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We devise a fully self-consistent simulation pipeline for the first time to study the interaction between
dark matter and dark energy. We perform convergence tests and show that our code is accurate on different
scales. Using the parameters constrained by Planck, Type Ia Supernovae, baryon acoustic oscillations
(BAO) and Hubble constant observations, we perform cosmological N-body simulations. We calculate the
resulting matter power spectra and halo mass functions for four different interacting dark energy models.
In addition to the dark matter density distribution, we also show the inhomogeneous density distribution
of dark energy. With this new simulation pipeline, we can further refine and constrain interacting dark
energy models.
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I. INTRODUCTION

It is widely believed that our Universe is undergoing an
accelerated expansion. Within the framework of Einstein
gravity, this acceleration can be driven by a new energy
component with negative pressure, called dark energy. In
the standard Λ-cold dark matter (ΛCDM) model, this
mysterious energy is explained as the cosmological con-
stant, Λ. The standard model is commonly used to describe
the evolution of the Universe and it is consistent with a
number of observations. However, from the theoretical
point of view, the ΛCDM model faces significant chal-
lenges such as the cosmological constant problem [1] and
the coincidence problem [2]. Recently, people have found
inconsistencies when comparing different observations
assuming ΛCDMmodel. These include (i) a ∼3σ mismatch
between the Hubble constant inferred from the cosmic
microwave background (CMB) measurements and that
from the direct local observations [3,4], (ii) a ∼2.5σ
discrepancy between the Hubble parameter and angular
distance at z ¼ 2.34 measured from the Baryon Oscillation
Spectroscopic Survey (BOSS) experiment and that inferred

from the CMB measurements [5], (iii) a ∼2.3σ tension
between the weak lensing data taken from a 450-deg2

observing field of the Kilo Degree Survey (KiDS) and the
Planck 2015 CMB data [6]. All of these theoretical and
observational challenges clearly indicate the need to
investigate alternative cosmological models.
Given the fact that the Universe is composed of nearly

25% dark matter (DM) and 70% dark energy (DE) today, it
is natural to ask whether these two most abundant compo-
nents of the Universe can interact with each other instead of
evolving separately. It was reported that appropriate inter-
actions between DM and DE can provide a mechanism to
alleviate the coincidence problem [7–13]. It was shown that
the interacting DM and DE (IDE here after in short) models
are consistent with CMB observations, and they are able to
relieve the discordance between BOSS and CMB mea-
surements mentioned before [14]. Moreover, it was shown
that the IDE models can alleviate the tension between weak
lensing and CMB measurements [15]. Since the nature of
neither DM nor DE is known, mostly phenomenological
models for interactions between them have been studied
(see [16] for a recent review and references therein). The
quantum field theory of dark energy interacting with dark
matter was recently discussed in [17,18].
N-body simulations have been widely adopted to study

the nonlinear evolution of the large scale structure of the
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Universe. Because the IDE model is different from the

ΛCDMmodel in many aspects, it is important to build up a
fully self-consistent simulation pipeline to study the non-
linear structure formation in IDE models. Some attempts
were made to build simulation codes for IDE models
[19,20]. However, the inputs used in such codes were
not self-consistent. For example the initial power spectrum
was generated assuming a ΛCDM model. Moreover, a
simplified DE distribution that was constant in different
scales and redshifts was used.
In this paper, we propose a fully self-consistent simu-

lation pipeline for general phenomenological IDE models.
We do not limit the DE to be in the quintessence region
−1<wd<−1=3, but allow its equation of state to be either
bigger or smaller than −1. We include the DE perturbation
by self-consistently solving its linear level perturbation
equations. All initial conditions we put in the simulation
use the parameters constrained by observations for IDE
models. We find that the nonlinear structure formation at
low redshift can put further constraints on IDE models.
The organization of the paper is as follows. We first

introduce our phenomenological IDE models and the
simulation pipeline in Sec. II. The details about the design
of the simulation, the comparison with previous works and
the code convergence tests are given in Sec. III. Then we
show the main results including halo mass functions and
nonlinear matter power spectra of the models in Sec. IV.
Finally, we summarize and discuss our results in Sec. V.

