
 

Strong cosmic censorship in charged black-hole spacetimes: Still subtle
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It was recently shown that strong cosmic censorship may be violated in highly charged black-hole
spacetimes living in a universe with a positive cosmological constant. Several follow-up works have since
suggested that such a result, while conceptually interesting, cannot be upheld in practice. We focus here on
the claim that the presence of charged massive scalars suffices to save strong cosmic censorship. To the
contrary, we show that there still exists a finite region in parameter space where strong cosmic censorship is
expected to be violated.
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I. INTRODUCTION

We recently presented an indication that strong cosmic
censorship (SCC) might be violated for charged, near-
extremal (NE) Reissner-Nordström (RN) black holes (BHs)
in a de Sitter (dS) spacetime [1]. More precisely, for linear
massless and neutral scalar perturbations of RNdS BHs, the
basic quantity controlling the stability of the Cauchy
horizon, and therefore the fate of SCC, is given by [2,3]

β≡ −Imðω0Þ=κ−; ð1Þ

where ω0 is the longest-lived nonzero quasinormal mode
(QNM) and κ− is the surface gravity of the Cauchy horizon
(CH). Moreover, the results in [4–6] suggest that β remains
the essential quantity in the nonlinear setting: the higher β,
the more stable the CH. Concretely, the modern formu-
lation of SCC1 demands that

SCC ↔ β < 1=2 ð2Þ

in order to guarantee the breakdown of the field equation at
the CH. One should also recall that β < 1 is related to the
blowup of curvature invariants. In [1], a thorough numeri-
cal study of β for the full range of subextremal RNdS
spacetimes revealed, quite surprisingly, that β > 1=2 in the

near-extremal regime. However, it turned out that β ≤ 1
always, with equality at extremal charge. This provides
evidence for the existence of Cauchy horizons which, upon
perturbation, are rather singular due to the divergence of
curvature invariants, but where the gravitational field can
still be described by the field equations; the evolution of
gravitation beyond the CH however is highly nonunique.
This corresponds to a severe failure of determinism in
general relativity (GR).
There are different ways to interpret the results of

Ref. [1]. One could take the SCC conjecture in its
conceptual version, where SCC is purely a mathematical
question about general relativity and its limits. Then the
results of Ref. [1] either signify a failure of SCC, or are
superseded by nonlinear effects. Here, we have nothing else
to add on this purely mathematical question.
Alternatively, one can interpret the SCC conjecture in an

anthropic-astrophysical sense, where restrictions arising
from experimental or observational data (including gravi-
tational waves, BH and cosmological observations, or
information arising from particle physics) need to be taken
into account. In other words, in such a viewpoint GR would
need to be supplemented with all the fields of the standard
model and perhaps even with quantum-gravity effects. In
this context, the following are commonly accepted facts:

(i) First, BHs in our Universe are nearly neutral.
Electromagnetic charge is quickly neutralized by
either environmental plasma, Schwinger pair crea-
tion or Hawking evaporation [7]. In light of this, one

1Inextendibility of metric coefficients inH1
loc and of Christoffel

symbols in L2
loc across the CH.
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can question the relevance of SCC violations in
highly charged, nonspinning BH spacetimes;

(ii) to form a charged BH, charged matter is necessary.
Thus, SCC violation with only neutral fields is
unrealistic, and needs to be generalized to charged
fields as well.

The results of Ref. [1] were followed by various attempts
to save the conjecture, supported by observation i. or ii.
above. First, it was shown that the Cauchy horizons
of rapidly rotating BHs in cosmological backgrounds
behave differently from those of highly charged BHs
[8]. According to Ref. [8], in Kerr-dS space Eq. (2) remains
valid, but now β seems to be bounded exactly by 1=2, with
the bound being saturated at extremality. Such a result
might suffice to save SCC in the context of astrophysical
BHs. However, the behavior of rapidly spinning, but
weakly charged BHs is unknown, and these may well
exist in our Universe.
Here, we discuss another work [9] providing evidence that

