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In this paper we give five gauge-invariant systems of governing equations for first and second order
scalar perturbations of flat Friedmann-Lemaître universes that are minimal in the sense that they contain no
redundant equations or variables. We normalize the variables so that they are dimensionless, which leads to
systems of equations that are simple and ready-to-use. We compare the properties and utility of the different
systems. For example, they serve as a starting point for finding explicit solutions for two benchmark
problems in cosmological perturbation theory at second order: adiabatic perturbations in the superhorizon
regime (the long wavelength limit) and perturbations of ΛCDM universes. However, our framework has
much wider applicability and serves as a reference for future work in the field.
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I. INTRODUCTION

Perturbations of Friedmann-Lemaître (FL) cosmologies
play an essential role in confronting theoretical models with
observations of the anisotropy of the cosmic microwave
background (CMB) and the inhomogeneity of the large
scale structure (LSS) of the Universe. Initially linear
perturbations were adequate but now the increasing accu-
racy of the observations necessitates the use of second order
(nonlinear) perturbations to analyze, for example, the
presence of non-Gaussianity in the CMB and the LSS.1

In this paper we consider first and second order scalar
perturbations of FL universes subject to the following
assumptions:

(i) the spatial background is flat;
(ii) the stress-energy tensor can be written in the form

Ta
b ¼ ðρþ pÞuaub þ pδab, thereby describing per-

fect fluids and scalar fields;
(iii) the linear perturbation is purely scalar.

The dynamics of perturbations of FL universes are gov-
erned by the perturbed Einstein equations and the perturbed
matter equations. For scalar perturbations the perturbed
Einstein equations give four equations (linear combinations
of the components of the perturbed Einstein tensor) which
include evolution equations for the metric perturbations.
The perturbed conservation equations provide evolution
equations for two primary matter perturbations, the density
perturbation and the scalar velocity perturbation. Only four

of these six equations are needed to fully describe the
perturbations, but in order to obtain a well-defined system
the gauge freedom has to be eliminated by fixing the gauge.
Since 2004 much work aimed at confronting theoretical

models with observations has been done using second order
perturbations. In one respect second order perturbations are
analogous to first order perturbations: the leading order
terms in the equations have exactly the same form. The
greater complexity at second order arises from the fact that
each equation is augmented by so-called source terms that
depend quadratically on the first order perturbations. There
are various ways of formulating the governing equations
for second order perturbations, depending on the choice of
variables and gauge. These choices are influenced by
various factors such as the problem to be investigated,
for example, long wavelength perturbations or perturba-
tions of the ΛCDM universe, or in the case of numerical
work, by the availability of numerical packages. A number
of detailed formulations of the governing equations have
been given,2 but mainly due to the complexity of the source
terms no standard systems have emerged: it is as though the
necessary technical infrastructure for analyzing second order
perturbations has not been sufficiently well developed.
With this as motivation, our goal in this paper is to

present five systems of equations that are suitable for
analyzing the dynamics of both first and second order
scalar perturbations of FL universes. To accomplish this we
begin by imposing the so-called C-gauge of Hwang and
Noh [3] up to second order which fixes the spatial gauge,*claes.uggla@kau.se

†jwainwri@uwaterloo.ca
1See, for example, Bartolo et al. (2010) [1] and Tram et al.

(2016) [2].

2See, for example, Noh and Hwang (2004) [3], and Nakamura
(2007) [4].
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but we initially keep an arbitrary temporal gauge. Within
this framework we construct a set of leading order and
quadratic source terms for the perturbed Einstein field
equations (a set of four scalar equations) and the perturbed
energy-momentum conservation equations (a set of two
scalar equations). Finally we construct five specific systems
of gauge invariant equations by also fixing the temporal
gauge. First, specializing the perturbed Einstein field
equations to the Poisson (longitudinal, zero shear) gauge
and the uniform (flat) curvature gauge yields two systems
of governing equations. Second, specializing three of the
perturbed Einstein field equations together with the per-
turbed momentum conservation equation to the Poisson
gauge and the total matter gauge results in two more
systems. Finally we create a fifth system by using the
perturbed energy-momentum equations to describe the
evolution of the density perturbation in the total matter
gauge, and the velocity perturbation in the Poisson gauge,
with two of the perturbed Einstein equations acting as
constraints to determine the metric perturbations. We
regard these five systems of equations as ready-to-use
since they are gauge invariant, contain no redundant
equations or variables, and do not require that any further
simplifications be made before use.
It is important to note that in general the above systems

of equations are not closed (not fully determined) since the
nonadiabatic pressure perturbation has to be specified.
However, for a barotropic perfect fluid and a minimally
coupled scalar field, the systems are fully determined, once
an equation of state and a scalar field potential, respectively,
has been given. Moreover, we present the systems in a
manner that makes it possible to apply them to more general
matter models such as multifluids and multiple scalar fields.
The present paper is the second of four related papers by

the authors. The first paper [5], hereafter referred to as
UW1, gives a unified and simplified formulation of gauge
change formulas at second order, while the third paper [6],
called UW3, uses the present paper, in conjunction with
UW1, to give new conserved quantities and derive the
general explicit solution at second order for adiabatic
perturbations in the long wavelength limit, results that
are subsequently adapted to inflationary universes with a
single scalar field in [7], which we refer to as UW4.
The outline of the paper is as follows. In Sec. II we

introduce the metric and matter perturbation variables. In
Sec. III we present leading order and quadratic source
terms for the perturbed Einstein field equations, and in
Sec. IV we present the leading order and quadratic source
terms for the perturbed conservation equations. In both
cases the details of the source terms are deferred to an
appendix. The central goal of the paper is reached in
Sec. V where we derive the five ready-to-use systems of
governing equations. Finally in Sec. VI we comment on
specific applications of the five systems and on their
relative merits.

II. METRIC AND MATTER PERTURBATION
VARIABLES

A. Background geometrical and matter scalars

The background Robertson-Walker (RW) metric has the
form

ds2 ¼ a2ð−dη2 þ γijdxidxjÞ; ð1Þ

where a is the background scale factor, η is conformal time,
and γij is the flat spatial 3-metric. The evolution of the
background geometry is governed by the scalars

H ¼ a0

a
; q ¼ −

H0

H2
; ð2aÞ

where 0 denotes differentiation with respect to η, and
H ¼ aH, with H being the background Hubble parameter
and q the background deceleration parameter. We associate
the following scalars with the background stress-energy
tensor:

w ¼ p0

ρ0
; c2s ¼

p0
0

ρ00
; ð2bÞ

where ρ0 and p0 are the background energy density and
pressure, respectively. The density parameter is defined as
usual by

Ω ¼ ρ0
3H2

; ð2cÞ

where we have set c ¼ 1 and 8πG ¼ 1, where c is the speed
of light and G the gravitational constant.
The Einstein equations for a spatially flat background

can be written as

3H2 ¼ a2ρ0; 2ð−H0 þH2Þ ¼ a2ðρ0 þ p0Þ; ð3Þ

or equivalently, using Eqs. (2), in the following form:

Ω ¼ 1; 2ð1þ qÞ ¼ 3ð1þ wÞ: ð4Þ

One can use the second equation to switch between 1þ q
and 1þ w and in what follows wewill use either expression
depending on the context.
As regards dimensions, we make the choice that the

scale factor a is dimensionless, which implies via (1)
that the conformal time η has dimensions of length.
It follows that H and H have dimension ðlengthÞ−1 and
ρ0 and p0 have dimension ðlengthÞ−2 while q, w, c2s , and Ω
are dimensionless.
We now introduce the background e-fold time variable

N, defined by

N ¼ lnða=a0Þ: ð5Þ
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This variable describes the number of background e-foldings
with respect to some reference epoch a ¼ a0. Although
conformal time η is arguably the most commonly used
background time variable in cosmological perturbation
theory, the e-fold time variable N is used in inflationary
cosmology and also when doing numerical simulations.3

In this paper we will primarily use e-fold time N but on
occasion we will make the transition to conformal time η.
In changing time variables, note that

∂η ¼ H∂N; ∂2
η ¼ H2ð∂2

N − q∂NÞ; ð6Þ

and that the deceleration parameter q can be written in either
of the following forms:

q ¼ −
∂NH
H

¼ −
∂NH
H

− 1: ð7Þ

In order to write simple expressions for the perturbed
Einstein tensor it is helpful to introduce an additional
background geometrical scalar C2, which is defined in
terms of the background Einstein tensor according to

C2 ¼ −
1

3
∂N

ð0ÞGi
i=∂N

ð0ÞGη
η: ð8Þ

On noting that ð0ÞTi
i ¼ 3p0, ð0ÞTη

η ¼ −ρ0 it follows from
(2b) that C2 is the geometrical analogue of c2s and that the
Einstein equations in the background imply

C2 ¼ c2s : ð9Þ

For future use we note that definition (8) leads to the
following derivative4:

∂Nq ¼ −ð1þ qÞð1þ 3C2 − 2qÞ: ð10Þ

B. Metric perturbation variables

To perturb a flat RW background geometry we write the
metric in the form

ds2 ¼ a2ð−ð1þ 2ϕÞdη2 þ fηidηdxi þ fijdxidxjÞ; ð11Þ

where we assume that the metric components can be
expanded as a Taylor series in a perturbation parameter
ϵ, e.g.,

ϕ ¼ ϵð1Þϕþ 1

2
ϵ2ð2Þϕþ � � � : ð12Þ

We also assume that the metric can be decomposed into
scalar, vector, and tensor perturbations according to

fηi ¼ DiBþ Bi; ð13aÞ

fij ¼ ð1 − 2ψÞγij þ 2DiDjCþ 2DðiCjÞ þ 2Cij; ð13bÞ

where DiBi ¼ 0, DiCi ¼ 0, Ci
i ¼ 0, DiCij ¼ 0, which

ensures that ψ , B, and C describe scalar perturbations.
Here Di is the spatial covariant derivative corresponding to
the flat metric γij. Use of Cartesian background coordinates
yields γij ¼ δij and Di ¼ ∂=∂xi. As regards dimensions,
since we have made the choice that the scale factor a is
dimensionless, it follows that the coordinates η and xi have
dimensions of length since ds2 has dimension length2.
Therefore, due to the structure of equations (11) and (13),
ϕ and ψ are dimensionless while B has dimension length,
since Di has dimension ðlengthÞ−1.
From now on we completely fix the spatial gauge

freedom by setting the metric functions C and Ci in (13)
to be zero order by order,5 which up to second order gives

ðrÞC ¼ 0; ðrÞCi ¼ 0; r ¼ 1; 2; ð14Þ

where the transformation laws for C and Ci were given in
Eqs. (B10e) and (B10f) in [10]. Furthermore, in this paper
we are restricting our considerations to perturbations that
are purely scalar at linear order, and hence the metric
perturbations Bi and Cij satisfy

6

ð1ÞBi ¼ 0; ð1ÞCij ¼ 0: ð15Þ

Since purely scalar perturbations at linear order will
generate vector and tensor perturbations at second order,
it follows that these perturbations will have ð2ÞBi ≠ 0,
ð2ÞCij ≠ 0. However, our interest in this paper is discussing
the scalar perturbations at first and second order. Thus the
metric perturbations we consider are given by

ðrÞf ¼ ððrÞϕ;HðrÞB; ðrÞψÞ; r ¼ 1; 2; ð16Þ

where we have scaled ðrÞB with a factor of H. We
introduced this scaling in our earlier paper UW1 [5],
motivated by the transformation properties of the metric
perturbations under a change of gauge [see Eqs. (23)
and (24) in that paper], and by the fact that HðrÞB is
dimensionless, as we have confirmed here. By inspection it
follows from (11) and (13b) that ϕ and ψ are dimensionless.

3See, for example, Huston and Malik (2009) [8].
4Write the background Einstein tensor in the form ð0ÞGη

η ¼
−3H2, ð0ÞGi

i ¼ 3H2ð1 − 2qÞ.

5This excludes the synchronous gauge (for a recent work using
the synchronous gauge, see e.g., [9]), but apart from this gauge
most commonly used gauges are included in this class.

6This assumption is often made, but see, for example, Carrilho
and Malik (2016) [11].
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For future reference when scaling variables with H
we use

H∂Nf ¼ ð∂N þ qÞðHfÞ; ð17Þ
as follows from (7).

C. Matter perturbation variables

We consider a stress-energy tensor which can be written
in the form

Ta
b ¼ ðρþ pÞuaub þ pδab; ð18Þ

which describes both perfect fluid models and models with
a minimally coupled scalar field. In addition we assume
that it can be expanded in a Taylor series in ϵ, e.g.,

ρðϵÞ ¼ ρ0 þ ϵð1Þρþ 1

2
ϵ2ð2Þρþ � � � ; ð19Þ

for the energy density and similarly for the pressure pðϵÞ.
We then normalize the perturbations of ρ and p with
ρ0 þ p0 and define

ðrÞδ ¼
ðrÞρ

ρ0 þ p0

; ðrÞP ¼
ðrÞp

ρ0 þ p0

; ð20Þ

which are dimensionless.
To define the scalar velocity perturbations we find it

convenient to work with the covariant 4-velocity ub, which
we normalize with a conformal factor a according to
ub ¼ aVb, in analogy with the conformal factor a2 in
the metric (11). We then expand and decompose the spatial
components of Vb according to

Vi ¼ ϵð1ÞVi þ
1

2
ϵ2ð2ÞVi þ � � � ; ð21aÞ

ðrÞVi ¼ Dj
ðrÞV þ ðrÞṼi; r ¼ 1; 2;…; ð21bÞ

with DiðrÞṼi ¼ 0, so that ðrÞV represents the scalar pertur-
bations. Since we are focusing on scalar perturbations in
this paper we set the first order vector term to zero
(ð1ÞṼi ¼ 0). Since the Vb are dimensionless and the xi

have dimension length it follows from Eq. (21) that ðrÞV has
dimension length. As in the case of ðrÞB we normalize ðrÞV
with H and thereby consider HðrÞV.
Next we introduce the nonadiabatic pressure perturba-

tions, which we denote by ðrÞΓ, r ¼ 1, 2. Following Bartolo
et al. (2004) [12], but using the normalized pressure
perturbation (20), we define7

ðrÞΓ ¼ ðrÞPρ; r ¼ 1; 2; ð22Þ

i.e., the nonadiabatic pressure perturbations equal the
pressure perturbations in the uniform density gauge
(defined by ðrÞδ ¼ 0, r ¼ 1, 2). This definition ensures that
the ðrÞΓ, r ¼ 1, 2 are dimensionless gauge invariants and
that if p ¼ pðρÞ, then ðrÞΓ ¼ 0. Since we will need to
express ðrÞΓ, r ¼ 1, 2, in terms of other spatially fixed
gauges we use a change of gauge formula to express ðrÞPρ,
r ¼ 1, 2, in terms of the normalized pressure and density
perturbations in a temporally arbitrary but spatially fixed
gauge.8 On introducing the scaled density perturbation (20)
and the e-fold time variable N we obtain the following
expressions:

ð1ÞΓ ¼ ð1ÞP − c2s ð1Þδ; ð23aÞ

ð2ÞΓ ¼ ð2ÞP − c2s ð2Þδþ
1

3
ð∂Nc2sÞð1Þδ2

þ 2

3
ð1Þδ½∂N − 3ð1þ c2sÞ�ð1ÞΓ: ð23bÞ

In what follows we will replace the pressure perturba-
tions ðrÞP with the gauge invariants ðrÞΓ, r ¼ 1, 2, which
means that the basic matter perturbations that we use are the
dimensionless quantities

ðrÞM ¼ ððrÞδ; ðrÞΓ;HðrÞVÞ; r ¼ 1; 2: ð24Þ

III. THE PERTURBED EINSTEIN EQUATIONS
IN A GENERAL TEMPORAL GAUGE

A. Perturbed Einstein and stress energy tensors

We assume that the Einstein tensor for the metric (11)
has a Taylor expansion of the form

Ga
bðϵÞ ¼ ð0ÞGa

b þ ϵð1ÞGa
b þ

1

2
ϵ2ð2ÞGa

b þ � � � : ð25Þ

The first and second order perturbations of the Einstein
tensor have the following general structure:

H−2ð1ÞGa
b ¼ Ga

bðð1ÞfÞ; ð26aÞ

H−2ð2ÞGa
b ¼ Ga

bðð2ÞfÞ þ Ga
bðð1ÞfÞ; ð26bÞ

where we have normalized with the background quantity
H−2 to ensure thatGa

bðfÞ and Ga
bðð1ÞfÞ are dimensionless.

Observe that the first and second order perturbations have

7See in particular [12] Eqs. (136), (137), and (145) for a
general discussion and the desired expressions. The Bartolo
expression δPnad is related to our Γ by δPnad ¼ ðρ0 þ p0ÞΓ.
Previously, Kodama and Sasaki (1984) [13] used the symbol Γ in
this context: their expression is related to ours according to
wΓKS ¼ ð1þ wÞΓ. See Eq. (II.3.38).