II. METHODOLOGY

A. Phenomenological model

We consider a phenomenological IDE model which has
been widely discussed [16]. In this model, the covariant
description of the energy-momentum transfer between DE
and DM is given by

▽μT
μν
ðλÞ ¼ Qν

ðλÞ; ð1Þ
where Qν denotes the interaction between two dark
components and λ denotes either the DM or the DE sector.
For the whole system, the energy momentum conservation
still holds, satisfying

X

λ

▽μT
μν
ðλÞ ¼ 0: ð2Þ

Here we work with the general stress-energy tensor

Tμν ¼ ρUμUν þ pðgμν þ UμUνÞ: ð3Þ
The zero-component of Eq. (1) provides the background
conservation equations for the energy densities of the dark
sectors,

ρ0c þ 3Hρc ¼ a2Q0
ðcÞ ¼ Q; ð4Þ

ρ0d þ 3Hð1þ wdÞρd ¼ −a2Q0
ðdÞ ¼ −Q; ð5Þ

where the subscript “c” denotes DM and “d” denotes DE.H
is the Hubble function defined asH ¼ a0=a, a is the cosmic
scale factor and the prime is the derivative with respect to the
conformal time, and wd ¼ pd=ρd is the constant equation of
state for DE. Q represents the interaction kernel, which is
written as a linear combination of the energy densities of dark
sectors in the form ofQ ¼ 3ξ1Hρc þ 3ξ2Hρd, where ξ1 and
ξ2 are free parameters to be determined from observations.
Q > 0 indicates the energy flows from DE to DM while
Q < 0 signals the opposite. In Table I we list four phenom-
enological interacting models explored in this work. We
study the constant equation of state ofDE in the phantomand
quintessence regions, respectively, to ensure stable density
perturbations [21].
The perturbed space-time is given by

ds2 ¼ a2ðτÞ½−ð1þ 2ψÞdτ2 þ 2∂iBdτdxi

þ ð1þ 2ϕÞδijdxidxj þDijEdxidxj�; ð6Þ

where ψ , B, ϕ, and E represent the scalar metric perturba-
tions, and Dij ¼ ð∂i∂j − 1

3
δijÞ▽2.

The linear perturbation equations of IDE models were
derived in [21,22]. The gauge invariant gravitational
potentials, density contrast, and peculiar velocity are
described as follows:

Ψ ¼ ψ −
1

k
H
�
Bþ E0

2k

�
−
1

k

�
B0 þ E00

2k

�
; ð7Þ

Φ ¼ ϕþ 1

6
E −

1

k
H
�
Bþ E0

2k

�
; ð8Þ

Dλ ¼ δλ −
ρ0λ
ρλH

�
ϕþ E

6

�
; ð9Þ

Vλ ¼ vλ −
E0

2k
: ð10Þ

Choosing the longitudinal gauge by defining E ¼ 0, B ¼ 0,
we have

Ψ ¼ ψ ; ð11Þ

TABLE I. Phenomenological interacting models.

Model Q wd

I 3ξ2Hρd −1 < wd < −1=3
II 3ξ2Hρd wd < −1
III 3ξ1Hρc wd < −1
IV 3ξHðρc þ ρdÞ wd < −1
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Φ ¼ ϕ; ð12Þ

Dλ ¼ δλ −
ρ0λ
ρλH

Φ; ð13Þ

Vλ ¼ vλ: ð14Þ

Considering the phenomenological form of the energy
transfer between dark sectors defined above, we obtain
the general gauge invariant perturbation equations for DM
and DE respectively,

D0
c ¼ −kUc þ 6HΨðξ1 þ ξ2=rÞ − 3ðξ1 þ ξ2=rÞΦ0

þ 3Hξ2ðDd −DcÞ=r;
U0

c ¼ −HUc þ kΨ − 3Hðξ1 þ ξ2=rÞUc; ð15aÞ

D0
d ¼ −3ðC2

e − wdÞDd − 9H2ðC2
e − C2

aÞ
Ud

k
þ ½3w0

d − 9Hðwd − C2
eÞðξ1rþ ξ2 þ 1þ wdÞ�Φ

þ 3ðξ1rþ ξ2ÞΦ0 − 3ΨHðξ1rþ ξ2Þ

− 9H2ðC2
e − C2

aÞðξirþ ξ2Þ
Ud

ð1þ wdÞk
− kUd þ 3Hξ1rðDd −DcÞ;