when point ii. above is taken into account and charged scalars
are considered,β < 1=2 in an appropriate region of parameter
space, and consequently SCC is upheld. This last implication
requires, first of all, the validity of (2) for charged scalars,
which does require a justification.2 In Appendix Awe show
that Eq. (2) does generalize in the expected way, with the
critical value being, once again, β ¼ 1=2. In addition, the
methods in Ref. [9] require working in the large-coupling
regimeqQ ≫ maxðμrþ; lþ 1Þ, withQ being theBHcharge,
q the field charge, μ the scalar field mass, and rþ the radius of
the event horizon.
We finish this section by acknowledging yet another

interesting recent suggestion to remedy SCC, in the presence
of a positive cosmological constant: in Ref. [12], it was
shown that the pathologies identified in Ref. [1] become
nongeneric if one considerably enlarges the allowed set of
initial data by weakening their regularity. Although the
considered data are compatible with the modern formulation
of SCC, we believe that SCC is, in essence, a formation of
the singularities problem3 which is mainly of interest for
regular initial data; the mechanism of SCC becomes
obscured if one considers initial data which are too “rough”
(compare with the problem of the formation of shocks in
fluid mechanics [13]).

A. Charged scalar perturbations of RNdS

The purpose of our work is to explore the decay of
charged scalar fields in the full range of charge coupling
qQ and various choices of scalar masses ðμMÞ2 on those

RNdS BH backgrounds which were identified as patho-
logical in [1]. We then address concern ii. above.4

We show that it is not necessary to impose lower bounds
on the scalar field mass to obtain β < 1=2. On the other
hand, we demonstrate that for small charge coupling one
can still find regions in parameter space where SCC is
violated (β > 1=2).
The background spacetime is a charged RNdS,

ds2 ¼ −FðrÞdt2 þ dr2

FðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ; ð3Þ

where FðrÞ ¼ 1 − 2Mr−1 þQ2r−2 − Λr2=3. Here, M, Q
are the BH mass and charge, respectively, and Λ > 0 is the
cosmological constant. The surface gravity of each horizon
is then

κγ ¼
1

2
jF0ðrγÞj; γ ∈ f−;þ; cg; ð4Þ

where r− < rþ < rc are the Cauchy horizon, event horizon
and cosmological horizon radius.
A minimally coupled charged massive scalar field on a

RNdS background with harmonic time dependence can be
expanded in terms of spherical harmonics,

X

lm

ΨlmðrÞ
r

Ylmðθ;ϕÞe−iωt: ð5Þ

Dropping the subscripts on the radial functions, they satisfy
the equation

d2Ψ
dr2�

þ ½ðω −ΦðrÞÞ2 − VlðrÞ�Ψ ¼ 0; ð6Þ

where ΦðrÞ ¼ qQ=r is the electrostatic potential, q the
charge of the scalar field and dr� ¼ dr

F the tortoise coor-
dinate. The effective potential for scalar perturbations is

VlðrÞ ¼ FðrÞ
�
μ2 þ lðlþ 1Þ

r2
þ F0ðrÞ

r

�
; ð7Þ

where l is an angular number, corresponding to the
eigenvalue of the spherical harmonics, and μ the mass of
the scalar field.
We are interested in the characteristic quasinormal (QN)

frequencies ωln of this spacetime, obtained by imposing the
boundary conditions [14]

Ψðr → rþÞ ∼ e−iðω−ΦðrþÞÞr� ; Ψðr → rcÞ ∼ eiðω−ΦðrcÞÞr� :2We stress the fact that the relation (2) is not universal. In fact,
for BHs with vanishing cosmological constant the value of β
seems to be irrelevant in the context of SCC [10,11].

3In contrast, weak cosmic censorship is concerned with the
avoidance of naked singularities.

