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The complex path (or Hamilton-Jacobi) approach to Hawking radiation corresponds to the intuitive
picture of particles tunneling through the horizon and forming a thermal radiation. This method computes
the tunneling rate of a given particle from its equation of motion and equates it to the Boltzmann
distribution of the radiation from which the Hawking temperature is identified. In agreement with the
original derivation by Hawking and the other approaches, it has been checked, case by case, that the
temperature is indeed universal for a number of backgrounds and the tunneling of particles mostly from
spins 0 to 1 and, in some instances, from spins 3=2 and 2. In this article, we give a general proof that the
temperature is indeed equal for all (massless and massive) particles with spins from 0 to 2 on backgrounds
satisfying a specific separation ansatz (and limited to be Einstein for spin greater than 1) in any number of
dimensions. Moreover, we propose a general argument to extend this result to any spin greater than 2.
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I. INTRODUCTION

In his seminal paper [1], Hawking proved that black
holes emit a thermal radiation at a temperature T due to
quantum mechanical effects. More generally, thermal
radiation is more generally associated to all horizons,
including the ones of an accelerated observer (Unruh
effect) or in cosmologies (cosmological horizons, e.g., in
FRW universe or dS space). In the following years, several
other methods have been designed to compute such thermal
effects and established the as major predictions of quantum
field theories on curved spaces. It is one of the rare
instances where hints of a quantum gravity theory can
be found, and as such, it is of primordial importance to
understand it precisely.
The intuitive picture of this radiation is the following:

pairs of virtual particles created near a black hole horizon
through vacuum fluctuations become real once one of them
cross the horizon while the other extracts energy from the
black hole. Two approaches realize this specific idea of
tunneling: the complex path (or Hamilton-Jacobi) method
due to Shankaranarayanan-Srinivasan-Padmanabhan [2–4]
(see also [5]), and the null geodesic method (or Parikh-
Wilczek) method [6] (see [7] for a review). Both methods
are not restricted to black hole radiation but can also be
applied to any black hole with a thermal horizon or any
other background which can have a thermal horizon, such
as the Rindler or de Sitter spaces. Moreover, they can also

be used to define the Hawking temperature in situations
where the traditional methods are not defined [8].
The complex path formalism computes the tunneling rate

of a particle of a given spin s by solving its equations of
motion in the black hole background through a WKB
approximation, and then equates this rates to the probability
given by the Boltzmann distribution at temperature T. From
the other methods, it is clear that the Hawking temperature
T is universal, i.e., that it is a property of the black hole and
not of the tunneling particle.1 The main drawback of the
complex path method is to hide this fact, in that the
computations depend strongly on the tunneling particle
under consideration (and in particular on its spin, since the
starting point is the equation of motion of the associated
field). Nonetheless, it has been checked explicitly case by
case for many backgrounds that the tunneling of particles
with different spins (mostly s ¼ 0, 1=2, 1, but also s ¼ 3=2,
2 in some instances) always yields the same temperature,
see [9–15] for a selected sample and references therein for
more details. As a consistency check, it would be desirable
to establish the universality of the Hawking temperature in
the complex path formalism in full generality.
The goal of this article is to prove this result for neutral

massless and massive particles with spin ranging from 0 to 2
for a background satisfying a separation ansatz—see (9)—
(and restricted tobeEinstein fors ¼ 3=2, 2) in anydimension,
completing results obtained earlier in [15]. The separation
ansatz includes a large class of interesting backgrounds, in
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1In particular, because most of these other approaches don’t
require to specify the type of the tunneling particle.
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particular: any general static metric [7], the Plebański-
Demiański metric (the most general type D solution, describ-
ing in particular flat, dS andAdSblack holes withmass, NUT
charge, rotation and acceleration [16–18]) [10,19–23], the
Kerr-Gödel spacetime [24], theBTZ solution [25], theVaidya
solution [26]; they correspond to most of the backgrounds
already studiedwith theHamilton-Jacobimethod (see [7] for a
review). This is achieved in two steps. First, the equation of
motion for a spin s ≤ 2 is rewritten into a second-order
equation together with constraints following standard meth-
ods (this is theusual startingpoint to theanalysisof thedegrees
of freedom (d.o.f.) ) [27,28]. Second, we show that, in the
WKB approximation, this second-order equation reduces to
the Hamilton-Jacobi equation of a scalar field (or, said
differently, that the eikonal limit of field equations is univer-
sal), a fact which is certainly to be expected. These compu-
tations hold for any background spacetime, and thus more
particularly for the ones which have an horizon and for which
onewishes to apply the complex pathmethod.2We then give a
general argument to extend this argument tomassive particles
of any spin s > 2. Moreover, we stress that our proof is fully
covariant, in contrast with the former computations which
were not explicitly covariant since the fields and the back-
ground metric were written in components.
The limitation on the background for spins s > 1 and the

