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Models of symmetry breaking in the early universe can produce networks of cosmic strings threading ’t
Hooft-Polyakov monopoles. In certain cases there is a larger global symmetry group and the monopoles
split into so-called semipoles. These networks are all known as cosmic necklaces. We carry out large-scale
field theory simulations of the simplest model containing these objects, confirming that the energy density
of networks of cosmic necklaces approaches scaling, i.e., that it remains a constant fraction of the
background energy density. The number of monopoles per unit comoving string length is constant,
meaning that the density fraction of monopoles decreases with time. Where the necklaces carry semipoles
rather than monopoles, we perform the first simulations large enough to demonstrate that they also maintain
a constant number per unit comoving string length. We also compare our results to a number of analytical
models of cosmic necklaces, finding that none explains our results. We put forward evidence that
annihilation of poles on the strings is controlled by a diffusive process, a possibility not considered before.
The observational constraints derived in our previous work for necklaces with monopoles can now be
safely applied to those with semipoles as well.
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I. INTRODUCTION

Symmetry-breaking phase transitions in the early universe
are a natural consequence of attempts to explain physics
beyond the standard model, for example by incorporating the
elements of the standard model in a grand unified theory
(GUT). Depending on the nature of the symmetry that is
broken during such a phase transition, it is possible for
topological defects to have formed. Defects are solitonic
solutions of the field equations carrying conserved topo-
logical charge; however, the word is used more loosely to
mean any extended classical structures in the field, including
long-wavelength Goldstone modes.
In cosmology the most interesting defects are cosmic

strings [1] (see Refs. [2–5] for reviews). They appear
even in the simplest case of the Abelian Higgs model,
forming when the U(1) gauge symmetry breaks. The
cosmic strings arising from this symmetry breaking are
Nielsen-Olesen vortex lines [6]. Similar objects can also
arise as fundamental objects in an underlying string theory.

These objects, termed F- and D-strings, are also known as
cosmic superstrings [7–11].
More complex patterns of symmetry-breaking or models

with extra dimensions can produce structures which are
combinations of different kinds of defect. Models of this
type that have attracted attention in recent years include
semilocal strings [12–16], which are a combination of
Goldstone modes and cosmic strings; necklaces [17–23],
which are a combination of strings and monopoles; and
related models where the monopoles form string junctions
[24,25]. The first direct numerical simulations of necklace
networks were performed by some of the authors of this
article in Ref. [26].
In this paper we continue our investigation of the non-

Abelian strings started in Ref. [26]. The particular theory
with which we work models, in its most basic form, a two-
stage GUT symmetry-breaking scenario where first an SU
(2) symmetry breaks to a U(1), forming ’t Hooft-Polyakov
monopoles. Later, at a lower symmetry-breaking scale,
this U(1) itself breaks in a manner analogous to that in
the simpler Abelian Higgs model. The result is that the
magnetic flux of the ’t Hooft-Polyakov monopoles is
then carried by two cosmic string segments linking the
monopoles together. This, then, spontaneously breaks a Z2
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symmetry that relates the magnetic charge of the monop-
oles and the orientation of the strings.
A monopole that is attached to two cosmic strings in this

way is termed a “bead” and a system of many such beads on
a loop of string forms a “necklace.” As shown in Ref. [23]
the beads can be seen as the kinks form when Z2 × Z2

symmetry is spontaneously broken to Z2 by the string
solutions. An exact solution is known in a model with
N ¼ 2 supersymmetry [20].
When the symmetry-breaking scales are degenerate, the

global symmetry Z2 × Z2 is enlarged to D4, the square
symmetry group. When D4 breaks down to Z2, the kinks
that are formed are labeled by a Z4 topological charge and
they can be seen as split beads. That is, each bead separates
into two “semipoles.” Semipoles can annihilate only with
the corresponding antisemipole. Unlike monopoles, two
adjacent semipoles need not have total charge zero, and
they can repel each other [23]. We will refer to monopoles
and semipoles collectively as “poles.” Semipoles come in
two different types, depending on a ratio of dimensionless
couplings λ and κ in the scalar potential [23]. In Ref. [26]
we simulated only with κ=2λ ≥ 1; here, we perform the first
simulations for κ=2λ < 1. We do not revisit the special case
κ=2λ ¼ 1, where the symmetry group on the string is
enhanced to O(2) and semipoles do not exist.
In order to characterize the gross features of a network of

cosmic necklaces we can use two length scales: the average
comoving pole separation, ξm, and the average comoving
string separation, ξs. These quantities are of great interest for
the analysis of the network evolution because they show if the
system has reached scaling. Scaling is an important property
for the reliable study of defect networks, because it tells us
how to extrapolate network observables to large cosmic
times. Scaling, in its simplest form as applied to cosmic string
networks,means that all quantitieswith dimensions of length
grow in proportion to the horizon distance, ξ ∝ τ. In a scaling
string network, the fraction of the energy density coming
from defects remains constant. However, necklaces have an
important dynamical length scale [19]

dBV ¼ Mm

μ
; ð1Þ

where Mm is the monopole mass and μ the string mass per
unit length.1 The inverse 1=dBV sets the scale for the
acceleration of a monopole attached to a bent string. For
strings alone, the local acceleration is equal to the curvature,
so there is no fixed scale in the dynamics. This is the
underlying reason for why strings approach scaling. One
cannot apply the same argument to necklaces, and their
scaling is more difficult to understand.
It turns out to be informative to study the linear

comoving monopole density

n ¼ ξ2s
ξ3m

; ð2Þ

or equivalently the linear physical monopole density in
units of dBV [19],

r ¼ dBVn=a; ð3Þ

where a is the cosmological scale factor.
The mean comoving energy density of the network is