4Note that a deeper understanding of concern ii. would also
require the study of fermions.
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The QN frequencies are characterized, for each l, by an
integer n ≥ 0 labeling the mode number.
The fundamental mode n ¼ 0 corresponds, by defini-

tion, to the nonvanishing frequency with the largest
imaginary part and is denoted by ω0 ≠ 0.
As shown in Appendix A, for qQ ≠ 0 the stability of the

Cauchy horizon continues to be determined by (1).
We note that the only vanishing mode we find (see

results below) corresponds to the trivial mode at l ¼ 0 and
q ¼ μ ¼ 0. In fact, massless, neutral scalars can always be
changed by an additive constant without changing the
physics. Thus, the zero mode is irrelevant for the question
of stability of the CH and consequently must be discarded
in the definition of β (see the discussion in the end of
Appendix A).
The results shown in the following sections were

obtained mostly with the Mathematica package of [15]
(based on methods developed in [16]), and checked in
various cases with a Wentzel-Kramers-Brillouin (WKB)
approximation [17].

B. QNMs of massless, neutral scalar fields

In [1], we found three qualitatively different families of
QNMs: the photon sphere (PS) family, the dS family and
the NE family. The first two connect smoothly to the modes
of asymptotically flat Schwarzschild and of empty dS
space, respectively, while the last family cannot be found
in either of these spacetimes.
Finally, apart from the previous 3 families (for

q ¼ μ ¼ 0) there is also a single orphan mode—the trivial
zero mode at l ¼ 0.

II. CHARGED MASSLESS SCALARS

Since the main point of the current work is to investigate
if the inclusion of charged matter saves SCC, we restrict
ourselves to choices of near-extremal BH parameters
identified as problematic in [1] from the point of view
of SCC.
Since, in [1], the dependence on the cosmological

constant was found to be minimal (provided that it is
positive), we restrict to ΛM2 ¼ 0.06 throughout this paper.
We expect our results to be qualitatively independent of this
choice.
The BH charges we consider are

1 −Q=Qmax ¼ 10−3; 10−4; 10−5: ð8Þ

According to our results (see Figs. 1 and 2, and
Appendix B), in this parameter range, the dominant mode
is a spherically symmetric l ¼ 0 mode. Note that this was
already the case for the massless, neutral scalars studied
in [1].

Note also that, in view of our focus on near-extremal
charges, the PS and dS families are considerably subdomi-
nant and, consequently, are not seen here.
Consider first charged, massless scalars. In Fig. 1, the

two most dominant QNMs are shown, for each of the BH
charges in (8). The green lines correspond to NE modes,
ωNE [1]. At q ¼ 0, we find 1=2 < β < 1, in agreement with
our previous results [1]. For q > 0, the NE modes are
initially subdominant but eventually, for sufficiently large
qQ, become dominant and such that ImðωNEÞ=κ− > −1=2,
so β < 1=2 for such qQ. This corroborates the arguments
of [9] and extends them to the massless scalar setting.

FIG. 1. The two lowest QNMs of a charged, massless
scalar perturbation of a RNdS BH with ΛM2 ¼ 0.06 and
1 −Q=Qmax ¼ 10−3, 10−4, 10−5, as a function of the scalar
charge q. The purple modes originating from ðω; qÞ ¼ ð0; 0Þ are
called super-radiant (SR) modes, and the green modes are called
near-extremal modes.

FIG. 2. Lowest QNMs of a charged scalar perturbation of a
RNdS BH with ΛM2 ¼ 0.06 and 1 −Q=Qmax ¼ 10−5, as a
function of the scalar charge q, for various scalar masses
ðμMÞ2 ¼ 0, 10−4, 10−3 and 10−1. The top three purple lines
are super-radiant modes, with the very top one corresponding to
the one with the same style in Fig. 1, and for the largest mass
ðμMÞ2 ¼ 10−1 the super-radiant mode lies outside the plotted
range. Green lines are near-extremal modes, of which the top
three overlap.
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In particular, we conclude that the large scalar mass
condition of [9] is not necessary to guarantee that
β < 1=2: large qQ suffices.
The purple lines complicate the story. We call the

