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When two spacetimes are stitched across a null shell placed at the horizon of a black hole, Bondi-
Metzner-Sachs (BMS) supertranslation-like soldering freedom arises if one demands the induced metric on
the shell should remain invariant under the translations generated by the null generators of the shell. We
revisit this phenomenon on the horizon of rotating shells and obtain BMS-like symmetries. We further show
that superrotation-like soldering symmetries in the form of conformal isometries can emerge whenever the
degenerate metric of any null hypersurface admits a dependency on a null (degenerate direction) coordinate.
This kind of conformal isometry can also appear for a null surface situated very close to the horizon of black
holes. We also study the intrinsic properties of different kinds of horizon shells considered in this article.
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I. INTRODUCTION

Symmetry consideration has been a very powerful
approach to study many physical systems, and spacetime
geometry is not an exception. Many years ago Bondi, van
der Burg, Metzner, and Sachs (BMS) studied the diffeo-
morphisms that preserve the asymptotic structure of an
asymptotically flat spacetime at future null infinity Iþ, and
to their great surprise, the asymptotic symmetry group
turned out to be infinite dimensional—a semidirect product
of Lorentz group and supertranslations (angle dependent
translations) [1–5]. These supertranslations constitute an
infinite dimensional Abelian subgroup of the BMS group,
and they map one asymptotically flat solution of Einstein’s
equation to another. Recently there has been a growing
interest in determining the structure of asymptotic sym-
metries in gravity. Not long ago, the BMS group has
extended and a new symmetry—called superrotation—has
emerged at the null infinities (both future and past) of
asymptotically flat spacetimes [6–9].1 Superrotations are
understood as diffeomorphisms acting on the celestial
spheres at I�. In simple terms, this new symmetry rotates
around each generator of asymptotic null infinities I�

separately. Both supertranslation- and superrotation-like
symmetries have also emerged from the study of diffeo-
morphisms that preserve the near horizon asymptotic
structure of black holes [11–13]. On the other hand, it
has been shown that there is a deep connection between the
infrared structure of gravity (and also some gauge theories)
and the asymptotic symmetries of it. A certain subgroup of
BMSþ × BMS− has emerged as an exact symmetry of the
quantum gravitational S matrix [14–24]. For a more recent
and comprehensive review on this subject, interested read-
ers are referred to [25] and also encouraged to consult
various references therein. These interconnections have
generated the intriguing possibility of resolving the black
hole information paradox. The idea is that black holes are
imparted by an infinite number of soft hairs corresponding
to diffeomorphisms that act nontrivially on the phase space
of general relativity, and these soft hairs (gravitons) would
be responsible to restore the missing information of hard
gravitons of Hawking radiation [26–29].2
Supertranslation-like transformations also arise in

another context when one tries to solder two spacetimes
across a thin null shell assumed to be situated at the event
horizon of a black hole [33]. This kind of shell is termed as
a horizon shell. It has been shown that there exists a
considerable amount of freedom to solder two metrics
across a horizon shell (which can be situated at any Killing
horizon) for which the induced metric remains invariant
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1Recently this has been extended to the conformal BMS group
in [10].

2Recently there are some works which suggest that the soft
charges do not play any role in resolving the information paradox.
Interested readers are referred to [30–32].
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under the translations along the null generators. In fact, the
group of soldering transformations turns out to be infinite
dimensional, and a restricted class of it has the identical
structure—like supertranslations in the BMS group [33,34].
The emergence of such symmetry is understood as the
existence of a residual freedom (as long as the induced
metrics from both sides of the shell match) to slide along
the null generators that generate the horizon.
In [33], a detailed analysis is presented on finding the

soldering group of Schwarzschild spacetime. In this article,
we first extend the results of [33] for the case of rotating
spacetimes. We then discuss the intrinsic properties of the
shell for generic soldering and BMS-supertranslation–like
symmetries. We adopt the intrinsic formulation and directly
read off the intrinsic quantities of the shell corresponding to
the BMS-like soldering transformations by comparing the
oblique extrinsic curvature of two sides of the shell in a
common intrinsic coordinate. This reduces some algebra
compared to the off-shell extension method adopted
in [33]. This procedure helps us to reinterpret the results
of [33] in a slightly different way. The soldering of two
metrics across a null surface is predominantly local con-
struction and is insensitive to the global or asymptotic
structure of the ambient manifolds. This fact is apparent
from our study of horizon shells in rotating Bañados,
Teitelboim, Zanelli (BTZ) spacetime. We find supertrans-
lation-like soldering freedom for BTZ shells also. The
properties of the shells are also discussed. We also observe
that the soldering freedom can be recovered not only for a
horizon shell placed at the event horizon of a black hole but
also for causal horizons like the Rindler horizon or the
horizon in pure de Sitter space.
As an extended BMS group contains the superrotation

symmetry also, onemay be interested to look for such a kind
of symmetries in the context of soldering transformations.
However, for horizon shells situated at the black hole event
horizon, there is no scope of finding such symmetries. The
fundamental junction condition does not remain valid in
such scenarios. Interestingly, in some cases where the
horizon metric has nontrivial time dependence (e.g.,
Penrose’s cut-paste construction forMinkowski’s light cone
[35,36]), we know that a nontrivial soldering can be
constructed by combining a shift of null-coordinate V with
conformal isometries of the 2-sphere (spatial part of null
hypersurface). This set of conformal transformations can be
related to the superrotations of the asymptotic symmetry
group [37]. Here we have shown how conformal isometries
(superrotation-like symmetries) can also be accommodated
within the similar framework in which supertranslation-like
soldering freedom emerges (demanding the junction con-
dition to remain invariant, or equivalently finding the
solution of the Killing equation for the induced metric on
the null surface). For any spacetime with constant scalar
curvature, this kind of solderingwill emerge. For spacetimes
with a dimension of the spatial slice of the null surface ≤2,

we will have an infinite dimensional group of soldering
transformations arising because of an infinite number of
conformal isometries. In higher dimensions, we will only
have a finite dimensional conformal group. Although this
kind of superrotation-like symmetries could not be retrieved
at the horizon of a black hole, one can find it on a null surface
situated slightly away from the black hole horizon. We have
explicitly shown this near the horizon of a Schwarzschild
black hole and studied the properties of such shells.
In Sec. II we review the Israel junction condition briefly.

In Sec. III the emergence of BMS-like transformations
from soldering freedom is reviewed and how one can obtain
the conformal isometries is discussed. To demonstrate
the machinery, we have applied it to the horizons of
Schwarzschild and Minkowski spacetimes. We use the
intrinsic formulation to compute the conserved charges.
Section IV is devoted to find soldering freedom for rotating
shells. We also obtain conserved quantities corresponding
to soldering freedom for rotating shells. In Sec. V, we
consider the case where conformal isometries emerge due
to soldering. We demonstrate the examples of such sit-
uations. We also show how conformal isometries can be
recovered near the horizon of a black hole. Finally, we
conclude with discussions on our results and indicate future
scopes.

