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Extended theories of gravity have gathered a lot of attention over the past years, for they not only provide
an excellent framework to describe the inflationary era but also yield an alternative to the elusive and
mysterious dark energy. Among the different extended theories of gravity, in this work we focus on metric
fðRÞ theories. In addition, it is well known that if the late-time acceleration of the Universe is stronger than
the one induced by a cosmological constant, then some future cosmic singularities might arise, the big rip
being the most virulent one. Following this reasoning, in this work, we analyze the big rip singularity in the
framework of fðRÞ quantum geometrodynamics. Invoking the DeWitt criterion, i.e., that the wave function
vanishes at the classical singularity, we prove that a class of solutions to the Wheeler-DeWitt equation
fulfilling this condition can be found. Therefore, this result hints toward the avoidance of the big rip in
metric fðRÞ theories of gravity.
DOI: 10.1103/PhysRevD.98.104004

I. INTRODUCTION

Nowadays there is no doubt that our Universe is
currently undergoing a phase of accelerated expansion
[1]. This acceleration can be described in the framework
of general relativity (GR) assuming the existence of dark
energy, which is a fluid violating the strong energy
condition and leading only to gravitational effects. Dark
energy could well be originated by a cosmological con-
stant, usually interpreted as a vacuum energy, if we accept
that we do not know how to calculate its value [2–5]. On the
other hand, soon after the discovery of the accelerated
expansion of our Universe, it was emphasized that dark
energy could lead to even more acceleration than a universe
whose dynamics is driven by a cosmological constant [6].
This is the case for a phantom fluid, a class of dark energy
that violates even the null energy condition and, therefore,
has an energy density which grows with the cosmic

expansion. Moreover, recent observational data continue
to be fully compatible with the possibility that phantom
energy is driving the dynamics of our Universe [1].
It is already well known that phantom energy may

lead to the occurrence of a big rip (BR) singularity
[6–8]. This doomsday corresponds to a curvature singu-
larity characterized by a divergence at a finite cosmic
time and infinite scale factor of both the Hubble parameter
and its cosmic time derivative, implying the divergence of
the phantom energy density and pressure in a general
relativistic framework. Nevertheless, this is not necessarily
always the case as phantom cosmologies could have an
asymptotic de Sitter behavior [9]. Moreover, phantom
energy could also lead to the occurrence of a big
freeze singularity [10,11], which is characterized by a
divergence of the Hubble parameter and its cosmic time
derivative but at a finite and nonvanishing scale factor.
These investigations have renewed the interest in studying
new cosmic singularities, which are not necessarily due to
the existence of a phantom fluid, and there is a whole
bunch of them (for a recent account on this topic, please
see Ref. [12]).
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When the Universe evolves toward (from) a future (past)
singularity, the gravitational theory cannot provide us
further physical information. In fact, what happens is that
the structure of classical spacetime is broken at those
curvature singularities and, therefore, a metric theory of
gravity is not well defined any more. Hence we need to
resort to a quantum gravitational theory in order to unveil
the final fate (if any) of the Universe. There are different
candidates for such a quantum gravitational theory that
come from very different approaches. We are interested in
what is known as canonical quantum gravity, that is, a
nonperturbative and background independent quantization.
In this context, we will use the metric variables as
configuration space in what was called quantum geome-
trodynamics, which also provides the well-known expres-
sion of theWheeler-DeWitt equation [13,14]. Although this
theory is not solvable in a general context (as none of the
other proposals), it provides some interesting tools and
results that can be implemented in simpler (minisuper-
space) cosmological models [15–17], preserving some
characteristics of the full theory, which can provide us
with helpful information in order to explore some quantum
concepts in cosmology [18]. Within this approach, one of
the common and interesting studies is the one related to the
analysis of singularities, as we expect that a quantum theory
of gravity is able to solve or at least appease the issue of
singularities.
On the other hand, the current accelerated expansion of