corresponding QNM SR modes, as they are associated,
for small qQ, with a super-radiant instability [18] (for
larger qQ they are decaying modes). These modes were
seen for the first time in Ref. [19] and further analyzed in
Ref. [20]. They originate from the trivial mode of the
massless, neutral scalar, at l ¼ 0, which corresponds to
nothing more than a constant shift in the scalar field. When
we add charge or mass, the corresponding wave equation
no longer admits constant solutions; the trivial mode
disappears and gives rise to the dynamical mode seen in
Fig. 1. For small coupling qQ, the SR modes are unstable,
ImðωÞ > 0, with the maximum imaginary part increasing
with the size of the BH charge. This linear instability
suggests that under evolution by the full Einstein equations,
coupled with the fields under consideration here, even the
exterior of our RNdS BH will be severely unstable; thus,
we cannot infer anything about SCC in this case.
However, it is also apparent from Fig. 1 that the SR

modes cross the ImðωÞ ¼ 0 at qQ ≈ 0.248 (which to a good
approximation is independent of the particular BH
charge). The modes then become stable and, eventually,
subdominant—the dominant mode becomes the one arising
from the NE family.
Very interestingly, however, by inspection of Fig. 1, we

find that there are choices of parameters for which β > 1=2:
this happens for instance when 1 −Q=Qmax ¼ 10−5 and
0.386 < qQ < 0.515. We remark that for massless scalars,
we once again find that β is bounded, never reaching unity.

A. Charged massive scalars

We now focus on a BH charge satisfying 1 −Q=
Qmax ¼ 10−5, and study the effect of adding a scalar mass
to the QNM landscape. We present part of our results in
Fig. 2 by showing the two most dominant QNMs for a
selection of scalar masses. The effect of the mass is to
decrease the imaginary part of both modes. This means that
massive scalars decay faster; consequently, the larger the
scalar mass, the harder it becomes for its fluctuations to
restore SCC.
The strongest effect here is in the SR modes. These are

highly sensitive to the mass, which moves the imaginary
part downwards by an approximately constant shift. (In the
uncharged case qQ ¼ 0, this was justified rigorously for
small μ > 0 in [21].) As a consequence, for nonzero mass,
the super-radiant instability is no longer present for
sufficiently small charges q, but resurfaces in a finite
region qc < q < q⋆.
We note that the existence of unstable SR modes with

nonvanishing scalar mass (which follows from their exist-
ence in the massless case by the continuous dependence of
the QNM spectrum on all parameters) is, to the best of our

knowledge, being numerically detected here for the first
time. These modes are easy to miss in view of their large
sensitivity to changes in the mass. As the mass increases,
the critical values qc and q⋆ approach each other, and for a
still very small mass the super-radiant instability is no
longer present. For instance for 1 −Q=Qmax ¼ 10−4 this
happens already at ðμMÞ2 ≈ 2.5 × 10−4.
The NE mode is much less sensitive to the mass (the first

three green lines in Fig. 2 lie on top of each other). While it
also moves down, it continues to be the case that for large
enough qQ, of order 1, and the mass range considered,
β < 1=2. The limiting value of β at large qQ seems to be
independent of the mass.
Finally, notice that for the largest mass presented,

ðμMÞ2 ¼ 10−1, the SR mode is outside of the plotted
range, and the NE mode is below Imðω=κ−Þ ¼ −1, indicat-
ing a β > 1, found here for the first time. Note that,
although it seems that the NE mode might continue
increasing its negative imaginary part with increasing scalar
mass, we do expect β to remain bounded, since at some
point the photon sphere mode becomes dominant, and this
is independent of the mass at large l. Furthermore, In empty
dS, β remains bounded when Λμ2 → ∞, as follows
from [22].