II. BRIEF REVIEW OF ISRAEL
JUNCTION CONDITION

Soldering of two spacetimes across a null hypersurface is
a well-studied problem, and much of our discussions will
closely follow the works by Israel, Poisson, etc. [38–41]. In
this section, we start by briefly reviewing all the essential
features of Israel junction conditions. Most commonly, in
general relativity, the problem is to find the surface
dynamics of a thin shell, where the surface is embedded
in a spacetime (M) of the formM ¼ Mþ ∪ M−.M− and
Mþ denote, respectively, the manifolds inside and outside
of the shell together with the corresponding intrinsic
metrics g−μνðxμ−Þ and gþμνðxμþÞ. xμ� denote the coordinates
of the manifoldsM�. Both the manifolds have boundaries,
where Mþ and M− are defined to the future and past of
null hypersurfaces Σþ and Σ−, respectively. Further we
consider a common coordinate system xμ, installed across
the common boundary Σ of two manifolds M�. This
coordinate system overlaps with the coordinates xμ� in some
open neighborhoods of M� containing Σ. These construc-
tions are required only for presentational convenience as
the junction conditions can be cast independent of any
coordinate system. Now suppose we define a set of intrinsic
coordinates ζa on the surface of the shell Σ, across which
the two manifolds will be joined. Also, xμjΣ ¼ ζa. Now we
can project both gþμν and g−μν on the surface from both sides.
Then the junction condition ensures the continuity of the
metric induced from both sides,
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gab ¼ gþμνe
þμ
a eþν

b jΣþ ¼ g−μνe
−μ
a e−νb jΣ−

; ð2:1Þ

where

e�μ
a ¼ ∂xμ�

∂ζa
are the tangent vectors to the surface. We will use the Greek
alphabets for the spacetime indices and Latin ones for the
hypersurface indices. The junction condition simply says
that the hypersurfaces are isometric, i.e., Σþ ¼ Σ− ¼ Σ.
Consequently (2.1) determines the functional dependence
of the coordinates (although not uniquely) xμ� on ζa. In the
literature this junction condition is often written in the
following form:

½gab� ¼ gþabjΣþ − g−abjΣ−
¼ 0: ð2:2Þ

We introduced here the box “½�” notation which means for
any tensor Aμ,

½Aμ� ¼ AμjΣþ − AμjΣ−
: ð2:3Þ

In the rest of the paper, we will be considering only null
shells. We define the normal vectors n�α ¼ χ∂αðΦðxμ�ÞÞ for
both Σ�. χ is an arbitrary normalization. These normals are
also generators for the null congruences orthogonal to both
the hypersurfaces. The equations of the hypersurfaces are
given by Φðxμ�Þ ¼ 0. We always work with future directing
normal vectors for each side of the shell. To complete the
basis we also have to define the auxiliary vector N� such
that

N · Nj� ¼ 0; n · N ¼ −1j�: ð2:4Þ

So together with e�μ
a they form a complete basis. From the

continuity of the null congruence it follows that

½nμ� ¼ 0 ¼ ½Nμ�: ð2:5Þ

The normal vectors must satisfy n · eaj� ¼ 0. Since the
same intrinsic coordinates ðζaÞ should be induced from þ
and − sides of the shell, we must have

½eμa� ¼ 0: ð2:6Þ
This condition ensures the continuity of the null normal

n and the spacelike tangent vectors across the shell. Now
we can use the distributional tensor calculus to derive the
form of the stress tensor for the thin shell such that the
Einstein equations will be satisfied.3 Now in the common
coordinate chart fxμg we express the metric covering both
sides as a distribution valued tensor such as

gμν ¼ gþμνθðΦÞ þ g−μνθð−ΦÞ; ð2:7Þ

where both gþ and g− have been expressed in terms of
the coordinates xμ. Now if we compute the derivative
of (2.7),

∂αgμν ¼ ∂αgþμνθðΦÞ þ ∂αg−μνθð−ΦÞ
þ ½gμν�ð∂αΦÞδðΦÞ: ð2:8Þ

Using (2.1) and (2.6) the last term in (2.8) becomes zero. So
we end up with the following form for the Christoffel
symbol:

Γμ
αβ ¼ Γþμ

αβ θðΦÞ þ Γ−μ
αβ θð−ΦÞ: ð2:9Þ

As a result the Riemann tensor takes the following form:

Rα
βγδ ¼ Rþα

βγδθðΦÞ þ R−α
βγδθð−ΦÞ

þ δðΦÞQα
βγδ; ð2:10Þ

where Qα
βγδ ¼ −ð½Γα

βδ�nγ − ½Γα
βγ�nδÞ. To satisfy the

Einstein equation we start with the following form for
the stress tensor:

Tαβ ¼ Tþ
αβθðΦÞ þ T−

αβθðΦÞ þ SαβδðΦÞ; ð2:11Þ

where

8πSαβ ¼ Qαβ −
1

2
Qgαβ: ð2:12Þ

Equation (2.12) follows from the δðΦÞ part of the Einstein
equations. Then the stress tensor of the shell (Sab) can be
found by projecting (2.12) to the surface,

Sab ¼ Sαβeαae
β
b: ð2:13Þ

We further observe that because of the junction condition
there is no discontinuity in the tangential derivatives of the
metric, but there is only a jump in the normal direction.

½∂αgμν� ¼ −γμνnα: ð2:14Þ

From this we get

γab ¼ Nα½∂αgab� ¼ 2½Kab�: ð2:15Þ

Kab is known as the transverse or oblique extrinsic
curvature. This is defined as

Kab ¼ eαae
β
b∇αNβ: ð2:16Þ

Projecting γμν to the surface gives us a unique induced
metric on the surface of the shell. Using this we can

3We have only quoted the important results. For detail
derivations interested readers are referred to [39–41].
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finally recast Sαβ (after some manipulation) [39–41] in the
following form:

Sαβ ¼ μnαnβ þ jAðnαeβA þ eαAn
βÞ þ pσABeαAe

β
B; ð2:17Þ

where σAB is the nondegenerate metric of the spatial slice of
the surface of the null shell. Capital indices A;B denote the
spatial indices of the null surface. μ; JA, and p can be
interpreted as the surface energy density, current, and
pressure of the shell, respectively. For the null shell these
quantities can be related to the jump of the extrinsic
curvature in the direction transverse to the shell (oblique
extrinsic curvature). To make things concrete, throughout
the paper we work in Kruskal coordinates. On the surface Σ
of the null shell we define a coordinate chart such that
ζa ¼ fV; xAg. V is the parameter along the hypersurface
generating null congruences. In this coordinate system the
normal vector takes the following form:

nα ¼ ð∂VÞα: ð2:18Þ

On Σ the metric will take the form gabdζadζb¼gABdxAdxB.
One then adopts a single chart x ¼ fU; xag such that
xajΣ ¼ ζa. Given this coordinate chart the conditions
(2.1), (2.5), and (2.6) are satisfied. Equipped with this
coordinate system, we write down the conserved quantities
in the following way [39–41]:

μ¼−
1

8π
σAB½KAB�; JA¼ 1

8π
σAB½KVB�; p¼−

1

8π
½KVV �;
ð2:19Þ

where ½KVV � ¼ 1
2
γαβnαnβ, ½KVA� ¼ 1

2
γαβeαAn

β, ½KAB� ¼
1
2
γαβeαAe

β
B. The shell’s stress-energy tensor obeys certain

conservation equations. The detailed derivation can be
found in [39]. We display here the most relevant one for
our analysis:

Nað∂b þ Γ̃bÞSab − SabK̃ab ¼ 0: ð2:20Þ

Here Γ̃b and K̃ab denote arithmetic means of Γ�μ
μb and K�

ab,
respectively.