U0
d ¼ −Hð1 − 3wdÞUd þ 3ðC2

e − C2
aÞHUd

− 3kC2
eðξ1rþ ξ2 þ 1þ wdÞΦþ kC2

eDd

þ 3HðC2
e − C2

aÞðξ1rþ ξ2Þ
Ud

1þ wd

þ ð1þ wdÞkΨþ 3Hðξ1rþ ξ2ÞUd; ð15bÞ

where Uλ ¼ ð1þ wλÞVλ, C2
e is the effective sound speed of

DE, C2
a is the adiabatic sound speed, and r ¼ ρc=ρd is the

energy density ratio of DM and DE.
From the perturbed Einstein equations, we can get the

Poisson equation in the subhorizon approximation [22]

−k2Ψ ¼ 3

2
H2½Ωc▵c þ ð1 −ΩcÞ▵d�; ð16Þ

where ▵λ ¼ δλ −
ρ0λ
ρλ

Vλ
k , Ωλ ¼ ρλ

ρcrit
, and ρcrit is the critical

density. This equation can be used to build the bridge
between the matter perturbations and the metric perturba-
tions. We can rewrite the Poisson equation in real space as

▽2Ψ ¼ −
3

2
H2½Ωc▵c þ ð1 − ΩcÞ▵d�: ð17Þ

The second equation in (15a) can give the velocity
perturbation for DM of the form

V 0
c þ ½Hþ 3Hðξ1 þ ξ2=rÞ�Vc − kΨ ¼ 0: ð18Þ

Combining the Poisson equation (17), this equation can be
written in real space and in terms of the effective gravi-
tational potential to give a modified Euler equation,

▽V 0
c þ ½Hþ 3Hðξ1 þ ξ2=rÞ�▽Vc

þ 3

2
H2½Ωc▵c þ ð1 −ΩcÞ▵d� ¼ 0: ð19Þ

It is clear from the above equation that, due to the
coupling between dark sectors, the gravitational poten-
tial is modified and there is an additional acceleration for
DM particles.
The four phenomenological interacting models listed

in Table I were recently investigated by [23] to constrain
them by employing recent observational data sets including
CMB data from Planck 2015, Type Ia supernovae (SNIa),
baryon acoustic oscillations (BAO), and Hubble constant
(H0). We use their numerical fitting results as the input
parameters for our simulations and investigate the effects
of the interaction between dark sectors on the structure
formation by performing N-body simulations. We use the
Planck 2015 parameters [24] for the fiducial ΛCDM model
to compare our results from the IDE models. The cosmo-
logical parameters we use in our computations are listed
in Table II.

B. Initial condition

We use the capacity constrained Voronoi tessellation
(CCVT) method, which is an alternative method to produce
a uniform and isotropic particle distribution, to generate
preinitial conditions [25]. In comparison to the gravitational
equilibrium state (glass [26]), the CCVT configuration is a
geometrical equilibrium state, and is a more natural choice
for models that include forces other than pure gravity. We
use the open source code 2LPTIC [27] to generate the initial
condition for all our simulations. We have modified 2LPTIC
such that it can read matter power spectra generated by
CAMB [28] at arbitrary redshifts. Additional modifications
were done such that it can read the HðaÞ table and mðaÞ
table shown in Fig. 4. As IDE models modify the Hubble
diagram and matter density, this modification allows the
code to use a consistent second-order Lagrangian pertur-
bation theory.
In 2LPTIC [27], the second-order Lagrangian perturba-

tion theory is applied following the equation describing the
position displacement,

xðqÞ ¼ qþ∇qΨð1Þ þ∇qΨð2Þ; ð20Þ

whereΨð1Þ andΨð2Þ are first and second order displacement
field, respectively. The velocity displacement is given by

vðqÞ ¼ f1H∇qΨð1Þ þ f2H∇qΨð2Þ; ð21Þ
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where

f1 ¼
d lnðD1Þ
d ln a

; f2 ¼
d lnðD2Þ
d ln a

: ð22Þ

We knowΩm andH in IDE models are different from those
in the ΛCDM model. In the original 2LPTIC code, f1 ≈
Ω3=5

m and f2 ≈ 2Ω4=7
m are calculated from the ΛCDM model

[29,30]. We modified 2LPTIC code such that it can read in
the values of f1, f2, Ωm, and H at arbitrary redshift
calculated by the modified CAMB for our IDE models
[23]. However, at high redshift such as z ¼ 49 as used in
our simulations, we find that f1 ≈Ω3=5

m and f2 ≈ 2Ω4=7
m are

very good approximations even for our IDE models. Thus
for simplicity, we use this approximation to calculate f1
and f2 instead of using the results from the modified CAMB.
We note, however, that values of f1 and f2 calculated from
the modified CAMB can be easily used in our simulations.

