian potential
energy UN ¼ UNðRÞ. This condition yields

BNðM0; RÞ ¼
4GNM2

0

5R
; ð4:38Þ

2 4 6 8 10
r

–0.8

–0.6

–0.4

–0.2

V

FIG. 5. Potential VWF (dashed line) vs Vc (solid line) vs
Newtonian potential (dotted line) in units of GNM.
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and

UBNðrÞ ¼
GNM2

0ð3r5 − 5r3R2 þ 8R5Þ
10R6

; ð4:39Þ

which ensures that the total energy E of the system

E ¼ M0 þ UBNðRÞ þ UNðRÞ ¼ M0: ð4:40Þ

Moreover, it is worth recalling that M0 ¼ M at the
Newtonian level, so that E ¼ M.

2. Post-Newtonian pressure

For the configurations found in Sec. IV, we follow the
same line of reasoning and simply replace the Newtonian
potential in Eq. (4.34) with the solution Vc, to wit

p0ðrÞ ¼ −V 0
cðrÞρðrÞ: ð4:41Þ

For the potential Vc, we employ the analytical approxi-
mation (4.14) up to the term W4 in Eq. (4.16), for which
Eq. (4.41) can be solved to obtain

pðrÞ¼3GNM2
0ðR2−r2Þf5R3þGNM0½r2þð1þ30CÞR2�g

40πR8ðRþ6CGNM0Þ
;

ð4:42Þ

which is very close to the fully numerical result, as shown
in Fig. 6.
Like in the Newtonian approximation, upon integrating

the above pressure on the volume of the source, we can
obtain the baryonic potential energy UB necessary for the
compact object to be in mechanical equilibrium,

UBðrÞ ¼
GNM2

0f3GNM0r7 þ 21r5R2ðRþ 6CGNM0Þ − 7r3R4½5RþGNM0ð1þ 30CÞ�g
70R8ðRþ 6CGNM0Þ

þ BðM0; RÞ; ð4:43Þ

0.2 0.4 0.6 0.8 1.0
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FIG. 6. Numerical solution (solid gray line) vs analytical approximation (4.42) with C ¼ 1.34 (dotted line) vs Newtonian pressure
(4.35) (dashed line) for M̃0 ¼ 1=10 (top left), M̃0 ¼ 1 (top right), M̃0 ¼ 2 (bottom left) and M̃0 ¼ 10 (bottom right).
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where B is again an integration constant, which can be
fixed like in the Newtonian case, so as to ensure that M
equals the total energy of the system,

E ≃M0 þ UG þ UB ¼ M: ð4:44Þ

The cumbersome expression (4.43) simplifies signifi-
cantly if we consider a source with small compactness, i.e.,
GNM0=R ≪ 1 and C ≃ 1þGNM0=R, which yields

UBðRÞ ≃ BðM0; RÞ −
GNM2

0

5R
−
2G2

NM
3
0

35R2
: ð4:45Þ

In this low compactness regime, M is given in Eq. (4.21)
and UG by the first line of Eq. (A5). Replacing these
expressions in Eq. (4.44) then yields

BðM0; RÞ ≃
16GNM2

0

5R
þ 113G2

NM
3
0

70R2
; ð4:46Þ

and we finally end up with

UBðRÞ ≃
3GNM2

0

R
þ 109G2

NM
3
0

70R2
: ð4:47Þ

As we pointed out in Sec. IV C 1, our description let us
also consider the opposite regime, i.e., the case of highly
compact sources with GNM0=R ≫ 1. The corresponding
baryonic potential energy then reads

UBðRÞ ≃ BðM0; RÞ −
GNð1þ 21CÞM2

0

105CR
; ð4:48Þ

and it is again straightforward to ensure that Eq. (4.44) is
satisfied, by fixing the integration constant

BðM0; RÞ ≃ 2.22
G2

NM
3
0

R2
;

where we used the second expression in (A5) for the
gravitational energy UG and Eq. (4.23) for M. It is finally
immediate to write

UBðRÞ ≃ 2.22
G2

NM
3
0

R2
: ð4:49Þ

We end this section with some remarks about the ratio
Γ0 ≡ pð0Þ=ρð0Þ. In general relativity, it is well known [15]
that, for any realistic spherical configuration of matter,2 the
pressure can be positive and nonsingular in the origin only
if the radius of the source is larger than the Buchdahl limit,
that is for a source of size