our Universe could be a signal of the unsuitability of GR at
cosmological scales already at the classical level. Indeed, it
has been argued that GR has not been properly tested at the
strong-field regime and its validity at cosmological scales is
simply assumed. Therefore, alternative theories of gravity
have acquired a renewed interest as potential candidates to
describe the physical phenomena in our Universe. Some of
those theories, as extended theories of gravity [19], had
been motivated in the past as effective theories of gravity
that may encapsulate some semiclassical effects coming
from the underlying quantum gravitational framework.
Metric fðRÞ theories of gravity, which assume a gravita-
tional Lagrangian that depends on a function of the scalar
curvature, are probably the most studied theories of this
kind [20,21]. It should be emphasized, however, that the
current phenomenological motivation for considering these
theories as viable gravitational theories is not necessarily
always based on that effective approach. Following this
spirit, one could understand extended theories of gravity as
classical fundamental theories able to describe the current
cosmological phase without the introduction of dark fluids.
As alternative theories of gravity can describe the same

background cosmological evolution as GR, the same kind
of cosmological singularities crop up also in these scenar-
ios. Those singularities signal the need to consider a
quantum formulation of alternative theories of gravity
(assumed as fundamental) as has recently been carried

out, e.g., in Palatini Eddington-Born-Infeld theories
[22,23]. Given that metric fðRÞ gravity is one of the
simplest alternative theories of gravity, it is especially
interesting to consider these theories as proxy theories to
investigate the potential quantum avoidance of the BR
singularity when such a singularity is completely due to the
modified Hilbert-Einstein action. Therefore, in this paper
we will consider the formulation of fðRÞ quantum cosmol-
ogy to analyze the quantum fate of the universe close to a
BR singularity using a geometrodynamic formulation
of quantum cosmology. In fact, we will use the metric
variables to construct the configuration space within the
above geometrodynamics approach that has the advantage
of recovering the correct semiclassical limit [18]. In this
scenario, we will analyze the behavior of the BR in an fðRÞ
metric theory using the so-called DeWitt criteria (DW) that
establish that the singularity is potentially avoided if the
wave function vanishes in the configuration space in that
region [14].
This paper can be outlined as follows: In Sec. II, we

summarize some basic results regarding the BR singularity
and its occurrence in fðRÞ gravity. In Sec. III, we
recapitulate some old results regarding a suitable formu-
lation of fðRÞ quantum cosmology, adapting them to our
needs. In Sec. IV, we particularize the modified Wheeler-
DeWitt (WDW) equation of the fðRÞ quantum cosmology
to a theory leading to a BR singularity to investigate the
behavior of the wave function of the universe close to this
singularity. We summarize and present our conclusion in
Sec. V. Finally, in Appendix, we proof the suitability of the
approximations we used when getting the wave functions
that fulfill the modified WDW equation.

II. THE BIG RIP IN f ðRÞ COSMOLOGY

As it is well known, phantom fluids can lead to the
occurrence of future singularities in a general relativistic
background. If phantom energy is characterized by a
constant equation of state parameter, w ¼ p=ρ < −1, a
BR singularity will take place, which is a curvature
singularity at which both the scale factor and the energy
density diverge. One can easily find this singularity noting
that the scale factor evolution of a universe filled only with
that phantom fluid is

aðtÞ ¼ a⋆ðtbr − tÞ− 2
3ðjwj−1Þ; ð1Þ

where a⋆ is an integration constant, which can be expressed
as a⋆ ¼ a0½3Cðjwj− 1Þ=2�−2=½3ðjwj−1Þ�, C ¼ ðκρ0=3Þ1=2, κ ¼
8πG, the subindex 0 denotes evaluation at t0, and tbr
correspond to the cosmic time when the big rip takes place.
This is

tbr ¼ t0 þ
2

3Cðjwj − 1Þ > t0: ð2Þ
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It should be emphasized that this phantom model could
describe the late-time evolution of our Universe when the
matter content will be diluted by the cosmological expan-
sion. Moreover, this model is not the only one that can lead
to a BR future singularity, but it is probably the sim-
plest one.
On the other hand, metric fðRÞ theories of gravity are

described by a gravitational action of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
fðRÞ; ð3Þ

where each fðRÞ corresponds to a different theory,
fðRÞ ¼ R=ð2κÞ being just GR. In cosmological scenarios,
one can write this action as

S ¼
Z

dtLða; _a; äÞ; ð4Þ

with

Lða; _a; äÞ ¼ Vð3Þa3fðRÞ; ð5Þ

where Vð3Þ is the spatial 3-volume and, for simplicity, we
have chosen a lapse function N ¼ 1. Assuming a matter
action of a perfect fluid with energy density ρ and pressure
p added to the gravitational action (5), one can obtain
the following modified Friedmann and Raychaudhuri
equations:

H2 ¼ 1

6fR
ðρ − f þ fRR − 6HfRR _RÞ; ð6Þ

2 _H þ 3H2 ¼ 1

2fR
½pþ f − fRR

þ 2ðfRRR _R2 þ fRRR̈þ 2HfRR _RÞ�; ð7Þ

where fR≡df=dR, fRR≡d2f=dR2, and fRRR ≡ d3f=dR3,
and the dependence of f and its derivatives on R is not
explicitly stated.
Any general relativistic background cosmology can be

reconstructed in the context of fðRÞ theories by choosing
an appropriate fðRÞ function. Therefore, fðRÞ gravity may
lead to all four types of cosmic singularities that can appear
in GR [24–27]. In particular, in Ref. [28] the authors
showed that the cosmological evolution generated by a
fluid with a constant equation of state parameter w in a
general relativistic cosmological scenario can be described
in an fðRÞ theory with [28]

fðRÞ ¼ CþRβþ þ C−Rβ− ; ð8Þ

where

β� ¼ 1

2

�
1þ 1þ 3w

6ð1þ wÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − 3wÞ
3ð1þ wÞ þ

h
1þ 1þ 3w

6ð1þ wÞ
i2s #

; ð9Þ

and Cþ and C− are arbitrary constants. If we want to
describe a phantom model with the evolution given by
Eq. (1), it is important to note that for values w < −1, β� is
complex valued; that is, it has the form β� ¼ γ þ iσ.
Hence, we can write

fðRÞ ¼ αþRγ cosðσ lnRÞ þ α−Rγ sinðσ lnRÞ: ð10Þ

A particularly simple fðRÞ theory leading to the occurrence
of a big rip at a final time in the future is that corresponding
to σ ¼ 0. This corresponds to1 w ¼ ð−13þ 4

ffiffiffi
6

p Þ=3≃
−1.067, which is a reasonable value as compared with
current observational constraints for the equation of state
parameter of dark energy [1]. In this case the theory is
described by the following function:

fðRÞ ¼ αþRγ; with γ ¼ 2þ
ffiffiffiffiffiffiffiffi
3=2

p
; ð11Þ

where αþ is a constant parameter. We will take this theory
as a proxy theory when investigating the quantum realm
close to the BR singularity fðRÞ cosmology.

III. f ðRÞ QUANTUM COSMOLOGY

Alternative theories of gravity have become today a kind
of paradigm motivated by the limitations of GR to describe
the cosmological evolution without the consideration of
new ingredients. The understanding of these theories as
fundamental classical theories demand, therefore, the con-
sideration of the corresponding quantum framework. On
the other hand, it can be noted that fðRÞ theories, which are
formulated in the Jordan frame, have a formulation in the
Einstein frame. Although the corresponding cosmological
models seem to be equivalent at the classical level when
one considers a transformation of the units and restrict his/
her attention to observable quantities [19,29–31], the
equivalence at the quantum level is much more subtle
[32]. Hence, we consider it necessary to focus on the
Jordan frame formulation of the theory to design the
quantization scheme before entering into a debate about
a possible equivalence of those frameworks at the quantum
level. Therefore, in this section we first derive a pointlike
Lagrangian for fðRÞ theories in the Jordan frame suitable

1There is another fðRÞ solution with σ ¼ 0 and a different
value of γ that will lead to an effective behavior for the equation
of state parameter corresponding to w ¼ −ð13þ 4

ffiffiffi
6

p Þ=3. As this
value for the effective equation of state is so far away from the
current observational bounds, we will simply disregard it in what
follows.
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for quantization, in Sec. III A. Then we summarize the
scheme outlined by Vilenkin in Ref. [33] to obtain the
WDWequation for this pointlike Lagrangian, in Sec. III B.