8See Malik and Wands (2004) [14], Eqs. (4.19) and (4.20),
and [12], Eqs. (137) and (145).
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a common leading order term of the form Ga
bðfÞ,

where f denotes ð1Þf ≡ ðð1Þϕ;Hð1ÞB; ð1ÞψÞ or ð2Þf ≡ ðð2Þϕ;
Hð2ÞB; ð2ÞψÞ, while H−2ð2ÞGa

b also has a source term
Ga

bðð1ÞfÞ which depends quadratically on ð1Þf. We use
the fonts G, G, G as notational conventions for background
(zeroth order), first/leading order, and second order source
terms, respectively, although we will deviate from these
conventions when they clash with notation that has become
fairly standard in the literature.
The perturbations of the stress-energy tensor have a

similar general structure:

ðρ0 þ p0Þ−1ð1ÞTa
b ¼ Ta

bðð1ÞMÞ; ð27aÞ
ðρ0 þ p0Þ−1ð2ÞTa

b ¼ Ta
bðð2ÞMÞ þ Ta

bðð1Þf; ð1ÞMÞ; ð27bÞ
where ðrÞM ¼ ððrÞδ; ðrÞΓ;HðrÞVÞ, r ¼ 1, 2, are the matter
perturbation variables. We have chosen the normalization
factor ðρ0 þ p0Þ−1 to be compatible with (20), resulting in
dimensionless variables.
We express the perturbed Einstein equations ðrÞGa

b ¼
ðrÞTa

b, r ¼ 1, 2, in leading order terms and source terms
using Eqs. (26) and (27). Since ðρ0 þ p0Þ=H2 ¼
3ð1þ wÞΩ ¼ 3ð1þ wÞ, the first and second order per-
turbed Einstein equations take the form

Ga
bðð1ÞfÞ ¼ 3ð1þ wÞTa

bðð1ÞMÞ; ð28aÞ
Ga

bðð2ÞfÞ þ Ga
bðð1ÞfÞ

¼ 3ð1þ wÞðTa
bðð2ÞMÞ þ Ta

bðð1Þf; ð1ÞMÞÞ: ð28bÞ

B. The scalar mode

The scalar mode of the leading order tensor Ga
bðfÞ

in (26) is described by the following linear combinations
of Ga

b
9:

Gi
i; H2SijGij; HSiGη

i; Gη
η; ð29Þ

and similarly for the leading order tensor Ta
bðMÞ in (27)

and the source terms Ga
b and Ta

b. Here the scalar mode
extraction operators Si and Sij [see Uggla and Wainwright
(2013) [15]] are defined as follows:

Si ¼ D−2Di; ð30aÞ

Sij ¼ 3

2
ðD−2Þ2Dij; ð30bÞ

where Dij ¼ DðiDjÞ − 1
3
γijD2, D2 is the spatial Laplacian,

and D−2 is the inverse Laplacian. To ensure that the
expressions (29) are dimensionless we have scaled Si

and Sij appropriately with H [see also (32) below and
Appendix A].
We have found that significant simplifications occur in

the perturbed Einstein equations if one replaces Gi
i and Ti

i
by the following combinations:

1

3
Gi

i þ C2Gη
η;

1

3
Ti

i þ c2sTη
η; ð31Þ

where C2 and c2s are the background scalars defined by
Eqs. (2b) and (8), with C2 ¼ c2s when the background
Einstein equations are satisfied. The motivation for this
choice is clear in the case of the stress-energy tensor, since
it follows that 1

3
Ti

iðMÞ þ c2sTη
ηðMÞ ¼ Γ, the nonadiabatic

pressure perturbation. Consistency then requires that we
use 1

3
Gi

i þ C2Gη
η for the Einstein tensor.

With the above as motivation we now define the
following linear combinations of the components of the
leading order tensors Ga

bðfÞ and Ta
bðMÞ for scalar

perturbations:

GΓðfÞ ≔ 1

3
Gi

i þ C2Gη
η; TΓðMÞ ≔ 1

3
Ti

i þ c2sTη
η ¼ Γ;

ð32aÞ
GπðfÞ ≔ H2SijGij; TπðMÞ ≔ H2SijTij ¼ 0; ð32bÞ
GqðfÞ ≔ HSiGη

i; TqðMÞ ≔ HSiTη
i ¼ HV; ð32cÞ

GρðfÞ ≔ −Gη
η; TρðMÞ ≔ −Tη

η ¼ δ; ð32dÞ
where f ¼ ð1Þf or ð2Þf and M ¼ ð1ÞM or ð2ÞM, as given by
(16) and (24), respectively. We will use the same
linear combinations for the source terms Ga

bðð1ÞfÞ and
Ta

bðð1Þf; ð1ÞMÞ, which are given by the above equations
with G and T replaced by G and T , respectively.

C. The leading order Einstein tensor terms

The expressions for the leading order Einstein terms in
(32) can be obtained by specializing equations (19) in
Uggla and Wainwright (2013) [15], which yields10

1

2
GΓðfÞþ1

3
H−2D2GπðfÞ¼ ðLB−C2H−2D2Þψ

þL1ðϕ−ψÞþC2H−2D2ðHBÞ;
ð33aÞ

GπðfÞ ¼ −ðL2 þ qÞðHBÞ − ϕþ ψ ; ð33bÞ

9The componentsGij contain a vector mode and a tensor mode
in addition to the scalar mode. The operator Sij is a concise way
of extracting the scalar mode. Similarly the operator Si extracts
the scalar mode from Gη

i.

10The notation in [15] is related to the notation in the
present paper as follows: G ¼ H2GΓ, SijĜij ¼ Gπ , SiGi ¼
H2ðGρ − 3GqÞ, and SiG0

i ¼ HGq. The differential operators
have been scaled and relabeled as LA ≡HL1, LB ≡HL2, and
L≡H2LB. Specialize fab according to f00 ¼ −2ϕ, f0i ¼ DiB,
fij ¼ −2ψγij, and set K ¼ 0, since we are considering a flat
background.
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GqðfÞ ¼ −2ð∂Nψ þ ϕÞ; ð33cÞ

GρðfÞ − 3GqðfÞ ¼ 2H−2D2ðψ −HBÞ; ð33dÞ

where f ¼ ð1Þf or f ¼ ð2Þf. The temporal differential oper-
ators L1, L2, which are first order in time, are defined by

L1 ¼ ∂N þ 1þ 3C2 − 2q;

L1f ¼ ð1þ qÞ∂Nðð1þ qÞ−1fÞ; ð34aÞ

L2 ¼ ∂N þ 2;

L2f ¼ a−2∂Nða2fÞ; ð34bÞ

where the compact expressions in the second equation in
each pair are derived using ∂Na ¼ a and the derivative (10)
of q. The Bardeen operator LB, which is of second order, is
defined as

LBðfÞ ¼ L1ðHL2ðH−1fÞÞ; ð35Þ

where f is an arbitrary function. Expanding the product form
(35) using the compact expressions in (34), and using the
definition (2a) of q and the derivative (10) of q, leads to

LB ¼ ∂2
N þ ð3ð1þ C2Þ − qÞ∂N þ 1þ 3C2 − 2q: ð36Þ

The operators LB, L1, and L2 play a central role in
determining the evolution of scalar perturbations at first
and second order. Note that they are purely kinematical in
nature, and therefore relevant for any metric theory that
involves the Einstein tensor. The operator LB is associated
with the Poisson gauge, and it gained prominence through
the seminal paper ofBardeen (1980) [16],while the operators
L1 and L2 are associated with the uniform curvature gauge
and the work of Kodama and Sasaki [13] [see Eqs. (4.6a,b)],
but have been less used. The scalars q and C2 are determined
by the background Einstein equations once the stress-energy
tensor has been specified, for example a perfect fluid with
barotropic equation of state, pressure-free matter (cold dark
matter (CDM)) with a cosmological constant, or a minimally
coupled scalar field. In this way the Bardeen operator has
appeared in the literature in a variety of different forms,
usually using conformal time as the time variable,11

LB ¼ H−2ð∂2
η þ 3ð1þ C2ÞH∂η þH2ð1þ 3C2 − 2qÞÞ:

ð37Þ

D. The perturbed Einstein equations: Scalar mode

We are now in a position to specialize the perturbed
Einstein field equations (28) to the case of scalar perturba-
tions using the linear combinations (32),

GΓðð1ÞfÞ ¼ 3ð1þ wÞð1ÞΓ;
GΓðð2ÞfÞ ¼ 3ð1þ wÞð2ÞΓ − SΓ; ð38aÞ

Gπðð1ÞfÞ ¼ 0;

Gπðð2ÞfÞ ¼ −Sπ; ð38bÞ

Gqðð1ÞfÞ ¼ 3ð1þ wÞHð1ÞV;

Gqðð2ÞfÞ ¼ 3ð1þ wÞHð2ÞV − Sq; ð38cÞ

Gρðð1ÞfÞ ¼ 3ð1þ wÞð1Þδ;
Gρðð2ÞfÞ ¼ 3ð1þ wÞð2Þδ − Sρ; ð38dÞ

where the complete source terms have the following form:

S ¼ Gðð1ÞfÞ − 3ð1þ wÞTðð1Þf; ð1ÞMÞ; ð38eÞ
for the superscripts Γ, π, q, ρ. In these equations the leading
order terms Gðð1ÞfÞ and Gðð2ÞfÞ are given by (33) and the
source terms Gðð1ÞfÞ and Tðð1Þf; ð1ÞMÞ are given by (A4)
and (A8) in Appendix A.
In Sec. V we will specialize Eqs. (38) to the Poisson

gauge (B ¼ 0); label the remaining variables with a sub-
script p, the uniform curvature gauge (ψ ¼ 0); label the
remaining variables with a subscript c and the total matter
gauge (V ¼ 0); and label the remaining variables with a
subscript v. When specifying a gauge we will use the
following shorthand notation for the source terms, for
example in the Poisson gauge:

Gðð1ÞfpÞ ¼ Gp; Tðð1Þfp; ð1ÞMpÞ ¼ T p; ð39Þ

for each of the superscripts Γ, π, q, ρ, and similarly in the
other gauges.
The role played by each of the four equations in the set (38)

depends on the choice of gauge, as can be seen by referring to
the expressions (33) for the leading order terms (in what
follows we identify the four equations in (38) by using the
symbol for the leading order Einstein tensor terms):

(i) The GΓ equation gives
(a) a second order evolution equation for ψp (the

Bardeen equation) in the Poisson gauge,
(b) a first order evolution equation for ϕc in the

uniform curvature gauge.
(ii) The Gπ equation gives

(a) a constraint equation for ϕp in the Poisson
gauge,

(b) a first order evolution equation for Bc in the
uniform curvature gauge,

11The third term on the right side appears in different forms, for
example H2ð1þ3C2−2qÞ¼2H0 þH2ð1þ3c2sÞ¼3H2ðc2s−wÞ,
for a perfect fluid universe [e.g., Mukhanov et al. (1992) [17],
Eq. (5.22); Nakamura (2007) [4], Eq. (6.65); and Malik and
Wands (2009) [18], Eq. (8.31)].
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(c) a first order evolution equation for Bv in the total
matter gauge.