III. SOLDERING FREEDOM AND
BMS-LIKE TRANSFORMATIONS

It is well known that there exists a considerable amount
of freedom in the choice of intrinsic coordinate on Σ in the
null direction. This is often termed as “soldering freedom.”
Recently in [33], this fact has been utilized to show that
BMS (supertranslation) type transformations emerge on the
horizon shell. In this section, we will briefly review the
essential points of this development and study the soldering
symmetries for rotating spacetimes.

We can ask what are the possible allowed coordinate
transformations on either side of the shell preserving the
junction condition (2.1). In a suitable coordinate system
this boils down to solve for the Killing vectors (Za) of gab,
the metric on Σ. So we solve the following equations,

LZgab ¼ 0: ð3:1Þ

From (3.1) we get

Zc∂cgab þ ð∂aZcÞgcb þ ð∂bZcÞgca ¼ 0: ð3:2Þ

In [33] the authors have worked with metrics where
gaV ¼ 0. From the aV components of (3.2) we can easily
conclude

∂VZA ¼ 0: ð3:3Þ

This implies that the isometry transformations along the
spatial directions of the null surface are independent of V.
Next if we consider the spatial components AB of (3.2),
we get

ZV∂VgAB þ ZC∂CgAB þ ð∂AZCÞgCB þ ð∂BZCÞgCA ¼ 0:

ð3:4Þ

Now there are two possibilities here. The first one is the
case where the metric gAB is independent of V, and we are
free to choose ZV as an arbitrary function of ðV; xAÞ,

ZV ¼ FðV; XAÞ: ð3:5Þ

For the Killing horizon one can investigate the effect of this
isometry transformation on the normal vector na. One can
show the isometry transformations preserve the direction of
the normal to the shell [33]; this implies the Lie transport of
the normal vector should be proportional to itself, i.e.,
LZna ∼ na. If one considers only those transformations for
which LZna ¼ 0, then it gives

∂VZV ¼ 0: ð3:6Þ

Equation (3.6) implies

ZV ¼ FðxAÞ: ð3:7Þ

From this relation it is apparent that ZV generates the
following transformation:

V → V þ FðXAÞ: ð3:8Þ

One can immediately identify this with the supertransla-
tion, already known in the literature. In [33] the shell stress
tensor is evaluated by extending the generator Z off the
shell. But here we will take a slightly different approach,
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namely the intrinsic formalism following [39–41]. This will
help us to visualize the emergence of BMS-like symmetries
as the soldering freedom of two manifolds across a null
surface in a different way: we always have a seed metric
(such as the Schwarzschild), and the horizon shell sort of
divides the spacetime into two manifolds. Now, if one
performs supertranslation-like coordinate transformations
in one side (say the þ side of the hypersurface) of the
horizon shell and stitches that with the other side (−)
without altering the fundamental junction condition, then
the generators of those supertranslations also preserve the
induced metric on the hypersurface. We then calculate the
oblique extrinsic curvatures of the two sides of the shell and
construct the stress tensor of the shell. Thus we can obtain
the conserved quantities with this construction quite easily.
To appreciate this fact let us consider the Schwarzschild
case as depicted in [33]. We consider a “supertranslated”
Schwarzschild as Mþ, and the metric of the M− side
remains as the seed Schwarzschild metric. Recall super-
translation-like soldering freedom, which is

V → V þ FðXAÞ:

Following is the supertranslated metric in the þ side,
written in Kruskal coordinates,

ds2¼−GðrÞðdUþdVþþ∂θþFðθþ;ϕþÞdUþdθþ

þ∂ϕþFðθþ;ϕþÞdUþdϕþÞþ r2ðUþ;VþÞdΩ2
2; ð3:9Þ

where

GðrÞ ¼ 32m3

r
e−r=2m: ð3:10Þ

The metric on the other side is the usual Schwarzschild
metric, and we assume they coincide with the intrinsic
coordinates of the shell. The horizon is situated at the
U ¼ 0 surface. Equipped with this we can compute the
conserved quantities from the jump of the extrinsic curva-
ture (2.19). Recall Eq. (2.16), this is used to compute the
oblique extrinsic curvature. The auxiliary normal, satisfy-
ing (2.4) is given by

Nα ¼ −ð∂VÞα: ð3:11Þ

As already mentioned, the oblique extrinsic curvatures
are computed for both sides ð�Þ of the shell in a common
coordinate system. Only ½Kθθ� and ½Kϕϕ� are nonvanishing.
Thus we get

μ ¼ −
1

8π
σAB½KAB� ¼ −

1

32m2π
ðΔð2ÞF − 2FÞ: ð3:12Þ

The shell conserved energy now is obtained by integrating
μ on the spatial slice of the horizon,

E½F� ¼ 1

8π

Z
S2
Fðθ;ϕÞ: ð3:13Þ

This reproduces the charge corresponding to the super-
translation on the horizon as described in Eq. (6.31) of [33].
The properties of such horizon shells are studied in detail
in [33]. Especially it was concluded that there will not be an
impulsive gravitational wave without any matter on the
shell. However, this situation alters when one considers the
Minkowski light cone.

A. Minkowski spacetime

Let us consider four-dimensional Minkowski spacetime.
Usually we write it in terms of Cartesian coordinates in the
following way:

ds2 ¼ dx2 − dt2 þ dy2 þ dz2: ð3:14Þ

Next we define

U ¼ t − x; V ¼ tþ x: ð3:15Þ

The metric becomes

ds2 ¼ −dUdV þ dy2 þ dz2: ð3:16Þ

Let us now consider the null surface (“light front”) defined
by U ¼ 0 and solder two Minkowski spaces across this
surface. This setup produces a plane-fronted lightlike
signal. As discussed previously we can immediately check
that this construction generates soldering freedom of the
form

V → FðV; y; zÞ: ð3:17Þ

After obtaining this soldering transformation, we can
compute the stress tensor for the shell using (2.19),

p¼ 1

4π

∂2
VF

∂VF
; JA¼−

1

4π

∂A∂VF
∂VF

; μ¼ 1

4π

Δð2ÞF
∂VF

: ð3:18Þ

Then we demand p ¼ 0, JA ¼ 0. This gives up to a
rescaling factor

FðV; y; zÞ ¼ V þ Tðy; zÞ: ð3:19Þ

This is precisely a supertranslation type transformation.
One can express the energy density as

μ ¼ 1

4π
Δð2ÞT: ð3:20Þ

If we now demand that the entire stress tensor of the shell
should vanish, we get
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μ ¼ 0: ð3:21Þ

From this we get

Δð2ÞT ¼ 0: ð3:22Þ

Now this admits a regular solution. We get

Tðy; zÞ ¼ c1fðyþ izÞ þ c2fðy − izÞ: ð3:23Þ

It is a linear combination of two arbitrary functions of
y� iz. This case admits a regular solution for Tðy; zÞ
unlike the cases of Killing horizons of black holes. So, if we
join shells with noncompact topology such as a plane, in
this case, we get shells supporting impulsive lightlike
signals without any matter [40]. One can now have many
interesting cases. For example, one can have Tðy;zÞ¼
a
2
½ðyþ izÞ2þðy− izÞ2�þb

2
½ðyþ izÞ2−ðy− izÞ2�, for which

one gets a pure impulsive gravitational wave.4 On the
other hand, if one considers a term − c

2
ðy2 þ z2Þ, in addition

to the above soldering terms, a nonzero matter density μ ¼
c=4π in addition to the impulsive gravitational wave
appears. Therefore the matter and the gravity wave can
coexist in this scenario, a fact known from the earlier
studies of singular null hypersurfaces [40].