need of nonminimal coupling are related to the well-known
difficulty propagating higher-spin particles on a curved back-
ground [29–31] and in itself is not related to Hawking
radiation.
An interesting question would be to analyze the sublead-

ing quantum corrections and the deviation from thermality
due to the backreaction of the radiation and to see how they
differ for the different types of particles (the greybody factor
is definitely not universal). The generalization of our argu-
ment to background with gauge fields under which the
particles are charged is expected to be straightforward, even
if one can expect difficulties already for s ¼ 1 due to
inconsistencies in the coupling of spin s ≥ 1 to electromag-
netic fields [32,33].
In Sec. II, we review the complex path method for a

scalar field, and we show in Sec. III how the higher-spin
cases reduce to this case.

II. COMPLEX PATH METHOD
FOR THE SCALAR FIELD

In this section, we sketch the essential steps of the
derivation of the Hawking temperature from the field

equation of a scalar field in the complex path formalism.
The reader is referred to the literature [2–5,7,9] (and
references therein) for complete explanations and specific
examples.
One considers a background (case of interests being

black holes, the Rindler space, etc.) in d dimensions
described by a fixed metric gμν. For definiteness, the
background metric is taken to be a solution of the
Einstein equations with a cosmological constant

Rμν −
1

2
gμνRþ Λgμν ¼ 0; ð1Þ

where Λ is the cosmological constant, Rμν ¼ Rρμ
ρ
ν is the

Ricci tensor obtained by contracting the Riemann tensor,
and R ¼ gμνRμν is the Ricci scalar. As we will see, this
restriction to Einstein spacetimes for deriving the Hawking
temperature only concerns spins higher than 1. The
Laplacian on this background is defined by

Δ ¼ gμν∇μ∇ν ð2Þ

where ∇μ is the covariant derivative with the Levi–Civita
connection. The tunneling rate Γ for a particle is given by

Γ ¼ Pout

Pin
¼ jϕoutj2

jϕinj2
ð3Þ

where Pin (Pout) is the tunneling probability for an ingoing
(outgoing) particle and ϕin (ϕout) is the associated solution
to the equation of motion. Assuming that the radiation is
thermal this rate can be equated to the Boltzmann distri-
bution through the detailed balance3

Γ ¼ e−Etot=T ð4Þ

where Etot is the total energy (including kinetic, rotational,
electromagnetic, etc.) carried by the particle tunneling, and
measured by a freely falling observer in the vicinity of the
external horizon.
From this point, we consider a free (massive or massless)

spin 0 scalar field ϕ. The equation of motion for a scalar
field in a curved background with nonminimal coupling

�
−Δþm2

ℏ2
þ ξR

�
ϕ ¼ 0 ð5Þ

where m2 can be zero. This equation can be solved at
leading order in ℏ through the WKB approximation

ϕðxÞ ¼ ϕ0eiSðxÞ=ℏ; ð6Þ

2In order to make the paper (almost) self-contained, we
provide a short summary of the complex path method, including
a description of the context and of the main steps of the derivation
starting from the scalar Hamilton-Jacobi equation. Nonetheless,
we do not provide any specific examples to avoid wandering too
far from the main topic of this paper. We refer the reader
interested to the method itself to the vast literature, and more
specifically to the excellent review [7].