(iii) The Gq equation gives
(a) a constraint equation for Vp in the Pois-

son gauge,
(b) a constraint equation for Vc in the uniform

curvature gauge,
(c) a first order evolution equation for ψv in the total

matter gauge.
(iv) The Gρ equation gives a constraint equation for δ in

all three gauges.
Finally, before specializing the gauge, we present the

general expression for ðrÞδ, r ¼ 1, 2, valid in any temporal
gauge, that arises from the constraint referred to in
(iv) above, and that will be useful later. Forming the linear
combination (38d)-3(38c) (i.e., theGρ − 3Gq equation) and
using the leading order term (33d) we obtain

ð1Þδ ¼ 3Hð1ÞV þ 2

3
ð1þ wÞ−1H−2D2ðð1Þψ −Hð1ÞBÞ; ð40aÞ

ð2Þδ ¼ 3Hð2ÞV þ 1

3
ð1þ wÞ−1ð2H−2D2ðð2Þψ −Hð2ÞBÞ

þ Sρ − 3SqÞ; ð40bÞ
where

Sρ ¼ Gρ − 3ð1þ wÞT ρ; Sq ¼ Gq − 3ð1þ wÞTq;

ð40cÞ
using the notation in (38e).

IV. THE PERTURBED CONSERVATION
EQUATIONS

When using the perturbed Einstein equations, the metric
perturbations are determined by the evolution equations,
while the matter perturbations are determined by the
constraint equations. As an alternative approach one can
use the perturbed conservation equations to determine the
evolution of the density and velocity perturbations and use
two of the perturbed Einstein equations acting as con-
straints to determine the metric perturbations.
In order to determine the perturbed conservation equa-

tions we associate an energy term EðϵÞ and a scalar
momentum term MðϵÞ ¼ SiEiðϵÞ with the divergence
∇bðϵÞTb

aðϵÞ of the stress-energy tensor Ta
bðϵÞ, where

EðϵÞ ¼ H−1ðρðϵÞ þ pðϵÞÞ−1uaðϵÞ∇bðϵÞTb
aðϵÞ; ð41aÞ

EiðϵÞ ¼ ðρðϵÞ þ pðϵÞÞ−1∇bðϵÞTb
iðϵÞ: ð41bÞ

The Taylor expansion for Tb
aðϵÞ leads to a Taylor series

expansion for EðϵÞ,

EðϵÞ ¼ ð0ÞEþ ϵð1ÞEþ 1

2
ϵ2ð2ÞEþ � � � ; ð42Þ

and similarly for MðϵÞ. The coefficients in this expansion
have a structure analogous to the perturbations of the
Einstein tensor and stress-energy tensor in (26) and (27),

ð1ÞE ¼ Eðð1ÞFÞ; ð1ÞM ¼ Mðð1ÞFÞ; ð43aÞ
ð2ÞE ¼ Eðð2ÞFÞ þ Eðð1ÞFÞ; ð2ÞM ¼ Mðð2ÞFÞ þMðð1ÞFÞ;

ð43bÞ

where

F ¼ ðϕ;HB;ψ ; δ;Γ;HVÞ: ð43cÞ

The first and second order perturbations have a common
leading order term of the form EðFÞ or MðFÞ, where F ¼
ð1ÞF or F ¼ ð2ÞF while ð2ÞE and ð2ÞM also have a source term
Eðð1ÞFÞ and Mðð1ÞFÞ which depends quadratically on ð1ÞF.
Performing the perturbation expansion in (41) to first

order gives the following expressions for the leading order
terms:

EðFÞ ¼ ∂Nðδ − 3ψÞ þH−2D2ðHV −HBÞ þ 3Γ; ð44aÞ

MðFÞ ¼ ð∂N þ 1þ qÞðHVÞ þ ϕþ c2sðδ − 3HVÞ þ Γ;

ð44bÞ

where we have used (17), which introduces q into the
equation and suggests that we use 1þ q instead of
3
2
ð1þ wÞ. A similar but more lengthy calculation to second

order leads to the expressions for the quadratic source
terms Eðð1ÞFÞ and Mðð1ÞFÞ that are given by Eqs. (A9) in
Appendix A.
Referring to Eq. (43) the perturbed conservation equa-

tions at first and second order are given by ðiÞE ¼ 0, i ¼ 1, 2
(conservation of energy) and ðiÞM ¼ 0, i ¼ 1, 2 (conserva-
tion of momentum). From Eqs. (43a) and (43b) we obtain

Eðð1ÞFÞ ¼ 0; Mðð1ÞFÞ ¼ 0; ð45aÞ

Eðð2ÞFÞ þ Eðð1ÞFÞ ¼ 0; Mðð2ÞFÞ þMðð1ÞFÞ ¼ 0;

ð45bÞ

where the leading order terms are given by (44) and the
source terms are given by (A9).
The perturbed energy conservation equation at second

order has been given by Malik and Wands (2004) [14]
in the long wavelength limit [see Eq. (5.33) where they
use ð2Þρ and ð2Þp rather than ð2Þδ and ð2ÞΓ as perturbation
variables]. We are aware of two general formulations of the
perturbed conserved equations to second order, namely,
Hwang and Noh (2007) [19] and Nakamura (2009) [20].
For purposes of comparison we refer to their equations
when specialized to the case of perfect fluid and scalar
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perturbations: in [19] see Eq. (100) with (95) for con-
servation of energy and (101) for conservation of momen-
tum, and in [20] see Eqs. (4.8)–(4.10) for conservation of
energy and (4.14), (4.18), and (4.19) for conservation of
momentum. In contrast to our approach these authors use
the unscaled density and pressure perturbations as matter
variables and do not introduce the nonadiabatic pressure
perturbation Γ, which means that an immediate comparison
cannot be made. As regards gauge choice, Hwang and Noh
give their equations for an arbitrary choice of temporal
gauge, while Nakamura effectively uses the Poisson gauge.

V. READY-TO-USE SYSTEMS OF
GOVERNING EQUATIONS

In this section, by specializing the perturbed Einstein
equations (38) and conservation equations (44) and (45) to
various gauges we derive the ready-to-use systems of
governing equations described in the Introduction.

A. The Poisson gauge

The Poisson gauge is defined by the conditionB ¼ 0. The
scalar metric and matter perturbations are denoted byϕp, ψp,
with Bp ¼ 0, and Vp, δp with the subscript p indicating the
Poisson gauge while a superscript indicates the order of the
perturbation, e.g., ðrÞψp, r ¼ 1, 2 (since ð1ÞΓ and ð2ÞΓ are
gauge invariants, theywill not have a subscript in any gauge).
We insert B ¼ 0 into the leading order terms (33), and

label the remaining variables with a subscript p. These
leading order terms (first and second order), when inserted
into Eqs. (38), give the perturbed Einstein equations in the
Poisson gauge. It is convenient, however, to obtain δp
directly by choosing the Poisson gauge in Eq. (40). In
addition, in order to obtain the Bardeen equation (48a)
below in a direct way we form the linear combination (38a)
þ2ðL1 þ 1

3
H−2D2Þ (38b) of the perturbed Einstein equa-

tions and use the following relation for the leading order
Einstein terms:

GΓ
p þ 2

�
L1 þ

1

3
H−2D2

�
Gπ

p ¼ 2ðLB − C2H−2D2Þψp;

ð46Þ

where we have used the linear combination 2 (33a) þ2L1

(33b) in the Poisson gauge.

