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Wave-optical treatment of the shadow cast by a large gravitating sphere
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We study the shadow cast by a large gravitating sphere, similar to our Sun. For this, we consider the
gravitational field produced by a static mass monopole within the first post-Newtonian approximation of
the general theory of relativity. We study the propagation of a monochromatic electromagnetic wave in the
vicinity of a large, opaque, gravitating sphere. To treat the opaque nature of the body and its physical size, we
implement fully absorbing boundary conditions and develop a wave-optical treatment of the shadow formed
by this object. Based on this approach, we demonstrate that the structure of the shadow is determined by the
Schwarzschild radius of the body and its physical size. The shadow’s boundary has the shape of a concave
rotational hyperboloid bent inward due to the refractive properties of the curved spacetime. We show that
there is no light in the shadow. However, even in the presence of gravity and related gravitational bending of
photon trajectories there is the bright spot of Arago that is formed behind a perfectly spherical obscuration.
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I. INTRODUCTION

We investigate the scattering of light by the curvature of
spacetime induced by the gravitational mass monopole of a
large star. Specifically, we study the shadow cast by a large,
massive, opaque sphere that is characterized by a weak
gravitational field, similar to that of our Sun. This question
is important for our ongoing efforts to study the solar
gravitational lens (SGL) as the means for direct high-
resolution imaging and spectroscopy of an exoplanet [ 1-4].

Although optical properties of the SGL are primarily
determined by the solar Schwarzschild radius, the Sun
itself, with its large physical dimensions, acts as a spherical
obscuration that blocks a significant part of the incident
wave front. It is known that in the absence of gravity, a
spherical obscuration with sharp boundaries placed in a
beam of monochromatic light results in the formation of the
Arago bright spot behind the sphere, which confirmed the
wave-optical nature of light in a famous experiment. How
does gravity affect this process? Is there light in the shadow
cast by a large gravitating sphere with sharp boundaries?
These questions are of practical importance when consid-
ering the use of the SGL for imaging purposes, which was
the primary motivation for this paper.

Toward this objective, recently we studied the electro-
magnetic (EM) field in the shadow cast by a large, opaque
sphere with soft boundaries in flat spacetime [5]. We
considered the scattering of a high-frequency monochro-
matic EM wave by the large sphere. It is known that the
presence of the spherical obscuration results in a geometric
shadow of cylindrical shape behind the sphere. To describe
this shadow, we developed a Mie theory that accounts for the
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obscuration and demonstrated that there is indeed no EM
field present in the shadow region. One exception is the
presence of the bright spot of Arago, which can form at
distances up to z < kR% (corresponding to a Fresnel
number F = kR%/z>> 1), where Ry is the solar radius
and k =2/ is the wave number corresponding to the
observing wavelength. For optical and infrared wave-
lengths, i.e., for A~ 1 um, these distances are up to
z ~ 98 megaparsec (Mpc). In addition, to form the Arago
spot the edge of the circular obscuration must be sufficiently
smooth. However, it is not clear how the presence of gravity
affects this process: if it only modifies the distance where
such an effect may exist or if it changes the entire
phenomenon altogether.

Itis known that gravity introduces refractive properties on
spacetime [6]. As light propagates in the vicinity of the Sun,
the direction of its propagation changes by the angle
a=2r,/b, where r,=2GM/ c? is the Schwarzschild
radius of the Sun, M is the solar mass, and b is the ray’s
solar impact parameter. Because of this refraction, in the
solar vicinity photons propagate on hyperbolic trajectories
that are bent toward the Sun, resulting in a specific shape of
the shadow. Depending on the impact parameter, the rays
will intersect at a heliocentric distance of z > 547.8(b/R)?
astronomical units (AU) (see Fig. 1). As aresult, the shadow
forming behind a large, opaque, gravitating sphere, such is
that of our Sun, has a geometric boundary shaped like a
concave rotational hyperboloid (studied in [2]).

In [2] we studied the properties of the caustic formed by
the SGL at heliocentric distances beyond z, = 547.8 AU,
where the interference region of the SGL begins (see Fig. 1).
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FIG. 1.
the region of interference (from [2]).

This area has the shape of an elongated convex rotational
hyperboloid whose outer boundary is set by the rays just
grazing the Sun and thus intersecting the focal line at z;, (i.e.,
defining the common vertex of the two hyperboloids, that of
the interference region and that of the shadow.) This is the
region where the SGL acquires its most interesting proper-
ties, including extreme magnification and high optical
resolution. The region directly behind the Sun, correspond-
ing to light rays with impact parameters b < R, = R, + 1,
is the region of the geometric shadow. The third area is
characterized by impact parameters b > R and two sets of
heliocentric distances—those smaller than z; and those
larger than z,, but outside the convex rotational hyper-
boloidal boundary of the interference region—is called the
region of geometric optics (see discussion in [2,7]).

The primary objective of this paper is to develop a wave-
theoretical description of the shadow region of the Sun.
This problem is characterized by a set of widely different
scales, namely (i) the wavelength of radiation, 4, is much
smaller than the radius of the Sun, 4 < Ry, and (ii)
observational regions, at distances r that are much larger
than the solar Schwarzschild radius, r, < Ry < r. This is
exactly the situation encountered in the study of the optical
properties of the SGL [1,2] and its applications. Such
problems are typically tackled using a geometrical optics
approximation or the usual methods of scalar optics [8].
These approximations can be avoided, however, within a
wave-optical treatment, which is the topic of the present
paper. In addition, such treatment allows us to study the
wave nature of light in the presence of gravity, which may
be important for some areas of astrophysics that deal with
strong gravitational fields and/or large scale astronomical
phenomena in the presence of gravity.

This paper is organized as follows: In Sec. II, we present
the solution for the fictitious EM field of the solar shadow,
given in terms of Debye potentials. Section III is devoted to
the investigation of the EM field in the solar shadow. Using
the wave-optical treatment, we show that there is no light
present in the shadow region of the SGL to heliocentric
distances up to 547.8 AU. In Sec. IV, we study the area on
the optical axis directly behind the spherical obscuration in
a search for the on-axis EM field that may appear there due

region of
geometric optics

focal line

region of interference

Three different regions of space associated with a monopole gravitational lens: the shadow, the region of geometric optics, and

to diffraction of light on the boundaries of a large sphere
(that resembles the Sun with its physical size and mass, but
has a sharp boundary). We show that even in the presence
of gravity, there is the bright spot of Arago that is formed in
such conditions on axis behind a perfectly spherical
obscuration. In Sec. V, we discuss the results that we
obtained and present our conclusions.

II. ELECTROMAGNETIC WAVES IN A STATIC
GRAVITATIONAL FIELD

To describe the optical properties of the SGL, we use a
static, harmonic metric that represents the gravitational
field produced by a mass monopole, taken in the post-
Newtonian approximation of the general theory of rela-
tivity. Due to the spherical symmetry of the problem, we
may introduce spherical coordinates (r, 6, ¢»), where such a
metric in the harmonic gauge is given by the following line
element [6,9]:

ds* = u=2c?de? — u?(dr? + r*(d6* + sin*0dg¢?)), (1)

where, to the accuracy sufficient to describe light propa-
gation in the solar system, the quantity u has the form

u=1+34+0() (2)
with r, =2GM/ c? being the Schwarzschild radius of a
gravitating body of mass M, thus representing the con-
tribution of the mass monopole of the body’s gravitational
potential to the relativistic spacetime (1).