C. ME-GADGET code

In order to study the IDE models, there are four
modifications required in the cosmological simulations
compared to the ΛCDM simulations [19,20]. First of all,
since the expansion of the universe is different in IDE
models, the Hubble diagram HðaÞ should be explicitly
given. Second, because of the energy flow between DM
and DE, the mass of the simulation particles mðaÞ, which
represents the DM energy density, should be changed as a
function of scale factor. Third, the DM particles in the
simulation will receive an additional acceleration propor-
tional to its velocity av ¼ αðaÞv, where

αðaÞ ¼ −3Hðξ1 þ ξ2=rÞa: ð23Þ

Compared to Eq. (19), there is an additional minus sign and
scale factor a, which come from the coordinate trans-
formation [19]. av is referred to as the dragging force or

friction term, although it is not necessarily slowing down
the particles.
Finally, the gravitational constant G is different from the

ΛCDM model. As a result, the DM particles in the
simulations will experience an additional force, which is
also called the fifth force. In fact, from Eq. (16), we can see
that the fifth force is caused by the perturbation of DE.
Therefore, the fifth force is a modification to the Poisson
equation in harmonic space −k2Ψ¼ 3

2
H2Ωc▵cð1þβða;kÞÞ,

where βða; kÞ ¼ ð1 − ΩcÞ▵d=Ωc▵c. In [19,20], βða; kÞwas
simplified to be a constant. This however, is not accurate
enough for capturing the distributions of DE and DM. In
contrast, we use βða; kÞ as a two-dimensional function,
which is calculated by the modified CAMB. We applied the
above four modifications in the original N-body simulation
code GADGET2 [31], and named it ME-GADGET.
In order to implement the four modifications in HðaÞ,

mðaÞ, αðaÞ, and βða; kÞ, we first make tables at discrete
values of a and k. We use the one-dimensional cubic
interpolation for HðaÞ, mðaÞ and αðaÞ, and the two-
dimensional bilinear interpolation for βða; kÞ. At every time
step, HðaÞ is used to calculate the length of the time step,
mðaÞ is used to update the mass of the simulation particle,
and αðaÞ is used to update the velocity of the simulation
particle together with the acceleration from gravity.
The use of βða; kÞ in our code is explained below in

detail. In every time step, when the code calculates the
particle-mesh gravity force, it will perform Fourier trans-
form and solve the Poisson equation in harmonic space. At
this time, the gravitational potential field in harmonic space
is calculated. βða; kÞ is used to modify this gravitational
potential field according to a and k. We assume that the DE
perturbation is only effective at large scales, and thus at
small scales, gravity follows the normal Poisson equation.
Therefore, only modifying the particle-mesh gravity solver,
which solves the gravity in the long range part, is accurate
enough. By the same argument, the βða; kÞ we adopted in
the simulation is calculated by our modified CAMB. βða; kÞ

TABLE II. Cosmological parameters (PBSH ¼ Planckþ BAOþ SNIaþ H0).