1. The Bardeen equation for ψp

At first order the above procedure leads to the following
system:

ðLB − c2sH−2D2Þð1Þψp ¼
3

2
ð1þ wÞð1ÞΓ; ð47aÞ

ð1Þϕp ¼ ð1Þψp; ð47bÞ

Hð1ÞVp ¼ −
2

3
ð1þ wÞ−1ð∂N

ð1Þψp þ ð1ÞϕpÞ; ð47cÞ

ð1Þδp ¼ 3Hð1ÞVp þ
2

3
ð1þ wÞ−1H−2D2ð1Þψp; ð47dÞ

where LB is given by (36), although the product form (35)
of the operator is useful when solving the equation.
Observe that ð1Þψp is the primary dynamical variable and
is determined by the Bardeen equation (47a).
The second order perturbation equations have the fol-

lowing form:

ðLB − c2sH−2D2Þð2Þψp ¼
3

2
ð1þ wÞð2ÞΓ −

1

2
SΓ
p

−
�
L1 þ

1

3
H−2D2

�
Sπ
p; ð48aÞ

ð2Þϕp ¼ ð2Þψp þ Sπ
p; ð48bÞ

Hð2ÞVp ¼ −
2

3
ð1þ wÞ−1

�
∂N

ð2Þψp þ ð2Þϕp −
1

2
Sq
p

�
;

ð48cÞ

ð2Þδp¼ 3Hð2ÞVpþ
2

3
ð1þwÞ−1

�
H−2D2ð2Þψpþ

1

2
Sρ
p−

3

2
Sq
p

�
;

ð48dÞ

where the source terms Sp, for the superscripts Γ, π, q, ρ,
are given by

Sp ¼ Gp − 3ð1þ wÞTp; ð49Þ

using the notation (38e) and (39). To complete the
specification of the equations we need to give the explicit
form of the source terms Gp and T p, which are obtained
by specializing Eqs. (A4) and (A8) in Appendix A to the
Poisson gauge (B ¼ 0) and inserting the relations ð1Þϕp ¼
ð1Þψp [Eq. (47b)]. Equations (A4) yield12

GΓ
p ¼ −8L1ðψ2

pÞ þ
2

3
ð1þ 3c2sÞXp −

8

3
H−2ðDψpÞ2; ð50aÞ

Gπ
p ¼ 4ðψ2

p − D0ðψpÞÞ; ð50bÞ

Gq
p ¼ 4ð2ψ2

p − Si½ð∂NψpÞDiψp�Þ; ð50cÞ

Gρ
p ¼ 24ψ2

p − 2Xp; ð50dÞ

12These expressions have been given by Uggla and Wain-
wright (2013) [15]; see Eq. (35). Here and elsewhere, in order to
simplify the notation we omit the superscript ð1Þ on the linear
perturbations in the source terms.

CLAES UGGLA and JOHN WAINWRIGHT PHYS. REV. D 98, 103534 (2018)

103534-8



where the mode extraction operator Si was given in (30)
while the spatial differential operator D0 is defined in
Eq. (A1b) in Appendix A. In addition,

Xp ¼ −3ð∂NψpÞ2 þ 5H−2ðDψpÞ2 − 4H−2D2ψ2
p: ð50eÞ

Equations (A8) yield

TΓ
p ¼ 2

3
ð1 − 3c2sÞðDVpÞ2 −

1

3
ð∂Nc2sÞðδpÞ2

−
2

3
ð1Þδpð∂N − 3ð1þ c2sÞÞΓ; ð51aÞ

Tπ
p ¼ 2D0ðHVpÞ; ð51bÞ

Tq
p ¼ Si½2ðð1þ c2sÞδp − ϕp þ ΓÞDiðHVpÞ�; ð51cÞ

Tρ
p ¼ 2ðDVpÞ2: ð51dÞ

The perturbed Einstein equations at second order in the
Poisson gauge have been given in different forms by
various authors.13

2. Coupled evolution equations for ψp and Vp

An alternative approach to analyzing the dynamics in the
Poisson gauge is to use ψp and Vp as primary dynamical
variables, with the perturbed Einstein equation Gq

p as
evolution equation for ψp and the perturbed conservation
of momentum equation Mp as evolution equation for Vp.
To obtain the first equation we use the perturbed Einstein

equation (48c), with ð2Þϕp eliminated using (48b). To obtain
the second equation we use the perturbed conservation of
momentum equation (45b) at second order in the Poisson
gauge which reads

ð∂N þ 1þ qÞðHð2ÞVpÞ þ ð2Þϕp þ c2sðð2Þδ − 3Hð2ÞVpÞ
þ ð2ÞΓþMp ¼ 0; ð52Þ

and use (48b) to eliminate ð2Þϕp and (48d) to eliminate
ð2Þδp − 3Hð2ÞVp. The resulting equations are as follows:

ð∂N þ 1Þð2Þψp þ ð1þ qÞHð2ÞVp −
1

2
Sq
p þ Sπ

p ¼ 0; ð53aÞ
ð∂N þ 1þ qÞðHð2ÞVpÞ þ ð1þ ð1þ qÞ−1c2sH−2D2Þð2Þψp

þ ð2ÞΓþ S ¼ 0; ð53bÞ
where

S ¼ Mp þ Sπ
p þ

1

2
ð1þ qÞ−1c2sðSρ

p − 3Sq
pÞ: ð53cÞ

The source terms with kernel Sp are given by (49), and Mp

is given by (A9b). Equations (53) form a coupled system of
evolution equations for ð2Þψp and ð2ÞVp. The corresponding

system for ð1Þψp and ð1ÞVp is obtained by dropping the
source terms and changing ð2Þ to ð1Þ.
The system of Eqs. (53) has the same dynamical content

as the second order Bardeen equation (48a) for ð2Þψp. One
can derive the Bardeen equation from (53) by solving the
first equation algebraically for Hð2ÞVp and substituting it
into the second equation. The difference is that the source
term obtained in this way has a different form from the
source term in (48a).

B. The uniform curvature gauge

The uniform curvature gauge is defined by the condition
ψ ¼ 0. The scalar metric perturbations are denoted by ϕc,
Bc, with ψ c ¼ 0, and the matter variables by δc, Vc, and Γ,
with a superscript indicating the order of the perturbation,
e.g., ðrÞϕc, r ¼ 1, 2. We insert ψ ¼ 0 into the leading order
terms (33), and label the remaining variables with a
subscript c. These leading order terms (first and second
order), when inserted into Eqs. (38), give the perturbed
Einstein equations in the uniform curvature gauge. It is
convenient, however, to obtain δc directly by choosing the
uniform curvature gauge in Eq. (40).

1. Coupled evolution equations for ϕc and Bc

At first order the above procedure leads to the following
system:

ð1þ qÞ∂Nðð1þ qÞ−1ð1ÞϕcÞ ¼ −c2sH−2D2ðHð1ÞBcÞ
þ ð1þ qÞð1ÞΓ; ð54aÞ

∂Nða2ð1ÞBcÞ ¼ −a2H−1ð1Þϕc; ð54bÞ

Hð1ÞVc ¼ −ð1þ qÞ−1ð1Þϕc; ð54cÞ

ð1Þδc ¼ 3Hð1ÞVc − ð1þ qÞ−1H−2D2ðHð1ÞBcÞ; ð54dÞ

where we have used the expression L1f ¼ ð1þ qÞ∂N

ðð1þ qÞ−1fÞ, given in (34a), which introduces q into
the equations. We have chosen not to replace 1þ q by
3
2
ð1þ wÞ. At second order we obtain

ð1þ qÞ∂Nðð1þ qÞ−1ð2ÞϕcÞ
¼ −c2sH−2D2ðHð2ÞBcÞ þ ð1þ qÞð2ÞΓ

−
1

2
SΓ
c −

1

3
H−2D2Sπ

c ; ð55aÞ

∂Nða2ð2ÞBcÞ ¼ −a2H−1ðð2Þϕc − Sπ
c Þ; ð55bÞ

Hð2ÞVc ¼ −ð1þ qÞ−1
�

ð2Þϕc −
1

2
Sq
c

�
; ð55cÞ13See, for example, Noh and Hwang (2004) [3], Eq. (303), and

Nakamura (2007) [4], Eqs. (6.38), (6.41), (6.42), and (6.44).
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ð2Þδc ¼ 3Hð2ÞVc þ ð1þ qÞ−1
�
−H−2D2ðHð2ÞBcÞ

þ 1

2
ðSρ

c − 3Sq
c Þ
�
: ð55dÞ

The source terms with kernel Sc are given by

Sc ¼ Gc − 3ð1þ wÞT c; ð56Þ

using the notation (38e) and (39). The source terms for the
Einstein tensor, with kernel Gc, are given by Eqs. (A4) in
Appendix A with ψ c ¼ 0,14

