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Kerr—(anti-)de Sitter black holes: Perturbations
and quasinormal modes in the slow rotation limit
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We study the perturbations of scalar, vector, and tensor fields in a slowly rotating Kerr—(anti—)de Sitter
black hole spacetime, presenting new and existing Schrodinger-style master equations for each type of
perturbation up to linear order in black hole spin a. For each type of field, we calculate analytical
expressions for the fundamental quasinormal mode frequencies. These frequencies are compared to
existing results for Schwarzschild—de Sitter, slowly rotating Kerr, and slowly rotating Kerr—de Sitter black
holes. In all cases, good agreement is found between the analytic expressions and those frequencies
calculated numerically. In addition, the axial and polar gravitational frequencies are shown to be isospectral
to linear order in a for all cases other than for both nonzero a and A.
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I. INTRODUCTION

Black holes are among the most captivating aspects of
Einstein’s theory of general relativity (GR) [1-5], and their
properties have been studied extensively since the dawn of
GR in the early 20th century. Of great interest to physicists
and mathematicians alike is the response of black holes to
perturbations. Notably, perturbed black holes “ring,” emit-
ting gravitational waves at a characteristic set of frequencies
known as the quasinormal mode (QNM) frequencies [6—10].

These QNM frequencies are dependent on the back-
ground properties of the black hole (e.g., mass or angular
momentum), acting like a “fingerprint” for a given black
hole. Furthermore, the presence of a cosmological constant,
or a modification to the theory of gravity itself, can and will
affect the spectrum of frequencies that a black hole will
emit gravitational waves at. Thus, studying the QNM
frequencies of black holes (and other fields propagating
on the black hole spacetime) provides a window from
which to observe not only the properties of the black hole
itself, but also of the wider universe and indeed of the
fundamental laws governing gravity [11-17].

From an observational point of view, given the dawn of the
gravitational wave era of astronomy (with multiple direct
observations of gravitational waves from mergers of highly
compactobjects, i.e., black holes orneutron stars, having now
been made by advanced LIGO and VIRGO [18-22]),
determining and detecting the QNM frequencies of the
remnant black holes left perturbed after the merger of
compact objects is an interesting and important area of study.

In this paper, we will study the responses a variety of
fields to linear perturbations on a black hole spacetime, and
present analytical expressions for the QNM frequencies at
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which each type of field characteristically rings. The black
holes we will consider will possess angular momentum and
be embedded in a universe with a cosmological constant
that can be positive or negative (i.e., the spacetime will be
either asymptotically de Sitter or anti—de Sitter). For the
case of a positive cosmological constant, the black holes
studied here will represent the kind of astrophysical black
holes that we expect to observe in our Universe (assuming
the ACDM paradigm of cosmology [23]). For a negative
cosmological constant, on the other hand, the AdS/CFT
correspondence provides an interesting motivation to study
the QNM:s of asymptotically anti—de Sitter black holes as a
method of gaining insight into certain conformal quantum
field theories [24-28].

In Sec. II, we will present the background spacetime of
the black holes that are to be studied in this work. In
Sec. III, we will review aspects of black hole perturbation
theory before presenting second-order Schrodinger-style
master equations for perturbations of massive scalar (spin
s = 0), massive vector (s = —1), and massless tensor
(s = —2) fields. Some of the master equations presented
are known from the literature, with others (to the author’s
best knowledge) being new results. In Sec. IV, we will then
present analytic expressions for the QNM frequencies that
satisfy each of the master equations present in Sec. III and
compare these analytic expressions to previously obtained
numerical results. Finally, in Sec. V, we will discuss the
results presented and make some concluding remarks.
Throughout we will use units such that G = ¢ = 1.

II. BACKGROUND

The background spacetime that we will be concerned
with in this work is that of a slowly rotating black hole in a
universe with a cosmological constant A. The black hole
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spacetime is described by the Kerr—(anti)—de Sitter (hence-
forth, referred to as Kerr—(A)dS) solution which, to linear
order in dimensionless black hole spin «, is given in Boyer-
Lindquist coordinates by [29]

ds* = g, dxtdx’ = —F(r)dt* + F~'(r)dr* + r*dQ?

2M A
- 2aM< +3 )sinzedtdqﬁ (1)

with dQ? being the metric on the surface of the unit
2-sphere, M the black hole mass, and we assume |a| < 1.
The metric function F(r) is given by

F(r)zl—T—grz. (2)

The spacetime is asymptotically de Sitter (thus describing a
Kerr-dS black hole) for A > 0; for A < 0, we have a Kerr-AdS
black hole with an asymptotically anti—de Sitter spacetime.

III. PERTURBATION MASTER EQUATIONS

When considering perturbations on a spherically sym-
metric background spacetime, it is standard to decompose
the perturbed fields into spherical harmonics to factor out
the angular dependence of the perturbation [6-8,10,30,31].
Using Y™ , (6.¢) to schematically represent the appro-
priate choice of scalar, vector, or tensor spherical harmonics

depending on the perturbed field f in question:
S, (1.7.0.9) = fomrtyilm w(0.9). (3)

Zm

About a spherically symmetric background, perturba-
tions of different polarity (either axial/odd or polar/even)
decouple from each other, greatly simplifying the analysis
of the equations of motion for the perturbed fields. In
addition perturbations of different # decouple. The result is
that, if we further assume a harmonic time dependence of
the form e~’, the equations of motion can often be cast
into homogeneous Schrodinger-style second-order differ-
ential equations for some unknown function of r represent-
ing the perturbation:

2
dr?

The w,,, are the characteristic QNM frequencies associated
with the perturbation, as mentioned in Sec. I. Detailed
reviews on QNMs can be found in [6-8,10]. The fact that
the equations of motion governing the perturbations can
often be cast into a single Schrodinger-style second-order
differential equation is useful, with the techniques of
quantum mechanics and time-independent scattering theory
being available to the modern physicist to analyze such an
equation (see, e.g., the Appendix of [8]).

Unfortunately the decoupling of perturbations of differ-
ent polarity and ¢ no longer occurs when the background is
not spherically symmetric (e.g., in axisymmetric spacetimes

+ (@, = Ven(r)) | F"(r) = 0. (4)

such as the Kerr family of black holes [32]), and thus the
task of simplifying the equations of motion governing the
perturbations is greatly complicated. For example, for a
Kerr black hole one has to solve the more complex
Teukolsky equation [33] to find the QNM frequencies,
rather than the simpler Regge-Wheeler [34] or Zerilli [35]
equations that one calculates for Schwarzschild black holes.