ρn ≃
μ

ξ2s
ð1þ rÞ; ð4Þ

from which one can see that r is the string-to-monopole
mean energy density ratio. Therefore, if the strings scale
(ξs ∝ τ) and r is a constant, the network will maintain a
constant density fraction.
One would expect that when r ≪ 1 the string evolves

essentially without regard to the poles. On the other hand,
when r is significant the evolution of the network should
change in some way.
Firmly establishing the behavior of r, or equivalently n,

is important for predictions of observable signals from
necklaces, including the production of high energy cosmic
rays, cosmic microwave background fluctuations, and
gravitational waves.
In Ref. [19], it was suggested that the density of

monopoles on strings would grow to be so large as to
dominate the dynamics. This would slow the string network
down, leading to large numbers of monopole-antimonopole
annihilation events and a copious source of ultrahigh
energy cosmic rays.
On the other hand, Ref. [27] argued that monopoles

acquire substantial velocities along the string, similar in
magnitude to the transverse velocities of the strings them-
selves, leading to frequent monopole interaction events on
the string, and efficient monopole annihilation. The number
of monopoles per unit length should therefore decrease
toward the minimum allowed by causality 1=t, and the
strings should end up behaving like an ordinary cosmic
string network, with RMS velocity a significant fraction of
the speed of light.
In Ref. [28] the velocity-dependent one-scale model was

adapted to necklace models, with the principal conclusion
being that both ξs and ξm should be expected to scale in
most circumstances, and that the monopole velocities are
driven towards unity, with continuously increasing Lorentz
factors.
With contradictory results from analytical studies, direct

numerical simulations are required. In Ref. [26], we carried
out the first field-theory simulations of the system, but with
restricted dynamic range the conclusionswecoulddrawwere
rather limited. Evidence was presented that the monopole-
necklace system evolves towards a statewith a linear increase
in the comoving string separation ξs with conformal time and

1The mass of a monopole or semipole on a string is generally
less than that of a free pole, but still the same order of magnitude.
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r tending to zero in such a way that n remained approx-
imately constant. In the semipole case,n appeared to increase
toward the end of the simulations. The behavior was not
definitively established as the simulations were not large
enough. In all cases, the energy density of the necklaces was
transferred efficiently to propagatingmodes of the gauge and
scalar fields, much as for Abelian Higgs cosmic strings [29],
implying that necklaces are not an important source of
gravitational waves.
In the present paper we go beyond these earlier simu-

lations, and establish firmly the scaling properties of the
network. We are able to analyze larger mass ratios than
before. We also explore the effect of different defect
separations in the initial conditions.
We are able to reject important hypotheses made in the

previous model-building attempts outlined above, in par-
ticular: the monopole-to-string density ratio r never
increases, in contradiction with the Berezinky-Vilenkin
model [19]; the decrease is slower than r ∝ t−1, in contra-
diction with the Blanco-Pillado and Olum model [27]; and
the monopole velocities asymptote to a constant value, in
contradiction with the Martins model [28].
We confirm that the monopoles pick up a substantial

component of velocity along the string [27]. We also
confirm the findings of Ref. [26] that the scaling state
for the string-monopole system has a linear increase in the
comoving string separation ξs with conformal time, and
constant comoving linear monopole density n.
For necklaces with semipoles we find similar behavior,

independent of the parameter ratio κ=2λ which controls
their type: like necklaces with monopoles, both the RMS
velocity and the comoving linear density n tend to a
constant.
We have been unable to produce a satisfactory model

that explains the observed monopole and semipole den-
sities. The fact that the monopole density decreases more
slowly than envisaged in the model of Blanco-Pillado and
Olum means that monopole annihilation is not as efficient
as proposed, but we have not been able to establish why.
We put forward a proposal based on pole diffusion in the
Discussion.
The paper is organized as follows: In Secs. II and III we

describe the model and the numerical simulations. Then in
Sec. IV we show the results obtained and in Sec. V we
compare them to necklace evolution models. Finally, in
Sec. VI we discuss the results obtained.

II. MODEL

The model that we study is the SU(2) Georgi-Glasgow
model with two Higgs fields in a spatially flat Robertson-
Walker metric. In this section we will introduce the model
and summarize its most important aspects. A more detailed
description of the model can be found in Refs. [17,23].
In comoving coordinates xi, conformal time τ ¼ x0, and

with scale factor a, the action is

S ¼
Z

d4x

�
−
1

4
Fa
μνFμνa þ a2

X
n

Tr½Dμ;Φn�½Dμ;Φn�

− a4VðΦ1;Φ2Þ
�
; ð5Þ

where Dμ ¼ ∂μ þ igAμ is the covariant derivative,
Aμ ¼ Aa

μσ
a=2, and σa are Pauli matrices. The Higgs fields

Φn, n ¼ 1, 2, are in the adjoint representation,
Φn ¼ ϕa

nσ
a=2. Spacetime indices have been raised with

the Minkowski metric with mostly negative signature.
The potential can be written in the following way:

VðΦ1;Φ2Þ¼−m2
1TrΦ2

1−m2
2TrΦ2

2

þλðTrΦ2
1Þ2þλðTrΦ2

2Þ2þκðTrΦ1Φ2Þ2; ð6Þ

where λ and κ are positive and m1;2 are real.
The system undergoes two symmetry-breaking phase

transitions, SUð2Þ→Uð1Þ→Z2. After the first symmetry-
breaking the theory has ’t Hooft-Polyakov monopole sol-
utions and after the second one the theory has string
solutions. The vacuum expectation values of the two adjoint
scalar fields are given by TrΦ2

1;2 ¼ m2
1;2=2λ, where the scalar

masses are then
ffiffiffi
2

p
m1;2. Without loss of generality we will

take thatΦ1 has the larger vacuum expectation value, that is,
it is the responsible field for the first symmetry-breaking.
Depending on the value of the parameters of the

potential, m1, m2, λ and κ, the model can accommodate
three different kinds of solutions, see Ref. [23]:

(i) When m2
1 > m2

2 the system has a discrete global
Z2 × Z2 symmetry under which Φ1 → �Φ1 and
Φ2 → �Φ2. The string solutions break Z2 × Z2 to
Z2 and the resulting kinks are the beads that
interpolate between two string solutions. This sol-
utions can be interpreted as ’t Hooft-Polyakov
monopoles with their flux confined to two tubes.

(ii) When m2
1 ¼ m2

2 the system has a square symmetry
D4 which is broken to Z2 by strings. The resulting
kinks can be seen as beads that are split into two.
Each one of these kinks are known as semipoles.
Semipoles can only be annihilated with the corre-
sponding antisemipole. Two classes of solutions
exist according to whether κ=2λ < 1 or κ=2λ > 1.

(iii) When m2
1 ¼ m2

2 and κ=2λ ¼ 1 there is a global O(2)
symmetry. This symmetry is spontaneously broken
by the string solution but not the vacuum. In this
case there are no semipoles and the strings carry
persistent global currents. We do not investigate this
case here.

III. SIMULATION DETAILS

A. Numerical setup

We discretize the system on a comoving 3D spatial
lattice with lattice spacing of dx ¼ 1 and time-step of
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dτ ¼ 0.1. Then, the lattice equations of motion are evolved
using the standard leapfrog method. We perform 19203

simulations in the radiation dominated era, for which
a ∝ τν with ν ¼ 1. More information about the discretiza-
tion and simulation details can be found in Ref. [26].
Analysis of observables should be done once the system

has reached scaling, so that extrapolation to cosmologically
relevant times is possible. To reduce uncertainties, we want
scaling to be reached over as large a time interval as
possible, and this can be achieved by choosing a good set of
initial conditions. The aim is to generate a random
distribution of well-separated defects with otherwise min-
imal field excitations, consistent with the field configura-
tion expected at a large time after the phase transition. The
details of the phase transition itself are not important for the
late-time field configuration.
In our case we choose Φ1;2 to have uniformly distributed

random values in the range ½−0.5; 0.5� for each component
ϕa
1;2, which we then normalize to the vev of the field in

question. The SU(2) gauge field is set up by generating a
random SU(2) matrix from four Gaussian random numbers
u0, ua which are normalized to obtain a unitary matrix of
determinant 1.
Once the initial field configuration is set we smooth the

configuration of the Higgs fields, that is, in each lattice
point we substitute the field value by a weighted average of
the field values at the actual lattice point and at the six
nearest neighbors:

ΦnðxÞ →
1

12

X
i

½Φnðx − {̂Þ þ 2ΦnðxÞ þΦnðxþ {̂Þ�: ð7Þ

We apply this smoothing Ns times to the initial configu-
ration, a number which is in general different for the two
fields. The aim of this differential smoothing is to explore
networks with different initial densities of monopoles and
strings, allowing us to vary n.
After smoothing the initial configuration we run with

relatively strong damping period for a time δτd. The
damping term is handled using the Crank-Nicolson method
[30], but is rather stronger than adopted in Ref. [26]; we
take σ ¼ 4 in the notation of that paper.
The heavy damping phase ends at τ ¼ 120, after which

we run the simulation with the standard Hubble damping
for one light-crossing time of the box, at which point the
conformal time is τend ¼ 2040.
As with all simulations in fixed comoving volume in an

expanding background, physical widths such as the size of
the defects shrink, which presents a two-fold problem: to
make sure they are well-separated in the beginning and
well-resolved at the end. A common approach in field
theory simulations of this type is to scale the couplings and
mass parameters with factors a1−s, where a is the cosmo-
logical scale factor and 0 ≤ s ≤ 1. This procedure keeps the
scalar expectation values fixed and the string tension
constant but the comoving width of the string core grows

for s < 1. In our simulations we use s ¼ 1, but we run with
s ¼ −1 from the end of the damping period until time τcg.
This means that the comoving width of the string can be
made small while they are formed. It also accelerates the
production of the network, because the conformal time
taken by the fields to settle to their vacua is of the order the
comoving defect width. The scale factor is normalized to
aðτendÞ ¼ 1, so that the defects remain resolved throughout
the simulation.
In principle, correlations can start to be established after

half a light-crossing time. However, the only massless
excitations are waves on the string, and the strings are much
longer than the box size even at the end of the simulations.We
therefore do not expect finite-size effects, although we check
for small deviations from scaling toward the end of the
simulations.