IDE_I IDE_II IDE_III IDE_IV ΛCDM

Parameter Planck PBSH Planck PBSH Planck PBSH Planck PBSH Planck

Ωbh2 0.0222 0.02223 0.02225 0.02224 0.02235 0.02228 0.02235 0.02228 0.02225
Ωch2 0.07131 0.0792 0.1334 0.1351 0.1236 0.1216 0.124 0.1218 0.1198
100θMC 1.044 1.043 1.04 1.04 1.041 1.041 1.041 1.041 1.04077
τ 0.08063 0.08204 0.07653 0.081 0.07051 0.07728 0.07043 0.07709 0.079
lnð1010AsÞ 3.097 3.099 3.088 3.097 3.074 3.088 3.073 3.087 3.094
ns 0.9633 0.9645 0.9638 0.9643 0.9608 0.9624 0.9609 0.9624 0.9645
wd −0.9031 −0.9191 −1.55 −1.088 −1.702 −1.104 −1.691 −1.105 −1
ξ1 � � � � � � � � � � � � 0.001458 0.0007127 0.001416 0.000735 � � �
ξ2 −0.1297 −0.1107 0.03884 0.05219 � � � � � � 0.001416 0.000735 � � �
H0 68.1 68.18 83.88 68.35 84.91 68.91 84.63 68.88 67.27
Ωm 0.2101 0.2204 0.2312 0.3384 0.212 0.3045 0.2141 0.3053 0.3156
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is the ratio between the linear perturbation of DE and the
linear perturbation of DM. This treatment is different from
[19,20]. Although, the linear calculated DE perturbation
has limitations, we use it here for lack of better choice.
Besides, the effect of βða; kÞ is minor compared to mðaÞ
and αðaÞ. The lowest panels of Fig. 4 show the values of
βða; kÞ at a ¼ 1 as a function of k for linear perturbations.
We can see clearly that the argument that DE perturbation is
only effective at large scales is correct, and it is orders of
magnitude smaller than DM perturbation. The GADGET2

code calculates the gravitational force using the tree
algorithm at short range. The tree force part, however, is
not modified since it solves the short range force in our
code. We have tested that loading the data from the tables
and performing interpolations do not affect the code
efficiency significantly. For the same resolution and box
size, a ΛCDM simulation and an IDE simulation cost
almost the same time with the same number of CPU cores.
We note that our code can also easily handle other
nonstandard cosmological models by simply modifying
the input tables.

III. SIMULATION

A. Simulation sets

We have run three different series of simulations that
include comparison test runs, convergence test runs, and
scientific runs.
For the comparison test runs, we simulate models studied

by Ref. [20] using our code and compare the results.
Comparing the nonlinear power spectrum at z ¼ 0, we find
that our results are consistent. These runs are named as
S0; S1; S2; S3; S4, and S6 following the naming convention
in Ref. [20].
For the convergence test runs, we study the effects of the

number of grids, the box size, and the resolution. The effect
of number of grids on the final results needs to be tested for
three reasons: (a) we need to make sure whether neglecting
the modification of short-range force is a valid choice,
(b) whether assuming DE perturbation is effective only at
long range, is reasonable, and (c) the number of grids is
sufficient to capture the large scale structure we would like
to examine. Along with the number of grids, we checked
the usual effects of changing box size and resolution. This
is done to check the systematic uncertainty of the simu-
lations. In addition, it will be useful for future studies with
different box size and resolution. Thus, we perform con-
vergence test runs and compare the nonlinear power
spectrum and halo mass function measured from simula-
tions with a different number of mesh grids, box sizes and
resolution. The names and parameters of the simulations
for convergence tests are summarized in Table III.
We perform the scientific runs using the parameters

constrained by Planck CMB observation only and the com-
bined Planckþ BAOþ SNIaþ H0 constraints obtained

in [23]. In all these runs, we use a box size of
400h−1 Mpc, 2563 particles, and 256 mesh grids per
dimension. The parameters we used are summarized
in Table II.

B. Comparison test

We have used the same model and the same parameters
as [20] to test the performance of the ME-GADGET code.
We have performed S0, S1, S2, S3, S4 and S6 simulations
described in [20]. As shown in Fig. 1, we find that our
simulation results are consistent with [20] qualitatively for
all the simulations including S1, which incorporates all the
modifications. Comparing S1 and S2, we can see that the
modified Hubble diagram suppresses the matter power

TABLE III. Simulations for convergence tests.

Name Box size=h−1 Mpc Nparticles PMGRID

PM128 400 2563 128
PM256 400 2563 256
PM512 400 2563 512
BOX 800 5123 512
RES 400 5123 256

FIG. 1. The matter power spectra at z ¼ 0 measured from our
simulations. S0, S1, S2, S3, S4 and S6 share the same convention
in [20]. The upper panel plots the power spectra from different
simulations, and the lower panel gives their ratios with respect
to the ΛCDM one. The solid lines present our simulation results,
while the dashed lines show those from [20]. Qualitatively, our
results are consistent with [20]. Notice that the red lines represent
the final comparison of our simulation with [20], which are
quite similar.
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spectrum at all scales. Comparing S1 and S3, it is clear that
modified fifth force, or the DE perturbation enhances the
matter power spectrum at all scales. Comparing S1 and S4,
we can see that modified velocity dependent acceleration
(friction term or dragging force) suppresses the matter
power spectrum mainly at small scales. Finally, comparing
S1 and S6, it is clear that modified simulation particle mass
enhances the matter power spectrum at all scales.
We have also tested that with further modifications of the