III. CONCLUSIONS

In a recent paper [1] we presented evidence for the failure
of SCC for highly charged RNdS BHs under neutral scalar
perturbations. This was achieved by relying on Eq. (2) and
performing a thorough numerical computation of β. Here,
following a suggestion in Ref. [9], we extend our analysis
to charged (massless and massive) scalars.
To obtain a quantitative formulation of (a linearized

version of) SCC we started by showing that, by suitably
extending the definition of β, Eq. (2) remains valid for
charged and massive scalar perturbations. We then per-
formed a detailed numerical computation of the dominant
QNMs in RNdS, for choices of BH parameters identified as
problematic in Ref. [1], while taking into account the entire
range of coupling constants qQ ≥ 0 and several choices of
scalar masses. From this we can then compute β and infer
about SCC, at least in the cases where we have mode
stability Imðω0Þ < 0.
Our main results are plotted in Figs. 1 and 2, and our

conclusions can be summarized as follows:
(1) For all choices of scalar mass and large enough

charge coupling we get β < 1=2. Consequently, our
linear analysis suggests that SCC should be valid, in
the corresponding parameter ranges. This is in line
with Ref. [9], but here we show that the result also
holds for small masses.
Superimposing neutral and charged scalar pertur-

bations, the smaller of the two values of β for the two
types of perturbations (namely βjq¼0 > 1=2 and
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βjq≫1 < 1=2) is the one relevant for SCC. Conse-
quently the expected failure of SCC for uncharged
scalars is put into question as soon as we add a
charged scalar field with sufficiently strong
coupling.

(2) Nonetheless, for all choices of scalar masses we
always find an interval of coupling charges for
which β > 1=2, which predicts a potential failure
of SCC in this setting.
Moreover, even if we add neutral perturbations we

get βjq¼0 > 1=2 and βjq≠0 > 1=2 and the situation
remains alarming for SCC.

(3) Finally, for large scalar masses and small charges we
get, for the first time, β > 1. Recall that this is
related to bounded curvature and therefore opens the
possibility to the existence of solutions to the
Einstein-Maxwell-Klein-Gordon system with a sca-
lar field satisfying Price’s law and bounded curva-
ture across the Cauchy horizon.5

Nonetheless, this should be a nongeneric feature:
if we once again superimpose a neutral scalar
perturbation—as a proxy for a linearized gravita-
tional perturbation—we get βjq¼0 < 1, which should
be enough to guarantee the blowup of curvature.

We end with some final comments.
First, the charged matter could just as well be fermionic

instead of scalar. Note that fermions do not have a super-
radiant instability, so the entire range of fermion charge
parameters is now open for the study of SCC at this linear
level. In particular, it would be interesting to see if charged
fermions also have the potential to restore SCC at large
charge. We plan to pursue this study in the near future.
Second, recently we were informed by the authors of

Ref. [24] that the super-radiant mode, unlike the near
extremal, is sensitive to the cosmological constant: for large
enough cosmological constant it appears to be absent, as
was also seen in Ref. [20], where it was also found that the
instability exists already for very small cosmological
constants. A quick check indicates that our chosen value
of ΛM2 ¼ 0.06 is close to the value where the super-radiant
mode is the most unstable.6 Hence for different ΛM2 we
expect the role of this mode to be either similar or smaller
(for Λ ¼ 0 the instability is absent [25]), and thus for it to
be equally hard or easier to find a regime where β > 1=2.
Third, one might also argue, as is done in [9], that for

physical black holes made from charged matter coming

from the standard model we must have qQ ≫ 1; hence
SCC is, according to the presented results, expected to be
satisfied. We stress that even with this input we remain in
the realm of the conceptual version of SCC (as described in
the introduction) since the input is only relevant when the
conjecture is in danger and this only happens for highly
charged BHs.
Finally, recently [26] appeared, where the gravitational

and electromagnetic perturbations are analyzed and found
not to save SCC. In fact for these perturbations it is found
that β can exceed not just 1=2 but even 1 and 2, making the
charged matter studied here the dominant mode.
Regardless of the approach to SCC that the reader