3This hypothesis is not strictly correct due to backreaction of
the radiation on the geometry [6], but we will ignore this effect for
our purpose.
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where ϕ0 is a constant wave function. Inserting this ansatz
into (5) provides, at leading order in ℏ, the Hamilton-Jacobi
equation on curved space,

gμν∂μS∂νSþm2 ¼ 0; ð7Þ

and allows us to identify S with the classical action and one
can note that the nonminimal coupling term is subleading
(such terms are also present for higher spins and will not
contribute at leading order).
In terms of Sin and Sout, the tunneling rate (3) reads

Γ ¼ jϕoutj2
jϕinj2

¼ e−2ðℑSout−ℑSinÞ=ℏ: ð8Þ

The functions Sin and Sout can be solved quite generically
with the following ansatz [5,9,10]

Sout ¼ −EtþWðr0Þ þ FðxiÞ þ K;

Sin ¼ −Et −Wðr0Þ þ FðxiÞ þ K; ð9Þ

where t is the time, r0 the radial location of the horizon and
xi denotes any other coordinate; K is a complex constant,
W is complex and F is real. The rest of this paper will be
restricted to background for which S satisfies this ansatz.
One needs to ensure that the ingoing probability is one in
the classical limit because the horizon necessarily absorbs
the particle. This condition manifests itself differently
depending on the choice of coordinates.4 It may occur that
the inverse of the radial velocity has no pole for an ingoing
classical particle, implying that this imaginary part van-
ishes. If this is not the case then one needs to find the
relation between the ingoing and outgoing actions such that
this condition holds. Both situations amount to setting
ℑK ¼ ℑWðr0Þ and one finally obtains the tunneling rate

Γ ¼ e−4ℑWðr0Þ=ℏ; ð10Þ

which yields the temperature

T ¼ ℏEtot

4ℑWðr0Þ
ð11Þ

by equating with (3). In order to make contact with the
well-known formula of the Hawking radiation, one can
show (see e.g.,[7,11,12]) for general rotating black holes
(including the Schwarzschild back hole as a limiting case)
that the expression for Wðr0Þ is proportional to the surface
gravity κ:

ℑWðr0Þ ¼
πEtot

2κ
; ð12Þ

and the final result agrees with the well know Hawking
temperature formula [1]

T ¼ ℏκ
2π

: ð13Þ

The reason is that Wðr0Þ is defined by an integral over r
with a pole at the horizon due to the presence of the metric
components in the denominator: evaluating the integral
yields a residue (imaginary) proportional to the surface
gravity. In the case of Schwarzschild, one finds

fðrÞ ¼ 1 −
2M
r

; r0 ¼ 2M ⇒ κ ¼ f0ðr0Þ
2

¼ 1

4M
;

T ¼ ℏ
8πM

: ð14Þ

III. TUNNELING OF HIGHER-SPIN PARTICLES

In this section—which contains our new results—we
show that the equations of motion for higher-spin particles
reduce to the Hamilton-Jacobi equation (7) of a scalar field
in the leading order of the WKB approximation. This is
sufficient to establish that the temperature will be given by
(11) and thus that it is identical for all spins.5 We stress that
the computations of this section are valid for any QFT on a
curved spacetime [27,28] (and thus not only the ones for
which a Hawking temperature can be defined) and inde-
pendent of the previous section.
Spin 1=2 The equation of motion for a spin 1=2 fermion

ψ is

�
=∇ −

m
ℏ

�
ψ ¼ 0 ð15Þ

where =∇≡ γμ∇μ and γμ are the Dirac matrices. The
multiplication of (15) with =∇ gives the second-order partial
derivative equation:

−Δψ þ 1

4
Rψ þm2

ℏ2
ψ ¼ 0: ð16Þ

As for the scalar field, the WKB approximation for this
equation can be investigated using the following ansatz

ψðxÞ ¼ ψ0ðxÞeiSðxÞ=ℏ; ð17Þ

where ψ0 is a position-dependent spinor. Putting this ansatz
in (16), we deduce an equation for S and, keeping only the

4This point involves different subtleties and making a precise
statement is very coordinate-dependent. We refer the reader to the
literature for more details [5,34–38].