R >
9

4
GNM0 ≡ RBL: ð4:50Þ

This is apparent from the expression of the pressure (D3)
obtained by solving the Tolman-Oppen-heimer-Volkoff
(TOV) equation (D1) for a homogeneous density. If we
instead calculate the above ratio for our case using the
pressure from Eq. (4.42), also obtained for a homogeneous
density, we find

Γ0 ¼
GNM0

2R

�
1þ GNM0

5ðRþ 6CGNM0Þ
�
: ð4:51Þ

For R ≃ RBL, and using the value of the constant C from
Eq. (4.25), this becomes

Γ0ðRBLÞ ≃ 0.22; ð4:52Þ

whereas Γ0 → ∞ in the limit R → 0. This means that the
divergence in the pressure that one encounters for R ¼ RBL
in the general relativistic case has been pushed all the way
down to R ≃ 0 in our model.
The above result leads us to remark that, although a static

object with a uniform density is just a simple toy model, it
can give us hints for more general arguments. For any
density profile, the gravitational force is directed inwards
and would collapse the mass towards the center unless it
were balanced by an equal and opposite pressure. For the
homogeneous density we calculated this necessary pressure
without discussing its origin or physical acceptability.
In general relativity, only for objects with radii larger than
the Buchdahl limit, such as stars, this pressure could be
provided by nuclear reactions or the Pauli exclusion
principle: below the Buchdahl limit there exists no density
profile which allows for a static configuration. This con-
clusion could only change if gravity departs from the
general relativistic description and provides itself with an
effective pressure directed outwards, like in the de Sitter
space-time. In the corpuscular picture, the gravitons inside
black holes form a Bose-Einstein condensate, whose
equation of state resembles that of dark energy [10], and
these gravitons are therefore natural candidates to provide
an effective outward pressure. Moreover, such a large
deviation of the ratio Γ0 from general relativity as the
one we found above would imply that quantum effects have
overcome the classical behavior already at (relatively) large
scales R ≃ RBL ∼GNM0. Of course, one could then argue
that this is only acceptable for masses M0 sufficiently
small, say around the Planck scale. However, one could
also argue that the difference between the bootstrapped
Newtonian description and general relativity should
become smaller if one included higher interaction terms
in the Lagrangian (2.6), to the point that this difference
might become phenomenologically negligible for astro-
physical objects. Finally, we also recall that, unlike what
happens in general relativity, we assumed the potential

2Nonoutward increasing matter density and vanishing pressure
at the surface.
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energy density responsible for the pressure does not
contribute a source term for the potential, and the addition
of such a contribution to the Lagrangian (2.6) might again
reduce the difference with respect to general relativity.

V. CONCLUSIONS AND OUTLOOK

In the previous sections, we have derived the potential
satisfying the nonlinear equation (2.7) generated by a
spherically symmetric homogenous compact source. We
have also obtained the necessary pressure (4.42) to keep the
configuration static for sources of arbitrarily small radii,
including values below the Buchdahl limit (4.50). Since
this pressure turns out to be finite, unlike what one expects
in general relativity, it now seems appropriate to come back
to our original motivation for constructing such a boot-
strapped Newtonian ball and further clarify the possible
connection with the corpuscular picture of black holes that
we have mentioned in the introduction and at the end of the
last section.
First of all, it is a theorem in general relativity that,

under rather general assumptions, systems that develop
trapping surfaces will collapse into singularities [16].
This is what one expects would happen to a body that
shrinks below the Buchdahl limit (4.50). On the other
hand, a singularity is hardly acceptable in the quantum
theory, just because of the Heisenberg uncertainty prin-
ciple, and one could generically expect that the actual
collapse of an astrophysical body will necessarily deviate
from the general relativistic description at some point.
The crucial question is whether such deviations occur
after the horizon has appeared, and they therefore remain
hidden forever, or the quantum effects induce departures
from general relativity outside the gravitational radius
which can therefore be observed. Many works have
shown the existence of regular black hole solutions of
modified gravitational equations which entail no signifi-
cant departures from the corresponding general relativ-
istic space-times outside the (outer) horizon (for a review,
see Ref. [17]). The corpuscular picture [10] instead
assumes that black holes are fully quantum objects in
order to give a consistent description of the Hawking
evaporation and the possibility of observable conse-
quences should therefore not be excluded.
In order to gain further insight into the above two