In [36], however, it was shown that in slowly rotating
backgrounds, where the “breaking” of spherical symmetry
is controlled by the dimensionless black hole spin a (and
terms O(a?) are neglected), it is sufficient to continue to
use spherical harmonics and to treat perturbations of
different polarity and ¢ as completely decoupled. This
technique yields equations of motion that are sufficient to
determine the QNM frequency spectrum of the system
accurately to linear order in a (and has been utilized in, e.g.,
[37-39]). The benefit of this approach is that one can
continue to exploit the useful properties of spherical
harmonics and often still arrive at simple second-order
equations of motion for the perturbed fields, while now
including the effects of (slow) rotation.

In the following sections, we will make use of the above
technique for perturbations in slowly rotating backgrounds
to derive Schrodinger-style master equations for various
type of perturbations on a slowly rotating Kerr-(A)dS
background, keeping terms linear in black hole spin and
neglecting terms O(a?) and higher. This will allow us in
Sec. IV to determine the QNM frequency spectra for each
type of perturbation to linear order in a. From now on, we
will also suppress spherical harmonic indices so as not to
clutter notation, with each equation assumed to hold for a
given (£, m).

A. Massive scalar field

First we consider a massive test scalar field ® (such that
@ does not contribute to the background energy momentum
and, thus, does not affect the background spacetime)
propagating on the slowly rotating Kerr-(A)dS background
given by Eq. (1). Such a field obeys the massive Klein-
Gordon equation:

O = 4*®. (5)

In [36,37] it was shown that for scalar perturbations
such that

d = ; (p,g,;(l’) e—ithL”m ((97 ¢)7 (6)

the massive Klein-Gordon equation (linearized to first order
in black hole spin a) takes the form:

d? + (o 2amMe 2M+A 5
dr? @ 2 PR

—F(r)(l(l;’;l)—i-zr—]:[ 23A+,u>>}g0=0. (7)
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We see that the effective potential of Eq. (7) is modified
from the usual spin zero Regge Wheeler equation [6—8,10]
through A and a. Equation (7) is, nonetheless, still in the
generic form of a Schrodinger-style wave equation.

B. Massive vector field

We now consider a massive vector field propagating on
the black hole background. We again assume that the test
field does not contribute to the background energy momen-
tum and, thus, does not affect the background spacetime.

Whilst vector fields can have both axial and polar parity
components of their perturbations, it was shown in [36] that
the polar perturbations for a massive vector field on a
slowly rotating background cannot be reconciled into a
single Schrodinger-style wave equation. Thus, in this paper,
we will only consider axial parity perturbations for sim-
plicity. It is worth noting that, in the case of a massless
vector field (i.e., electromagnetic perturbations), the equa-
tions for axial and polar perturbations coincide.

In [36] the master equation governing the axial compo-
nent of a massive vector perturbation is given for a generic
slowly rotating background. For the slowly rotating
Kerr-AdS background that we are concerned with, the
perturbation A(r) satisfies

0 0
ux 0 0
h/w,f m
sym sym
Ssym Sym

u,lm — 0 0
0

ho(r
l’l1 (r

sym H,(r)F(r)™!

&2 , 2amMw (2M A
—+ |0 - 5 —+5r

dr? r ro 3
—F(r)(l(l%])—f—//tz))}A—O, (8)

where u is the vector field mass. In the case that a = 0,
Eq. (8) agrees with the master equations derived in [40].

C. Gravitational field

Finally, we consider perturbations to the black hole
spacetime itself, such that the metric g,, can be decom-
posed into a background part § and a perturbation A:

G = g/w + h/u/’ (9)
where g,, is given by Eq. (1). The perturbed Einstein
equations then read

OR,, + Ah,, =0 (10)
with 6R,, representing the Ricci tensor expanded to linear
order in the metric perturbation f,,.

For the gravitational perturbations we adopt the Regge-
Wheeler gauge and decompose the metric perturbation into

tensor spherical harmonics, with the tensor perturbation /,,,
having both axial and polar parity perturbations [34,41]:

Bg"  ho(r)By"
By B | i (11)
0 0
0 0

0 0

0 0 .

Yfme—zwmt’ (12)

K(r)r? 0

0 K(r)r*sin@

where sym indicates a symmetric entry, Bﬁ’" is the axial parity vector spherical harmonic and Y“™ is the standard scalar

spherical harmonic, as described in [30,31].

Once again, we can treat perturbations of different parity separately in order to study the QNM spectrum to linear order

in a [36].

1. Axial sector

For the axial sector, we can define a function Q(r) in terms of the perturbation fields /; which satisfies the following

Schrodinger-style master equation:

dr? r 3

[cﬂ . <w2_2anr12Ma) (2_M+ér2> R (za; 1)

6M 24M?(3r —TM - 21r°A/3) B
Aoran I(1+ 1)r°w )ﬂ“’ ()

For A = 0, Eq. (13) agrees with the Schrodinger-style equation for axial gravitational perturbations of a slowly rotating Kerr
black hole given in [37]. With a = 0, Eq. (13) agrees with the result of [40] for the axial perturbations of a Schwarzschild-
(A)dS black hole. With a = A = 0, we recover the familiar Regge-Wheeler equation [34].
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2. Polar sector

For the polar sector, we can define a function Z(r) in
terms of the perturbation fields H;, and K which obeys the
following Schrodinger-style master equation,

d? n , 2amMw 2M+A 5
—+ | —————+=r
dr? r? r 3
—F(r)(vY +amV(ZI>))]Z: 0, (14)

where V(ZO) is the familiar Zerilli-like potential for

Schwarzschild-(A)dS perturbations given by:

v _29MP 3P M - (14 o) +3M*(3er = r°A)

Z 3 (3m+cr)?

(15)

with ¢ = L[I(1+ 1) = 2] [40]. Vi (r) is the O(a) correc-
tion to the potential given in Appendix A. For A =0, i.e.,

when considering a slowly rotating Kerr black hole, V(ZI) (r)
agrees with the linear in spin correction to the polar
potential given in [37]. With a = A = 0, we recover the
familiar Zerilli equation [35].