5For this, it is important that the evaluation of the action in (11)
depends only on the properties of the background and not on the
type of the particle.
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leading-order terms in ℏ, it reduces to the scalar Hamilton–
Jacobi equation (7). In particular, no derivative of ψ0

appears because it would be subleading in ℏ.
The Hamilton-Jacobi equation (7) can also be derived by

plugging (17) directly inside the Dirac equation (15) and
squaring the equation

ði∂S −mÞψ0 ¼ 0: ð18Þ
Here also there is no derivative of ψ0 because it is
subleading in ℏ. Note that it is necessary to keep the
spinor ψ0 when writing the first-order equation because the
operator is not diagonal (as it is in the Klein-Gordon
equation).
Before moving to the other spins, it is useful to develop

the last point and to make a comment about the solutions of
the equations. Since the Dirac equation (15) is of first order,
it is stronger than the modified Klein-Gordon equation (16)
and, as such, not all solutions of the latter are solutions of
the former (for s > 1=2 the second-order equations will be
accompanied with constraints). However, the converse is
true and it is this fact which is relevant here. First, the
Hamilton-Jacobi equation (17) can be used to determine S.
To get a solution of the original Dirac equation (to leading
order in ℏ), one needs to check that (18) is satisfied. This is
achieved by inserting the solution for S found from the
Hamilton-Jacobi equation and by solving for ψ0 (see [39]
[Sec. 2. 2. 3] for examples of this method). Since ψ0 is a
general position-dependent spinor, a solution generically
exists. Since only S is relevant to compute the tunneling
rate, we can safely ignore the computations of the constant
amplitude ψ0. Nonetheless, for comprehensiveness, more
precise conditions on the components are obtained
in Sec. IV.
While the same comment holds for half-integer spin

particle, the argument is slightly different for integer spin
particles; we will discuss it in the next section for s ¼ 1.
Spin 1 The equation of motion for a massive vector field

Aμ can be derived from the standard Proca Lagrangian, and
may be written in the form

0 ¼ −ΔAμ þ∇ν∇μAν þm2

ℏ2
Aμ: ð19aÞ

Up to straightforward manipulations, this equation is
equivalent to

−ΔAμ þ RμνAν þm2

ℏ2
Aμ ¼ 0 ð20Þ

together with the constraint

∇μAμ ¼ 0 ð21Þ
which can be imposed at the dynamical level as a
consequence of the equation of motion for m2 ≠ 0, or
through a gauge transformation

δAμ ¼ ∇μα; ð22Þ

for vanishing mass, the scalar field α being the gauge
parameter. Remember that this constraint is necessary for
ensuring that the correct d.o.f. propagate (the spin 1), while
the extraneous ones are removed (the spin 0 part). In the
leading order of the WKB approximation,

AμðxÞ ¼ A0μðxÞeiSðxÞ=ℏ ð23Þ

Eq. (20) corresponds to the scalar Hamilton-Jacobi equa-
tion (7). Again, derivatives of A0μðxÞ do not arise because
they are subleading.
As described in the previous section, one needs to ensure

that solutions to (20) are solutions to the original Eq. (19)
(in the given approximation). The WKB approximation of
(19) reads

A0ρðgμν∂μS∂νSþm2Þ − Aσ
0∂σS∂ρS ¼ 0: ð24Þ

The first parenthesis vanishes as a consequence of the
Hamilton-Jacobi equation, while the second term is zero
due to the constraint (21). As a consequence, every solution
of the Hamilton-Jacobi equation is also a solution of (19a)
(to the given approximation).
Note that for the two previous cases it was not necessary

to use the fact that the background metric is a solution
of the Einstein equation (1). Hence the universality of
Hawking temperature for spin s ¼ 0, 1=2, 1 is valid for any
background, irrespective of the theory of gravity or the
matter content under consideration, with the exception of
gauge couplings.6 As noted in the introduction, the analysis
of the second-order field equations for s ¼ 3=2 and s ¼ 2
shows that the background is restricted to be Einstein
backgrounds; this stems from the well-known problem of
propagating consistently fields with s > 1 on curved
backgrounds.7

Spin 3=2 The massive Rarita–Schwinger field is
described by a (bi-)spinor-valued vector field ψμ whose
equation of motion is

γμνρ∇νψρ −
m
ℏ
γμνψν ¼ 0: ð25Þ

6Indeed, the coupling to the gauge field in the covariant
derivative comes with a factor ℏ−1. On the other hand, couplings
to other scalar and fermions fields can come only with positive
powers of ℏ, implying that these terms do not contribute at the
leading order of the WKB approximation.