subscribes to, the results presented here indicate at least
a growing level of sophistication required for the cosmic
censor, and the situation regarding strong cosmic censor-
ship, in the presence of a positive cosmological constant,
remains subtle.
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Note added.—Recently, a new paper [27] appeared claim-
ing that even at large scalar charge, there are wiggles in the
dominant QNM, as a function of scalar and/or black-hole
charge, that cause further regions in parameter space where
SCC is violated. We do not see such a phenomenon for our
value of the cosmological constant, ΛM2 ¼ 0.06, but our
numerics cannot conclusively rule it out. We do note that
[27] has only investigated large Λ (in particular
ΛM2 > 1=9, for which RNdS black holes have a minimum
nonvanishing charge), so an absence of these wiggles at our
ΛM2 ¼ 0.06 would not be inconsistent.

APPENDIX A: THE DEFINITION OF β FOR
CHARGED SCALARS

Since we are mainly interested in the problem of finding
regimes where SCC is potentially violated, and study this
by means of QNM calculations, we need two ingredients:
(1) “resonance expansions,” i.e., expansions of linear waves
into mode solutions of the underlying wave equation, and

5Spherically symmetric solutions of the Einstein-Maxwell
scalar system with bounded curvature were constructed in
Ref. [23], but these have a compactly supported scalar field
along the event horizon.

6For 1 −Q=Qmax ¼ qQ ¼ 10−2 the massless super-radiant
mode has ImðωÞ=κ− ¼ 2.75 × 10−5 when ΛM2 ¼ 0.06, and
obtains its maximum of ImðωÞ=κ− ¼ 3.07 × 10−5 when
ΛM2 ¼ 0.0426.
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(2) the relationship between QNMs and a lower bound on
the regularity of the corresponding mode solutions at
the CH.
As for (1), the validity of full resonance expansions has

only been established for scalar waves on Schwarzschild–
de Sitter and Kerr–de Sitter spacetimes [28,29]; for our
purposes, resonance expansions with remainder terms
decaying at an exponential rate given by a WKB approxi-
mation are sufficient, as the dominant modes have much
slower decay rates (as discussed above). For Λ > 0, such
partial resonance expansions, and the discreteness of the
QNM spectrum, hold under very general conditions
[30,31]: nonzero surface gravities of the horizons of the
BH exterior (i.e., event and cosmological horizon), and a
condition on the skew-adjoint part of the relevant wave
operator at the trapped set (photon sphere) which is verified
for a large class of tensorial wave equations on BH
backgrounds [5,32].
As for (2), we recall that Eq. (6) arises from the spherical

harmonic decomposition of

PðΨ=rÞ ¼ 0; P ¼ ð∇ν − iqAνÞð∇ν − iqAνÞ − μ2;

where A ¼ −ðQ=rÞdt is the vector potential. To determine
the regularity of mode solutions up to the CH, we first need
to use the Uð1Þ gauge freedom to transform P into an
operator with smooth coefficients up to the CH—note that
A becomes singular at the horizons: conjugating P by eiqχ

for a real-valued function χ amounts to replacing A by
Ã ¼ Aþ dχ. Choose χ ¼ χðrÞ so that Ã ¼ −ðQ=rÞdt�,
where t� ¼ t −GðrÞ, G0ðrÞ ¼ 1=FðrÞ is smooth across
CH and has past causal differential near the CH.
Extending the definition of t� suitably to the region
r− ≤ r ≤ rc, the level sets t� ¼ c tend to future timelike
infinity as c → ∞; thus, QNMs are those ω ∈ C for which
there exists a mode solution e−iωt�Xðr; θ;ϕÞ,

P̃ðe−iωt�XÞ ¼ 0; P̃ ¼ ð∇ν − iqÃνÞð∇ν − iqÃνÞ − μ2;