B. Measurements

During the simulation we measure the number of polesN
and the string length L. In order to obtain the monopole
number we compute the magnetic charge in each lattice
site. The string length is computed by counting the
plaquettes pierced by strings, that is, counting the pla-
quettes with a gauge-invariant “winding” in the U(1)
subgroups formed by projection with the scalar field Φ1,
the heavier one in the nondegenerate case.
In the case of monopoles, this measurement process

gives the magnetic field Bð1Þ and, by calculating the
divergence, the exact number of monopoles. For semipoles
with κ=2λ < 1, this yields approximately half the semi-
poles; the rest are sources or sinks of a magnetic field Bð2Þ
obtained by projecting out the U(1) gauge field associated
with Φ2 [23]. Finally, when κ=2λ > 1, the relevant mag-
netic fields are Bð�Þ ¼ ðBð1Þ � Bð2ÞÞ= ffiffiffi

2
p

, and our meas-
urement of Bð1Þ sources and sinks picks out features in the
field configuration of a string rather than the semipoles
themselves. We call these midpoints “pseudopoles.”
On the other hand, the measurements of the winding

number—and hence the string length and velocity—do not
depend on the particular choice of projecting scalar field. See
the Appendix of Ref. [26] for details of the projectors used.
Figure 1 shows a snapshot of the end of one of the

semipole simulations (the next-to-last in Table I), with the
strings in black and the semipoles represented by red and
blue circles.
Using the pole number N, and the string length L we can

derive the average comoving defect separations as

ξm ¼ ðV=NÞ1=3; ξs ¼ ðV=LÞ1=2; ð8Þ

from which we calculate the linear comoving pole density
[Eq. (2)] and r [Eq. (3)]. As explained above, the quantity
N for semipoles and pseudopoles counts only half the total
number, but we retain the definition as it is more directly
comparable with the number of monopoles.
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We use the positions of the strings and poles to compute
the string root-mean-square (RMS) velocity v̄s, and the
monopole RMS velocity v̄m. Once we have the positions of
poles and strings at each time step we can follow their
trajectories during the simulation. Computing the trajectory
at every time step dτ is computationally very expensive,
and it can also induce some noise due to lattice discretiza-
tion ambiguities. Therefore, we perform the computations
to obtain the trajectories every time interval δτv ¼ 20dτ.
We also record global quantities such as the total energy

and pressure, from which energy conservation can be
checked. In all runs global covariant energy conservation
is maintained to 1% or better. Detailed information about
the measurements can be found in Ref. [26].

C. Parameter choices

We analyse the cases with degenerate (m2
1 ¼ m2

2) and
nondegenerate mass parameters, which allows us to study

both monopoles (discrete global Z2 × Z2 symmetry) and
semipoles (square D4 symmetry). In the semipole case we
analyse two different parameter relations, κ=2λ > 1 and
(for the first time) κ=2λ < 1.
For monopoles, we explore various ratios ofm2

1 tom
2
2 and

various initial configurations, that is, different values for the
smoothing iterations, Ns and different damping periods δτd.
More precisely, all the runs are carried out withm2

1 ¼ 0.25 in
the radiation-dominated era (ν ¼ 1) and the scale factor is
normalized so that a ¼ 1 at the end of the simulations.
The values of the rest of the parameters can be seen in

Table I. We perform one realization for each set of
parameter choices.

IV. RESULTS

A. Length scales

The comoving necklace network length scales ξs and ξm,
which are defined in Eq. (8) are plotted in Figs. 2 and 3. In
these plots we show all the cases for which we have carried
out simulations.
The effect of the different amounts of smoothing in the

initial conditions can bee seen in the initial defect sepa-
rations: the more smoothing, the further apart the defects.
The amount of damping makes little difference to the initial
defect separation, but does reduce the oscillations in the
RMS deviation of the field from its vacuum value, δΦ1;2 ¼
jTrΦ2

1;2 − v21;2j1=2. The subsequent evolution depends little
on the initial conditions: the system evolves toward a
scaling regime characterized by ξs ∝ τ.
In order to analyze the scaling regime we have computed

the gradients for the comoving string separation ξs, in three
different time regimes. These time ranges, which are
τ ∈ ½1000; 1250�, τ ∈ ½1250; 1500� and τ ∈ ½1500; 1750�,
are chosen to cover the biggest part of the dynamical range
taking into account that the system needs some time to
reach scaling after the core growth period. The values of the
gradients can be seen in Table II. The gradients confirm that

FIG. 1. Snapshot of a semipole necklace at the end of the
simulation. The black lines represent the strings, the red circles
the poles picked out by BðþÞ and the blue circles the poles picked
out by Bð−Þ. The run parameters are given in the last entry of
Table I.