IV. QUASINORMAL MODES

A. Analytical expressions

As a complement to other methods of calculating the
QNM frequencies w that satisfy the equations presented in
Sec. I11[7,8,10,42,43], we will present analytic expressions
for the QNM frequencies calculated via the method
developed in [44]. We direct the reader to [44] for the
details of the method, with the important result being that
the @ for each perturbation master equation can be
expressed as a sum over inverse powers of L = ¢ + 1/2,
with Z being the multipolar spherical harmonic index:

k=00
w = Z wL7*. (16)

k=—1

In Appendix B, we present the w, that satisfy Eqs. (7),
(8), (13), and (14) for the fundamental » = 0 mode (with n
being the overtone index). In principle, one can calculate
the w,, for arbitrary n, but for simplicity’s sake we focus on
the fundamental modes in this work. In each case, we have
calculated the first eight terms in the expansion, i.e., to
O(L%). One can straightforwardly calculate terms to
higher order in inverse powers of L through the use of a
computer algebra package. We will see in the following
section that the QNM frequencies calculated via this
analytic expansion method give results in very strong
agreement with those calculated via, e.g., sixth-order
WKB methods.

In the limit that #Z — oo the QNM frequencies, irre-
spective of field spin or mass, are given by

V1 —9AM? 2 AM?
M =~ (2 1—1 —
Opm V3 (2¢ + z)—l—am<27—|— 3 )
+0(£7). (17)

A result of interest from calculating the w, that satisfy
Egs. (13) and (14) analytically is that the axial and polar
gravitational frequencies are isospectral to O(L~?), with
any differences between the w; at higher orders in 1/L
being proportional to both @ and A (see Appendix B 4).
Thus, to linear order in a, it is only in the case of nonzero
black hole spin and nonzero cosmological constant that the
spectra of the axial and polar perturbations split. The
isospectrality of the gravitational modes for a
Schwarzschild black hole is well known [6-8], with the
isospectrality of Schwarzschild-dS and slowly rotating
Kerr-Newman black holes having been observed numeri-
cally in [38,45].

It is worth noting that the expansion technique of [44] is
designed for use in spherically symmetric background
spacetimes; indeed, we will see in the following section,
that the results for Schwarzschild—de Sitter black holes are
indeed highly accurate. In [46], however, the expansion
was nevertheless used to find the QNM frequencies of a
massive scalar field on a slowly rotating Kerr background
(i.e., the w satisfying Eq. (7) with A = 0). Good agreement
was again found between those frequencies calculated
numerically and those using the analytic expansion
method, despite the background spacetime no longer being
spherically symmetric.

In the following section, we will calculate the QNM
frequencies satisfying each of Egs. (7), (8), (13), and (14)
for nonzero a (i.e., on nonspherically symmetric, slowly
rotating backgrounds) and investigate how well an approxi-
mation the w; presented in Appendix B provide for the
QNM frequencies at linear order in black hole spin. In fact,
we will see that for a < 1, the frequencies calculated in this
paper provide a very good approximation to those calcu-
lated in the literature.

Furthermore, as explained in [44], the analytic expansion
method for calculating QNM frequencies utilized here is
not applicable to asymptotically AdS spacetimes (i.e., for
A < 0) due to the differing boundary conditions used at
spatial infinity. Thus, in the following examples, we will
limit ourselves solely to A > 0 cases. Nonetheless, the
equations presented in Sec. III remain valid for both
positive and negative A.

B. Comparison to other results

1. Schwarzschild—de Sitter

We first consider the case of a unit mass Schwarzschild—
de Sitter black hole (a =0, M =1, 0<9A <1) [47].
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FIG. 1. Complex massless scalar frequencies for the n =0

mode for varying values of A.

The QNM frequencies for electromagnetic, gravitational,
and massless scalar perturbations in a Schwarzschild—de
Sitter background have been calculated, e.g., using the
sixth-order WKB method in [45]. We find that in general
the frequencies calculated using the analytic expansion
method of [44] (utilizing the expansion coefficients given
in Appendices B 1-B 4) are in good agreement with those
presented in [45].

Tables II-1V in Appendix C give the QNM frequencies
for massless scalar perturbations, massless vector (i.e.,
electromagnetic) perturbations, and gravitational perturba-
tions for a selection of A values. We do not distinguish
between axial and polar gravitational frequencies in this
case as, further to the discussion above, the coefficients
presented in Appendix B 4 show that for @ = 0 the axial
and polar QNM frequencies are isospectral (this was also
shown in [45]). In all cases, the frequencies are presented as
calculated via the WKB method as in [45] and via the
analytical expansion method of [44] used in this work, with
the errors between the two methods also given. Figures 1-3
show QNM frequencies in the complex plane as calculated
via both methods.

Tables II-1V show that in all cases the relative errors
between methods stays comfortably below 1%, with
Figs. 1-3 showing almost complete alignment of frequen-
cies in the complex plane. The expressions for the QNM
frequencies given in Appendix B, thus, appear to compare
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FIG. 2. Complex electromagnetic frequencies for the n =0
mode for varying values of A.
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FIG. 3. Complex gravitational frequencies for the n = 0 mode

for varying values of A.

very well with other methods of calculating QNM frequen-
cies in the case that a = 0.

2. Slowly rotating Kerr

We will now consider the case of a unit mass slowly
rotating Kerr black hole (a > 0, M = 1, A = 0) [4]. The
QNM frequencies for electromagnetic, gravitational, and
massless scalar perturbations in a Kerr background have
been calculated, e.g., in [10] using Leaver’s continued
fraction method [42]. We will compare the results of using
the expansion coefficients given in Appendix B to the
QNM frequency data provided at http://www.phy.olemiss
.edu/~berti/ringdown/.

Tables V-VII in Appendix C give QNM frequencies for
massless scalar perturbations, massless vector (i.e., electro-
magnetic) perturbations, and gravitational perturbations for
a selection of a values. As discussed above, we do not
distinguish between axial and polar gravitational frequen-
cies, as to linear order in a, the axial and polar spectra are
isospectral for A = 0 (see Appendix B 4). In all cases the
frequencies are presented as calculated via continued
fractions in [10] and via the analytical expansion method
of [44] used in this work, with the errors between the two
methods also given. In [46] the analytic expansion results
for a massive scalar field on a slowly rotating Kerr
background were compared to the continued fractions
results of [49].