Following [2], we present Maxwell’s equations in the
spacetime given by (1) and (2) as

,10B

curlD = —u EE+ (’)(rﬁ), div(u’D) = 0(7;21)9 (3)
curlB = uzéaa—]t) + O(r3). div(u’B) = O(r7),  (4)

where the differential operators curl and div are with respect
to the three-dimensional Euclidean flat metric.

As shown in [2], following the Mie approach [8,10], one
can separate the variables in the Maxwell equations (3) and
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(4) and, by following the Mie approach, present a solution
to these equations in the form of generic electric and
magnetic Debye potentials, “IT and ™11, respectively. Then,
by matching these potentials to the incident Coulomb-
modified plane wave, we find that both of these potentials
in the vacuum may be given in terms of a single Debye
potential IT5(r,6):

Tl cosp
= ] II5(r,6), where
"1 sin ¢
Zf 1
I(r.60) = Eo7a- z N

x e Fy(kr,, kr)Pf (cosO) +O(r2), (5)
where k =2x/A is the wave number of the EM wave,
F(kr,, kr) and 6, are the Coulomb function and Coulomb
phase shift of the £th order, correspondingly [11-15], with

Piﬁl)(cos 0) being the associated Legendre polynomials of
the first order. Note that we use a heliocentric coordinate
system with the z axis oriented along the incident direction
of the EM wave, where 0 is the angle between the z axis and
the direction toward a particular observation point.

In the case of a spherically symmetric gravitational field,
we may obtain the components of the EM field corre-
sponding to a Debye potential IT by first constructing the
following quantities (see details in [2]):

1 o1 0. .
a(r,0) = ~ 2% [ﬁ% [sm@(rl'[)]}
? T
ARG
laz(rH) ik(rIT)
P 0) = 5r00 " ring” )

Using the Debye potential IT5(r, §) from (5) in place of the
quantity IT in these definitions, we obtain the components
of the EM field:

<Dr> _ (Cf)s(p)e‘i‘”’a(r, 0).
B, sin ¢

Dy B cos ¢ it
<39> - <Sm¢)e Pir.6),

< I;: > - < Zzisnf > ey (r.0) 9)

However, to derive the total EM field behind the Sun, we
need to take into account the physical size of the opaque

massive sphere representing the Sun. We can do that by

imposing appropriate boundary conditions. In this regard,

the fully absorbing conditions that we used in [2,5] are well

suited for this purpose. To impose such conditions, it is

convenient to represent the Coulomb function, F,, in (5) as
(+)

a combination of two Hankel functions, H, ", given in the
form F, = (Hb(f) —H(f_))/Zi. This yields the following
expression for the Debye potential I15(r, §) from (5):

I15(r, 0)

= 25 +1
By 21 gy (e ey k)

—-HY) (kr,, kr))Pf (cos8) + O(r2). (10)

Expression (10) allows us to set the boundary conditions
on the surface of a fully absorbing sphere (see discussion in
[2,5]). First, we recognize the asymptotic behavior of the
Hankel functions H (kr r). For large values of the
argument kr — oo (espec1ally when kr > ¢, where ¢ is
the order of the Coulomb function) and r>r =

\/ 6+ 1)k + rf, — r,, these functions behave as [2]

lim H (kry, kr)

4 £+ 1
~ exp [:I:i(kr + kryIn2kr — % +o,+ %)]
+ O((kr)73). (11)
Thus, the radial function H, ) (kry,kr) represents the

outgoing wave, while H (kr kr) is the incoming wave.
This observation emphas1zes the fact, demonstrated by the
structure of (10), that in the absence of any interaction, the
Debye potential of a free EM wave may be thought of as a
superposition of incoming and outgoing waves.

Next, we recognize that the smallest possible impact
parameter represents light rays that are grazing the solar
surface, which corresponds to the heliocentric distance of
RG = Rg + r,. This extra r, term, in addition to the solar
radius, accounts for the fact that rays of light are bent by the
gravitational field of the mass monopole even as they
approach the source. In other words, the rays with b < Rg
will hit the Sun and will be absorbed by its surface.
Therefore, we require that for impact parameters b < Rg
there will be no scattered or coherently retransmitted
waves. To implement this condition, we rely on a relation
between index # that, in a semiclassical sense, is analogous
to the partial momentum of a particle, and the impact
parameter b, given as £ ~ kb [16-19]. With this semi-
classical relation, our boundary condition is equivalent to
the requirement that the Sun completely absorbs waves
with partial momenta £ < ¢,,,x = kR%. This fully absorb-
ing boundary condition is easy to implement using the
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solution (10) and subtracting the part that corresponds to
the outgoing wave, which is blocked by the sphere.

As a result, the solution for the entire Debye potential,
I1(r, ), in the area behind the sphere (i.e., for |§] <), in
the presence of gravity, takes the following form [2]:

(r,0) = II5(r, 0) + S11(r, 0)

kR,

_ T8 u }:-f
= I—[O(r,H) +E0%f:1 1
20+1
><Lﬂ(l/ﬂiI)e”’/H,(;)(krg,kr)P;l)(COSH), (12)

where I15(r, 0) is the Debye potential of the incident wave
given by (5) and SI18(r, 0) is the shadow potential.

In Ref. [2], we obtained a closed form analytical solution
for the Debye potential, H‘g’(r, 0), from (5), in the form

iul —cos@
H%(r) :_WO? siné

—eikrlFl[l +lkr

(e*2 F\[1+ikr,,2,ikr(1 —cosf)]

9,2,2ikr])+(’)(r!2}), (13)

giving the Debye potential of the incident wave in terms of
the confluent hypergeometric function, F,[a,b,z]
[2,20,21]. This solution is always finite and is valid for
any angle 6. The availability of this exact, closed form
solution for the Debye potential allowed us to investigate
the structure of the caustic formed by the lens. In addition,
the analytical solution given in (13) was used [2] to
derive the EM field in the interference region of the
SGL, including the EM field on the image plane and the
corresponding Poynting vector. As both forms are equiv-
alent, for various calculations where II5(r,0) plays an
important role, we will use either the form (5) for this
potential or that given by (13).