A. Minisuperspace Lagrangian

In GR the second derivatives of the scale factor appear-
ing in Lða; _a; äÞ can be removed by integration by parts.
However, this is not necessarily the case for an action of the
form (5). As was discussed in detail by Vilenkin in
Ref. [33], the standard approach to canonical quantization
in this case consists of introducing another variable such
that it allows us to remove the dependence on ä. This will
imply that the fourth-order differential equations of motion
will be expressed as two sets of second-order differential
equations. One can choose this new variable to be the scalar
curvature R to express the action asLða; _a; R; _RÞ. However,
as R is not independent of a, its definition has to be
implemented as a constraint in Eq. (5),

S¼Vð3Þ

Z
dta3

�
fðRÞ−υ

�
R−6

�
ä
a
þ _a2

a2
þ k
a2

���
; ð12Þ

where we prefer not to specify yet the value of k. The
Lagrange multiplier υ can be obtained by varying the action
with respect to R. This is

υ ¼ fRðRÞ: ð13Þ

Substituting the value given by Eq. (13) in the action and
integrating by parts the term containing ä, one obtains the
following Lagrangian:

Lða; _a;R; _RÞ¼Vð3Þfa3½fðRÞ−RfRðRÞ�
−6a2fRRðRÞ _a _Rþ6afRðRÞðk− _a2Þg: ð14Þ

This pointlike Lagrangian has been used in classical
scenarios when studying the Noether symmetry approach
to cosmology; see e.g., Refs. [19,34,35]. Nevertheless, in
order to consider the quantum framework, it can be useful
to diagonalize the derivative part of the Lagrangian. For this
purpose, we use a change of variables qualitatively similar
to that applied by Vilenkin in Ref. [33].2 This is

q¼
ffiffiffiffiffiffi
R0

p
aðfR=fR0Þ1=2 and x¼ lnðfR=fR0Þ1=2; ð15Þ

where we again assume the dependence of fR on R and
fR0 ≡ fRðR0Þ. Note that we need a constant R0 in order to
consider the logarithm of a quantity with dimensions. In
Ref. [33] R0 is taken to be the curvature of the self-
consistent de Sitter solution, given by R0fR0 − 2f0 ¼ 0,
with f0 ¼ fðR0Þ. Nevertheless, this choice is not always

convenient as we will comment in more detail in Sec. IV.
For the time being, let us just consider that R0 is such that
the transformation is well defined in the range of interest for
the particular fðRÞ theory. Considering the change of
variables (15) in the Lagrangian (14), one can obtain

Lðx; _x; q; _qÞ ¼ Vð3Þ

�
R0fR
fR0

�
−3=2

q3
�
f − RfR

− 6fR
_q2

q2
þ 6fR _x2 þ 6k

R0

fR0

f2R
q2

�
; ð16Þ

where we are now assuming R ¼ RðxÞ obtained from
Eq. (15).

B. Modified Wheeler-DeWitt equation

As it was presented in Ref. [33], the WDW equation
corresponding to an fðRÞ theory for a Friedmann-Lemaître-
Robertson Walker universe can be obtained by quantizing
the Hamiltonian corresponding to Lagrangian (16). Noting
that

Pq ¼
∂L
∂ _q ¼ −12Vð3ÞR

−3=2
0 f3=2R0 f

−1=2
R q _q; ð17Þ

Px ¼
∂L
∂ _x ¼ 12Vð3ÞR

−3=2
0 f3=2R0 f

−1=2
R q3 _x; ð18Þ

the Hamiltonian can be expressed as

H ¼ −Vð3Þq3
�
R0fR
fR0

�
−3=2

�
f − RfR þ 6k

R0

fR0

f2R
q2

þ 6R3
0

ð12Þ2V2
ð3Þf

3
R0

f2R
q4

�
P2
q −

P2
x

q2

��
: ð19Þ

Now, assuming the usual quantization recipe, that is,
Pq → −i∂q and Px → −i∂x, we obtain a WDW equation
that is equivalent to [33]�

∂2
q −

1

q2
∂2
x − Vðq; xÞ

�
Ψðq; xÞ ¼ 0; ð20Þ

where the potential is given by

Vðq; xÞ ¼ q2

λ2

�
kþ fR0

6R0

ðf − RfRÞ
q2

f2R

�
; ð21Þ

with λ ¼ R0=ð12Vð3ÞfR0Þ. Note that there is a factor of 12
difference between our potential (21) and that presented in
Ref. [33], which comes from the same factor of difference
in the definition of q in Eq. (15). More importantly, we
want to emphasize the well-known ambiguity of the theory
regarding operator ordering. That is, we could have chosen
a different factor ordering when obtaining Eq. (20), which
could ultimately give rise to different wave functions.