(i) Rindler horizon
We know that an accelerated observer in

Minkowski spacetime sees a horizon in front of it.
The spacetime seen by the observer can be captured
by performing the following transformations:

U ¼ −
1

a
e−au; V ¼ 1

a
eav; ð3:24Þ

where a is the proper acceleration of the Rindler
observer. For this case, we get a supertranslation-like
soldering freedom related to (3.19) as follows:

Tðx; yÞ ¼ 1

a
eaT̃ðx;yÞ: ð3:25Þ

Subsequently we get

μ¼ eaT̃ðx;yÞ

4π
ðΔð2ÞT̃þafð∂xT̃Þ2þð∂yT̃Þ2gÞ: ð3:26Þ

To examine the fact if we get a situation where
a gravitational wave exists without any matter on
the shell, we again demand μ ¼ 0 and can find a
solution of the type

T̃ðx; yÞ ¼ 1

a
log½cðx� yÞ�: ð3:27Þ

This indicates the existence of a lightlike signal
through the accelerated horizon of Rindler spacetime.

Infinite dimensional soldering symmetry can also
be attributed to the cosmological horizon of de Sitter
space, which is an example of the Killing horizon but
not an event horizon.However, this horizon is genuine
unlike the Rindler horizon, which only exists for an
accelerated observer.

(ii) Spacetime describing infinite straight lightlike string
We start with a spacetime possessing a cosmic

string and then give it an infinite boost. The limiting
geometry takes the following form:

ds2 ¼ −dUdV þ dy2 þ dz2

− 8πμjyjδðUÞdU2: ð3:28Þ

U ¼ 0 is a null surface. We can easily verify the
following supertranslation-like soldering freedom
should appear across this surface, V→VþTðy;zÞ.
Also demanding that the shell’s stress tensor van-
ishes we again get a solution for Tðy; zÞ similar
to (3.23).

B. Soldering freedom redux

We now look back at (3.4) and explore the second
possible scenario. Till now we have discussed the case
where gAB is independent of V. Generically, when gAB
depends on V, this equation implies ZV ¼ 0 and there is no
nontrivial soldering freedom. Now we will examine such
cases where gAB indeed depends on V but we will still have
nontrivial soldering freedom. First we allow conformal
transformations of the spatial slice such that

ZC∂CgABþð∂AZCÞgCBþð∂BZCÞgCA ¼ΩðxAÞgAB: ð3:29Þ

This is compatible with (3.2) as ΩðxAÞ is independent of V
but can be in general any function of xA only to be
constrained by (3.29). Then from (3.4) we have

ZV∂VgAB þΩðxAÞgAB ¼ 0: ð3:30Þ

Next we explore a feasible solution of the above equation.
Let us consider the following situation:

gAB ¼ V2g̃AB; ð3:31Þ

where g̃AB is only a function of xA. This may appear to be
pretty nongeneric, but (3.31) seems to provide a feasible
solution for ZV in Eq. (3.30). In fact, one can consider any
regular function of V instead of V2. That will provide us
with the most general situation. The plausibility of the

4One can also compute Newman-Penrose scalar Ψ4 and find if
it is nonzero. A nonzero Ψ4 indicates the existence of a
gravitational wave.
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above assertion can be argued as follows: Without loss of
much generality we can assume that we can install
Gaussian null coordinates (e.g., Kruskal type) near the
horizon of spacetimes that are of our interest. Then the
tensorial equation (3.30) yields the following condition
between the diagonal components g11 ¼ f1ðV; α; βÞ, g22 ¼
f2ðV;α; βÞ of the 2-metric gAB:

∂V ln f1ðV; α; βÞ ¼ ∂V ln f2ðV; α; βÞ;
f1ðV; α; βÞ
f2ðV; α; βÞ

¼ Cðα; βÞ; ð3:32Þ

where α, β are coordinates on the 2 surface and Cðα; βÞ is
the integration constant. Clearly (3.32) is always satisfied if
both f1 and f2 can be cast as products of a regular function
of V, gðVÞ and some function (not necessarily the same) of
α, β.
Now from (3.31) we have

2VZVg̃AB þΩðxAÞV2g̃AB ¼ 0: ð3:33Þ

This gives for all components of g̃AB

ZV ¼ −
VΩðxAÞ

2
: ð3:34Þ

When the dimension of the spatial slice is greater than 2,
then the functional form of the ΩðxAÞ is completely fixed
and the number of generators of such symmetry is also
finite. So we get a finite dimensional soldering group with
ZV completely fixed. When the dimension of the spatial
slice is 2, then ΩðxAÞ can in principle be unconstrained and
hence the soldering group will also be infinite dimensional.
We will demonstrate this by explicit constructions in
Sec. V.

IV. SOLDERING FREEDOM AND BMS-LIKE
TRANSFORMATIONS FOR ROTATING SHELLS

We now generalize the constructions depicted in [33] for
metrics where gaV ≠ 0 (expressed in some Gaussian null
coordinates). We take two specific examples: Kerr space-
time in slow rotation limit and rotating BTZ. As before, we
will use the coordinates of M− as the intrinsic coordinates
covering both sides, xα− ¼ xα. Also xα−jΣ ¼ ζa. The horizon
in the Kruskal coordinates is identified by settingU ¼ 0 for
both M�. These two spacetimes will be isometrically
soldered at U ¼ Uþ ¼ 0. The components gaV are propor-
tional to U such that at U ¼ 0, gaV will go to zero. So it can
easily be checked that (3.2), (3.4), and (3.6) remain the
same. On the horizon, we have ZV ¼ FðV; XBÞ, which
corresponds to the soldering freedom along the null
direction. This will again produce the supertranslation-like
transformations. We then compute the shell stress tensor
using (2.17) and (2.19).