GΓ
c ¼ −2L1ð4ϕ2

c − ðDBcÞ2Þ −
4

3
H−2½ð∂Nϕc − 4ϕcÞ

× D2ðHBcÞ þ ðDϕcÞ2� −
1

3
ð2þ 3c2sÞWc

−
2

3
ð1þ 3c2sÞH−2D2D2ðBcÞ; ð57aÞ

Gπ
c ¼ 2D0ðϕcÞ þ 2Sij½ð2ðDiϕcÞDjðHBcÞ

þ ð∂NϕcÞDijðHBcÞ� þ D2ðBcÞ; ð57bÞ

Gq
c ¼ 2ð4ϕ2

c − ðDBcÞ2Þ − 2H−2Si

×

�
ðDjϕcÞ

�
Dj

i −
2

3
δjiD2

�
ðHBcÞ

�
; ð57cÞ

Gρ
c ¼ 6ð4ϕ2

c − ðDBcÞ2Þ þWc þ 2H−2D2D2ðBcÞ; ð57dÞ

where

Wc ¼ H−2½8ϕcD2ðHBcÞ þ 4ðDkϕcÞDkðHBcÞ�: ð57eÞ

The spatial differential operators D0 and D2 are defined in
Eqs. (A1b) and (A1c) in Appendix A.
The source terms for the stress-energy tensor, with kernel

T , are given by Eqs. (A8) in Appendix A, specialized to the
uniform curvature gauge,

Tρ
c ¼ γijðV2;cÞij; ð58aÞ

TΓ
c ¼ 1

3
ð1 − 3c2sÞγijðV2;cÞij −

1

3
ð∂Nc2sÞδ2c

−
2

3
δcð∂N − 3ð1þ c2sÞÞΓ; ð58bÞ

Tq
c ¼ 2Si½ðð1þ c2sÞδc − ϕc þ ΓÞDiðHVcÞ�; ð58cÞ

Tπ
c ¼ H2SijðV2;cÞij; ð58dÞ

where

ðV2;cÞij ¼ 2H−2ðDiHVcÞDjðHVc −HBcÞ: ð58eÞ

To the best of our knowledge the system of Eqs. (55) and
the associated source terms are new. We comment on the
utility of these equations in the discussion in Sec. VI.

C. The total matter gauge

The total matter gauge is defined by the condition V ¼ 0.
There are thus three metric perturbation variables, ϕv, ψv,
and Bv, but only two matter perturbation variables δv
and Γ. The perturbations of the stress-energy tensor thereby
simplify. It follows from (32) and (A8) that the leading
order terms and the source terms, respectively, satisfy

Tq
v ¼ 0; Tπ

v ¼ 0; Tρ
v ¼ 0; Tq

v ¼ 0;

Tπ
v ¼ 0: ð59Þ

1. Coupled evolution equations for ψv and Bv

When working in the total matter gauge it is convenient
to replace the perturbed Einstein equation associated
with GΓ by the perturbed conservation of momentum
equation, since this equation determines ϕv algebraically.
Specifically, in the total matter gauge the perturbed con-
servation of momentum equations (44b) and (A9b) lead to

ð1Þϕv ¼ −c2s ð1Þδv − ð1ÞΓ; ð60aÞ

ð2Þϕv ¼ −c2s ð2Þδv − ð2ÞΓ −Mv; ð60bÞ

where

Mv ¼ −2ϕ2
v þ ðDBvÞ2 −

�
c2sð1þ c2sÞ þ

1

3
∂Nc2s

�
δ2v

− Γ2 −
2

3
δv∂NΓþ 2Si½ΓDiδv�: ð60cÞ

On substituting (59) into the perturbed Einstein equa-
tions (38) the first and second order equations, excluding
the GΓ equation, become

Gπðð1ÞfvÞ ¼ 0; Gπðð2ÞfvÞ þ Gπ
v ¼ 0; ð61aÞ

Gqðð1ÞfvÞ ¼ 0; Gqðð2ÞfvÞ þ Gq
v ¼ 0; ð61bÞ

Gρðð1ÞfvÞ¼3ð1þwÞð1Þδv; Gρðð2ÞfvÞþGρ
v¼3ð1þwÞð2Þδv:

ð61cÞ

As governing equations we use Eqs. (60) in conjunction
with the perturbed Einstein equations (61). To obtain the
detailed form of the equations we substitute the expressions

14The source terms for the perturbed Einstein tensor in the
uniform curvature gauge have been given by Uggla and Wain-
wright (2013) [15] [see Eqs. (96)].
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for the leading terms of the Einstein tensor from Eqs. (33).
At first order we obtain

∂N
ð1Þψv ¼ c2s ð1Þδv þ ð1ÞΓ; ð62aÞ

Ha−2∂Nða2ð1ÞBvÞ ¼ ð1Þψv þ c2s ð1Þδv þ ð1ÞΓ; ð62bÞ

ð1Þδv ¼
2

3
ð1þ wÞ−1H−2D2ðð1Þψv −Hð1ÞBvÞ; ð62cÞ

while the second order equations can be written as

∂N
ð2Þψv ¼ c2s ð2Þδv þ ð2ÞΓþMv þ

1

2
Gq
v; ð63aÞ

Ha−2∂Nða2ð2ÞBvÞ ¼ ð2Þψv þ c2s ð2Þδv þ ð2ÞΓþMv þ Gπ
v;

ð63bÞ

ð2Þδv ¼
2

3
ð1þ wÞ−1

�
H−2D2ðð2Þψv −Hð2ÞBvÞ

þ 1

2
ðGρ

v − 3Gq
vÞ
�
; ð63cÞ

where Mv is given by (60c). The Einstein source terms,
labeled Gv, are obtained by evaluating Eq. (A4) in
Appendix A in the total matter gauge. Since the three
metric perturbations are in general nonzero in this gauge
the Einstein source terms do not simplify in general.
However, as we will explain in the Discussion, in the
two benchmark problems mentioned in the Introduction,
additional restrictions arise which simplify the leading
order Einstein terms and the Einstein source terms signifi-
cantly, making the total matter gauge an ideal choice for
these problems.

D. The perturbed conservation equations

In this subsection we use the matter variables δ and V as
the primary dynamical variables and we use both perturbed
conservation equations (energy and momentum) to obtain
the evolution equations.
The perturbed conservation equations at second order are

given by Eqs. (44) and (45b), which we repeat here:

ð2ÞE ¼ ∂Nðð2Þδ − 3ð2ÞψÞ þH−2D2ðHð2ÞV −Hð2ÞBÞ
þ 3ð2ÞΓþ E ¼ 0; ð64aÞ

ð2ÞM ¼ ð∂N þ 1þ qÞðHð2ÞVÞ þ ð2Þϕþ c2sðð2Þδ − 3Hð2ÞVÞ
þ ð2ÞΓþM ¼ 0: ð64bÞ

These equations provide evolution equations for δ and V,
but they do not form a closed evolution system since they
are coupled to the metric perturbations. However, we can
circumvent this difficulty by an appropriate use of two

gauges: in the following section we consider δv (total
matter gauge) and Vp (Poisson gauge).

1. Coupled evolution equations for δv and D2Vp

To obtain the first equation we calculate ð2ÞEv − 3ð2ÞMv

starting with (64). We eliminate ∂N
ð2Þψv using

∂N
ð2Þψv þ ð2Þϕv ¼

1

2
Gq
v; ð65Þ

which follows from Eqs. (60b) and (63a), and we replace
ð2ÞBv by −ð2ÞVp plus source terms using the change of gauge
formula

Hð2ÞBv þHð2ÞVp ¼ S½Bv þ Vp�; ð66Þ

where the source term is given by (A13a). Here we have
introduced the notation S½� � �� for the source terms asso-
ciated with a change of gauge formula at second order. To
obtain the second equation we evaluate D2ð1ÞMp starting
with (64). We replace ð2Þϕp by ð2Þψp plus source terms using
(48b). We next use the general relativity (GR) version of
Poisson’s equation at second order,

ð1þ qÞð2Þδv −H−2D2ð2Þψp ¼ SPoisson; ð67Þ

where the source term is given by (A10), to expressD2ð2Þψp

in terms of ð2Þδv plus source terms. We finally express
ð2Þδp − 3ð2ÞHVp in terms of ð2Þδv and source terms using the
change of gauge formula

ð2Þδv − ð2Þδp þ 3ð2ÞHVp ¼ S½δv − δp þHVp�; ð68Þ

where the source term is given by (A13b). This procedure
leads to the following system of evolution equations:

ð∂N − 3c2sÞð2Þδv þH−2D2ðHð2ÞVpÞ þ Sρ ¼ 0; ð69aÞ

ð∂N þ 1 − qÞ½H−2D2ðHð2ÞVpÞ� þ ð1þ qþ c2sH−2D2Þð2Þδv
þH−2D2ð2ÞΓþ SV ¼ 0; ð69bÞ

where the source terms are

Sρ ¼ Ev − 3Mv −
3

2
Gq
v −H−2D2ðS½Bv þ Vp�Þ; ð70aÞ

SV ¼H−2D2ðMpþSπ
pþc2sS½δp−3HVp−δv�Þ−SPoisson:

ð70bÞ

The source terms Ev, Mv, and Mp are obtained by choosing
the total matter gauge and the Poisson gauge in the general
formulas (A9) in Appendix A, and the source terms asso-
ciated with a change of gauge formulas are given by (A13).
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The source term SPoisson, which is the source term in the GR
version of Poisson’s equation (67) at second order, requires
explanation. This equation is derived by choosing the
Poisson gauge in Eq. (40b) and then using (68) to express
δp in terms of δv. Collecting all the source terms gives the
expression for SPoisson in Eq. (A10).