TABLE I. List of simulation parameters for the runs we performed. The dimensionful parameters are given in units of the lattice
spacing dx. Potential parameters (6) are shown along with the isolated monopole massMm and the isolated string tension μ. The length
scale dBV ¼ Mm=μ is also shown as well as the smoothing iterations NsðΦ1Þ=NsðΦ2), damping time δτd and end of the core growth
period in conformal time, τcg, and physical time, tcg. Simulations were run until conformal time τ ¼ 2040.

m2
1 m2

2 λ κ Mm μ dBV Ns δτd τcg tcg

0.25 0.1 0.5 1 11 0.63 17.5 10000=10000 350 520 66
0.25 0.1 0.5 1 11 0.63 17.5 4000=10000 350 520 66
0.25 0.1 0.5 1 11 0.63 17.5 1000=10000 350 520 66
0.25 0.1 0.5 1 11 0.63 17.5 4000=10000 87.5 520 66
0.25 0.025 0.5 1 11 0.16 70 4000=4000 350 520 66
0.25 0.0125 0.5 1 11 0.08 140 4000=4000 350 520 66
0.25 0.25 0.5 0.25 11 1.6 7 4000=4000 350 520 66
0.25 0.25 0.5 0.5 11 1.6 7 4000=4000 350 520 66
0.25 0.25 0.5 2 11 1.6 7 4000=4000 350 520 66
0.25 0.25 0.5 4 11 1.6 7 4000=4000 350 520 66
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the strings are indeed scaling. In addition, we can conclude
that the finite-size effects are negligible, because the values
of the gradients at the final time range are compatible with
the values at the other two time ranges.
Analyzing the comoving monopole separation, ξm, we

can see that it increases slower than τ. However, it keeps
increasing during the whole evolution of the system,
showing that N decreases and that pole-antipole annihila-
tions are present in all the stages of the evolution.

B. Linear pole density

We can characterize the linear pole density (the number
of poles of a particular type per unit length of string) in two

FIG. 2. Mean string separation ξs, defined in Eq. (8), for
necklaces with monopoles (top) and semipoles (bottom), against
conformal time τ. The legend gives the ratio mass-squared values
of the fields ðm2=m1Þ2 for the necklaces with monopoles and the
ratio of scalar couplings κ=2λ for the necklaces with semipoles. In
the case where the mass-squared ratio is 0.4 the legend also shows
the number of smoothing steps performed in each field as
NsðΦ1Þ=NsðΦ2Þ. We distinguish the case with the equal amount
of smoothing showing the damping time δτd where it is the
shortest. A full list of simulation parameters is given in Table I.

FIG. 3. Mean monopole separation ξm, defined in Eq. (4), for
necklaces with monopoles (top) and semipoles (bottom), against
conformal time τ. See the caption to Fig. 2 for an explanation of
the legend.

TABLE II. Results of the ξs gradients computed in three
different ranges. Numerical annotations refer to the range in
which the gradient is computed: 1 has τ ∈ ½1000; 1250�, 2 has
τ ∈ ½1250; 1500� and 3 has τ ∈ ½1500; 1750�. The last two
columns are the mean value and the standard deviation computed
using the values from the three different regions.

m2
2=m

2
1 κ=2λ ðdξsdτ Þ1 ðdξsdτ Þ2 ðdξsdτ Þ3 Mean Std

0.4 1 0.131 0.140 0.138 0.136 0.005
0.4 1 0.147 0.153 0.152 0.151 0.003
0.4 1 0.154 0.162 0.151 0.156 0.006
0.4 1 0.134 0.155 0.135 0.141 0.012
0.1 1 0.139 0.132 0.134 0.135 0.004
0.05 1 0.140 0.134 0.125 0.133 0.008
1 0.25 0.167 0.166 0.156 0.163 0.006
1 0.5 0.136 0.148 0.162 0.149 0.013
1 2 0.139 0.140 0.127 0.135 0.007
1 4 0.157 0.154 0.151 0.154 0.003
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different ways: r, the number per unit physical length in
units of the pole acceleration scale 1=dBV (3), and n, the
number per comoving string length.
The ratio of pole to string energy density, r, is plotted in

Fig. 4 against physical time, which for the radiation
dominated era is

t ¼ 1

2
aðτÞτ: ð9Þ

All the different cases simulated can be found in these
figures. We can see that in all the cases the value of r does
not increase, once the physical evolution begins at τcg.
Also plotted is the number per unit physical length of

pseudopoles. In this case, r seems to asymptote to a

constant of order 10−1, indicating a constant physical
separation along the string. Although there is no extra
energy density associated with a pseudopole, it does
suggest that there is a physical length scale on the string
of around 10dBV imprinted in the fields.
In order to analyze the power law with which r decreases

we fit with the following function:

r ¼ rb½ðt − t0Þ=ðtb − t0Þ�−β; ð10Þ

where rb, t0 and β are the fitting parameters and we choose
tb to be the end of the fitting range ½ta; tb� ¼ ½245; 750�. The
values of the fitting parameters can be found in Table III.
The fits indicate that r decreases with a power law close to

t−1=2, which would indicate that the comoving density n ¼
ar=dBV should be approximately constant. In Fig. 5 we can
see that for n does indeed appear to tend to a constant at large
time, consistent with the results in Ref. [26].
The asymptotic values of n at large conformal time are

about a factor of 2 smaller than in our previous simulations,
which has no particular physical significance. Instead, we
note that the behavior r ∝ t−1=2 brings in a new length scale
D, which can be defined from

r ¼ dBVffiffiffiffiffiffiffiffi
2Dt

p : ð11Þ

Using the value of n at the last time step of the simulation
one can obtain an approximate value for D. As we have
already noted, all the cases seem to asymptote to the same
value of n, so we can extract an estimate of a universalD by
taking the average over all the realizations. The value
computed is D ¼ 16� 2.
The results for n for semipoles in Ref. [26] were not

conclusive, and we now understand that in using the source

FIG. 4. Linear pole density r (3) for necklaces with monopoles
(top) and semipoles (bottom), plotted against physical time t. The
dashed grey line represents the fit to the data using the function
presented in Eq. (10). The values for the fit parameters can be
seen in Table III. See the caption to Fig. 2 for an explanation of
the legend. Note that in the plot for necklaces with semipoles we
show also the linear pseudopole density in the cases where
κ=2λ > 1.