A. Horizon shell in slowly rotating Kerr spacetime

We consider first the Kerr metric in the slow rotation
limit; i.e., we shall work up to first order in the rotation
parameter. The virtue of the slow rotation limit is that we
will have more analytic control. In Kruskal coordinates, the
metric takes the following form:

ds2¼ r2ðdθ2þsinðθÞ2dϕ̃2Þ−
�
32m3

r

�
e−r=2mdUdV

þ2a
r
sinðθÞ2e−r=2mðr2þ2mrþ4m2Þdϕ̃ðUdV−VdUÞ:

ð4:1Þ

a is the rotation parameter, and we expand all the quantities
in small a and keep only those terms that are linear in a. On
the horizon (Σ) the induced metric takes the following
form:

ds2jN ¼ r2ðdθ2 þ sinðθÞ2dϕ̃2ÞjN : ð4:2Þ

As mentioned before we take fU−; V−; θ−; ϕ̃−g as the
intrinsic coordinates, fU;V; θ; ϕ̃g. Once again wewill have
ZV ¼ FðV; θ; ϕ̃Þ upon solving the Killing equations on the
horizon. The angular components of the killing equations
produce the usual isometry transformations on the 2-sphere.
We then do an active coordinate transformation of the form
V → V þ FðV; θ; ϕ̃Þ on the − side and solder this with the
usual Kerr metric on the þ side. Then using (2.19), and
imposing the condition LZna ¼ 0, we can write down the
intrinsic energymomentum tensor of the shell from the jump
of the oblique extrinsic curvature. The soldering trans-
formation now becomes supertranslation-like,

F ¼ aV þ Bðθ; ϕ̃Þ; ð4:3Þ

where a is a scale factor and Bðθ; ϕ̃Þ is an arbitrary function
of angular coordinates. So in general up to a rescaling factor
we have

FðV; θ; ϕ̃Þ ¼ V þ Tðθ; ϕ̃Þ: ð4:4Þ

B. Off-shell extension of soldering transformations
for Kerr spacetime

The intrinsic properties of the horizon shells for generic
soldering transformation can be read off by extending the
generators of soldering freedom off the shell. This method
was advocated in [33]. Here we demonstrate the method for
the slowly rotating Kerr, and we can check that this matches
with the results obtained from the jump in the relevant
components of the oblique extrinsic curvature method as
discussed in Sec. II. So this way of finding the conserved
quantities will serve as a complementary method to the one
discussed in Sec. II. We need to impose the following
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conditions for extending the generators off the shell say in
the ðþÞ side,

LZþgαβjΣ ¼ 0; ð4:5Þ

where Zþ is the off-shell extension of the soldering
symmetry generator Z ¼ ZV∂V. In Kruskal type coordi-
nates we write this vector as

Zþ ¼ ZV∂V þ Uzα∂α: ð4:6Þ

Lifting the soldering symmetry off the shell means we
have on the shell ZþjΣ ¼ ZV∂V and ∂aZþjΣ ¼ ð∂aZVÞ∂V .
In our adopted coordinates gaV jΣ ¼ 0 ¼ ∂VgabjΣ, and the
relation

LZþgabjΣ ¼ 0 ð4:7Þ

is identically satisfied. Hence the condition (4.5) reduces to

LZþgUβjΣ ¼ 0: ð4:8Þ

Below we write down all the components explicitly (all
of these equations are satisfied on the shell),

ZV∂VgUU þ 2zϕ̃gϕ̃U þ 2zVgVU ¼ 0;

ZV∂VgUV þ ðzU þ ð∂VZVÞÞgUV ¼ 0;

ZV∂VgUA þ zαgαA þ ð∂AZVÞgUV ¼ 0: ð4:9Þ

Solving (3.2) up to OðaÞ,

zV ¼ −zϕ̃
gϕ̃U
gVU

¼ −zϕ̃
3aV
2m

sinðθÞ2 ¼ −ð∂ϕ̃Z
VÞ 3aV

em
;

zU ¼ −∂VZV;

zϕ̃ ¼ ðZV − ð∂VZVÞVÞ 3a
em

þ ð∂ϕ̃Z
VÞ 2

e sinðθÞ2 ;

zθ ¼ 2

e
ð∂θZVÞ: ð4:10Þ

Then using ZV ¼ VωðV; θ; ϕ̃Þ we get the required Killing
vector for off-shell transformation,

Zþ ¼ ωðV∂V −U∂UÞ þ UV

�
2

e sinðθÞ2 ð∂ϕ̃ωÞ∂ϕ̃

þ 2

e
ð∂θωÞ∂θ − ð∂VωÞ∂U

�

−
3aUV2

em
ðð∂ϕ̃ωÞ∂V þ ð∂VωÞ∂ϕ̃Þ: ð4:11Þ

We now consider the following ansatz to obtain the finite
counterparts of the infinitesimal transformations given
in (4.11):

Vþ¼FðV;θ;ϕ̃ÞþUAðV;θ;ϕ̃Þ; Uþ¼UCðV;θ;ϕ̃Þ;
θþ¼θþUBθðV;θ;ϕ̃Þ; ϕ̃þ¼ ϕ̃þUBϕ̃ðV;θ;ϕ̃Þ: ð4:12Þ

Demanding the continuity of the full spacetime metric
across the junction at leading order in U we get [retaining
terms up to OðaÞ]

C ¼ 1

∂VF
; Bθ ¼ 2

e
∂θF
∂VF

;

BΦ̃ ¼ 2

e
1

sinðθÞ2
∂ϕ̃F

∂VF
þ 3a
2em

�
F

∂VF
− V

�
;

A ¼ e
4
∂VF

��
2

e
∂θF
∂VF

�
2

þ sinðθÞ2
�
2

e
1

sinðθÞ2
∂ϕ̃F

∂VF

�
2
�

−
3a∂ϕ̃FV

2em
: ð4:13Þ

Now we evaluate γab and the conserved charge as defined
in (2.14) and (2.19). On M− we have

rðUVÞ2 ¼ 4m2 −
8m2

e
UV þ � � � ; ð4:14Þ

and on Mþ we have

rðUþVþÞ2 ¼ 4m2 −
8m2

e
UþVþ þ � � � ¼ 4m2 −

8m2

e
UF
∂vF

:

ð4:15Þ

Also,

sinðθþÞ2 ¼ sinðθÞ2 þ 2UΘ sinðθÞ cosðθÞ þ � � � : ð4:16Þ

We now expand the tangential components of the metrics
in Mþ and M− to linear order in U. For M− we have

g−abdx
adxb ¼ g0ABdx

AdxA − U
8m2

e

�
−
3a
2m

sinðθÞ2dVdϕ̃

þ Vdθ2 þ V sinðθÞ2dϕ̃2

�
: ð4:17Þ

For Mþ we have

gþabdx
adxb ¼ g0ABdx

AdxB þ 8m2U

�
−
2

e
dAdF

þ σABdxAðdBB − ðF=eFVÞdxBÞ
þ sinðθÞ cosðθÞΘdϕ̃2

þ 6a sinðθÞ2
4em

dϕ̃ðAdF − FdAÞ
�
: ð4:18Þ
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Now,

γab ¼ Nα½∂αgab� ¼ NU½∂Ugab� þ Nϕ½∂ϕ̃gab� ð4:19Þ

and

NU ¼ e
8m2

; Nϕ̃ ¼ 3aV
16m3

: ð4:20Þ

Using (4.13) we get, on Mþ,

gþabdx
adxb

¼ g0ABdx
AdxB þ 8m2U

�
2

e

�∂V∂aF
∂VF

dVdxa
�

þ 2

e
∂A∂BF
∂VF

dxAdxB −
4

e
cotðθÞ ∂ϕ̃F

∂VF
dθdϕ̃

− σABdxAðF=eFVÞdxB þ 2

e
sinðθÞ cosðθÞ ∂θF

∂VF
dϕ̃2

þ 3a
2em

sinðθÞ2dϕ̃
�
2
∂BF
∂VF

dxB þ dV

��
: ð4:21Þ

For M− we have

g−abdx
adxb ¼ g0ABdx

AdxB −U
8m2

e

�
−
3a
2m

sinðθÞ2dVdϕ̃

þ Vdθ2 þ V sinðθÞ2dϕ̃2

�
: ð4:22Þ

So to OðaÞ we have

γVa ¼ 2
∂V∂aF
∂VF

;