7However, one can expect the Hamilton-Jacobi equation to be
identical for all particles since the spin has no effect in the WKB
approximation. Indeed, in view of the local flatness of spacetime,
one can use normal coordinates locally, and the field equations
reduce to the one on Minkowski spaces. Then, one can extract the
constraints on the field easily without having to use the Einstein
equation (1), and the Hamilton-Jacobi equation (7) follows.
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Some lengthy but simple manipulations [40] show that ψμ

obeys the Dirac equation

�
=∇ −

m
ℏ

�
ψμ ¼ 0; ð26Þ

together with the condition

γμψμ ¼ 0: ð27Þ

Note that these conditions result from the equation of
motion (25) if

m2 ≠ 0; m2
0; m2

0 ≡ d − 2

2ðd − 1Þℏ
2Λ; ð28Þ

or from the gauge invariance under the following trans-
formation otherwise:

δψμ ¼
�
∇μ −

m0

ðd − 2Þ γμ
�
ϵ; ð29Þ

where ϵ is a spinor-valued gauge parameter. As discussed
for the spin 1, the constraint ensures that only the spin 3=2
part of the field propagates. However, it can be imposed
only if the background satisfies the Einstein equation (1)
for the spin 3=2. Finally, Eq. (26) can be multiplied with =∇
which leads to

−Δψρ þ γμνRμν
σ
ρψσ þ

R
4
ψρ þ

m2

ℏ2
ψρ ¼ 0; ð30Þ

and inserting the WKB ansatz

ψμðxÞ ¼ ψ0μðxÞeiSðxÞ=ℏ ð31Þ

inside Eq. (30) brings it to the form of (7) at the leading
order in ℏ.
Alternatively, it is possible to bypass the need of an

Einstein background by considering the WKB approxima-
tion (31) directly of the Dirac equation (26). Then the
equation reduces to the first-order Eq. (18) which leads
immediately to the Hamilton-Jacobi equation (7).8 This
also shows that a solution to the Hamilton-Jacobi equation
will be a solution of the original Eq. (25) (in the WKB
approximation), after solving for the constant vector-
spinor ψ0μ.
Spin 2 The massive spin 2 field is usually described by a

symmetric tensor of rank 2, hμν, whose equation of motion
may be written as [41]

− Δhμν þ gμνΔh −∇μ∇νh − gμν∇ρ∇σhρσ

þ∇ρ∇μhνρ þ∇ρ∇νhμρ −
2ξ

d
Rhμν

−
1 − 2ξ

d
Rhgμν þ

m2

ℏ2
ðhμν − hgμνÞ ¼ 0 ð32Þ

where ξ is an arbitrary parameter parametrizing the non-
minimal coupling (the latter is necessary in order to get the
correct constraints on the propagating d.o.f. below). Then
the equation (32) can be simplified to

−Δhμν − 2Rρ
μ
σ
νhρσ −

2ðξ − 1Þ
d

Rhμν þ
m2

ℏ2
hμν ¼ 0 ð33Þ

together with the constraints

h ¼ 0; ∇μhμν ¼ 0 ð34Þ

if the background satisfies the Einstein equation (1). In the
case where the condition

m2 ≠ m2
0 ≡ −

4ℏ2ð1 − ξÞ
d − 2

Λ ð35Þ

holds, the constraints (34) result from the equation of
motion (32) [41]. Otherwise, if m2 ¼ m2

0 then they can be
imposed through a gauge transformation

δhμν ¼ ∇μζν þ∇νζμ: ð36Þ

Note that this includes the case of the graviton propagating
on a curved space which corresponds to m2 ¼ 0 and ξ ¼ 1
[42].9 In the WKB approximation,

hμνðxÞ ¼ h0μνðxÞeiSðxÞ=ℏ; ð37Þ

Eq. (32) is again equivalent to (7). Moreover, it is
straightforward to check that this provides a solution to
WKB approximation of the original Eq. (32) by using the
constraints (34).
Higher spins.—More generally one can consider a

massive particle of arbitrary integer spin s > 2 (the case
of half-integer is a straightforward extension) represented
by a field ϕμ1…μs symmetric in all indices for which the
equation of motion is

−Δϕμ1…μs þ fðRÞμ1…μs
ν1…νsϕν1…νs þ

m2

ℏ2
ϕμ1…μs ¼ 0 ð38Þ

after elimination of the auxiliary fields and imposing the
constraints [43–45]

8In this case, the background must still be Einstein and the
constraints have also to be imposed.