TABLE III. Parameters computed from fitting r in the range
t ∈ ½245; 750� using the function presented in Eq. (10). The
uncertainties for β and rb are obtained using the variations in the
values for the four necklace cases with the same physical
parameters. However, the uncertainties for t0 are obtained from
the fitting because the value for t0 can vary in simulations with the
same physical parameters but different initial conditions.

m2
2=m

2
1 κ=2λ β rb t0

0.4 1 0.36� 0.15 0.10� 0.01 60� 3
0.4 1 0.70� 0.15 0.11� 0.01 −184� 7
0.4 1 0.46� 0.15 0.12� 0.01 28� 3
0.4 1 0.42� 0.15 0.11� 0.01 47� 3
0.1 1 0.57� 0.15 0.43� 0.01 −98� 7
0.05 1 0.27� 0.15 0.92� 0.01 122� 3
1 0.25 0.46� 0.15 0.05� 0.01 −6� 5
1 0.5 0.22� 0.15 0.04� 0.01 106� 2
1 2 0.46� 0.15 0.04� 0.01 −9� 4
1 4 0.30� 0.15 0.05� 0.01 68� 3
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of Bð1Þ flux to locate the semipoles was incorrect. Our new
results for semipoles establish that they behave in the same
way as monopoles.
The linear density of the sources of Bð1Þ flux (pseudo-

poles) is nonetheless instructive. We have therefore also
plotted thepseudopole separation inFigs. 4 and5, forwhich r
asymptotes to O(10−1), and n increases linearly with con-
formal time, as expected for an asymptotically constant r.

C. Velocities

In Fig. 6, we show the RMS velocities computed for
strings and poles using the procedure described in Sec. III B,
plotted against physical time in units of d2BV=2D. The
velocities in different simulations fall on an approximately
consistent curve which appears to asymptote to a constant at
large times. Semipoles move faster (see Table IV). The curve

FIG. 5. The number of poles per comoving string length n for the
necklaces with monopoles (top) and semipoles (bottom), plotted
against conformal time τ; in the semipole case only one type of
semipoles (Bð1Þ or BðþÞ) is shown. See the caption to Fig. 2 for an
explanation of the legend. Note that in the plot for necklaces with
semipoles, we show also the number of Bð1Þ pseudopoles per
comoving string length in the cases where κ=2λ > 1.

FIG. 6. The root mean square velocity for strings (top)
and monopoles (bottom) computed by the method outlined in
Sec. III B, plotted against 2Dt=d2BV, where t is physical time, dBV
is the acceleration time scale (1), and D is the length scale defined
from Eq. (11). The average values for the velocities can be found in
Table IV. See the caption to Fig. 2 for an explanation of the legend.

TABLE IV. Values of the velocities of the strings and poles and
the pole velocity relative to the string. The velocities are
computed in t ∈ ½297; 900�. The error shown is the standard
deviation obtained from averaging over all the timesteps.

m2
2=m

2
1 κ=2λ v̄s v̄m v̄rel

0.4 1 0.552� 0.005 0.63� 0.01 0.30� 0.05
0.4 1 0.558� 0.003 0.629� 0.009 0.29� 0.04
0.4 1 0.555� 0.002 0.629� 0.008 0.30� 0.04
0.4 1 0.553� 0.004 0.63� 0.01 0.29� 0.04
0.1 1 0.532� 0.002 0.592� 0.008 0.26� 0.04
0.05 1 0.513� 0.005 0.56� 0.01 0.21� 0.07
1 0.25 0.568� 0.004 0.658� 0.009 0.33� 0.04
1 0.5 0.561� 0.002 0.660� 0.009 0.35� 0.03
1 2 0.549� 0.002 0.652� 0.008 0.35� 0.03
1 4 0.555� 0.002 0.648� 0.008 0.33� 0.03
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is particularly noticeable for the light strings, which need
more time to accelerate the monopoles to their asymptotic
speed. RMS velocity values can be seen in Table IV.
One can obtain an estimate of the velocities of the

monopoles and semipoles along the string using the string
and pole RMS velocities v̄2rel ¼ v̄2m − v̄2s , also given in
Table IV. Note that v̄2rel ∼ v̄2s in all cases, with larger relative
velocities for semipoles. In our previous simulations we
were unable to measure the RMS velocities well enough to
gain an unambiguous nonzero value for the motion of the
poles along the strings.