Also, by taking into account the asymptotic behavior of
the hypergeometric functions | F, [1+4-ikr,,2,ikr(1—cos6)]
and | Fy[1 + ikr,, 2, 2ikr] at large values of the argument

k(r —z) > 1[11] (and, thus, for @ > 1/v/kr > 0), we may
establish the asymptotic behavior of the closed form
analytical solution for the Debye potential II§(r,6)
from (13). The corresponding expression takes the follow-
ing form [2]:

u

I (r.6) :Eokzrsinﬁ

a{eik(z—rqlnk(r—z)) — pik(r+ryInk(r—z))+2ic

_%(1 —COSQ) (e—ik(r+ry1n2kr) _ eik(r+ry1n2kr)+2i00)

+(’)<:k_ri)} (14)

where z =rcosd, and constant o, is given as oy =
arg'(1 — ikr,) [11,12], which for large values of kr, — oo
behaves as [2]

_ F(] - lkr(]) — e—Zikryln(kry/e)—i’i’(l + O((qu)_l)).

eZi(fO
(1 + ikr,)

(15)

The second term in (12), 6I1&(r,0), is the Debye
potential responsible for the “solar shadow,” given as

o) — g N2 2]
OEE(r. 6) = OZer;l 206+ 1)

X ei"fHL(ﬂ+)(kV,q’ kr)Py (cos0),  (16)

which was obtained as a result of applying the fully
absorbing boundary conditions, as discussed above. The
fully absorbing boundary is, thus, the asymptotic boundary
condition set on the future light cone and deals with the fact
that the physical size of the opaque Sun is much larger than
its Schwarzschild radius, R > r,. Clearly, dI1%(r, 6) is
also a solution of the Maxwell equations (3) and (4) with
the corresponding EM field computed with (6)—(9).

Equations (12)—(16) capture all aspects of the EM field
behind a large gravitating opaque sphere. This solution is
valid at all distances and angles. However, because of its
complexity, numerical methods are required to explore its
physical implications. In this paper, we explore the solution
in the far field [22], where several approximation methods
are feasible. Specifically, to study the contribution of the
shadow potential (16), it is convenient to use the asymptotic
behavior of the Hankel functions (11) and present this
potential in its asymptotic form as

5Hg(r’ 9) =E, 2k2reik(r+rgln2kr)
kR,
20+1 (0L (1)
X 2 me Qo+ >Pf (cosO) + O(rg).

(17)

Note that, as r, < Ry, the asymptotic from of the solution
(17) is valid right outside the Sun, for distances r > Ry and
improves as distance increases. As a result, the solution for
the total Debye potential (12), takes the form

u

ik(r+r,In2kr)
ey
2k%r

(r,0) =TI5(r, 0) + E;

R 2p 41
X —
2ap(C+1)

£(6+1)

ei(z"f+T)P;1) (cos®). (18)

The behavior of IT§(r,0) given by (13) was established
in [2] and now is well understood. It is finite and
computable for any relevant distances and angles, including
forward scattering at @ = 0. We used this solution in [2] to
investigate the EM field in the image plane situated in the
interference region of the SGL beyond 547.8 AU (Fig. 1).
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In that region and near the optical axis 6 = 0, the EM field is
completely given by (5) [or, equivalently, by (13)], which
we used to derive the field in the image plane and study the
optical properties of the SGL. Expression 8I1¢(r, 0) from
(17) is important, as it provides access to the EM field in the

shadow region, which is the main subject of this paper.
We have thus obtained the Debye potential (18) repre-
senting the total solution for the problem of the scattering of
EM waves by the gravitational field of a large spherical star,
similar to our Sun. Specifically (18), together with (6)—(9),
represents the solution for the EM field propagating on the
background of a spherically symmetric, static gravitational
field produced by a large star with an opaque surface. This
solution allows us to study the physical behavior of the EM
field in the three regions behind this star (see Fig. 1),
namely (i) the shadow region, where no incident light
enters (i.e., for impact parameters 0 < b < Ry); (ii) the
region of geometrical optics, where only one ray passes
through any given point (i.e., for impact parameters b > R
and heliocentric distances r < RZo / 2r,); and (iii) the inter-
ference region (i.e., r > R%/ 2r,), especially for forward
scattering, 6 = 0). The interference region formed by solar
|

1k(r+r In2kr) Ro
alr)=Ev—am— < >
pik(r+r,n2kr) Ko
ﬁ(r,@):—Eou : +2 f/+l
ikr — (¢ +1
tk(H—r In2kr) kRg f_|_ f+l)
,0) = —Ey~ 2 giCortTo
}/(}’ ) 0 ikr f(f T e 2kr {

Note that, to derive these expressions, we relied on the
asymptotic behavior of the Hankel functions (11), which
were developed up to O((kr)~3). Therefore, (19)—(21)
are also valid to the same order in their phase term,
exp(i(20, + (£ + 1)/2kr)). If needed, using the
approach presented in Appendix B of [23], we may
include terms with higher powers in (kr)~! in (11) and,
thus, extend the order of approximation in (19)—(21).

Together with (9), these expressions describe the ficti-
tious EM field produced by the solar shadow. They contain
all the relevant information about the opaque nature of the
solar surface and the size of the Sun. We rely on (19)-(21)
to investigate the EM field in the region of interest: the solar
shadow.

A. Solution for the function «(r,0) and the radial
components of the EM field
We begin with the investigation of a(r, 6), given by (19).
To evaluate this expression in the shadow region for large

gravity beyond 547.8 AU behind the Sun is of the greatest
importance. The EM field in region is fully characterized
by the Debye potential (13), which was investigated in [2]
including the description of the EM field in the region of
geometrical optics. Here we focus our attention on the
shadow region of the Sun, where the shadow potential (16)
also plays a critical role.

III. EM FIELD IN THE SHADOW REGION

To study the EM field in the shadow region, we need to
express the components of the EM field in terms of the
variables involved. We do that by using the expression (16)
for the Debye potential SI18(r, ) responsible for the solar
shadow and deriving the components of the fictitious EM
field produced by this potential. This field is generated by
SI1&(r,0) to compensate the incident EM wave for a
particular impact parameter 0 ~ b < Ry of the incident
EM wave. To develop analytical expressions for this
fictitious field, we use (17) in the expressions (6)—(8),
deriving the factors a(r,9), p(r,0), and y(@), which, to
O(r?), have the form

ikr
i(20,+2520) p(1) ) IKFy
o (cosﬁ){u f(zf+1)}’ (19)
6‘P ) cos6’ ce+1)  ir PE,])(cos 0)
, 20
( 2k u? +2kr2>+ sin @ } (20)

1
(cos0)

P(fl) (cos )
sin @

C(e+1)  ir
- . 21
262 u? + 2kr2> } (21)

[
angles, 6> ,/2r,/r, we use the appropriate asymptotic
representation for PEI)(cos 0) [22,24,25]:

—¢
V2t sin 0
+ O

P;l)(cos 0) = (ei(/+%)6+i§ + e—i(f+%)9—ig—f)
for 0 < 6 < x, (22)

which results in the following form of (19):

ik(r+7,In2kr) (f+ he ikr,
a(r,0) =—E, ) W= '
B 2 arsma \"AC+)
« 2o A1E) (el+D0+ | gmile+ho-if). (23)