γθθ ¼ 2

�∇ð2Þ
θ ∂θF
∂VF

−
1

2

�
F

∂VF
− V

��
;

γθϕ̃ ¼ 2

�∇ð2Þ
θ ∂ϕ̃F

∂VF
þ 3a sinðθÞ2

2m
∂θF
∂VF

�
;

γϕ̃ ϕ̃ ¼ 2

�∇ð2Þ
ϕ̃
∂ϕ̃F

∂VF
−
1

2
sinðθÞ2

�
F

∂VF
− V

�

þ 3a sinðθÞ2
2m

∂ϕ̃F

∂VF

�
: ð4:23Þ

Using (4.23) we can write down the intrinsic energy
momentum tensor off the shell. From that we get

p ¼ −
1

16π
γVV ¼ −

1

8π

∂2
VF

∂VF
;

jA ¼ 1

32m2π
σAB

∂B∂VF
∂VF

;

μ ¼ −
1

32m2π∂VF

�
∇ð2ÞF − F þ V∂VF þ 3a

2m
∂ϕF

�
:

ð4:24Þ

The energy density of the shell now takes the following
form:

μ ¼ −
1

32m2π

�
∇ð2ÞT − T þ 3a

2m
∂ϕ̃T

�
; ð4:25Þ

which implies

∂Vμ ¼ 0: ð4:26Þ

The total energy is given by integrating μ over the spacelike
cross section of the horizon,

E ¼ 1

32m2π

Z
dθdϕ̃

ffiffiffi
g

p
T; ð4:27Þ

where
ffiffiffi
g

p
is the determinant of the induced metric of the

spacelike cross section of the horizon of the null shell.
Next we consider several special situations:
(i) Zero pressure, p ¼ 0: We get ∂2

VF ¼ 0. This in turn
implies F ¼ fðθ;ϕÞV þ gðθ;ϕÞ. This transforma-
tion as usual leaves surface gravity invariant.

(ii) Both pressure and current zero, p ¼ 0, JA ¼ 0.
This gives us

F ¼ aV þ Bðθ; ϕ̃Þ; ð4:28Þ

where a is a scale factor and Bðθ; ϕ̃Þ is an arbitrary function
of the angular coordinate. So in general up to a rescaling
factor we have

FðV; θ; ϕ̃Þ ¼ V þ Tðθ; ϕ̃Þ: ð4:29Þ

The corresponding energy density for this kind of shell is

μ ¼ −
1

32m2π

�
∇ð2ÞT − T þ 3a

2m
∂ϕ̃T

�
; ð4:30Þ

which will imply

∂Vμ ¼ 0: ð4:31Þ

(i) No matter on the shell: Sab ¼ 0.
Given FðV;θ;ϕ̃Þ¼VþTðθ;ϕ̃Þ, we also demand

μ ¼ 0. This gives
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∇ð2ÞT − T þ 3a
2m

∂ϕ̃T ¼ 0: ð4:32Þ

As we are working in a slow rotation regime, this
equation poses no regular solution such as the
nonrotating case. So we get

Tðθ; ϕ̃Þ ¼ 0: ð4:33Þ

This will make not just the trace part of the stress
tensor zero but also every component of γab to be
zero.

C. Horizon shell in rotating BTZ

The matching conditions are insensitive to the asymp-
totic structure of the spacetime. In view of this, here we
study the three-dimensional BTZ black hole that is not
asymptotically flat, but the supertranslation-like soldering
freedom still appears. Unlike the Kerr metric, we do not
have to consider the slow rotation limit for this case. We get
an exact analytic answer for arbitrary rotation. So it will be
interesting to see whether we get any qualitative changes
because of the presence of rotation. The metric takes the
following form:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2½Nϕdtþ dϕ�2; ð4:34Þ

where fðrÞ ¼ −M þ ðrlÞ2 þ J2

4r2 and NϕðrÞ ¼ J
2

r2−r2h
r2r2h

. Also,

r2h ¼
1

2

�
Ml2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMl2Þ2 − J2l2

q �
;

r̃h ¼
1

2

�
Ml2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMl2Þ2 − J2l2

q �
: ð4:35Þ

We express all the quantities in terms of rh and r̃h,

M ¼ r2h þ r̃2h
l2

; J ¼ 2rhr̃h
l

: ð4:36Þ

Then we have

NϕðrÞ ¼ r̃h
rh

r2− r2h
lr2

; fðrÞ ¼ ðr2 − r2hÞðr2 − r̃2hÞ
l2r2

: ð4:37Þ

Then we change to Kruskal coordinates [42].

U ¼ −e−κu; V ¼ eκv; ð4:38Þ

where, u; v ¼ t� r�. Also,

r� ¼ 1

2κ
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r̃2h

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2h − r̃2h

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r̃2h

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2h − r̃2h

p
�

ð4:39Þ

and

κ ¼ r2h − r̃2h
l2rh

: ð4:40Þ

Finally we get [42],

ds2 ¼ 1

ð1þ UVÞ2 ð−4l
2dUdV − 4lr̃hðUdV − VdUÞdϕ

þ ½ð1 −UVÞ2r2h þ 4UVr̃2h�dϕ2Þ: ð4:41Þ

Like the Kerr metric, we again get ZV ¼ FðV;ϕÞ on the
horizon. So there is again an arbitrary soldering freedom in
the V direction. Performing an active transformation of the
form V → V þ FðV; θÞ to the metric of − side we solder it
with usual rotating BTZ metric on þ side. Then using
(2.19) we can write down the components of intrinsic
energy momentum tensor of the shell from the jump of the
oblique extrinsic curvature.

p ¼ −
1

8π

∂2
VF

∂VF
; Jϕ ¼ 1

4π

∂V∂ϕF

r2h∂VF
;

μ ¼ −
1

8π

�
l2∂2

ϕF − 2lr̃h∂ϕF − ðr2h − r̃2hÞðF − V∂VFÞ
r2hl

2∂VF

�
:

ð4:42Þ

Again setting p ¼ 0 we get

FðV;ϕÞ ¼ V þ TðϕÞ; ð4:43Þ

where TðϕÞ is an arbitrary function of the angular coor-
dinate. Also, if we want to set Jϕ ¼ 0 we will get

FðV;ϕÞ ¼ aV þ BðϕÞ: ð4:44Þ

BðϕÞ is an arbitrary function of the angular coordinate.
Also for the p ¼ 0 (or Jϕ ¼ 0) case we again retrieve the

fact that ∂Vμ ¼ 0, where

μ¼−
1

8πl2

�
l2T 00ðϕÞ−2lr̃hT 0ðϕÞ−ðr2h− r̃2hÞTðϕÞ

r2h

�
: ð4:45Þ

The total energy once again is obtained by integrating μ on
the spatial slice of the horizon,

E ¼ 1

8π

Z
dϕðκTðϕÞÞ: ð4:46Þ

This matches with the supertranslation charge derived in
the literature from different perspectives; for example,
readers are referred to [7,11]. Thus as mentioned earlier,
BMS-like soldering freedom can also arise for horizon
shells placed at spacetimes that are not asymptotically flat.
Next we discuss in detail what happens if we work in the
Eddington-Finkelstein coordinate.
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Eddington-Finkelstein shell
To change all the expressions in the Eddington-Finkelstein coordinate, we do the following:

FðV; θÞ ¼ eκfðv;θÞ; ∂V ¼ e−κv

κ
∂v; ∂2

V ¼ e−2κv

κ2
∂2
v −

e−2κv

κ
∂v: ð4:47Þ

Using this we get

p ¼ −
1

8π

�∂2
vf

∂vf
þ κ∂vf − κ

�
; Jϕ ¼ 1

4πr2h

�∂v∂ϕf

∂vf
þ κ∂ϕf

�
;

μ ¼ −
eκv

8π

�
l2κ2ð∂ϕfÞ2 þ l2κ∂2

ϕf − 2lr̃hκ∂ϕf − ðr2h − r̃2hÞð1 − ∂vfÞ
r2hl

2∂vf

�
: ð4:48Þ

We can now study various cases.