For a <« 1, Figs. 4-6 show that the linear in a approxi-
mation to the QNM frequencies calculated from the
expressions in Appendix B match well with the numerical
data, with Tables V-VII show the relative errors between
methods staying below 1% for spins of up to a ~ 0.2. From
Figs. 4-6, however, we see that the linear in a approxi-
mation for the QNM frequencies clearly starts to fail at
smaller values of a. This is particularly noticeable for the
imaginary frequency components, where the departure
from the linear approximation is clearly seen by a ~ 0.1.
Predictably, in all cases, as a increases the difference
between linear in spin approximation used in this work
and the frequencies calculated numerically increases.
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FIG. 4. Real and imaginary components of the £ = m = 2,
n = 0 massless scalar mode for varying values of a.

The higher accuracy of the real frequency compo-
nents compared to the imaginary components can be
understood by considering that O(a) contributions to
the imaginary component only appear in two terms in
the QNM expansion up to O(L7%), w; and ws (see
Appendix B). This is in contrast to the real frequency
component which receives contributions linear in a in
g, Wy, @y, and wg. Thus, one should compute higher-
order terms in the expansion to calculate further O(a)
corrections to the imaginary component of the QNM
frequencies, and thus improve agreement.

Nonetheless, for small a the analytic expressions for the
QNM frequencies appear to be a good approximation to
those calculated numerically.

3. Slowly rotating Kerr—de Sitter

‘We now turn to the most general case of a slowly rotating
Kerr-dS black hole, where both ¢ and A are nonzero and
positive. The gravitational QNM frequencies for a Kerr-dS
black hole of varying mass were calculated in [48] by
continued fractions, whilst their asymptotics were studied
in [50]. Kerr-de Sitter black holes have further been studied
in [51].

The expressions for w_; and @, in Appendix B (i.e.,
the first two terms in the L expansion, as explained in
Sec. IVA) agree exactly with the expressions given by
Egs. (0.3) and (0.4) in [50], thus verifying the dominant
O(a) correction to Re(w) calculated in this paper.

Turning to comparisons with [48], a table of fitting
parameters (@, w,) (referred to as (wg, ;) in [48]) is
provided to approximate the QNM frequencies of slowly
rotating Kerr-dS black holes in the form:
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FIG. 5. Real and imaginary components of the £ = m = 2,

n = 0 electromagnetic mode for varying values of a.
o =&+ amw, + 0(a?), (18)

where @ is the QNM frequency evaluated for a = 0, i.e.,
the corresponding Schwarzschild-dS frequency for a black
hole of the same M and A; w, represents the linear in a
correction term.

Table I compares data for @ and w, from [48] and as
calculated in this paper for two black holes of differing mass,
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FIG. 6. Real and imaginary components of the £ = m = 3,
n = 0 gravitational mode for varying values of a.
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TABLE 1.

Comparison of the n = 0 gravitational QNM frequency fitting parameters as calculated by Leaver’s continued fraction

method in [48] and analytical expansion techniques for varying M with A =3, £ = 2.

Leaver L-expansion (axial) L-expansion (polar)
M 0] W, (0] W, @ w,
0.1205 2418 —0.5944i 0.67564 +0.0092i 2.419—-0.5931i 0.67391+0.0117i 2.419-0.5931i 0.67720 + 0.0112i
(% error) (40.04,-0.22) (-0.26,+27) (4+0.04, -0.22) (40.23,+22)
0.1789 0.769 — 0.1964i  0.58375 + 0.0022i 0.770 — 0.1962i  0.58324 + 0.0024i 0.770 — 0.1962i  0.58380 + 0.0022i
(% error) (4+0.13,-0.10) (=0.09,+9.1) (4+0.13,-0.10) (40.01, 4+0.00)

with the relative errors between both methods given in
parentheses. Note that the fitting parameters (@, w,) are
rescaled by M from their values in [48] to coincide with the
dimensionless black hole spin a that we are using in this
paper. Also note that, as previously mentioned, in the case that
both a and A are nonzero, the axial and polar gravitational
frequencies are no longer isospectral (see Appendix B 4).
Thus, in Table I, we compare the results of [48] to both axial
and polar frequencies as calculated in this paper.

As demonstrated in Sec. IVB1 for the case of a
Schwarzschild-dS black hole, we find good agreement
between the @ calculated in [48] and those calculated in this
work. We also find good agreement in the real part of w,,,
with errors staying comfortably below 1% when consid-
ering either the polar or axial frequencies. The imaginary
part of w, does not agree as well, with relative errors of
order ~10-20%. This can be understood similarly to the
case of the imaginary Kerr frequencies as discussed above.
For the imaginary frequency component, O(a) contribu-
tions only appear in two terms in the QNM expansion up to
O(L™%) (w3 and ws). This is in contrast to the real
frequency component which receives contributions linear
in a in all w, for even n. One should compute higher-order
terms in the expansion to calculate further O(a) corrections
to the imaginary component of the QNM frequencies.
Indeed if one calculates, e.g., w; for axial gravitational
modes, the error in the imaginary component of w, for
M = 0.1789 drops from 9.1% to 5.1%, whilst for M =
0.1205 the error drops from 27% to 11%. See Appendix B
for the explicit expressions of the QNM frequencies
calculated in this paper to O(L7%).

V. CONCLUSION

In this paper we have presented Schrodinger-style master
equations for the perturbations of massive scalar, massive
vector, and gravitational fields on a slowly rotating Kerr-
(A)dS black hole. These represent generalizations of the
Regge-Wheeler and Zerilli equations (for fields of spin
0,—1, or —2) to include the effects of both a nonzero
cosmological constant A and of slow rotation (i.e., to linear
order in dimensionless black hole spin @). Some of these
equations have been presented before in their entirety (e.g.,
Egs. (7) and (8) in [36]), whilst versions of the equations
with either a = 0 or A = 0 have been presented in, e.g.,

[37,40]. The generalization of the gravitational perturbation
equations to include both the effects of rotation and of a
cosmological constant presented here should, however,
prove useful given the wealth of knowledge accumulated
to address such Schrodinger-style equations.