We recognize that for small impact parameters,
0<b<r, light rays will be captured by the solar
Schwarzschild field and, thus, will not be transmitted.
For large impact parameters, ¢ > kr,, we may replace
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f+1—->7and? +% — ¢ and also replace the sum in (23)
with an integral,

pik(r+r,In2kr) /kRg O EdE ( 5 ikrg>
- B e B e S )
K*r? /=1 \/2xsin@ £

« ei(20f+zf;jr)( eHE0+E) | omile0+), (24)

a(r,0) = —E,

and evaluate this integral by the method of stationary phase.
We recall that this method allows evaluating integrals of the
following type:

1= / A(£)e?)de, ¢ €ER, (25)
where the amplitude A(?) is a slowly varying function of Z,
while ¢(¢) is a rapidly varying function of #. The integral
(25) may be replaced, to good approximation, with a sum
over the points of stationary phase, £, € {¢1, .}, for
which dg/d¢ = 0. Defining ¢" = d’>¢/d¢?, we obtain the
integral

2r . x
I~ > A4 (p,,f)e*w(fo)ﬁ). (26)

S AT ( 0

Expression (24) shows that the #-dependent part of the
phase has the following structure:

0.(¢) =+ <f9 + %) + % + 20,4 O((kr)73).  (27)

We recall that the Coulomb phase shift 6, has the form
[2,11]

‘ kr
oy =09— » arctan—?’, o =argl'(1—ikr,), (28)
— Jj :
J
where o, was evaluated in [2] to be

kr, =«
oy = —kr, In—2-=. (29)

e 4
— [ g =
Incident plane wave —
—_— —_—
— —
— —
_ _—

_—
E— Shadow
_—

— —
— —
— —
_— _
_— _
_— _—
— —

We may replace the sum in (28) with an integral and, for
ry < b < Ry and, thus, kr, < 7 < kR, evaluate o, as
o, =—kr,In¢ + O(r). (30)
Therefore, the points of stationary phase, where
dop,/d¢ =0, are given from (27) by the following
equation:

kr 4
+0 = 2arctan7——

kr (31)

which is the equation for families of hyperbolae. If we take,
from the semiclassical approximation, the connection
between the partial momentum ¢ and the impact parameter
b, given as ¢ ~ kb, then for small angles 6 (or, large
distances from the sphere, r > R), from (31) we see that
the points of stationary phase must satisfy the equation (see
[2] for details):

1: ism& 2r

. T 1O,

(32)
within the shadow region characterized by r, < b < Rg,.

The presence of the last term in (32) defines the
properties of the shadow region behind the Sun. This term
is absent in flat spacetime, where r, = 0 and the boundary
is set by the straight lines b = rsin 0 Based on the sum in
(24), the largest impact parameter that defines the shadow
region is b™™ = Ry + r,; thus, in any given plane that
contains the focal line, (32) is bounded by the two most
extreme hyperbolae describing the boundary that coincides
with the two outmost rays that are almost grazing, but are
still absorbed by the Sun on opposite sides in the forward
direction, 0 <6 <7, and, thus, setting the hyperboloid
shape of the boundary of the shadow.

The result given by (32) is different from that given in [5]
because, in the case of light bent by gravity, individual
photon trajectories are bent toward the gravitating body,
causing light rays to enter the cylindrical region of geo-
metric shadow that is prohibited in the case of a flat
spacetime studied in [5] (see Fig. 2).

— ,“ H

H“H\\M“H\ “M

d
T
H L
I

= Il

—_ H\
—wM

_—

u
_—

FIG. 2. Diffraction of light on a large spherical opaque obscuration. Left: Geometric shadow region with a cylindrical shape, formed in
flat space-time (see details in [5]). Right: shadow with a hyperbolic shape (no rays of light exist in this region), caustic formed at the
interference region, and the region of geometric optics in the case of a large gravitating sphere. The arrows indicate the direction of the

Poynting-vector, i.e., the direction of wavefront propagation.
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Equation (32) yields two families of solutions for the
points of stationary phase:

2r, 1
(1 _ :
KO =F kr<51n9+79®> —+ (’)(rg) and

2krg )
no + O(r7). (33)

£y =+

The “+” or “F” signs in (33) represent the families of
fictitious “shadow” rays propagating on opposite sides
from the Sun. Also, the two families of solutions represent

two different waves. Thus, the family f(()w represents the

incident wave. The family f(()z) describes the scattered wave
(see Fig. 1 in [2] and relevant discussion therein and also
in [2,7]).

2
(1) _d P+
CDN({O )= 472

o=V kr rsin0

2
1 <1+ o

The first family of solutions of (33), given by f(()l), allows

us to compute the phase for the points of stationary phase
(27) for the EM waves moving toward the interference
region (a similar calculation was done in [23]):

1
0. (V) = ig—iezkr — kryInkr(1 = cos 0) — kr, In 2kr
+ O(kr0*, kr,60%). (34)

Computing the second derivative of the phase, ¢(¢),
given by (27), with respect to £, we have

1 2k
GLE) =+

kr = 2 (35)

After substituting here fél) from (33), we have

)):s 2—”=\/%<1—r.rg +O(r§)>~ (36)

@"(¢y) sin’6

(1)

Using (36), we may compute the amplitude of the integrand in (24), for £, = #;;’, which takes the form

A(%)

2z oV (2 ikrg> 2r
_ U2 —

¢"(¢0)  V2zsing GIAYAD)

) :
= (F 1)k sin¢9<1 + rsil:gﬁ <1 —ﬁ) + O(ré,r—rgGZ)). (37)

Because of its smallness, we can drop the o 1/(kr) term in the parentheses of this expression.

As a result, for the first family of solutions, f(l), from (33), the expression for a(r, 0) from (24) corresponding to the

fictitious incident wave takes the form
in 0) = -1 o3 ol 1 Vg
al(r,0) = —Eyu~" sin + .

Now we consider the second family of solutions in (33),
(2)

r

O 94’7992 i(krcosé)—krglnkr(l—cosé)))' 38
(1—cos€)+ < r >>e (38)

given by 7y, which leads to the following expression for the stationary phase

9%(4)2

k
') = &% — kryIn2kr + kry In(1 = os 0) = 2kr, In =2 + O(kr, ). (39)

Using this result, from (24) we compute the phase of the corresponding solution (by combining the relativistic phase and the

¢-dependent contribution):

@D (r,0) = kr + kryIn2kr + o7 (£0) + % = k(r+ ryInkr(1 = cos ) + 204 + O(kr,62). (40)

Now, using (35) and ff)z) from (33), we compute the second derivative of the phase with respect to ¢-

1 sin?d sin%@ 2r 2 \/Ankr r
"(£y) = — ~ 1 g O(65); thus, = 901 -—2 O(69). 41
villo) =t S =2k < +rsin2¢9> +0(@);  thus \l9"(¢,) — sin6 rsing) TOE)- (1)

g g
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At this point, we may evaluate the amplitude of the integrand in (24), for £y = f(()z), which takes the form
2 o ik 2 4Kk>r2 jsin’6
Ao |z = e (w2 =20 ) [P = (F i (1= - T, (42)
@"(¢0) 27 sin 0 4 @"(¢y) sin’@ rsin°@  4kr,

As a result, the expression for da(r, @), for the scattered wave from (24) for ¢, (()2) and for 6> /2r, /r, takes the form

2rg\* 1 ] nkr(1— io
aflf(r’ 9) = —E, <79> Sin3€e k(r+ryInkr(1-cos 0)+2icy ., O(I’;) (43)

Thus, to the accepted approximation, there is no scattered wave in the radial direction. This result is consistent with that
reported in [2].