possibilities, one should not forget about the matter that
collapses and causes the emergence of the black hole
geometry. In particular, one might wonder where this
matter ends up in the corpuscular picture [7]. Clearly, if
general relativity remains a good theory of gravity up to
extremely high energy densities, the collapsing matter
should form a tiny ball with essentially no modifications
of physics below the Planck energy scale. In the quantum
corpuscular picture one could instead conceive the pos-
sibility that the collapsing matter occupies (in the quantum
mechanical sense of the Compton length) a large volume

inside the black hole and gives rise to an effective
gravitational potential that differs significantly from the
general relativistic description. This is precisely the
reason we developed the bootstrapped Newtonian picture
of a homogeneous source, not to be taken as a model of
phenomenological relevance for compact objects like
neutron stars, but as a toy model of gravity tailored to
further investigating this quantum picture of black holes.
It is indeed rather likely that, in order to describe more
accurately astrophysical compact objects, one would need
to add more interacting terms to the Lagrangian (2.6), so
that the gravitational potential outside the gravitational
radius approaches the usual post-Newtonian expansion of
the general relativistic Schwarzschild metric.
Although the explicit quantum investigation of the

bootstrapped Newtonian ball is left for a future work,
we can here highlight a few relevant features. First of all,
we have already noted that the (exact) vacuum solution Vc
in Eq. (3.3) tracks the Newtonian behavior, and its
derivative therefore gives an attractive force for all (finite)
values of r > 0. This is in clear contrast with the weak field
expansion in Eq. (3.4), which instead provides a repulsive
force for r ≤ RH ¼ 2GNM, if one only includes the first
post-Newtonian term VPN. In particular, one could apply a
Newtonian argument to Vc and define the “horizon” as
the place where the escape velocity of a particle subjected
to it would equal the speed of light. This occurs for
2VcðrHÞ ¼ −1, which yields

rH ¼ 6GNM

3
ffiffiffi
3

p
− 1

≃ 1.4GNM; ð5:1Þ

or rH ≃ 0.7RH. We remark once more that a source of
size R this small could not be studied in the weak field
expansion to first post-Newtonian order, as that approxi-
mation does not hold for this range of the radial coordinate.
In fact, it would also violate the Buchdahl limit (4.50) and
could not be a stable configuration according to general
relativity.
Since black holes in general relativity are regions of

empty space with singular sources in the very center, we
can consider the case of a source with radius R ≪ rH. Let
us note that, at least for a homogeneous source, we always
have M > M0 and Eq. (4.23) then implies that the ratio

M
M0

≃
�
6GNM0

R

�
1=2

≃
�
6GNM

R

�
1=3

≫ 1; ð5:2Þ

for R ≪ rH. The area law of black holes [11] states that
the mass M should measure the number of gravitational
degrees of freedom, which is also confirmed explicitly by
the number of gravitons (1.2) in the corpuscular picture
[10]. The above Eq. (5.2) therefore appears in line with
the expectation that the number of gravitational degrees
of freedom should largely overcome the number of
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matter degrees of freedom (proportional to M0) in a
black hole.
We have already argued in Sec. IV E 2 why the mass

parameter M of the outer vacuum solution (3.3) should
equal the total energy E of the system. Moreover, the
previous considerations naturally lead us to look more
closely at the relation between M and the proper mass M0.
In particular, if we add the proper energy M0 to
the gravitational potential energy UG from Eq. (A5),
we find

E0G ≡M0 þ UG ≃M0

�
1 − α

GNM0

R
− β

G2
NM

2
0

R2

�
; ð5:3Þ

where α and β are numerical coefficients of order 1, which
can be estimated using the two approximations employed
in Eq. (A5) or computed numerically. We then find that the
energy E0G is positive for low compactness sources with
GNM0 ≪ R; it vanishes for GNM0 ≃ 0.6R and becomes
negative for very compact sources with GNM0 ≫ R. For
R ≃ rH, or

GNM ≃ 0.7rH; ð5:4Þ

one can solve the matching conditions (4.18) numerically
and finds

rH ≃ 2GNM0 and C ≃ 1.2: ð5:5Þ

Moreover, this value of M0 is also close to the case that
makes the energy (5.3),