9To our knowledge, the gauge transformation (36) has not been
discussed elsewhere for generic ξ.

UNIVERSALITY OF TUNNELING PARTICLES IN … PHYS. REV. D 98, 104001 (2018)

104001-5



∇μϕμμ2…μs ¼ 0; gμνϕμνμ3…μs ¼ 0; ð39Þ

where fðRÞ is a function of the Riemann tensor and its
contractions, arising both from anticommutation of covar-
iant derivatives and from nonminimal coupling terms
(which ensures causality and unitarity [46]). Introducing
the WKB ansatz

ϕμ1…μsðxÞ ¼ ϕ0;μ1…μsðxÞeiSðxÞ=ℏ ð40Þ

yields the Hamilton-Jacobi equation (7). The reason is that
curvature terms cannot have factors of ℏ because they do
not contain derivatives as the Laplacian or built-in factors
as the mass term. Any other term would be eliminated by
the constraints (which are necessary for the theory to exist
and be consistent).

IV. CONDITIONS ON SPIN-1=2
WAVE FUNCTIONS

In this section, we derive conditions on the amplitude ψ0

and envelope S of the spin-1=2 WKB ansatz (17)

ψ ¼ ψ0eiS=ℏ ð41Þ

by studying Eq. (18)

ði=∂S −mÞψ0 ¼ 0: ð42Þ

We will follow the steps from [11], but our conditions are
valid for all backgrounds since the expressions are given in
the Lorentz frame. The conventions follow [27] [Chap. 2].
We introduce a vielbein basis eaμ, where a ¼ 0;…; 3 are

the Lorentz frame indices, such that

gμν ¼ ηabeaμebν : ð43Þ

The Dirac matrices in the chiral basis read

γa ¼
�

0 σa

σ̄a 0

�
; σa ¼ ð1; σiÞ; σ̄a ¼ ð−1; σiÞ:

ð44Þ

We recall the Pauli matrices σi

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
:

ð45Þ

One chooses to measure the spin in the 3 direction. The
chiral up and down 2-spinors ξ� which are eigenvectors of
σ3 read

ξþ ¼
�
1

0

�
; ξ− ¼

�
0

1

�
ð46Þ

which leads to the ansatz

ψ0 ¼
�

A�ξ�
�iB�ξ�

�
ð47Þ

where A� and B� are constant numbers.
Inserting the ansatz in the first-order equation in the

WKB approximation leads to
� −m iσa∂a

iσ̄a∂a −m

��
A�ξ�

�iB�ξ�

�
¼ 0 ð48Þ

which splits into two equations:

ðB�σa∂aS�mA�Þξ� ¼ 0; ðA�σ̄a∂aS ∓ mB�Þξ� ¼ 0:

ð49Þ
To go further, one needs to write the equations in
components, and we focus on the spin up case. The first
equation becomes

Bþ

� ð∂0 þ ∂3ÞS ð∂1 − i∂2ÞS
ð∂1 þ i∂2ÞS ð∂0 − ∂3ÞS

��
1

0

�
þmAþ

�
1

0

�
¼ 0;

ð50Þ
leading to the two equations:

Bþð∂0 þ ∂3ÞSþmAþ ¼ 0; Bþð∂1 þ i∂2ÞS ¼ 0: ð51Þ
The second equation gives

Aþð−∂0 þ ∂3ÞS −mBþ ¼ 0; Aþð∂1 þ i∂2ÞS ¼ 0: ð52Þ
One first finds a constraint on S

ð∂1 þ i∂2ÞS ¼ 0: ð53Þ

If m ¼ 0, there are two possible cases

Aþ ¼ 0; ð∂0 þ ∂3ÞS ¼ 0;

Bþ ¼ 0; ð∂0 − ∂3ÞS ¼ 0: ð54Þ

If m ≠ 0, a new equation can be obtained by multiplying
the first equation by Aþ and the third by Bþ and subtracting

2AþBþ∂0SþmðA2þ þ BþÞ2 ¼ 0; ð55Þ

such that

m

�
Aþ
Bþ

�
2

þ 2∂0S
Aþ
Bþ

þm ¼ 0; ð56Þ

which admits for solution

Aþ
Bþ

¼ 1

m

�
−∂0S�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂0SÞ2 −m2

q �
: ð57Þ
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