tree force as [20] i.e., change the gravitational constant
when computing the gravitational force in the tree algo-
rithm. The difference is negligible at large scales (< 1%)
and is also not very significant at small scales (∼5%).
However, we do not plot the results of this tree force
modifying test in Fig. 1 for a better illustration.
Even though our results qualitatively agree with [20],

quantitatively, they are not exactly the same. The main
reason is that our simulations are N-body simulations
without gas, while [20] also included gas hydrodynamics.
However, the qualitative agreement is sufficient to confirm
that our implementation of the algorithm proposed in [19]
is correct. We stress that comparing the quantitative results
is not the main purpose of this work, and studying the effect
of gas is beyond the scope of this paper.

C. Convergence test

In this section, we show that it is reasonable to modify
the particle-mesh gravity only, and our code can be
extended self-consistently to larger box sizes or higher
resolutions. The simulations we performed for these tests
use the parameters of the model I PBSH set listed in
Table II. This set of parameters has the largest interaction
strength among all four models, and consequently leads to
the largest deviation from ΛCDM. As shown in Fig. 2,
changing the number of grids affects the nonlinear matter
power spectrum at z ¼ 0 by at most 1%. The modification
of particle-mesh gravity on the grids represents the DE
perturbation. We find that the influence of number of grids
is minor as long as the number is enough for capturing the
DE perturbation at large scales. We note that an accuracy
of ≲1% has been found to be sufficient for the next
generation surveys [32].
The box size mainly affects the power spectrum at large

scales. As we can see from Fig. 2, the difference is mainly
caused by the cosmic variance. On the other hand, the
resolution mainly affects the power spectrum close to the
Nyquist limit at small scales. The effects of box size and
resolution only introduce ≲5% difference in the range in
which we are interested, i.e., k < 1h Mpc−1. Figure 3
shows the halo mass functions at z ¼ 0 for different
convergence test runs. It is clear that the resolution plays
an important role in the halo mass function at the low mass
end. For halos with more than 500 particles however, such
an effect is negligible. Since we use a finite number of
particles to represent the dark matter fluid and trace the

evolution, the corresponding systematic bias is inevitable.
We find that this bias is consistent with the ΛCDM
simulations with GADGET2 as discussed in [32]. Thus
the systematic uncertainty in our code is at the same level
as the original GADGET2 code. Therefore, we are confident
about our simulation results. In the scientific runs, we
use 2563 particles and 256 grids per dimension within a
400h−1 Mpc box. This choice of parameters passes the
convergence test and is a balance between accuracy and
computation costs. In addition, we conclude that our code
is accurate and efficient to be further extended to future
larger simulations.

IV. RESULTS

We have performed nine sets of scientific simulations
that can be classified into three groups: (a) one run for the
ΛCDMmodel, (b) four runs for IDE models constrained by
Planck alone (PC here after), and (c) four runs for IDE

FIG. 2. Ratios of matter power spectra with respect to that of the
PM256 simulation for the convergence runs at z ¼ 0. The blue
(yellow, green, red) line shows the results from the PM128
(PM512, BOX, RES) run. The black dashed lines show the box
size limit and resolution limit of our PM128, PM256, PM256 and
RES simulations. The green dashed line shows the resolution
limit of our BOX simulation. The difference between a different
number of grids is within 1%, which is accurate enough. The
number of grids has negligible effects on our ME-GADGET code.
The box size effect and resolution effect are < 5% in our
interested scale k < 1h Mpc−1. The cosmic variance is the major
reason of the difference between BOX and other runs, so we
shaded the k range close to the box size limit, where the
difference is not due to simulation itself. The simulation setting
of PM256 is enough for us to capture the physical insights from
the nonlinear evolution of the large scale structure.
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models constrained by Planckþ BAOþ SNIaþ H0 (FC
hereafter). From Table II, we can see that in IDE_I, the
interaction parameter ξ2 is constrained to be smaller than
zero. It means in IDE_I, energy is transferred from DM to
DE. In IDE_II, III and IV, the interaction parameters are all
constrained to be larger than zero, which means that there is
energy flow from DE to DM.
Due to lack of N-body simulation for IDE models, an