The results (38) and (43) are the radial components of the EM wave (9), D,, B,, corresponding to the two families of
impact parameters given by (33). We use these solutions to determine the resulting EM field in the shadow region.

B. Evaluating the function §(r,0)

To investigate the behavior (r,6) from (20), we neglect terms of O(r,/kr?) and obtain the following expression for

B(r,0):

B(r,0) = —E,

ueikriryn2kr) Ko +1 (20,050, anpl)(cos 0) (¢ +1) P,(/,l)(cos 0) (44)
e'\2ort - :
ikr =0+ 1) 00 2k ru? sin @

To evaluate the magnitude of the function f3(r, ), we need to establish the asymptotic behavior of P;U (cos @)/ sin @ and
8P§1)(cos 0)/00. For fixed 0 and kry, < ¢ — oo, this behavior is given as [this can be obtained directly from (22)]

(1) 1
P, (cosO) 20 \2 . 1 b1 3
sing (ﬂsin3¢9> s1n<<f—|— 2>9 4) +0). (45)
dP\) (cos ) 203 \3 1 n .
7 = <ﬂsin9> cos((ﬂ—i—E)H—Z) + O(¢72). (46)

With these approximations, the function f(r,0) in the shadow region but outside the optical axis takes the form

r4ryIn2kr) kRg £ _|_%

ikr 4= (6 +1)

(O 0 R (G |

For large £ > kr,, the first term in the curly brackets in (47) dominates, so this expression may be given as

ik(r+4-r,In2kr) kR £+ 1 2I/ﬂ3 1 2(f 1 ) . 1
p(r.0) = —E, e Z 2 < >2 <1 _de+ )> ¢i2or 75 cos<<f + —>9 - f) (48)

ikr (¢ + 1) \xsind Y 5 :

ik(
ue' . (e
el(25/+%)

B(r,0) = —E,

To evaluate f(r, 8) from (48), we again use the method of stationary phase. For this, representing (48) in the form of an
integral over 7, we have

ueik(r+rg In 2kr) kR \/?dbﬂ fZ ) e ) . ) .
p(r.0) = EOT ¢=1 \/2msin0 <1 - 2k2r2u2> el N - ), 49)
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Equation (49) shows that the Z-dependent part of the phase has a structure identical to (27). Therefore the same solutions
for the points of stationary phase apply. Then, with (36), for the first family of solutions f (33), from (49) we have

27 NG £? r r
A(¢ - 1- = JF Ik —e-io(e Lo
e T G N A C L G
=4+\/F lkru‘l{cosﬁ——+(’)<94,r—rg€2> } (50)

As a result, similar to (38), the expression for the function B, (r, @) of the fictitious incident wave takes the form

in(r,0) = + /F 1 Egu- {cos&—— I (’)<94 P )}ei(i%JrkrcosH—krglnkr(l—cose))+i§

— _Eou—l (COS@ " > ik(rcos @—r,Inkr(1—cos 9)) + O<04 rl] 92) (51)
r

Now we turn our attention to the second family of solutions in (33). Similar to (42), for féz), we have

2 N 2
A e 30| e~ Y g 00 -

which yields the following result for ﬂ[ﬁ](r, 6):
T(r.0) = —VElE 5 —57

ez(i§—§+kr+krglnkr(l—cosé))+2rro) +O(94 7’2)
b

2rs %9
r . r
— _E 9 i(k(r+ryInkr(1—cos0))+200) O 94,—'(]92 ) 53
%2 rsin? 10 ¢ * r (53)

With (9), expressions (51) and (53) provide the form of the function f3(r, ) that determines the Dy, By components of the
fictitious EM field representing the solar shadow.

C. Evaluating the function y(r.0)

To determine the remaining components of the EM field (9), we need to evaluate the behavior of the function y(r, 8) from
(21) that is given in the following form:

(54)

ik(r+r, r) kRg 1 (1)
(1.6 = —Ey peik(r+ryIn2kr) £+3 5i(20, 421 {(9Pf (cos®) —I—Pf (cos®) <1 (¢ + l)>}

ikr =6 +1) 00 sin 0 2K

where, similar to (44), we dropped the insignificant r,/kr? term.

To evaluate this expression, we use the asymptotic behavior of Pgl) (cos @)/ sin @ and 8P§l) (cos @) /00 given by (45) and
(46), correspondingly, and rely on the method of stationary phase. Similar to (47), we drop the second term in the curly
brackets in (54). The remaining expression for y(r, 0) is now determined by the following integral:

ueik(r+ryn 2kr) kR \/?
kr ¢=1 V2msinf

Clearly, this expression yields the same points of the stationary phase (27) and, thus, all the relevant results obtained in

y(r.0) = E ei(%ﬁ“%”)( ei(00+5) _ g=i(c0+9)), (55)

Sec. Il A apply. Therefore, the #-dependent amplitude of (55) is evaluated for fél) from (33) as

27 VE 2 3 Tg
A(?y) 7l Virana ,go”(fo) =+VF 1kr+(’)<9 - 0 > (56)
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The function y.(r,0) of the incident wave is then given as
}/ii(r’ 9) - 4+ /:F lEouei(:I:’Z’-&-krcosH—krglnkr(l—cos@)))-‘ri% — _Eouei(krcose—krglnkr(l—cosé’)) + 0(94’ &92) . (57)
r

For the second family of solutions (33), we get the following result:

2r NG 27
A(Z =Vl —L—+ O r 58
(%0) 40//(/0) V2zsind \| ¢" (%) 251n 29 (6%.r5). (58)
which yields a result for y5(r, ) that is identical to (53),
r . r
s¢(r.0) = — g i(k(r+ryInkr(1—cos 0))+20) O 94’_992 ) 59
rE(r.9) 0 2rsin2%96 + ( r (59)

Again, with (9), expressions (57) and (59) provide the function y(r, #) that determines the Dy, By components of the
fictitious EM field representing the solar shadow.
At this point, we have all the necessary ingredients to present the solution for the EM field in the shadow region.