We have also presented, following the method of [44],
analytical expressions for the QNM frequencies that satisfy
each of the perturbation master equations present in Sec. III
[Egs. (7), (8), (13), and (14)]. The expressions given in
Appendix B are intended as a compliment to existing
methods of QNM calculation, with the equations presented
in Sec. III, of course, being amenable to being solved via
one’s preferred method. Given that there are relatively few
numerical results for QNM frequencies in the literature for
some categories of black holes (e.g., Kerr—de Sitter),
numerically investigating the perturbation master equations
presented in this paper and elsewhere is worthy of further
attention. In addition, a natural extension of this work
would be to consider black holes possessing nonzero
electric charge [52,53].

In Sec. IV, we find that the analytic expressions
calculated in this paper agree well with the QNM frequen-
cies calculated via other methods for a Schwarzschild-dS
black hole [45], for a slowly rotating Kerr black hole [10],
and for a slowly rotating Kerr—de Sitter black hole [48,50].
They are not, however, valid for asymptotically AdS
spacetimes (as explained in [44]). The frequencies calcu-
lated in this paper support the numerically observed
isospectrality of gravitational modes to linear order in spin
for Kerr black holes [38], whilst the axial and polar
gravitational spectra are shown to split for a #0 and
A # 0. Given the good agreement with numerical results,
the analytic expressions for QNM frequencies presented
here provide a useful addition to those techniques already
in the modern physicist’s toolbox, allowing one to see the
explicit dependence of the QNM frequencies on the
parameters of the black hole and/or field.

The study of gravitational QNM frequencies is, of
course, of great interest in the context of gravitational
wave observations. Properties of black hole merger rem-
nants can be inferred from the observation of the QNM
ringing, as well as tests of GR and of the no-hair hypothesis
[11-17,54]. Meanwhile, the study of the QNM frequencies
of massive bosons (e.g., the scalar and vector cases
considered here) propagating on rotating black hole
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backgrounds finds great relevance in the study of black hole
superradiance [55]. Furthermore, the AdS/CFT correspon-
dence continues to provide motivation for studying QNMs
in asymptotically AdS spacetimes [24-28].

The technique of recasting the complicated, multi-
dimensional, equations of motion governing black hole
perturbations in GR into decoupled one-dimensional
Schrodinger-style equations is an incredibly useful one
that has allowed great advances in the understanding and
numerical calculation of QNM frequencies. The ability to
execute such a simplification of the equations of motion,
and in particular to include the effects of rotation, in
theories of gravity beyond GR is in many cases still a
work in progress [39,46,56-66]. Given that the strong
gravity regime of black hole mergers is likely to be one of
the best ‘laboratories’ available to us to probe any potential
deviations from Einstein’s theory, continuing the analysis
of black hole perturbations for a variety of fields in

|

M
7298wl (¢ + 1)(6M + r(£* + ¢ - 2))

1
vyl(r) =

alternative theories of gravity will remain an important
avenue of research as gravitational wave astronomy
matures in the coming years.
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APPENDIX A: POLAR
GRAVITATIONAL POTENTIAL

The O(a) correction to the potential for polar gravita-
tional perturbations featured in Eq. (14) is given by

7 (4861(1+ 1)(6M + (I* 4+ 1 = 2)r)*(Ar? + 6M)w*r

+OA(AP =3r+6M) x (P +1-2)3(572A =3)(120* + (P + 1+ 4)A)r® + 6(1 + 1 —2)?

X M(31* + 61 + (16A2r* — 6(2w” + 5A)r* — 45)1> + 2(8A%r* — 3(2w? + 5A)r* — 24)1

+ 43N + A(540* + 11A)* = 6(5a? + 2A)r? — 6))r°

—12(2 + 1 =2)M? (616 + 18 — 721* — 1741 + 3(—=14A%r* + 9(4a® + SA)r* — 123) 12

+ 3(=14A%r* + 9(4w? + 5A)r? = 93)1 + 4r*(108w* + A(81 — 2r*(99w? + A(13r*A — 6)))) + 708)r*
+ 72M3(61° + 181° — 3811* — 79212 + (8(4A(Ar? +9) = 9w?)r? + 1179) % + 2(4(4A(Ar* +9) — 9?12
+789)1 + 4(20A%7° + A(81w* — T3A)r* — 9(5w? + 13A)r* — 402))r3

+432M*(80A2r* — 12(81(1 + 1) = 13)Ar? +3(1 = 1)(1 +2)(371(1 + 1) — 144))r?

+31104M° (=2Ar? + 8I(1 + 1) — 19)r + 373248 M°)r3

—2(6M + (P +1=2)r)A(BM — PPA)(Ar® = 3r + 6M)3

X (=(P+1-2)2120% + (P + 1+ 4)N)r® =3(P +1=2)M(I* + 2P + (4r*A = 15)> + 4(r?A = 4)]
+4(N2* 4+ 3(50% + A)r? = 2))rP + 6M>(31(1+ 1)( + 1 = 26) — 4(5Ar* — 9(A — 30?)1? = 36))r2
+432M3(3(1> +1—2) = 2r2A)r + 2592M*)r — 54(Ar® = 3r + 6M)

X ((P4+1=2P>A=3(P +1+2r*A=6)a* = (1 + 1)A(P + 1+ r*A=5))r!!

+ (P +1-2)>M(3(577A = 18)1° +9(5r2A — 18) 1> = 3(TA*r* + 2(A — 60?)r? + 18)1*

+ (=42A27* 4 (7207 = 8TA)r? + 162) P — (2 (36(2A7* + 5)@? + A(A(14r2A = 81)r% +99)) — 324) [
+ 2((A(PPA(51 = 72A) = 24) = 36(Ar? + 3)w?)r? + 108)1

+4r2(9(8 = 3r2A(rPA — 4))w? + 2A(A(FPA = 3)r? +9)) — 432)r°

+6( +1—=2)M*(2118 + 841" + 3(9r*A — 10)1° + (81r2A — 384)° +

(9r2(=4r2A2 + A + 16?) — 303)*

+3(44 = 37 (A(BA7 +13) = 3207)) PP = 6(r (4(8Ar7 + 21)a” + A(PA = 10)(PA = 1)) = 128)17
— 6(F2(4(8AF2 + 27)@* + A(PA(PA = 17) = 2)) — 104)]
+4(r(3(A(59 = 82A) + 60)? + A(Ar° = I5A” + 12)) - 228))r°
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+
+
+