2There is a factor of
ffiffiffiffiffi
12

p
difference in our definition of q

because we prefer to use only the constant R0.
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According to Ref. [33], nonzero values of the factor
ordering parameters introduce only unimportant modifica-
tions in the preexponential factor of the semiclassical wave
function. Moreover, in this paper we want to investigate the
potential avoidance of singularities by applying the DW
criterion, which is independent of the factor ordering at
least in some particular models [23,36]. However, one
should keep in mind that we are adopting an assumption
that may affect the generality of our results. In particular,
we are considering a “natural” factor ordering discussed in
previous literature [14,37] as providing a reasonable
Hamiltonian constraint. On the other hand, but related
with the operator ordering, when considering the
Hamiltonian constraint, HΨ ¼ 0, one should analyze the
Hermiticity of such an operator. One can find a discussion
about Hermiticity of quantum contraints, e.g., in Sec. 6.3 of
Ref. [38] (see also Sec. 4 of Ref. [14]).
Before proceeding further a few words on the modified

WDW equation (20) are in order as a means to compare
with what happens in GR. First of all, we notice that the
signature of the minisuperspace DeWitt metric

GAB ¼
"
1 0

0 − 1
q2

#
ð22Þ

is similar to the one in GR with a matter content
corresponding to a standard scalar field. Therefore, what
we have proven is that this is the case even when dealing
with a BR singularity. This is in strike difference to what
happens in GR in the presence of a BR singularity induced
by a phantom minimally coupled scalar field where GAB

has a positive signature [36,39–41].

IV. QUANTUM TREATMENT OF THE
BIG RIP IN f ðRÞ GRAVITY

Now, let us focus on a theory of the form given by
Eq. (11) and in a cosmological model with3 k ¼ 0. In fact,
we will assume an fðRÞ as defined in Eq. (11) with
γ ¼ 2þ ffiffiffiffiffiffiffiffi

3=2
p

. As we want to investigate the behavior
of the model close to the BR singularity, we are mostly
interested in the regime of large values of R. The trans-
formation given by Eq. (15) is well defined in this range
taking a constant R0 with a small but nonvanishing value.
Nevertheless, note that the R0 suggested by Vilenkin in
Ref. [33], that is, the solution of R0fR0 − 2f0 ¼ 0, corre-
sponds in this case to R0 ¼ 0. Therefore, we choose a
different definition for R0. In particular, we take it to be of
the order of the current scalar curvature of our Universe,
that is, R0 ∼ 4 × 104 km2 s−2Mpc−2 assuming Planck data
[1], although we could have taken any nonvanishing value.

Note that the theory we chose, i.e., Eq. (11) with γ ¼
2þ ffiffiffiffiffiffiffiffi

3=2
p

, is able to describe the evolution of our Universe
in the future, when the matter content is diluted. Thus, our
choice of R0 implies that R0 < R for the model and,
therefore, the transformation (15) is well defined in the
range of interest. So, we can consider the WDW equation
given by Eq. (20) to be suitable for our purposes, with q and
x given by

q ¼
ffiffiffiffiffiffi
R0

p
aðR=R0Þ

γ−1
2 ; x ¼ ln ðR=R0Þ

γ−1
2 ; ð23Þ

with γ ¼ 2þ ffiffiffiffiffiffiffiffi
3=2

p
. Substituting the function (11) in the

potential (21), we obtain

Vðq; xÞ ¼ −
A
λ2

e−Bxq4; ð24Þ

with

A ¼ γ − 1

6γ
¼ 1

30
ð1þ

ffiffiffi
6

p
Þ; ð25Þ

and

B ¼ 2
γ − 2

γ − 1
¼ 6 − 2

ffiffiffi
6

p
: ð26Þ

Taking potential (24) into account in Eq. (20), the WDW
equation can be written as

�
q2∂2

q − ∂2
x þ

A
λ2

e−Bxq6
�
Ψðq; xÞ ¼ 0: ð27Þ

This equation could be handled in an easier way, if the
potential had a dependence in only one of the variables. In
order to rewrite Eq. (27) in that form, we consider a change
of variables of the form used in Ref. [42]; i.e.,

q ¼ rðzÞφ and x ¼ z: ð28Þ

It can be seen that the potential will depend on φ only if we
take rðzÞ ¼ eBz=6. In this case, Eq. (27) takes the form