D. Solution for the EM field in the shadow outside the focal axis

To determine the components of the EM field, we use the expressions that we obtained for the functions a(r, 8), (r, 6),
and y(r, 0), which are given by (38), (51), and (57), correspondingly, and substitute them in (9). As a result, we establish the
fictitious solution for the incident EM field in the shadow region for angles 6 > |/2r,/r:

Dr _ —Eou_l COS¢ 1+ Ty ei(krcos()—krg In kr(1-cos 0)—wt) +0 94,&92 , (60)
B sin ¢ r(1 —cos®) r
<D‘9 ) — _EOM—I (COS¢> < 0s 6 — Ty > ik(rcos @—r,Inkr(1—cos 0)—wr) 4 O<94 992>’ (61)
By sin ¢ r
<D-¢ > _ —E0u<_ Sln¢> i(krcos 6—kr, In kr(1—cos 0)—wt) + 0(94 992) (62)
By cos ¢ r
At the same time, the EM field produced by the Debye potential I of the incident wave (14) has the form [2]
(0)
D; — Eou_l cos ¢ sin@( 1+ Ty ei(k(rcosH—r_,] lnkr(l—cos@))—wt)’ (63)
B sin ¢ r(1 —cos®)
(0)
D, _ Eol/t_] (COS ¢> (COS 0— &) ! (k(rcos 0=r,Inkr(1—cos 6))—(01)’ (64)
Béo) sin ¢ r
(0)
D(/) = Equ ( —sin ¢) k(r cos 0—r, Inkr(1~cos 0))~wt) (65)
B((ﬁo) cos ¢

The total field, in accord with (12), is given by the sum of (61)—(62) and (63)—(65). It is easy to see that this total EM field
in the shadow behind the Sun completely vanishes. However, this is not yet a complete story: we recall that in the case when
gravity is involved, there are two waves that characterize the scattering process, namely the incident wave (63)—(65) and the
scattered wave, which was computed in [2] [see Egs. (49)—(50) therein] and is given as

(0) g (0)
Dy _ ¢ —E, ( C?S ¢ > ’jg - Qi(k(rryInkr(1-c050)) +200-0r) D, = 0(r2). (66)
B(go) . _ Dz(p()) . singy ) 2rsin*$§ Bﬁo) . '
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To verify that the scattered field also vanishes in the
shadow, we need to compute the total scattered EM field
in the shadow region behind the Sun. We do this similar
to the discussion of the incident field above, by adding
the corresponding components of the scattered field (66)
and those of fictitious scattered fields induced by the
solar shadow (similar to the approach discussed in [26]).
Using the results for the functions of(r,6), p(r.0),
and y%(r,0), given by (43), (53), and (59), correspond-
ingly, we compute the components of the fictitious
scattered fields D,, and B, by substituting these
functions in (9). Then, with the help of (12) we compute

the total EM field behind the Sun as D, = D£°) + Dy,

and B, = BQO) + B,.. This exercise allows us to verify
that there is no scattered wave behind the Sun, as
expected.

This completes our investigation of the EM field in
the solar geometric shadow region. We found that, in the
presence of gravity, the solar shadow occupies the
heliocentric distances Ry < r < R?/2r,~547.8 AU and,
because of the gravitational deflection of light, it has the
shape of a rotational hyperboloid whose boundary is
determined by (32). We found no coherently retransmitted
or scattered light in the solar geometric shadow region,
which is expected from the fully absorbing boundary
conditions that we implemented in Sec. II precisely for
this purpose.

IV. EM FIELD ON THE OPTICAL AXIS AND THE
BRIGHT SPOT OF ARAGO

For practical applications of the SGL, we are interested
in the EM field in the area directly behind the Sun [3]. It is
known that, in flat spacetime, the bright spot of Arago is
formed exactly on the optical axis behind an obscuration
with a perfectly spherical boundary. This effect is a well-
known manifestation of the wave nature of light. It is due to
the diffraction of light waves on the edges or boundaries of
the obscuration. We search for such an effect in the
presence of gravity, taking into account the related gravi-
tational bending of light trajectories.

In flat spacetime, the bright spot of Arago forms under
conditions consistent with the Fresnel approximation [8]
which are satisfied within the range of distances z < kR%
from the Sun, corresponding to heliocentric distances of
7 < 98(1 um/A) Mpc. One encounters this spot behind the
sphere on the axis having the amplitude of the incident
wave. Once we take gravity into account, our region of
interest is confined to the shadow region, extending from
the solar surface to 547.8 AU.

It is also known that the Fresnel diffraction mechanism
responsible for the Arago spot is affected by the rough-
ness of the spherical boundary. For the Sun to exhibit
such an effect, its surface roughness (the width of the
Fresnel zone surrounding the solar disk [27]) has to be on

the order of 6R ~ (RS — Ar)'/? — Ry ~ 10*) for an Arago
spot to form at a distance of r ~ 100 AU, which clearly
is not the case. The Sun is not a perfect sphere due to its
oblate shape and other deviations from spherical sym-
metry [28-30]. In addition, the solar corona, which is
composed of a free electron plasma, certainly is not
stable on spatial scales of several hundreds of wave-
lengths (see [23] and references therein). Thus, a study of
the Arago spot in such conditions is of limited practical
significance for the SGL (hence it was not carried out in
[5]). Nevertheless, it may be relevant to some applica-
tions in astronomy and astrophysics, especially where
longer wavelengths and strong gravitational fields are
considered.

In Sec. III, we have shown that there is no light in the
shadow. In the case of the gravitational deflection of light,
this shadow extends up to the heliocentric distance
Ro <r<zy=R%/2r,~547.8 AU. In this section, we
consider the EM field in this region, which is characterized
by Fresnel diffraction. Our objective is to determine the EM
field in the shadow of the Sun, especially on the optical axis
of the SGL.

A. The Debye potential outside the shadow

The presence of the opaque Sun creates a spherical
obscuration that blocks the rays of incident light with
impact parameters, 0 < b < Rj. Thus, there are no light
rays that can enter the shadow region. However, light rays
that graze the Sun diffract on the edges of the solar disk into
the shadow region, leading to the creation of the Arago spot
on the optical axis of the SGL.

We begin by examining the expression (12) together
with (10). As these expressions suggest, the EM field
outside the Sun is induced by the Debye potential that to
O(r?) has the form

_ U~ e 2041 )
7 (0]
U = 27 + 1
E i’
- OZer;l £+
x eioeHS) (kry, kr)PY) (cos 6). (67)

The first sum in this expression is the remaining part
of the outgoing wave that continues to move forward
toward the larger values of z. The second wave is the
incoming wave, which makes no contribution to the EM
field on the optical axis in the area of interest (see [5]).
Therefore, we need to investigate the EM field gen-
erated by the first term in (67), which we call IT"(r, 9).
Similar to (17), we use the asymptotic behavior of the
Hankel functions (11) and present this potential in its
asymptotic form as
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® ¢4 1
6 +1)

ngt(r’ 9) = —E, eik(r-&-r_q In2kr)

2
2k°r Py

x el@ffﬁ%)PS)(cos 0) + O(r2). (68)

As we have shown in [2], this is the potential that
generates the EM field in the focal region of the SGL. Its
components are given by (9), together with a(r, 8), f(r, 9),
and y(r, ) from (6)—(8) with the potential IT replaced by
I15"(r, 0). Besides being responsible for the EM field in the

|

eik(r+r!]ln2kr) ©
a(r,0) = —E, a7
ueik(r+r_q In2kr) £+ 1 P H])
B(r.0) = Eo ~ e {
ikr ) £(€+1)
ik(r4-ryIn2kr) 1 +|
y(r,@):Eoue " £+5 (20 40ED {8P
ikr S O+ 1)

We use these expressions to search for the light that
may be diffracted by the sharp edges of a large circular
obscuration creating an interference pattern on the optical
axis in the presence of gravity.