12M3 (9018 4 36017 + (757> A — 36)16 4+ 9(25r° A — 152)1° — 3(21A%r* + 8(5A — 21w?)r? + 162)1*
3((336w* — A(42Ar% +205))r> 4 576) P + 3((A(A(4AF* + 57)r> +27) — 12(17AF2 + 42)@*) 1 + 192)1?
6(r2(A(AQRAF? +39)r2 +71) — 6(17AF? + 56)@*) — 96)1

+4(r2(9(A(43 = 2r2A)r? + 56)w? + A(PPA(SPPA(rPA — 6) —27) — 18)) = 72))r*

+

T2M* (8716 + 2611 + 9(7r?A — 57)1* + 3(42r2A — 487) P + 3((720” — A(12Ar* + 25))r? + 516) 1%

— 6(r?(A(6AF? +23) — 36w?) — 387)1 + 2r2(2A(A(1172A = 9)r* + 6) — 9(11Ar? + 24)w?) — 2244)r3

+
+

As explained in Sec. IV and in [44], the fundamental (i.e., overtone index n = 0) quasinormal frequencies @ satisfying
Eq. (7) (for scalar perturbations), Eq. (8) (for axial vector perturbations), Eq. (13) (for axial gravitational perturbations), and

Eq. (14) (for

The expansio

2592M° (2114 + 428 + (2r2A = 127) 12 + 2(rPA = 74)1 4+ 2(Ar* + (3w? + A)r? + 115))r?
5184MO(=2Ar* + 541(14+ 1) — 171)r 4+ 497664M7))

APPENDIX B: QUASINORMAL FREQUENCY EXPANSION COEFFICIENTS

polar gravitational perturbations) can be expressed as a power series in inverse powers of L = 7 + 1/2:

k=00
® = Z wL7*. (B1)

k=1

n coefficients w;, for each of the perturbation types (scalar, vector, or tensor), to O(L~%), are given below. Note

that, as explained in [44], the below expressions are valid only for A > 0.

1. Scalar frequencies

The w; that satisfy Eq. (7) are given by

3V3Maw_, =

3\/§M600 =
3\/§M601 =
3\/§M(U2 =

3\/§MCU3 =

3V3Mw, =

3V3Mws =

V1= 9AM>
' 2
—% V1—9AM? + am\/§<§ T AMZ)

SIAM*(61A — 108u%) + M*(9724 — 612A) + 7

PHYS. REV. D 98, 104013 (2018)

(A1)

216V 1 — 9AM?
i(1 —9AM?)3/2(45M?(401A — 648u%) + 137) (8IAM*(61A — 108u2) + M*(972u% — 450A) — 11)
- —am
7776 162/3
1
———— (V1 = 9AM?(729AM®(750851A% — 905904 Ap* — 4199044*)

2519424
—1944M*(53119A% — 81567 Au® — 4374u*) + 27TM>(146681 A — 24559244%) + 5230))

(1 — 9AM?)(405AM*(401A — 648u>) — 36M?(332A — 567u%) — 29)
29163

((1 = 9AM?)3/2(3645AM®(27099013A% — 7301664Au% — 529079044*)

—iam

l
362797056
—243M*(68373857A% — 1015701 12Au% — 7558272u*) + 27M?*(12794177A — 208163524%) + 590983))

1
~ M 629856v/3
+A(9AM?(2252553AM? — 357239) + 80915)) + 8137))
V1-9AM?
39182082048

((1 = 9AM?)(27TM?(— 11337408 Au* M* — 388842 (3AM?(2097TAM? — 437) + 35)

(9M? (226748164 M2 (27TAM? (144 AM? (6501 AM? — 1363) + 9907) — 427)
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3\/§M0)6 =

— 2592412 (9IAM? (2TAM?(3AM?(112055580AM? — 4940639) — 7820726) + 16693957) — 1450348)

+ A(=9AMZ(9AM?(9AM?(16823245178TAM? — 63977771143) + 71553627542) — 28276533542)
—2271718855) + 7346640384u° M* (36 AM?(198AM? — 17) + 7)) — 42573661)

1(1 —9AM?)

s~ ZAMT)

68024448+/3

— 1749642 (3AM*(9AM?(56340AM? — 55807) + 48878) — 1721)

+ A(27AM?(3658366755A2M* — 911149638AM? + 59613232) — 18218222)) + 41735)
iv/1 = 9AM>
8463329722368
+6563) + A(9AM?(3AM?(27TAM?(315AM?(429275206029AM? — 215443481162) + 11851932821509)

—23397470018140) + 1898828714953) — 84181473166)
— 129642(1 — 9AM?) (9AM?(135AM> (43894090161 A2M* — 4927747056 AM? — 156842798)
+2214937208) — 100404965) — 2644790538245 M* (9AM? — 1)(405AM>(313AM? — 18) + 37))

(9M?(~34012224* M? (9AM?(630AM? — 59) - 2)

(27M? (13604889644 M? (1 — 9AM?)(243AM>(15AM? (21724TAM? — 41079) + 22487)

+ 11084613257) + am (27M2(120932352u* M2 (9AM? — 1)

2938656153613
x (27TAM?(1485AM*(197AM? — 36) + 2047) + 277)

— 172842 (9AM? — 1)(9AM2(2TAM?(3AM?(280138950AM? — 5781821) — 18236525) -+ 29333473)

— 1464535) 4+ A(1551785558 — 9AM? (3AM?(27TAM?(45AM? (56077483929 AM? — 25842254398)

+ 194725826099) — 383179273148) + 32615632811))

— 195910410246 M*(1 — 9AM?)(IAM?(495AM? — 29) + 1)) + 18404153) (B2)