ðA1Þ

which is smooth across r ¼ rþ (event horizon) and r ¼ rc
(cosmological horizon). Our task is to determine the
regularity of X at the CH. By spherical symmetry (or
much more robust arguments, only relying on the nonzero
surface gravity of the CH [2]), one can show that X is
conormal to the CH, which is to say that X and arbitrarily
many derivatives of X along vector fields tangent to the CH
have a bound ≲jr − r−j−C with C fixed. Thus, the main
terms of P̃ are those involving radial derivatives (which are
transversal to the CH). Keeping only these terms and
freezing coefficients at r ¼ r−, one gets a regular-singular
ordinary differential equation in r,

0 ¼ eiqχ
�
ðF∂rÞ2 þ 2iωF∂r −

2qQω

r−
þ q2Q2

r2−

�
e−iqχX

¼ 4κ2−ðF∂FÞ
�
F∂F −

�
iω
κ−

−
iqQ
κ−r−

��
X þ l:o:t;

in the second line, we switched to F as a radial coordinate.
Therefore, we can significantly sharpen our grip on X: it is
in general the sum of two terms, one with constant, or
smooth, asymptotics at the CH [since F∂Fð1Þ ¼ 0], and
another one with asymptotics.

jFj iωκ−− iqQ
κ−r− : ðA2Þ

(There is an additional factor of log jFj when the exponent
is an integer.) At the CH, where F ¼ 0, this lies in the
Sobolev space H1=2þβðωÞ−ϵ for all ϵ > 0, where

βðωÞ ¼ κ−1− Imð−ωþ qQ=r−Þ ¼ −ImðωÞ=κ−:
The contribution to X of a term with asymptotics (A2) may
well vanish for certain values ofω, in which case X is in fact
smooth. This happens in the case qQ ¼ 0 and ω ¼ 0, when
X ≡ 1 solves (A1), which is why this zero mode was
excluded from the definition of β in the uncharged case.
(It is not known whether this is the only special situation
in which X is smooth at the CH.) On the other hand, setting
β ¼ infωβðωÞ (over all QNMsωwhenqQ ≠ 0, or excluding
ω ¼ 0 when qQ ¼ 0), we definitely know that all modes,
and thus the solution of the wave equation itself, have
regularityH1=2þβ−ϵ at the CH. This provides the justification
for our search for BH parameters for which β > 1=2.

APPENDIX B: HIGHER l MODES

In this Appendix we verify the expectation that the
higher l QNMs do not affect strong cosmic censorship. In
Fig. 3 we show the l ¼ 1, 2, 3 modes. These are all modes
of the near-extremal family, since they are present already

FIG. 3. Higher l QNMs of a charged, massless scalar pertur-
bation of a RNdS BH with ΛM2 ¼ 0.06 and 1 −Q=Qmax ¼
10−5, as a function of the scalar charge q.

CARDOSO, COSTA, DESTOUNIS, HINTZ, and JANSEN PHYS. REV. D 98, 104007 (2018)

104007-6



at q ¼ 0 and they follow their pattern. No modes of the
other families are present at this range. The dependence on
q is rather mild, and in particular they do not come near the
dominant l ¼ 0 mode.
While Fig. 3 shows the modes for massless scalars, we

have done the same check for the massive. Of the masses
considered, the modes for ðμMÞ2 ¼ 10−4 and 10−3 are
visually indistinguishable from the massless ones, and for
ðμMÞ2 ¼ 10−1 they lie just below the ones presented.
Finally, one might worry if for even larger l the photon

sphere modes will become dominant. To address this we

have computed by WKB approximation, which is expected
to become very accurate in the large l limit, the modes at
l ¼ 100. The dominant mode that we find for the param-
eters of Fig. 3 and qQ ¼ 0.45 is ω=κ− ¼ 5472 − 18.35i,
which we confirmed using [15]. Furthermore, we have
checked all other values of scalar charge and mass
considered and found this value to be largely independent
of those parameters.
This is very far from the l ¼ 0 mode, so we are

convinced that throughout the parameter space considered,
l ¼ 0 indeed gives the dominant mode.
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