B. The function a(r.0) and the radial components
of the EM field

It is known that, in the absence of gravity, diffraction
of light by an opaque sphere causes the appearance of
the bright spot of Arago [31] within the Fresnel regime.
We investigate if such a spot appears in the presence of
gravity, which causes light rays to focus at the distance
of R%/2r,~547.8 AU. The EM field in the shadow
region is derived from the Debye potential (18), and it is
given by the factors a(r,0), p(r,0), and y(r,0) from
(69)—(71). We begin with the investigation of a(r,8),
given by (69) as

eik(r-‘rr_,, In2kr) 1 ikr
> (43) (- )
12r ;k;g< 2) (“ A(f+1)

X e"(ZGf’*ﬂszt]))P(fl) (cosB). (72)

a(r,0) = —E,

To evaluate expression (72) directly on the optical axis
or, more broadly, for 0 < 0~ /2r,/r, we use the asymp-

totic representation for Pgl)(cos 0) from [22,24,25], valid
when ¢ — oo:

interference region of the SGL (see Fig. 1), this is the field
that may be responsible for the light that is diffracted into
the shadow to generate the Arago spot. To investigate this
possibility, we need to compute the EM field generated by
I19"(r,0). This can be done using the same approach
discussed in Sec. III, where we studied the EM field due to
the shadow potential 5I18(r, @). To that extent, we take the
15" (r, 0) from (68) and develop analytical expressions for
the factors a(r,6), #(r,6), and y(6), which, to O(r7), have
the form

1\ . e+ ikr (1)
f"’_) el(20‘f+ 2kr ){uz —79}Pf (COS 9), (69)
f;g( 3 27 +1)

oPY (cos 0) <1 LE+1)  ir, )

o0 22U 2k

(cos 0) N P?) (cos0) (

90 sin 0 e irg2>}' 7D

2622 2kr

P _ 43
, (cos0) = Ji f—l—z 251n29 (73)

cos 30
This approximation may be used to transform (72) as

eik(rJrryln 2kr)

12 ikr
Ey—5— O+ ) (-5
0 K*r*cos16 K’;I;*( +2> (u f(f—f—l))

Jl((f+ >2s1n 9) (74)

It is easy to see that for 6 =0, a(r,0) vanishes.
Therefore, even in the absence of gravity, when r, =0,
the radial components of the EM field, (D,, B,), cannot be
responsible for the bright spot of Arago [31,32]. This
remains true when the propagation of light is affected by
gravity, when r, # 0. Therefore, we turn our attention to the
other two components of the EM field, governed by the
functions f(r,0) and y(r,@).

a(r,0) =

(26f+

C. The functions f(r,d) and y(r,0) and the spot
of Arago in the presence of gravity

In studying the solar shadow region, we consider rays
with impact parameters 0 < b < R%, which correspond to
the partial momenta 1 < ¢ < kR%. We are concerned with
the interaction of light with the surface of the sphere where
b = R, which corresponds to £y = kRg. In this case, we
may neglect terms o £2/4k*r’u®~ (R*/2r)> in (70)
and (71), as their contributions are very small, reaching
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5.4 x107% at r = 1 AU. In addition, we may neglect the
terms ir,/2kr* in the functions §(r, 6) and y(r, 6) from (70)
and (71), correspondingly. This allows us to present these
functions as

p(r.0) = y(r,0) = A(r,0), (75)
where the function A(r, @) is given as

ik(r4r,In2kr) 1
e' 9 4 . o641
+3 ei(20c+ (2,; )y

ikr ) c(C+1)

(1) (1)
" {8Pf (cos0) N P,’(cos 6)}

.A(r, 9) = EO

00 sin @ (76)

To evaluate the magnitude of this function, we need to
use the asymptotic behavior of the Legendre polynomials
Pgn(cos @) in the relevant regime [33], characterized by
w=({+ %)9 being fixed and £ — oco. These are given in
the following form:

(1)
w _ %f(/ + 1) (Jo(w) + Jo(w)),
(l) COS
W—%ﬂﬂ 1) (Jo(w) = Jo(w)). (77)

Using the expressions (77), we transform (76) as follows:

eik(r+ry In2kr) o 1
A(r.0) = By —— f_zk; (f + 5)
=kRe

, + 1
x eiCort T < <f - 5) 9) ' (78)

Thus, we see that §(r, 0) and y(r, @) may be responsible for
the bright spot of Arago, as neither of them vanish at 8 = 0.
By replacing the sum in (78) with an integral, we have

eik(r+r_,, In2kr) foo
A(r,0) = Eoi/
4

ikr —kR,

el20+55) 1 (£0)¢dE.
(79)

The analysis of the EM field in the interference region of
the SGL is based on the investigation of the refractive
properties of the gravitational field of the Sun. It tells
nothing about diffraction of light by the spherical obscura-
tion in the presence of gravity. However, the same integral
(78) also describes the diffraction of light on the boundaries
of a spherical obscuration. Evaluation of this integral for
these purposes requires the tools of numerical analysis, as
no analytical solution to (78) is known. For this purpose,
we present a set of useful approximations. We first examine
the total phase of this expression, ¢, which, by using the

expression for ¢, from (30) and taking # ~ kb, may be
given as

2 2 b? kb?
(/7—kl”-l—%—krglnmzk(r—l-a—rglng) —I—O(ré)

(80)

The terms in this expression have clear meaning: The first
one is the classical phase due to a free-wave propagation
toward the image plane. The second term is the phase of the
spherical wave obeying the Fresnel approximation, which
is used to describe the bright spot of Arago. The third term
is new and is due to gravitational Shapiro delay.

Evaluating expression (80) numerically for b = R, we
see that within the shadow region, both of these terms are
about the same order of magnitude. However, at helio-
centric distances r < ry~20.3 AU, the phase (80) is
dominated by the first term due to the classical Fresnel
diffraction. But then, after crossing r, the phase changes
sign and, for » > 20.3 AU, it becomes increasingly domi-
nated by the second term due to the refraction of light in
gravity. Such a dominant behavior is because of the
gravitational 1/r potential (2) whose presence is evident
even at very large distances from the gravitating sphere.

With result (80) we present (79) in the following
identical form:

ek oo
A(V s 9) = EO -

; el Gkr N5 1 (£0)£de. (81)
ikr Je—kr;,

where all three phase contributions, namely the phase shift
due to the length of the propagation path, the phase shift
due to Fresnel diffraction, and the Shapiro phase shift due
to gravity are clearly shown.