2. Second order evolution equation for δv
In this section the first order evolution equations for δv

and Vp are combined to give a second order evolution
equation for δv. This evolution equation for the density
perturbation is obtained by eliminating D2ðð2ÞVpÞ in
Eqs. (69). After expanding the derivatives we obtain

ðLD − c2sH−2D2Þð2Þδv þ SLD
¼ H−2D2ð2ÞΓ; ð71aÞ

where the differential operator LD is given by

LD ¼ ∂2
N þ ð1 − q − 3c2sÞ∂N − ð1 − 3c2sÞð1þ qÞ

− 6c2s − 3∂Nc2s ; ð71bÞ

and the source term SLD
is given by

SLD
¼ ð∂N þ 1þ qÞSρ − SV: ð71cÞ

We note in passing that the source term in the evolution
equation (71) simplifies significantly in the case of a
perturbed ΛCDM universe, which permits one to quickly
find the second order density perturbation ð2Þδv by solving
the evolution equation.

3. Alternative choices of variables

The perturbed conservation equations (64) at second
order have been used to derive evolution equations that
differ from those in Sec. V D 1, but have the unsatisfactory
feature of not forming a closed system. First, Fitzpatrick
et al. (2010) [21] have used the conservation equations in
the Poisson gauge, first specialized to the case of pressure-
free matter and then to the case of radiation [see Eqs. (26)–
(29)]. The resulting equations are first order evolution
equations for ð2Þδp and ð2ÞVp, but are less simple than
Eqs. (69) in that they are coupled to the metric perturbation
ð2Þψp. As a second exampleDoran et al. (2003) [22] apply the
perturbed conservation equations at linear order in a different
way, using as variables the density perturbation in the
uniform curvature gauge ð1Þδc and the velocity perturbation
in the Poisson gauge [see Eqs. (A.29) and (A.30)]. Again
these equations are coupled to the metric perturbation ð1Þψp.

VI. DISCUSSION

In this paper we have given five ready-to-use systems of
governing equations for second order scalar perturbations,
subject to the assumption that at first order the perturbations

are purely scalar. Here we summarize their identifying
features and give their active dynamical variables:

(i) Equations (48) using the Poisson gauge (variable ψp),
(ii) Equations (53) using the Poisson gauge (variables

ψp, Vp),
(iii) Equations (55) using the uniform curvature gauge

(variables ϕc, Bc),
(iv) Equations (63) using the total matter gauge (varia-

bles ψv, Bv),
(v) Equations (69) using the conservation equations

(variables δv, D2Vp).
Other systems of equations that are more general than ours,
as regards matter content and gauge choices, have been
developed in the extensive series of papers by Hwang and
Noh (see for example [3,19]) and Nakamura [4,23]. We
regard our less general but more focused framework, which
comprises the above five ready-to-use systems of equa-
tions, as complementing the more general systems in the
above references. Each of our systems is minimal in the
sense that there are no redundant equations or variables,
and the matter content is restricted so that the systems are
closed once the nonadiabatic pressure perturbation Γ is
specified. Although we are primarily motivated by the
needs of second order perturbation theory, we note that our
framework can be specialized to linear perturbations by
simply dropping the source terms. Because of this we hope
that our framework will form a useful reference for both
linear and second order perturbations.
We now make some remarks concerning the utility of

the five systems of governing equations as regards appli-
cations. The unified nature of our formulation of these
systems of equations enables one to easily compare their
relative merits as regards a chosen application. We begin by
noting that in cosmological perturbation theory the evolu-
tion of the perturbations is described in general by partial
differential equations. Usually, in order to obtain explicit,
approximate, or numerical solutions in a particular physical
context, one applies the Fourier transform to the partial
differential equations which converts them to ordinary
differential equations for the Fourier coefficients of the
perturbation variables, with the wave number k as a
parameter, together with algebraic constraints relating the
Fourier coefficients. For first order perturbations the spatial
derivatives appear only via the spatial LaplacianD2, and one
can implement the transition by simply making the replace-
ment D2 → −k2. At second order, however, the process is
more complicated since one has to use the convolution
theorem to take the Fourier transform of products of the first
order perturbations that appear in the source terms.15

There are, however, two important applications of cos-
mological perturbation theory, namely, adiabatic perturba-
tions in the superhorizon regime (the long wavelength limit)

15See, for example, Tram et al. (2016) [2], Eqs. (1.1)–(1.3) and
Vretblad (2005) [24] for details.
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and perturbations of ΛCDM universes, in which it is not
necessary to make the transition to Fourier space since the
evolution equations automatically simplify to ordinary dif-
ferential equations. We regard these applications as elemen-
tary but important benchmark problems in cosmological
perturbation theory.
First we note that long wavelength adiabatic perturba-

tions are defined by the requirement that terms of order 2 in
the scaled dimensionless spatial differential operator
H−1Di can be neglected, and that the nonadiabatic pressure
perturbation is negligible (ðrÞΓ ≈ 0, r ¼ 1, 2). However, the
background matter scalars w and c2s are unrestricted.
Second, as shown in Appendix B, when the background
model is the ΛCDM universe we have wm ¼ 0, and hence
the background matter scalars are given by

c2s ¼ 0; 1þ w ¼ Ωm; ð72Þ

which implies that the perturbations are adiabatic (ðrÞΓ ¼ 0,
r ¼ 1, 2). In both cases the term c2sD2, which appears in the
leading order terms in the evolution equations, is negli-
gible, and it is this property that reduces the evolution
equations to ordinary differential equations.
It turns out that in these two benchmark problems it is

possible to explicitly solve the ordinary differential equa-
tions and obtain the general time dependence of the
perturbations at first and second order, including both
growing and decaying modes. The spatial dependence is
described by arbitrary spatial functions that arise as con-
stants of integration. In order to achieve this goal it is
necessary to make an appropriate choice from among the
five ready-to-use systems. Observe that in both systems
(iii) (uniform curvature gauge) and (iv) (total matter gauge)
the two evolution equations decouple, and can thus be
solved successively for the two active variables, first at
linear order and then, after using the linear solution to
calculate the source terms, at second order. However, on
evaluating the source terms one finds that system (iv), using
the total matter gauge, provides the simplest method of
solution for the two benchmark problems. Details concern-
ing the derivation of the solution in the case of long
wavelength perturbations are given in UW3 [6].
We conclude with some brief remarks on the relative

merits of the five systems for problems other than the two
benchmark problems. An immediate conclusion is that
system (iv) is no longer the simplest system since the
presence of a nonzero c2s complicates the evolution equa-
tions considerably, since the term c2sδv, which depends on
ψv −HBv, appears on the right side of both evolution
equations in (62) and (63). In addition the presence of this
term makes the source terms more complicated. Instead it
appears that system (iii), based on the uniform curvature
gauge, is the simplest system, which makes it a natural
choice for numerical experiments or qualitative analysis
using dynamical systems methods. This system has not

been given before.16 Our analysis suggests that it is worthy
of further study.

APPENDIX A: THE GENERAL SOURCE TERMS

The major technical problem in second order perturba-
tion theory is managing the quadratic source terms. Our
strategy is to use a consistent and easy to identify notation.
We use the same letter for the kernel in the symbol for the
source terms as we do for the leading order terms but with a
different font: G and G for the leading order and source
terms of the Einstein tensor and T and T for the stress-
energy tensor with superscripts Γ, π, q, ρ indicating the
components and subscripts p, c, v indicating the gauge, as
in Sec. III D. For the conserved energy and momentum
equations we use E and E and M and M, respectively, with
the usual subscripts indicating the gauge. We also introduce
a notation for the source terms associated with the change
of gauge formulas at second order, Sð� � �Þ, where (� � �)
identifies the formula [see Eqs. (A11) and (A12)]. Other
source terms are defined as linear combinations of the
above basic expressions (see Secs. V D 1 and V D 2).
In writing the source terms it is convenient to follow

Appendix B in UW1 [5] and define the following spatial
differential operators:

ðDCÞ2 ¼ γijDiCDjC; ðA1aÞ

D0ðCÞ ¼ SijDiCDjC; ðA1bÞ

D2ðCÞ ¼
1

3
ðD2D0ðCÞ − ðDCÞ2Þ; ðA1cÞ

where the scalar mode extraction operators Si and Sij are
given by (30).
By inspection of the expressions for the source terms one

finds thatH appears explicitly only in the variablesHB and
HV and as a coefficient of the spatial differential operator,
in the form H−1Di. We can thus absorb all multiplicative
factors ofH by introducing the following overbar notation:

B̄ ¼ HB; V̄ ¼ HV; D̄i ¼ H−1Di; ðA2Þ

thereby making the expressions for the source terms
simpler. The definition of D̄i leads to barred expressions
for the associated spatial differential operators:

16We mention, however, that Malik and co-workers have used
the uniform curvature gauge to study second order perturbations
of inflationary universes with single and multiple scalar fields
[see, for example, Malik (2007) [25], Huston and Malik (2009)
[8], and Christopherson et al. (2015) [26]]. The structure of the
governing equations in these references is specifically adapted to
the scalar fields, and as a result they do not have much in common
with our governing equations.
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D̄2 ¼ H−2D2; D̄ij ¼ H−2Dij; ðA3aÞ

ðD̄CÞ2 ¼ H−2ðDCÞ2; D̄2ðCÞ ¼ H−2D2ðCÞ; ðA3bÞ

S̄i ¼ HSi; S̄ij ¼ H2Sij: ðA3cÞ

We could also use the barred dimensionless expressions
to simplify the terms in the ready-to-use systems of the
governing equation in Sec. V but have decided to give the
more familiar forms in which H is visible.