V. COMPARISON TO NECKLACE
EVOLUTION MODELS

Having presented the results of our simulations, we
compare our findings to the analytical models presented in
the literature. The models all make assumptions about the
system, and derive various predictions, which differ between
models. We can test the validity of the assumptions and the
correctness of the predictions in light of our new results.
The first model describing the evolution of the necklace

network was introduced by Berezinsky and Vilenkin (BV)
in Ref. [19]. The authors assumed that there is no motion of
monopoles along the strings and that monopole-antimono-
pole annihilation is negligible. They also argued that the
typical velocity of the strings and monopoles was

v̄s ∼
1ffiffiffiffiffiffiffiffiffiffiffi
1þ r

p ; ð12Þ

based on considering the necklace to have an effective mass
per unit length μeff ¼ μþMmN=aL, while maintaining
tension μ. They presented the following differential equa-
tion for r, in the regime where r ≪ 1:

_r
r
¼ −

κs
t
þ κg

t
: ð13Þ

The first term on the right-hand side describes string
stretching due to the expansion of the Universe, and has
κs ¼ γð1 − 2v̄2s Þ, where γ ¼ t _a=a ¼ ν=ð1þ νÞ. The second
one models the competing effect of strings shrinking due to
energy loss, with κg ≃ 1. In Ref. [19] the primary energy
loss channel was thought to be gravitational radiation, but
the field radiation observed in the numerical simulations of
topological defects (see also Ref. [29]) will also have the
same effect.
Using the string velocities obtained in our work and the

estimated value for κg from Ref. [19], the solution to
Eq. (13) has r growing with a power of time close to 1.
Their conclusion was therefore that if r is initially small, it
will grow.
Our results show the contrary: r decreases in all the cases

that we considered (see Fig. 4). Our simulations show that
the number of monopoles N decreases during the evolution

of the system, demonstrating that monopole-antimonopole
annihilations are important. Animations of network evo-
lution (See Refs. [31–33]) indicate that annihilations take
place both on long strings and loops.
Another major difference with Ref. [19] is in the

dependence of the string velocity on r. In Fig. 7 (top)
we have plotted the directly computed v̄s against r. The
gradient of the mean string separation dξs=dτ has dimen-
sions of velocity, and provides an estimate of the string
RMS velocity on the scale ξs, which we denote v̄ξ. We have
therefore also plotted v̄ξ, smoothed with a Blackman filter
over 101 time steps, which is clearly distinguished by
having much smaller values.
It is clear that there is no evidence for a dependence of

the large-scale velocity v̄ξ on r. The short-distance measure
v̄s decreases very slightly for r ≃ 1, but certainly not by a
factor 1=

ffiffiffi
2

p
as predicted by Eq. (12).

FIG. 7. Plots showing the RMS string velocity v̄s against r (top)
and v̄m against r (bottom). In the top plot we have also included
data showing v̄ξ ¼ dξs=dτ against r, where the v̄ξ data is
smoothed over a Blackman window with 101 points. See the
caption to Fig. 2 for an explanation of the legend, which is the
same in both plots.
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The directly computed monopole RMS velocity v̄m is
shown in Fig. 7 (bottom). There is some evidence for a slow
decrease of the monopole RMS velocity with increasing r,
which is probably due to the correlation between higher r
and earlier times, before the monopoles have picked up full
speed. By eye, there is some suggestion that there is a
common asymptote of v̄m ≃ 0.7 as r → 0, which is the
long-time limit of the necklace evolution.
Monopole annihilation is incorporated into the model of

Blanco-Pillado and Olum [27]. They also used the BV
assumption for the string velocities (12), but argued that
there should be approximate equipartition between the
components of the monopole and string RMS velocities,
and therefore the RMS velocity component of monopoles
along the strings should be

v̄2rel ≃ v̄2s=2: ð14Þ

They concluded that there should be frequent encounters
between monopoles and antimonopoles on the string,
which would result in efficient annihilations. The mean
monopole spacing should therefore be of order t=v̄rel
(physical units), and hence r should decrease as t−1.
Our results are consistent with approximate velocity

equipartition, v̄rel ∼ v̄s (see Table IV). However, our results
for r are inconsistent with the r ∝ t−1 behavior predicted in
Ref. [27]. For monopoles and semipoles, the fits to a power
law are closer to r ∝ t−1=2, consistent with constant
comoving linear density n. (See Table III).
The third model is a velocity-dependent one-scale model

for monopoles [34] adapted for the evolution of necklaces
[28]. This model focuses on the evolution of the separation
between monopoles, assuming that the string velocity
obeys Eq. (12) and that the mean string separation is
similar to the mean monopole separation,

ξm ∼ ξs: ð15Þ

With these assumptions for the strings, it should be
sufficient to study the mean separation and RMS velocity
of the monopoles, and the evolution equations for these
parameters were derived to be (in our notation)

3
dξm
dt

¼ ð3þ v̄2mÞHξm þQ�; ð16Þ

dv̄m
dt

¼ð1 − v̄2mÞ
�

ks
dBV

−Hv̄m

�
; ð17Þ

whereH is the Hubble parameter, ks the phenomenological
string curvature parameter [35,36] and Q� a constant
energy loss term.
The solution of Eqs. (16), (17) has ξm ∝ t and v̄m → 1.

This describes an evolution where r ∝ t−1 and the monop-
oles’ Lorentz factor continually increases with time. Again,

this disagrees with our results, which indicate that r ∝ t−1=2

and v̄m ≃ 0.6.
In conclusion, we can say that none of the models of

which we are aware describes our results: the key difference
is the behavior of r, the linear physical monopole density in
units of dBV. The physical linear density decreases—in
contradiction to the BV model—as a result of monopole
annihilation. However, the monopole annihilation cannot
be as efficient as assumed in the other two models, as r
decreases in proportion to t−1=2 rather than t−1. Semipoles
behave like monopoles.