(i) p ¼ 0: This will give

fðv;ϕÞ ¼ 1

κ
ðlogðeκv þ ec1ðϕÞÞ þ c2ðϕÞÞ: ð4:49Þ

Translating this into the Kruskal coordinate we get

FðV;ϕÞ ¼ ec2ðϕÞV þ TðϕÞ; ð4:50Þ

where TðϕÞ ¼ ec2ðϕÞþc1ðϕÞ.

(ii) p ¼ 0, Jϕ ¼ 0: This gives

ec2ðϕÞ ¼ a: ð4:51Þ

a is just a constant. So we get

FðV;ϕÞ ¼ aV þ TðϕÞ: ð4:52Þ

Up to a rescaling factoraweagainget supertranslation-
like transformation.

V. SOLDERING FREEDOM AND
CONFORMAL ISOMETRY

In this section, we consider various scenarios where a
special kind of stitching gives rise to a new kind of
soldering freedom, namely conformal transformations.
We have already shown in Sec. III B that such situations
can arise when the metric on the horizon depends on V.
Here we elaborate on this by considering a few examples.

(i) Spacetimes with constant curvature:
Let us consider spacetimes with the topology

M1 ×M3. M1 can be either R1 or S1. Similarly
M3 can be either R3 or S3. This will enable us to

deal with Minkowski, de Sitter, and anti–de Sitter
spacetimes in a unified way. We will start with five-
dimensional embedding space,

−X2
0 þ X2

1 þ X2
2 þ X2

3 þ ηX2
4 ¼ ηa2; ð5:1Þ

where a ¼
ffiffiffiffiffi
3
jΛj

q
and Λ is the cosmological constant.

η ¼ 1 for Λ > 0, η ¼ −1 for Λ < 0, and η ¼ 0 for
Λ ¼ 0. Then we define [40,43,44]

u ¼
ffiffiffi
2

p
a
ðX0 þ X1Þ
ðX4 þ aÞ ; v ¼

ffiffiffi
2

p
a
ðX0 − X1Þ
ðX4 þ aÞ ;

z ¼
ffiffiffi
2

p
a
ðX2 þ iX3Þ
ðX4 þ aÞ : ð5:2Þ

We get

ds2 ¼ 2dzdz̄ − 2dudv
ð1þ Λ

6
ðzz̄ − uvÞÞ2 : ð5:3Þ

It is evident that this metric represents de Sitter space
when Λ > 0, anti–de Sitter space when Λ < 0, and
Minkowski space when Λ ¼ 0. It is well known
that the five-dimensional embedding spaces for
(anti–)de Sitter spacetimes can be parametrized in
different ways. Not all of those parametrizations
would cover the entire manifold [45]. However, the
coordinate systems that we have chosen cover
the whole manifold. One can easily see this for
Minkowski space where η ¼ Λ ¼ 0, and in this case
Eq. (5.3) produces a Kruskal representation of flat
space. Since Kruskal coordinate system is a global
set of coordinates (−∞ < U, V < ∞), we clearly
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have a global notion of the light cone or U ¼ 0 null
hypersurface. The other cases Λ > 0 or Λ < 0 can
be viewed similarly.5 Next, we make the following
coordinate transformations [40,43,44]:

u ¼ zz̄V
b

− U; v ¼ V
b
− ηU;

ζ ¼ zV
b

; b ¼ 1þ ηζζ̄: ð5:4Þ

Then we end up with the following form of the
metric:

ds2 ¼ 2ðVbÞ2dζdζ̄ þ 2dUdV − 2ηdU2

ð1þ ΛU
6
ðV − ηUÞÞ2 : ð5:5Þ

Now we consider the null surface (Σ) U ¼ 0. The
line element is then simply given by ds2jΣ ¼
2ðVbÞ2dζdζ̄. Recall Eq. (3.31); the line elements
are almost identical. Next we perform the following
infinitesimal conformal transformations:

2

b2
dζdζ̄ →

2

b2
dζdζ̄ þ ϵ

2Ωðζ; ζ̄Þ
b2

dζdζ̄: ð5:6Þ

ϵ is the small parameter and Ωðζ; ζ̄Þ is the conformal
factor. We then can easily verify that

V → V

�
1 −

ϵΩðζ; ζ̄Þ
2

�

keeps the full metric ds2jΣ invariant, and it is
generated by ZV mentioned in (3.34). Also for the
individual coordinates we have

ζ → ζ þ ϵhðζÞ; ζ̄ → ζ̄ þ ϵh̄ðζ̄Þ; ð5:7Þ

which give

Ωðζ; ζ̄Þ

¼ ð1þ ηζζ̄Þðh0ðζÞ þ h̄0ðζ̄ÞÞ− 2ηζ̄hðζÞ− 2ηζh̄ðζ̄Þ
1þ ηζζ̄

:

ð5:8Þ

hðζÞ and h̄ðζ̄Þ are holomorphic and antiholomorphic
functions. These kinds of local conformal trans-
formations are usually referred to as superrotations
in the context of asymptotic symmetries. There exist

infinite ways to solder two constant curvature space-
times. Although not exactly in the same context but
for horizons described by constant curvature spaces,
one finds superrotations like transformations while
soldering two spacetimes.

(ii) Black hole horizon:
Let us now explore the possibility of recovering

such conformal isometries in black hole spacetimes.
For four-dimensional black holes (nonrotating), the
horizon topology is typically R ×M2, where M2

can be R2, S2, or H2. The metric on M2 typically
takes the form r2dΩ2 where r2 takes the following
form near the horizon in some Kruskal-like coor-
dinates:

r2 ¼ aþ bðUVÞ þ cðUVÞ2 þ � � � : ð5:9Þ

dΩ2 can be a metric of two-dimensional flat,
spherical, or hyperbolic space. We can immediately
see from (3.4) that at U ¼ 0 there is no scope of
introducing conformal transformations for the spa-
tial cross section of the horizon. But interestingly if
we are not exactly at the horizon but slightly away
from it (i.e., at U ¼ ϵ, where ϵ is very small but not
zero), then from (3.4) and (3.33) we have

ZVϵbg̃AB þΩðxAÞðaþ ϵbVÞg̃AB ¼ 0; ð5:10Þ

where gAB ¼ r2g̃AB. From this we get

ZV ¼ −
aΩðxAÞ

bϵ
− VΩðxAÞ þOðϵÞ: ð5:11Þ

We have kept only leading order terms in ϵ. There-
fore for a null surface situated close to the black hole
horizon, one can have conformal transformations as
soldering freedom. Also it is evident as long as
U ≠ 0 that this transformation is nonvanishing; but
when U becomes zero, then we have to set ΩðxAÞ to
zero also. Hence, ZV will vanish, implying this kind
of transformations is not allowed on the event
horizon but only permissible outside the event
horizon.