1. The Einstein tensor source terms

The expressions for the Einstein source terms in (38) can
be obtained by specializing Eqs. (75)–(78) in Uggla and
Wainwright (2013) [15].17 With the above notation the
source terms can be written in the following form:

Gρðð1ÞfÞ ¼ 6½4ϕ2 − ðD̄ B̄Þ2� þW − 2Xþ 2D̄2D̄2ðB̄Þ;
ðA4aÞ

GΓðð1ÞfÞ ¼ −2L1½4ϕ2 − ðD̄ B̄Þ2� − 1

3
ð2þ 3C2ÞW

þ 2

3
ð1þ 3C2ÞX −

2

3
R −

2

3
ð1þ 3C2ÞD̄2D̄2ðB̄Þ;

ðA4bÞ

Gqðð1ÞfÞ ¼ 2½4ϕ2 − ðD̄ B̄Þ2� þ 8ðϕ − ψÞ∂Nψ þ S̄iRi;

ðA4cÞ

Gπðð1ÞfÞ¼ 4ψ2þ2D0ðϕÞ−6D0ðψÞþ2S̄ij½2ðϕ−ψÞD̄ijψ

þ2ðD̄iϕÞD̄jB̄þð∂NðϕþψÞÞD̄ijB̄�
þ4S̄ij½ðψ −ϕÞD̄ijGπðð1ÞfÞþðD̄iψÞD̄jGπðð1ÞfÞ�
þ D̄2ðB̄Þ; ðA4dÞ

where

W¼ 24ðϕ−ψÞ∂Nψþ8ðϕ−ψÞD̄2B̄þ4ðD̄iB̄ÞD̄iðϕþψÞ;
ðA5aÞ

X ¼ −3ð∂NψÞ2 þ 5ðD̄ψÞ2 − 4D̄2ψ2 − 2D̄iððD̄iB̄Þ∂NψÞ;
ðA5bÞ

R ¼ 12ðϕ − ψÞð∂2
N − q∂NÞψ þ 6ð∂NψÞ∂Nðϕ − ψÞ

þ 4ðϕ − ψÞD̄2ψ þ 2ðD̄ϕÞ2 þ 2ðD̄ψÞ2
þ 4ðD̄iB̄ÞD̄i∂Nψ þ 2ð∂NϕÞD2B̄

− 2½2ðϕ − ψÞD̄2 þ ðD̄iψÞD̄i�½2B̄þGπðfÞ�; ðA5cÞ

Ri ¼ −4ð∂NψÞD̄iϕþ 2ðD̄jB̄Þ
�
D̄j

i þ
4

3
δjiD̄2

�
ψ

− 2ðD̄jϕÞ
�
D̄j

i −
2

3
δjiD̄2

�
B̄: ðA5dÞ

Here and elsewhere in this appendix, in order to simplify
the notation we have omitted the superscript ð1Þ on the
linear perturbations in the source terms. We have simplified
the term (A4d) in an important way, as follows. This term
initially contains the expression D�

2ðBÞ, where

D�
2ðBÞ ≔ 2Sij

�
1

3
ðD2BÞDijB − ðDkhiBÞDk

jiB
�
; ðA6Þ

but in the flat case it can be shown using the commutation
identities for Di that

D�
2ðBÞ ¼ D2ðBÞ: ðA7Þ

2. The stress-energy tensor source terms

The components of the source term, identified by a
kernel T , are given by

Tρ ¼ γijðV2Þij; ðA8aÞ

TΓ ¼ 1

3
ð1 − 3c2sÞγijðV2Þij −

1

3
ð∂Nc2sÞδ2

−
2

3
δð∂N − 3ð1þ c2sÞÞΓ; ðA8bÞ

Tq ¼ S̄i½2ðð1þ c2sÞδþ Γ − ϕÞD̄iV̄�; ðA8cÞ

Tπ ¼ S̄ijðV2Þij; ðA8dÞ

where

ðV2Þij ≔ 2ðDiVÞDjðV − BÞ ¼ 2ðD̄iV̄ÞD̄jðV̄ − B̄Þ; ðA8eÞ

where ðV2Þij has weight 2 inDi, motivating the subscript 2.

3. The source terms for the conservation equations

The quadratic source terms are given by

Eðð1ÞFÞ ¼ −∂N ½6ψ2 − ðD̄ V̄Þ2 þ ð1þ c2sÞδ2 þ 2δΓ� − 6Γ2

þ 2D̄k½ϕD̄kV̄ þ 2ψD̄kðV̄ − B̄Þ�
þ 2½D̄kðδ − 3ψÞ�D̄kðV̄ − B̄Þ; ðA9aÞ

Mðð1ÞFÞ¼−2ϕ2þ½D̄ðV̄− B̄Þ�2−
�
c2sð1þc2sÞþ

1

3
ð∂Nc2sÞ

�
δ2

−Γ2−
2

3
δ∂NΓ−2S̄if½ϕð∂Nþ1−3c2sÞ

−∂Nðc2sδþΓÞþ3Γ�D̄iV̄−ΓD̄iδg; ðA9bÞ
17See footnote 10 for the relation between the notation in [15]

and in the present paper.
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where we have used the first order equation Eðð1ÞFÞ ¼ 0 in
deriving the first equation.
The source term SPoisson in the GR version of Poisson’s

equation at second order (67), that is used in the source
term (70b), has the following form:

SPoisson ¼ D̄2ð4ψ2
p − ð1þ qÞðV̄pÞ2Þ − 5ðD̄ψpÞ2

− 6S̄i½V̄pD̄iðD̄2ψpÞ�: ðA10Þ

4. The source terms for the change of
gauge formulas

We have recently given in UW1 [5] a general formalism
for relating gauge invariants associated with different
gauges at second order. In this paper we need the gauge
change formula that relates B̄v to V̄p which we write in the
following form using the bar notation:

ð2ÞB̄v þ ð2ÞV̄p ¼ SðB̄v þ V̄pÞ; ðA11Þ

and also the one that relates ð2Þδv to ð2Þδp:

ð2Þδp − 3ð2ÞV̄p − ð2Þδv ¼ Sðδp − 3V̄p − δvÞ: ðA12Þ

The source terms are given by

SðB̄v þ V̄pÞ ¼ ð∂N þ 2qÞ½D0ðV̄pÞ − V̄2
p�

− 2V̄2
p − 2S̄i½ϕpD̄iV̄p�; ðA13aÞ

Sðδp−3V̄p−δvÞ¼ 3ð1þqþ3ð1þc2sÞÞV̄2
p−6S̄i½ϕvD̄iV̄p�

þ2ð3δvþ D̄2V̄pÞV̄p: ðA13bÞ

For the first equation we used Eq. (42a) in [5] with □ ¼
V̄ ¼ HV and the total matter gauge on the right side, and

for the second equation we used Eq. (42b) with □ ¼ 1
3
δ

and the Poisson gauge on the right side. It is then necessary
to use the definitions (36) of the hatted variables.

APPENDIX B: THE FRACTIONAL DENSITY
PERTURBATION

We emphasize that δ is defined by normalizing the
density perturbation with ρ0 þ p0 as in Eq. (20), while the
commonly used fractional density perturbation δ is defined
by normalizing the density perturbation with the back-
ground matter density, which we denote by ð0Þρm, while ρ0
denotes the total matter/energy density. If there is a
cosmological constant, then

ð0Þρ ¼ ρ0 ¼ ð0Þρm þ Λ; ð0Þp ¼ p0 ¼ ð0Þpm − Λ; ðB1Þ

and we also introduce

wm ¼
ð0Þpm
ð0Þρm

; Ωm ¼
ð0Þρm
3H2

; ðB2Þ

while c2s is unaffected. It follows that

1þ w ¼ Ωmð1þ wmÞ: ðB3Þ

The fractional density perturbation is defined by

ðrÞδ ¼
ðrÞρ
ð0Þρm

; r ¼ 1; 2: ðB4Þ

It follows that δ ¼ ð1þ wmÞδ, which simplifies to δ ¼
ð1þ wÞδ if Λ ¼ 0. In particular for a ΛCDM universe we
have wm ¼ 0, c2s ¼ 0 and (B3) reduces to

1þ w ¼ Ωm: ðB5Þ
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