��
1 −

B2

36

�
φ2∂2

φ −
B2

36
φ∂φ þ

B
3
φ∂φ∂z

− ∂2
z þ

A
λ2

φ6

�
Ψðφ; zÞ ¼ 0; ð29Þ

with

φ ¼
ffiffiffiffiffiffi
R0

p
aðR=R0Þ

2γ−1
2 and z ¼ ln ðR=R0Þ

γ−1
2 : ð30Þ

Now, we will assume that the BR singularity may be
avoided if the wave function Ψðφ; zÞ satisfies the DW

3Please notice that the curvature term is anyway negligible as
compared with the potential term when the Universe approaches
the BR.
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criterion, that is, if Ψðφ; zÞ → 0 when we approach the BR.
As we do not expect the wave function to be peaked along
the classical trajectory in this regime, R and a will take
completely independent values on this regime. Therefore,
in order to consider a region close to the BR, we should
assume either a → ∞ or R → ∞. Both choices imply
φ → ∞, but in one case z is arbitrary, whereas in the other
one z → ∞. We will consider that the DW criterion is
satisfied if Ψðφ; zÞ → 0 for φ → ∞ and z arbitrary, as it is
the most general choice.
In order to solve Eq. (29), we will assume the following

approximations:

φ∂φ∂zΨðφ; zÞ ≪ φ2∂2
φΨðφ; zÞ ð31Þ

and

φ∂φΨðφ; zÞ ≪ φ2∂2
φΨðφ; zÞ ð32Þ

when φ → ∞. That this approximation is indeed satisfied is
checked in Appendix. Under this approximation, Eq. (29)
can be written as��

1 −
B2

36

�
φ2∂2

φ − ∂2
z þ

A
λ2

φ6

�
Ψðφ; zÞ ¼ 0: ð33Þ

This equation can be solved assuming an ansatz for the
wave function of the form [42]

Ψðφ; zÞ ¼
X
k

akUkðφÞCkðzÞ; ð34Þ

where ak is the amplitude of each solution and k is related
with the energy associated with the solution (not to be
confused with the spatial curvature that has now been fixed
to be 0). Therefore, Eq. (33) is equivalent to the following
two equations:

∂2
zCkðzÞ ¼ k2CkðzÞ; ð35Þ

and ��
1 −

B2

36

�
φ2∂2

φ þ
A
λ2

φ6 þ k2
�
UkðφÞ ¼ 0: ð36Þ

Equation (35) can easily be solved. The solution for
k2 > 0 is

CkðzÞ ¼ aþekz þ a−e−kz; ð37Þ

whereas for k2 < 0 we have

CkðzÞ ¼ bþeijkjz þ b−e−ijkjz; ð38Þ

where a� and b� are constant. The solution (37) will be
finite for any value of z if aþ ¼ 0, whereas the solution (38)
is always finite.

On the other hand, Eq. (36) can be approximated by

��
1 −

B2

36

�
φ2∂2

φ þ
A
λ2

φ6

�
UkðφÞ ¼ 0; ð39Þ

in the region of large values for φ. This equation can be
solved by means of Bessel functions as (cf. Eq. 9.1.51 of
Ref. [43])

UkðφÞ ¼ φ1=2

�
U1J1

6

�
1

3
λ̃φ3

�
þ U2Y1

6

�
1

3
λ̃φ3

��
; ð40Þ

where

λ̃2 ¼ A

ð1 − B2

36
Þ
1

λ2
; ð41Þ

U1 and U2 are arbitrary constants, and JνðzÞ and YνðzÞ are
the Bessel functions of the first and second kind, respec-
tively. Given that we are very close to the regime of large
values of φ, the solution can be further approximated as
(cf. Eq. 9.2.1 of Ref. [43])

UkðφÞ ¼
ffiffiffiffiffi
6

λ̃π

r
1

φ

�
U1 cos

�
λ̃

3
φ3 −

π

3

�

þU2 sin

�
λ̃

3
φ3 −

π

3

��
: ð42Þ

Therefore, we can conclude that UkðφÞ → 0 when φ → ∞.
Taking into account that CkðzÞ remains finite for any value
of z with our choice aþ ¼ 0, Ψðφ; zÞ → 0 when φ → ∞.
There are also solutions of the wave function that do not
vanish at the BR. However, as imposing that the wave
function vanishes at the singular boundary is not incon-
sistent, we can follow DeWitt spirit and argue that those,
i.e., with a nonvanishing wave function at the singularity,
are not physical solutions, as the probability to reach that
boundary should be zero.4 Consequently, it turns out that
the DW criterion is satisfied pointing toward singularity
avoidance.