VI. DISCUSSION

We have carried out the largest simulations to date of
systems of necklaces, studying both monopoles and semi-
poles, exploring a wider range of string-to-monopole
energy density ratios r than before, and following the
evolution to larger string separations.
Our results concern the mean comoving string separation

ξs, the mean comoving monopole (or semipole) separation
ξm, the mean RMS string velocity v̄s, and the mean RMS
monopole velocity v̄m.
The mean comoving string separation ξs always

increases with conformal time, consistent with linear
scaling ξs ∝ τ. The slopes are shown in Table II. The
mean separation of monopoles and semipoles, grows as
ξm ∝ τ2=3. The rest have r decreasing in proportion to t−1=2,
equivalent to a a constant comoving linear density n (see
Fig. 5). In terms of the physical mean separation and
physical time, ξphym ∝ t5=6.
String RMS velocities tend to a constant value v̄s ≃ 0.55,

only weakly dependent on the string-to-monopole energy
density ratio r.
Monopole and semipole RMS velocities evolve slowly

toward a constant value around 0.7 at the end of our
simulations, on a timescale controlled by the monopole
acceleration parameter 1=dBV. The RMS velocities in the
limit of vanishing string-to-monopole energy density ratio r
appear to be tending to a common value around 0.7.
Models of necklace evolution in the literature do not

describe our results. A key point is that the assumed
dependence of the RMS string velocity on the monop-
ole-to-string density ratio r (12) is not observed. Instead,
the RMS string velocity barely depends on r at all, up to
r ≃ 2. Thus the picture of massive monopoles as slowing
down the strings is incorrect; instead, it seems that the
strings can drag the monopoles around with them, although
the more massive the monopoles, the longer it takes for
their RMS velocity to reach that of the strings.
Monopole and semipole annihilation is certainly impor-

tant, contrary to [19], but has much lower efficiency than
envisaged in Ref. [27], who argued that monopoles would
annihilate with probability of order unity if they encoun-
tered each other on the string. If the poles have an RMS
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velocity along the string of v̄k, the average pole should
encounter others at a conformal time rate v̄kn. Thus if σ is
the annihilation probability, we should be able to write a
one-dimensional Boltzmann equation

dn
dτ

¼ n

�
−σv̄knþ 2

1

ξs

dξs
dτ

�
; ð18Þ

where the second term on the right hand side describes the
increase in the comoving linear density due to the string
shrinking. It seems reasonable at first sight to identify v̄k
with v̄rel, and assuming constant σ, this equation would
have a solution n ¼ ν0=τ, with ν0 ¼ 3=σv̄rel. This is
equivalent to r ∝ t−1, and is essentially the model put
forward in Ref. [27]. The fact that n appears to tend to a
constant is inconsistent with the model, and therefore at
least one of the assumptions that go into it. Either there is
some mechanism suppressing annihilation, or it is incorrect
to make the identification v̄k ∼ v̄rel.
The constraint that semipoles can annihilate only with a

corresponding antisemipole does not appear to significantly
change their annihilation rate in comparison to monopoles.
We do not have a clear idea of how the suppression of

pole annihilation happens, despite their appreciable short-
distance motion along the string, v̄rel ≃ 0.3. One possibility
is that v̄rel is a short-distance measure of velocity, while v̄k
is effectively averaged over a scale d, the average comoving
separation of poles along the string. This measure of
velocity could decrease as τ−1 if the pole motion were
more like diffusion than uniform linear translation. Perhaps
short distance fluctuations on the string, analogous to the
Lüscher term on the QCD string [37], act to keep the
monopoles in some kind of Brownian motion.
As explained earlier, r ∝ t−1=2 brings in a new length

scale D, which can be defined from r ¼ dBV=
ffiffiffiffiffiffiffiffi
2Dt

p
,

indicating that the RMS linear separation between poles
is

ffiffiffiffiffiffiffiffi
2Dt

p
. This could be explained by the poles executing

Brownian motion, with diffusion constant D ≃ 16 in lattice
units, and annihilating with O(1) probability when meeting.
The average velocity on the pole separation scale would go
as

ffiffiffiffiffiffiffiffiffiffiffi
2D=t

p
, proportional to τ−1 as required for the constant

n solution to (18). We do not have a good microscopic
explanation for the value of D, although we note an order-
of-magnitude coincidence with the separation of pseudo-
poles, sources of a certain U(1) flux not associated with a
local increase of energy density. Significant computer time
would be required to investigate pole annihilation further.
In summary, we have found strong evidence that the

necklace network as a whole scales, in the sense that its
energy density remains a constant fraction of the total
energy density, now for semipoles as well as monopoles
[26]. The fractional energy density of poles decreases as
t−1=2, suggesting a diffusive process. The energy in the
necklaces is lost to radiative modes of the gauge and scalar
fields.
The cosmological implications of this kind of scaling

necklace network were discussed in Ref. [26]; in summary,
the principal observational constraints come from diffuse
γ-rays for necklaces in a sector with substantial couplings
to the standard model (Gμ ≲ 3 × 10−11) or the cosmic
microwave background for necklaces in a hidden sector
(Gμ ≲ 10−7).
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