2. Axial Vector frequencies

The w, that satisfy Eq. (8) are given by

3\/§M0)_1

3\/§M(1)0
3\/§MC()1

3\/§M(1)2

3vV3Maw,

3vV3Maw,

=V 1-9AM?
j 2
- —%\/1 —9AM? + am\f3<§+AM2>
1
=516 V1= 9AM?(M?(99A + 972u>) — 65)
i(1 —9AM?)3/2(9OM?(31A + 648u>) + 59 1 —9AM?
:51( ? )R (OM( + 648%) + 59) —am( )(M2(99A+972,u2)+25)
7776 1624/3
1 - 9AM? 2 4702 2 2 2 2
= m(zm (=314928u*M? (36 AM? — 1) — 648> (IAM?(6786AM? — 935) 4 19)
+ A(9AM? (6616 — 119127AM?) + 4121)) — 71234)
1 - 9AM?
+ iam (1= 9AM7) (OM? (32442 (90AM? — 7) + A(1395AM? —76)) + 245)
16V/3
_ {0 -9AM) (27M?(68024448u*M?(105AM? — 1) + 38880u* (27AM?(10011AM? — 698) — 415)
~ T 362797056 H #
+ A(9AM?(19250805AM> — 288223) — 585857)) — 3374791)
+ am% (27M?(11337408 Ap*M* + 3888u>(3AM?*(3393AM? — 401) + 11)
629856+/3

+ A(9AM2(119127AM? — 10825) — 7043)) — 21097)
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V1-9AM?
39182082048
+ 259242 (9AM?(2TAM? (3AM?(329310180AM? — 74177569) + 13293734) — 1411525) — 173540)

+ A(9AM2(63AM?(9AM? (1261925091 AM? — 229959743) -+ 55808902) + 113404646) + 160933625)
+ 73466403840 M* (36 AM>(198AM? — 17) + 7)) — 342889693)

3V3Maws = (9M? (22674816 M?(2TAM? (144AM?(7689AM? — 1417) + 8539) — 67)

+iam———=(9M?(340122241* M* (9AM? — 1) (9AM?(630AM?* — 59) — 2
i0zaan 73 M (4012224 ME(OAME — 1) AN )-2)

+ 17496(3AM?(600660AM? — 30323) — 871) (1 — 9AM?)*u?

+ A(OAM? (9AM? (63AM?(8250345AM? —2036507) + 8064646) + 424262) — 3884077)) +3233783)
i(1-9AM?)3/?
8463329722368

+ 388842 (9IAM?(27TAM>*(15AM? (25239221253 AM? — 3989698864 ) + 1860754534) + 486103043)

+90125093) + A(9AM? (IAM? (45 AM? (6450072407 19AM? — 78406459927) — 380899298)
+12521227898) -+ 11148937343) + 7934371614726 M* (405AM? (313AM? — 18) 4 37)) + 74076561065)

3V3Mawe = (9M?(408146688u* M? (243 AM?*(15AM?(352463AM? — 44967) + 13127) + 6995)

1
+am————————(27TM?*(120932352u*M? (9AM? — 1) (27TAM?(135AM?*(2563AM?* — 408) + 1777)
29386561536/3

+133) + 172842 (9AM? — 1)(9AM? (2TAM? (3AM? (823275450 AM? — 168911203) +27535325) — 4529329)
—1034153) + A(9AM?(3AM?(2TAM? (63AM? (2103208485 AM? — 613717798) + 3480361741)

— 1868367940) — 82065323) — 87749482) -+ 195910410246 M*(9IAM? — 1) (IAM?(495AM? — 29) + 1))

— 82685575) (B3)

3. Axial Gravitational frequencies

The w; that satisfy Eq. (13) are given by

3V3Maw_; = V1 = 9AM?
; 2
3V3May, = —% V1-9AM? + am\/S_’(g + AM2>

1
3V3Mw, = —— /1 — 9AM?(99AM? — 281)

216
i(1 —9AM?)3/2(1395AM? + 1591 1 —9AM?)(99AM? + 133
3\/§Mw2:l( 9 32(139 + 9)_am( 9 )(99 +133)
7776 1623
V1= 9AM?(2TAM?(9AM?(119127AM? + 50408) + 118999) + 1420370)
3V3Mw; = —
2519424
L (1 —9AM?)(279AM? (45AM? + 8) + 893)
am
29163
VAN i(1 = 9AM?)3/2(4677945615A3M° + 1687260051 A2M* + 211769829AM? — 92347783)
Wy = —
4 362797056
N (1 —9AM?)(2TAM?(9AM?(119127AM? + 17687) — 57587) + 499895)
am
62985613
V1 —9AM?
3vV3Mws = 0 (9OAM?(OAM?(9AM?(63AM? (1261925091 AM? + 181743169) — 1078685462)

39182082048
—6276258970) — 25334574535) — 7827932509)
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(1 —9AM?)(9AM?(2TAM?(3AM?(57752415AM? + 5720786) — 4178128) — 42220738) +27500857)
68024448+/3

—iam

i(1—9AM?)3/2

8463329722368

— 1321332614854) — 1848252537217) — 481407154423)
(1-9AM?)

—am— T2

293865615361/3

— 12418517690) + 11910847045) — 61558283321) (B4)

3vV3Mws = (9AMZ(9AM? (9AM? (45 AM?* (6450072407 19AM? + 111206269001) — 40406459618)

(9AM?(9AM? (9AM?(63AM? (6309625455 AM? + 300876293) — 8618549878)

4. Polar gravitational frequencies

For the w, that satisfy Eq. (14), we present the frequency coefficients in the form
o} = o + Awy, (B5)

where the w{* are given in Eq. (B4), in order to clearly show under which circumstances isospectrality between the axial and
polar gravitational sectors breaks down. The Aw, are given by

AC()_] =0

ACUO =0
ACO] =0
AG)Q =0
A(l)3 =0

amAM 5 2 2 2
Aw; = 22 (1= IAM?)(OAM (OAM? (2TAM? — 11) = 95) + 148)

iamAM 2 2 2 2 2
Aws = == (1= 9AM?)(SLAM? (SAM? (3AM(1188AM? — 487) - 296) + 182) — 152)
AM

Awg = — % (1 — 9AM?) (9AM2(2TAM? (3AM?(9AM? (373626 AM? — 158551) + 8158) + 67040)

—39581) — 78904). (B6)

The axial and polar gravitational QNMs are clearly isospectral to O(L~?), with any difference between the two only
becoming apparent in the case that both a # 0 and A # 0.