E0GðrHÞ ¼ M0 þ UGðrHÞ ≃ 0: ð5:6Þ

We thus conclude by noting that the vanishing of E0G at
(the threshold of) black hole formation appears as another
form of the maximal packing condition at the heart of the
corpuscular picture [7,8,10]. In fact, Eq. (5.6) is very close
to the form of the maximal packing condition that is
implemented in the quantum harmonic model of corpus-
cular black holes [18]. Whether this maximal packing
condition implies that the baryonic matter is completely
delocalized inside the horizon like the gravitons requires a
fully quantum treatment of the system and is left for future
investigations.
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APPENDIX A: POTENTIAL ENERGY

The gravitational potential energy of the vacuum sol-
ution (3.3) can be easily computed from the effective
Lagrangian (2.6) with ρ ¼ 0 and reads

Uþ
G ½Vc� ¼ −Lþ½Vc� ¼

1

2GN

Z
∞

R
r2drð1 − 4VÞðV 0Þ2

¼ GNM2

2

Z
∞

R

dr
r2

¼ GNM2

2R
; ðA1Þ

where R can be simply viewed as a cutoff to regularize the
result, in analogy with the Newtonian case.
If we instead consider a homogeneous ball in vacuum,

the length R naturally becomes the radius of the source. We
again switch to dimensionless units and the total gravita-
tional potential energy for the Newtonian solution (4.9) is
found to be

ŨG½ṼN�¼−L̃½ṼN�¼
1

2

Z
∞

0

r̃2dr̃½ð1−4ṼNÞðṼ 0
NÞ2

þ8πρ̃ṼNð1−2ṼNÞ�

¼3M̃0

Z
1

0

r̃2dr̃ṼNð1−2Ṽ2
NÞ

þ1

2

Z
∞

0

r̃2dr̃½ð1−4ṼNÞðṼ 0
NÞ2�

¼−
3M̃2

0

5
þ51M̃3

0

35
¼−

3M̃2
0

5

�
1−

255M̃0

105

�
; ðA2Þ

in which we recognize the standard (negative) Newtonian
contribution obtained from the first line in Eq. (2.4), that is,

ŨN ¼ M̃2
0

4

Z
1

0

r̃2dr̃ṼN ¼ −
3M̃2

0

5
: ðA3Þ

Like for the exact vacuum solution (3.3), the last integral
in the second line of Eq. (A2) yields a positive contribution,
which is however overcome by the negative Newtonian
energy and its (still negative) correction arising where
ρ̃ ≠ 0.
Given that the correct solution to the effective equa-

tion (4.4) is very close to the Newtonian expression (4.8)
inside the ball, we can estimate the contribution to the
potential energy from the region inside the source as3

3We also checked that using the approximation (4.14) with
Eq. (4.16) does not alter the result significantly.
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Ũ−
G½Ṽc� ≃ −L−½ṼN� ¼

1

2

Z
1

0

r̃2dr̃½ð1 − 4ṼNÞðṼ 0
NÞ2

þ 6M̃0ṼNð1 − 2ṼNÞ�

≃ −
3M̃2

0

2

�
C −

4

15
þ M̃0

�
5

21
−
24

15
Cþ 3C2

��
:

ðA4Þ

We can finally estimate the total gravitational energy of
the homogeneous ball by adding together Eq. (A1) for the
outer vacuum and the contribution (A4) from the interior,
which yields

ŨG ≃ Ũ−
G½ṼN� þ Ũþ

G ½Ṽc�

≃

(
− 3M̃2

0

5

�
1þ 109M̃0

42

	
for M̃0 ≪ 1

−2.22M̃3
0 − 1.61M̃2

0 for M̃0 ≫ 1;
ðA5Þ

in which we used Eqs. (4.21) and (4.22) for M̃0 ≪ 1 and
Eqs. (4.23) and (4.25) for M̃0 ≫ 1.
The gravitational energy ŨG can also be computed

numerically for given values of M̃0, and compared with
the above analytical approximations. From the plot in
Fig. 7, it appears that both approximate expressions
reproduce the numerical results fairly well.