We first consider (81) in flat spacetime, i.e., by setting
ry = 0, and evaluating the resulting integral by parts:

eikr

Ao(r,0) = /f T ey (£0)tde

Eo~
ikr =kR},

ikr iﬁ *
= Eye™ < e 2 Jo(kRE0)

"y / " ei%fl(fe)df}. (82)
4

—kR,
Recognizing that for #0 — 0, the Bessel function J;(£6)
behaves as J(£0) =120 — - £°6° + O(£56°), we keep

only the leading term for J,(£6) and present the second
term on the right-hand side of (82) as below,

[Se]

S 2 L, 2
0 e'w ] (£0)dt ~—~0 ewedld
£=kR?, 2 Je=kr;,

Ko? o
2—15‘32"42%:“33 ) (83)
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where we used @ = p/r and, for small angles, r ~ z, with z
being the heliocentric distance to the image plane and p
being the distance from the optical axis on that plane.
Clearly, (83) vanishes both when r increases and/or when
p — 0, approaching the optical axis. Therefore, this term
may be neglected. As a result, (82) takes the form

*2

Ay(r.0) = Eyexp [ik <r + R2® )}JO(kR(*DH), (84)

r

which has the properties of the bright spot of Arago [31],
describing the corresponding intensity distribution on the
image plane. Thus, we have established that our wave-
optical treatment recovers the well-known features of
diffraction by the boundary of a spherical obscuration.

The same result may be obtained by using the approach
relying on the scattering transfer function, n(#), that
captures the interaction of light with the sphere. The
normalized scattering function in this case has the
form n(¢) = 6(¢ — kR%)ir/R% (which is consistent with
[34,35], which deals with the problems of nuclear scatter-
ing, and [36] that deals with practical applications of the
Arago spot in designing solar coronagraphs), where &(+) is
Dirac’s delta function, and can be used to select the
innermost impact parameter just outside the Sun, repre-
senting rays of light that are diffracted by the edge of the
solar disk. Using this scattering function, we perform the
integration of (82) as

eikr

0=
ikr

A(r,0) = E / Y (e el (£0)cde
0

) Athz
= Eye'* e J o (kRG0). (85)

Clearly, the result (85) is identical to (84). Using this
expression for the functions f3(r, ) and y(r,6) in (9), we
compute the components of the corresponding EM field
and verify that the Poynting vector of the EM field that is
responsible for the Arago spot has only one nonvanishing
component, namely that along the z axis

Arago c pR*
s :5E3J3< 777@) (86)

The light intensity distribution on the image plane resulted
from (86) is consistent with that of the bright spot of Arago
(see [31,32,36] and references therein), thus confirming the
known result [8].

Now we consider the same process, but in the presence
of gravity. Unfortunately, it is not possible to analytically
integrate (81) in a general case for r, # 0; however, we
can easily do this for & = 0, which is sufficient for our
purposes. Indeed, using the properties of the upper incom-
plete Gamma function, I'[a, z] [11], we integrate (81) for
0=0 as

i ) R*Z kR*Z
s ool ()

2
— ke (T 1 — ik 2
ez < [ ikrg, l2kr

kR*2
+ ikr,I {—ikrg, —i 2;9 ] ) } (87)

Given realistic values of the parameters involved (i.e., k, r,,
and Ry), the part containing the incomplete Gamma
function vanishes. As a result, (87) takes the form

) R*Z kR*Z
A(r,0) = Eyexp |:lk (r + 22 —r,ln 2;9 )] . (88)

Clearly, in the limit r, — 0, the result (88) reduces to (84),
taken on-axis. Thus, we see that apart from an additional
gravity-induced phase shift, the Arago spot appears, as
expected, in the shadow region. To integrate (81) in the
general case, we may use the approach relying on the
scattering function 7(#) that was discussed above, which
yields

ik oo » 2
A(r,0) = EO% n(£)e G50 1 (£0) ¢ de
LKT Jo
. R*Z kR*Z
= Eyexp {zk(r + 2? —ryln 2;3 )] Jo(kRE0).

(89)

Thus, although in the presence of gravity the Arago spot
acquires an additional large phase shift, its magnitude
remains unchanged. The intensity distribution of the EM
field in the shadow on the optical axis behind the large
opaque spherical obscuration is still given by (86). These
results are consistent with the approach relying on the sharp
boundary of an opaque sphere. A more refined modeling of
the interaction of the EM wave with the surface of the
sphere is possible using methods discussed in [33,34,37].
However, this is beyond the scope of this paper.

For completeness, we mention that the EM field in
the interference region of the SGL, for r > Rzo/2rg =
547.8 AU, was studied in [2] [see (121) therein]. In that
case, the integral (81) was evaluated by using the method of
stationary phase with the functions f(r,0) =y(r,0) =
Agqr(r,0) obtained in the form

2k 3 .
Ascr(r,0) = Ey (%) Z‘IO(k 2’9”9)6””- (90)
—e q

This expression describes the properties of the only non-
vanishing component of the Poynting vector along the z
axis, S,, which, from (90), together with k = 2z/1 and
0 = p/z, is given as (see [2] for details)
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SZ - QE(Z)

472 r p |2r
(vl (2”1 \/;) e
This expression summarizes the optical properties of the
SGL in its interference region providing the means to
describe its major signal amplification and significant
angular resolution [2]. As evident from (91), the largest
amplification of the SGL occurs on the z axis (i.e., with
p =0), where no other fields are present. This is a
somewhat intuitive result, but, nevertheless, now we have
provided a confirmation for this fact relying on the wave-
optical treatment.

V. DISCUSSION AND CONCLUSIONS

We investigated the EM field in the shadow cast by a
large gravitating sphere and developed a wave-optical
treatment of this problem. The results obtained here are
relevant to our ongoing work on the imaging with the SGL
[2—4]. These results are also relevant to some other practical
applications, such as Rutherford scattering microscopy [38]
where one encounters similar potentials in addressing the
scattering of focused beams in a refractive medium. Thus,
the description of the shadow in the case of a repulsive
Coulomb potential [i.e., the gravitational field produced by
a relativistic mass monopole (2)] presented here has an
immediate practical value in describing the beam diffrac-
tion pattern for light as well as other massless particles.

However, our primary motivation is the study of the
optical properties of the SGL and especially its potential for

high-resolution imaging and spectroscopy of exoplanets.
In this regard, we have demonstrated that the fully
absorbing boundary conditions introduced in Sec. II
allow for a proper description of the shadow region
behind the Sun. We have shown that, in the presence of
gravity, light rays are bent toward the Sun and the
resulting solar shadow has the shape of the rotational
hyperboloid. We have also shown that there is no light in
the shadow region, except for that diffracted by the sharp
boundary of a large spherical obscuration to form the
bright spot of Arago within the shadow of the SGL on its
optical axis. Furthermore, in the presence of gravity, the
total EM field in the interference region is given solely
by the incident light, which is deflected by the solar
gravity toward the optical axis where it forms a caustic,
thereby significantly amplifying the intensity of the
incident light, as discussed in [2].

Our next steps involve investigation of the effect of the
solar plasma (using, for instance, the approach developed
in [23]) and of the solar nonsphericity and optical pro-
perties of the caustic formed by the gravitational field of
the extended Sun. These topics are currently being inves-
tigated; results, once available, will be reported elsewhere.
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