Next we compute the intrinsic quantities for this
type of shell [47]. We will adopt the intrinsic
formulation as discussed in Sec. II. On the − side
we have the usual Schwarzschild metric in the
Kruskal coordinate as shown below,

ds2 ¼ −GðrÞdUdV þ r2ðU;VÞdΩ2
2: ð5:12Þ

Here GðrÞ ¼ 32m3

r e−r=2m and dΩ2
2 ¼ dzdz̄

ð1þzz̄Þ2. z and z̄

are the complex coordinates. The shell is located at
U ¼ ϵ. Near the surface we have the following
expansion for rðU;VÞ:

5Each of the coordinates in (5.2) possesses a coordinate
singularity at X4 ¼ −a. For more discussions about different
choices of embedding coordinates in the context of soldering two
spacetimes across a null shell, interested readers are referred to
[43,44,46].
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rðU;VÞ2 ¼ aþ ϵbV; ð5:13Þ

with a ¼ 4m2, b ¼ − 8m2

e . Here ϵ is small and we
will only keep terms up to linear order in ϵ.
Now on the þ side we take this metric and

perform the following transformation:

V → Vð1 − Ω̃ðz; z̄ÞÞ − aΩ̃ðz; z̄Þ
bϵ

þOðϵÞ;
z → zþ hðzÞ; z̄ → z̄þ h̄ðzÞ: ð5:14Þ

This induces a conformal transformation on
2-sphere,

dΩ2
2 ¼ ð1þ Ω̃ðz; z̄ÞÞdΩ2

2; ð5:15Þ

with

Ω̃ðz; z̄Þ¼ ð1þ zz̄Þðh0ðzÞþ h̄0ðz̄ÞÞ−2z̄hðzÞ−2zh̄ðz̄Þ
1þ zz̄

:

ð5:16Þ

We only keep terms that are linear in hðzÞ, h̄ðz̄Þ or in
ϵ. Using the formulation of [39–41] as discussed in
Sec. II we compute the jump of the oblique extrinsic
curvature of this shell and from that we read off
various shell-intrinsic quantities. Let us discuss the
computation briefly. On the side − we will have

nμj− ¼ ð∂VÞμ; Nμj−
¼ 1

GðrðU;VÞÞjU¼ϵ
ð∂UÞμ: ð5:17Þ

On the þ side we will have

nμjþ ¼ ð1 − Ω̃ðz; z̄ÞÞð∂VÞμ; ð5:18Þ

and the following nonvanishing components of
the tangent vectors (to the spatial two-dimensional
slice):

eVz jþ ¼ ðe − 2VϵÞ∂zΩ̃ðz; z̄Þ
2ϵ

; ezzjþ ¼ 1þ h0ðzÞ;

eVz̄ jþ ¼ ðe − 2VϵÞ∂ z̄Ω̃ðz; z̄Þ
2ϵ

; ez̄z̄jþ ¼ 1þ h̄0ðz̄Þ:
ð5:19Þ

Auxiliary normal Nμjþ can easily be determined
uniquely by solving the following constraints:

Nμnμ¼−1; N2¼0; Nμe
μ
z ¼Nμe

μ
z̄ ¼0: ð5:20Þ

Now using (2.19) we get the following nonvanishing
quantities:

Jz ¼ ð1þ zz̄Þ2∂ z̄Ω̃ðz; z̄Þ
64m2π

þOðϵÞ;

Jz̄ ¼ ð1þ zz̄Þ2∂zΩ̃ðz; z̄Þ
64m2π

þOðϵÞ;

μ ¼ ðeþ VϵÞΩðz; z̄Þ
16πm2ϵ

þ Vðz̄hðzÞ þ zh̄ðz̄ÞÞ
16m2πð1þ zz̄Þ þOðϵÞ:

ð5:21Þ

Here again, we have kept only the leading order terms. The
pressure of the shell is zero, but there are nonzero currents
and energy density. Because of the explicit dependence of
the energy density μ on V, this shell satisfies a conservation
equation as shown in (2.20).

VI. SUMMARY AND DISCUSSION

We have revisited the dynamics of the thin null shell
situated at the horizon of black holes in general relativity
and explored the freedom of patching two metrics across
such horizon shells. We have analyzed horizon shells for
rotating black holes in four and three dimensions. If we
stitch two rotating metrics (slow rotation for Kerr metric)
across the shell demanding the induced metric remains
invariant up to its isometric transformations, we recover
BMS-like transformations. We computed the shell stress-
energy tensor from the jump of the oblique extrinsic
curvature of the shell. For spacetime with a different
asymptotic structure such as BTZ we also produce
BMS-like soldering symmetries. This emphasizes the fact
that the appearance of soldering symmetries is a local
phenomenon. It will be interesting to find this for the Kerr
shell without considering the slow rotation limit as many
features of axisymmetry get suppressed under the
assumption of slow rotation. In that case, we probably
get a nontrivial shell with different intrinsic properties.
The role of conformal invariance in the near horizon

physics of the black hole has been explored quite exten-
sively in the recent past [48–51]. Many of the recent
activities related to BMS algebra are reconsiderations of
asymptotic symmetries in relation to flat space holography
[52–54], that is, extending the AdS=CFT correspondence
for asymptotically flat spacetimes. The emergence of
superrotation as a new symmetry of the near horizon
physics is an important outcome of these lines of research
[7,11,25,55]. Superrotation type symmetries may also be
recovered from the soldering perspective for a certain kind
of horizon shells. Especially spacetimes with constant
curvature exhibit such a kind of soldering freedom. In
some special coordinate systems, the soldering group in
such spacetimes (in four dimensions) becomes a combi-
nation of shift in some suitable null direction (e.g.,
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advanced null coordinate v) and infinite dimensional
conformal isometries on the 2-surface. In this note, we
have deduced a generic condition when this will occur and
illustrated prominent examples of this fact. We have shown,
if the induced metric on the null hypersurface can be
expressed as a product of some function of lightlike
direction and spherical metric (or any 2-d spatial metric),
we can allow conformal isometries together with some shift
in the degenerate null direction to solder the spacetimes
across the surface. This freedom seems to be absent for
black holes, as in general they do not admit such expres-
sibility of induced metric. However, the near horizon shell
of a black hole can admit such freedom. This may have
interesting consequences upon the near horizon degrees of
freedom of black holes.
We anticipate that the results obtained here can have far

reaching consequences especially in the context of a black
hole information paradox. It will be interesting to inves-
tigate the soldering symmetries for time dependent shells.
At a later time we expect the emerging symmetry will
be close to the BMS-like soldering transformations [56].

We hope to get back to this issue in the near future. Also it
would be interesting to study any possible connection
between the black hole membrane paradigm and super-
translation-superrotation transformations and how the
BMS-like soldering transformations affect the properties
of the horizon fluid [57,58].
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