APPENDIX C: QNM FREQUENCY TABLES

TABLE II. Comparison of the n = 0 scalar QNM frequencies calculated by sixth-order WKB [45] and analytical expansion
techniques for varying A with a = 0.
WKB L-expansion % error
A Re(Mw) —-Im(Mw) Re(Mw) —Im(Mw) Re(Mw) —-Im(Mw)
‘=1 0.00 0.2929 0.0978 0.292924 0.097649 0.00813958 —0.155475
0.04 0.2247 0.0821 0.224658 0.0820698 —0.0185787 —0.0367874
0.08 0.1404 0.0542 0.140395 0.0540001 —0.00327199 —0.368871
0.10 0.08156 0.03121 0.0816053 0.0312282 0.0555735 0.0581699
‘=2 0.00 0.48364 0.09677 0.483643 0.097649 0.000697739 -0.0118938
0.04 0.38078 0.07876 0.380783 0.086474 0.000776734 —0.00117547
0.08 0.24747 0.05197 0.24747 0.071116 —0.000193423 —0.127102
0.10 0.14661 0.03069 0.14661 0.071116 0.000330504 —0.010473
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TABLEIII. Comparison of the n = 0 electromagnetic QNM frequencies calculated by sixth-order WKB [45] and analytical expansion
techniques for varying A with a = 0.

WKB L-expansion % error
A Re(Mw) —-Im(Mw) Re(Mw) —-Im(Mw) Re(Mw) —Im(Mw)
=1 0.00 0.2482 0.0926 0.248232 0.0924786 0.0130114 —0.131053
0.04 0.2006 0.0748 0.200597 0.0747225 —0.00135515 —0.103609
0.08 0.1339 0.0502 0.13392 0.0501975 0.0152628 —0.00490953
0.10 0.08035 0.03028 0.0803542 0.0302716 0.00522626 —0.0277486
=2 0.00 0.45759 0.09501 0.457594 0.0950042 0.000971495 —0.00615498
0.04 0.36723 0.07624 0.367228 0.0762387 —0.000646795 —0.00176728
0.08 0.24365 0.05067 0.243643 0.0506728 —0.00280149 0.00554818
0.10 0.14582 0.03037 0.145818 0.0303741 —0.00149621 0.0133652

TABLE IV. Comparison of the n = 0 gravitational QNM frequencies calculated by sixth-order WKB [45] and analytical expansion
techniques for varying A with a = 0.

WKB L-expansion % error
A Re(Mw) —Im(Mw) Re(Mw) —Im(Mw) Re(Mw) —Im(Mw)

‘=2 0.00 0.3736 0.0889 0.373642 0.0887156 0.0113413 —0.207368

0.04 0.2989 0.0733 0.299056 0.0731413 0.0521161 —0.216536

0.08 0.1975 0.0499 0.197732 0.0498251 0.117397 —0.150176

0.10 0.11792 0.03021 0.118107 0.0301989 0.158985 —0.0367963
=3 0.00 0.599443 0.092703 0.599439 0.0926902 —0.000635737 —0.0138235

0.04 0.480058 0.075146 0.48007 0.0751385 0.00240952 —0.0100284

0.08 0.317805 0.050382 0.317824 0.0503795 0.0060804 1 0.00501461

0.10 0.189994 0.030314 0.190009 0.030314 0.00806499 0.000105339

TABLE V. Comparison of the n = 0 massless scalar QNM frequencies as calculated by Leaver’s continued fraction method in [10]
and analytical expansion techniques for varying a with A = 0.

Leaver L-expansion % error
a Re(Mw) —Im(Mw) Re(Mw) —Im(Mw) Re(Mw) —Im(Mw)
£f=m=1 0.05 0.296889 0.0976242 0.296781 0.0976311 —0.0363486 0.00706991
0.10 0.301045 0.0975472 0.300639 0.0976143 —0.134768 0.068833
0.15 0.305421 0.0974231 0.304496 0.0975975 —-0.302922 0.179031
0.20 0.310043 0.097245 0.308354 0.0975807 —0.544711 0.345159
C=m=2 0.05 0.49136 0.0967329 0.491168 0.0967513 —0.0390091 0.0190342
0.10 0.499482 0.096666 0.498692 0.0967442 —0.158139 0.0808871
0.15 0.508053 0.0965516 0.506217 0.096737 —0.361464 0.192037
0.20 0.517121 0.0963822 0.513741 0.0967299 —0.653486 0.360803

TABLE VI. Comparison of the n = 0 electromagnetic QNM frequencies as calculated by Leaver’s continued fraction method in [10]
and analytical expansion techniques for varying a with A = 0.

Leaver L-expansion % error
a Re(Mw) -Im(Mw) Re(Mw) —-Im(Mw) Re(Mw) -Im(Mw)
f=m=1 0.05 0.251642 0.092286 0.251517 0.0923056 —0.0499051 —0.0212227
0.10 0.255214 0.0920427 0.254081 0.0921325 —0.161837 0.0975817
0.15 0.258999 0.0917527 0.258086 0.09195%4 —0.352633 0.22524
0.20 0.26302 0.0914101 0.26137 0.0917863 —0.627229 0.411579
f=m=2 0.05 0.464904 0.0949194 0.464718 0.094939 —0.0401393 0.0205991
0.10 0.472609 0.0947922 0.471841 0.0948738 —0.162406 0.0860831
0.15 0.48075 0.0946166 0.478965 0.0948087 —0.371317 0.203022
0.20 0.489375 0.094385 0.486088 0.0947435 —0.671741 0.379827
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TABLE VII. Comparison of the n = 0 gravitational QNM frequencies as calculated by Leaver’s continued fraction method in [10] and
analytical expansion techniques for varying a with A = 0.
Leaver L-expansion % error
a Re(Mw) —Im(Mw) Re(Mw) —-Im(Mw) Re(Mw) —-Im(Mw)
f=m=2 0.05 0.380146 0.0888489 0.379911 0.0885439 0.0616187 —0.343309
0.10 0.387018 0.0887057 0.386180 0.0883721 —0.216332 —-0.376072
0.15 0.394333 0.0885283 0.392449 0.0882003 -0.4777 —0.370435
0.20 0.402145 0.0883112 0.398718 0.0880286 —0.852205 —0.320018
f=m=3 0.05 0.609823 0.0925869 0.609540 0.0925840 —0.0463903 —0.00312067
0.10 0.620796 0.0924305 0.619642 0.0924778 —0.185874 0.0511351
0.15 0.632425 0.0922281 0.629743 0.0923715 —0.424063 0.155544
0.20 0.644787 0.0919726 0.639844 0.0922653 —0.76657 0.318254
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