APPENDIX B: JUNCTION CONDITIONS

Because the shift symmetry is lost, we cannot just match
the outer potential (3.3) with just any interior. It is then
useful to analyze the matching conditions at r ¼ R. This
can be done as usual by integrating Eq. (2.7) on a shell of
thickness 0 < 2ϵ ≪ R around r ¼ R,

0 ¼
Z

Rþϵ

R−ϵ
r2dr½ð1 − 4VÞð△V − 4πGNρÞ − 2ðV 0Þ2�

≡ I1 þ I2 þ I3: ðB1Þ
For the first term we obtain

I1 ¼
Z

Rþϵ

R−ϵ
drð1 − 4VÞðr2V 0Þ0

¼ ½ð1 − 4VÞðr2V 0Þ�Rþϵ
R−ϵ þ 4

Z
Rþϵ

R−ϵ
r2drðV 0Þ2; ðB2Þ

so that

I1þI3¼½ð1−4VÞðr2V 0Þ�Rþϵ
R−ϵ þ2

Z
Rþϵ

R−ϵ
r2drðV 0Þ2: ðB3Þ

If we assume ρ and V do not diverge at r ¼ R, the second
term vanishes for ϵ → 0,

I2 ¼ 4πGN

Z
Rþϵ

R−ϵ
r2drð1 − 4VÞρ→

ϵ→0
0; ðB4Þ

and one is left with

0 ¼ ½ð1 − 4VÞðr2V 0Þ�Rþϵ
R−ϵ þ 2

Z
Rþϵ

R−ϵ
r2drðV 0Þ2; ðB5Þ

which is satisfied for ϵ → 0 if V 0 is continuous across
r ¼ R.

APPENDIX C: ANTI–DE SITTER POTENTIAL?

Equation (2.7) with the homogeneous density in
Eq. (4.1) is solved exactly for 0 ≤ r < R by

Vc ¼
1

4
þ 3GNM0

8R3
r2; ðC1Þ

which is clearly positive everywhere, and cannot be
matched with a negative outer potential at r ¼ R. This
solution could however be considered as a “cosmological”
solution similar to the anti–de Sitter space.

APPENDIX D: COMPARISON WITH TOV

It is instructive to compare our result (4.42) for the
pressure with the expectation obtained by solving the
TOV equation for a homogeneous source. The standard
TOV equation relating the pressure and energy density
reads [15]

dpðrÞ
dr

¼ ½ρþ pðrÞ�GN½2mðrÞ þ 8πpðrÞr3�
2r½2GNmðrÞ − r� ; ðD1Þ

where mðrÞ is the mass function

mðrÞ ¼ 4π

Z
r

0

dr0ρðr0Þr02: ðD2Þ

0.1 1 10 100 1000
M0

0.1

100

105

108

U

FIG. 7. Gravitational potential energy ŨG evaluated numeri-
cally (dots) vs the analytical approximation (A5) for M̃0 ≫ 1
(solid line) vs the analytical approximation (A5) for M̃0 ≪ 1
(dotted line).
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Its solution for the homogeneous density (4.1) can be
found in exact form after requiring that pTOVðRÞ ¼ 0.
This yields

pTOVðrÞ ¼ ρðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3 − 2GNM0r2

p
− R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − 2GNM0

p

3R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − 2GNM0

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3 − 2GNM0r2

p
¼ 3M0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3 − 2GNM0r2

p
− R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − 2GNM0

p Þ
4πR3ð3R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R − 2GNM0

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3 − 2GNM0r2

p
Þ
:

ðD3Þ

This TOV pressure can easily be compared to our Post-
Newtonian result from Eq. (4.42) in the small compactness
regime GNM0 ≪ R, that is far from the Buchdahl limit.
Considering the first two leading terms, the TOV pressure
is approximately equal to

pTOVðrÞ ≃
3ðR2 − r2ÞGNM2

0

8πR6

�
1þ 8GNM0

3R

�
; ðD4Þ

while the Post-Newtonian pressure from Eq. (4.42) is
approximately

pðrÞ ≃ 3ðR2 − r2ÞGNM2
0

8πR6

�
1þ ðR2 þ r2ÞGNM0

5R3

�
: ðD5Þ

Both the lowest order term of the TOV pressure and the one
of the Post-Newtonian pressure are equal to what one
calculates in the Newtonian case (4.35). We can also
remark that the next-to-leading order contributions are
much smaller. Therefore, as expected, in this limit the
pressure inside the objects obtained in our model can be
well approximated by the Newtonian pressure.
A comparison between the TOV solution and the numeri-

cal evaluation of the pressure within our model is displayed
in Fig. 8. The plots also show that the two are in good
agreement as long as the source is sufficiently less compact
than the Buchdahl limit (4.50). This is not surprising, since
the pressure (4.42) remains finite for any 0 ≤ r < R, whereas
pTOVð0Þ in Eq. (D3) diverges for R → Rþ
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