V. DISCUSSION

The observational data currently available show that the
accelerated expansion of our Universe is compatible with
the existence of a phantom fluid, which could point toward
the occurrence of a future BR singularity. That cosmic
evolution can also be modeled by alternative theories of
gravity without the introduction of exotic cosmic compo-
nents; in particular, this can be done in the framework of

4If investigations on other aspects of this model could point
toward the need of taking the dismissed solutions into account,
then one would conclude that the DeWitt criterion is inconsistent
in this case.
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fðRÞ theories of gravity. As is well known, the classical
theory of gravity, be it GR or fðRÞ gravity, is not able to
predict what happens at (or even close to) that singularity.
Therefore, in this paper we have considered the formulation
of fðRÞ quantum cosmology [by considering an fðRÞ
formulation as a fundamental theory] to study the potential
avoidance of the BR.
We have quantized a specific fðRÞ cosmological model

predicting a BR singularity in the framework of quantum
geometrodynamics. That is, following the procedure out-
lined in Ref. [33], we have developed a canonical quan-
tization restricting our analysis to the minisuperspace to
formulate the modified WDW equation. When quantizing
we have explicitly taken a particular factor ordering and
implicitly assumed an Hermitian Hamiltonian. An interest-
ing technical point that deserves to be emphasized is that
the signature of the minisuperspace DeWitt metric is
similar to that obtained in GR when assuming an ordinary
(nonphantom) scalar field independently of the particular
fðRÞ theory under investigation. Therefore, the WDW
equation is hyperbolic even if the quantized universe has
a BR as its classical fate.
We have focused our attention on a particularly simple

fðRÞ theory of gravity leading to a BR singularity and
compatible with current observational constraints. Then,
we have considered the modified WDW equation of that
particular theory and, after developing some approxima-
tions justified in Appendix A, assumed an ansatz com-
monly used in the literature for the form of the wave
function of the Universe. However, it should be emphasized
that in our case this ansatz is not splitting the matter and the
geometric part of the wave function, as both minisuper-
space variables are related to geometry in our case. Then,
we have obtained the solutions to the WDW equation and
showed that the DW criterion for singularity avoidance can
be imposed, without any further analysis of the family of
solutions to the equation. It should be noted, however, that
the DW criterion is based on the existence of a consistent
probability interpretation of the wave function that is still
unknown. Hence, our results hint toward the avoidance of
the BR in metric fðRÞ theories, although a definitive
answer will require a formulation of that probability
interpretation.
Finally, we want to emphasize that in order to obtain a

complete formulation (and interpretation) of the quantum
system, one needs to be able to construct a Hilbert space of
solutions for the WDW equation equipped with an inner
product. We have not discussed the potential definition of
that Hilbert space and its inner product in the model
investigated in the present paper. It should be noted that

such an inner product is necessary for discussing the
physical significance of the solutions of the WDW equa-
tion. In particular, it is the common root for our assump-
tions regarding the symmetric character of the Hamiltonian
constraint and the applicability of the DeWitt criterion. This
construction is not possible in general but it is for some
particular cosmological models [38,44–47]. We postpone,
however, the corresponding detailed analysis for the
particular model considered in this paper for future
research.
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APPENDIX: VALIDITY OF THE
APPROXIMATION

We next prove the validity of the approximation we used
to solve the modified WDW equation.
Taking into account Eq. (42), we can see that the

approximations taken for Eq. (29) imply that

φ2∂2
φΨ ∼ φ5 ≫ φ∂φΨ ∼ φ2 ðA1Þ

and

φ2∂2
φΨ ∼ φ5 ≫ φ∂φ∂zΨ ∼ φ2: ðA2Þ

On the other hand, those inequalities have to be satisfied at
large φ where the BR singularity is reached. As can easily
be seen, those inequalities are indeed fulfilled on that
regime.
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