initial attempt to get the low redshift nonlinear matter power
spectrum was proposed in [15]. This was done by adding the
nonlinear correction, so-called halofit [33], onto the linear
matter power spectrum in IDE models. This is an approxi-
mate treatment, since it is only true when the IDE model
does not deviate much from the ΛCDM model. Because the
halofit is an empirical fit to ΛCDM model N-body simu-
lations, it cannot be directly applied to IDE models,
especially when the interaction parameter is large enough.
A fully self-consistent simulation pipeline is called for to
explore the physics on nonlinear structure formation when
there is interaction between dark sectors at low redshifts.
We plot the interpolation tables used in the simulations

in Fig. 4. We notice that IDE_I and IDE_II models are
different from ΛCDM both in FC parameter sets and PC
parameter sets. Comparing with the ΛCDM model, it is
clear that the particle masses in IDE_I (IDE_II) get lower
(higher), while the velocity dependent accelerations get
larger (smaller) quickly at low redshifts. These differences
are caused by the energy flow from DM to DE in IDE_I
(DE to DM in IDE_II) which increases sharply at low
redshifts. Thus, we expect to see significant differences in

large scale structures at low redshifts in IDE_I and IDE_II
simulations.

A. Density field

Figure 5 shows the projected matter density distribution in
a slice with a thickness of 10h−1 Mpc. Comparing the FC
IDE_I simulation and the ΛCDM model, it is clear that the
IDE_I structure is less dense than that in the ΛCDM. This is
caused by the quick flow of energy from DM to DE at low
redshifts. The speed of the energy flow in IDE_I is propor-
tional to the DE average density, which decreases very
slowly (∝ ∼a−0.3) compared to that of DM (∝ a−3). Thus,
DM flowing into DE accelerates in terms of scale factor,
when the universe becomes DE dominated at low redshifts.
We show DM and DE density distributions for four PC

simulations in Fig. 6 and FC simulations in Fig. 7. The DM
density distributions at large scale are similar for all four
IDE models. Although the DE distribution is not homo-
geneous, its perturbation is much smaller than that of the
DM, which is consistent with the linear investigations [34].
The contours in Figs. 6 and 7 showing the DE distribution
were calculated by multiplying the DM density with βða; kÞ
using linear calculation. In Fig. 8, we show the dependence
of DE perturbation on the DE equation of state wd and the
interaction strength ξ2. If wd ¼ −1, DE is the cosmological
constant, there is no DE perturbation. If wd deviates from
−1, DE perturbation grows as jwd þ 1j, leading to stronger
clustering together with DM. In contrast, as the interaction
strength increases, DE perturbations become more negative
leading to stronger anticlustering with DM.
In Figs. 6 and 7, the color of the contour represents the

DE density. It is clear that, except for FC IDE_II simu-
lation, DE generally follows DM clustering, where DE is
mostly concentrated in the most dense DM regions. There
are, however, DE condensations in the DM void regions.
This can be understood by considering a wet sponge (DM)
filled with liquid (DE) as an analogy. If the sponge is
squeezed (DM collapse), part of the liquid (DE) will be
compressed, while at the same time, there is also a part of
the liquid that is squeezed out. This shows that although DE
can participate in the structure formation, it does not
collapse exactly along with DM. This is consistent with
the study of Layzer-Irvine equations in the linear formalism
for the collapse of structure in the expanding universe [35].
In sharp contrast, for FC IDE_II simulation, DE is under-
dense in regions of DM overdensity. This again can be
understood by considering a wet sponge (DM) with
incompressible liquid (DE), where most of the liquid
(DE) is squeezed out instead of being compressed as the
sponge squeezed (DM collapse).

B. Matter power spectrum

We measure the matter power spectra of the simulations
using COMPUTEPK code [36]. We show the matter power

FIG. 3. Halo mass function of the convergence test results. Green
(black) dashed line shows the halo with 200 (500) particles.
Resolution plays a major role in halos with particles less than 500,
but not significant for halos with particles more than 500.
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FIG. 4. Interpolation tables we used in the simulations. PC simulations are shown on the left while FC simulations are given on the
right. From top to bottom, they are initial matter power spectrum ratio between IDE models and the ΛCDMmodel (denoted as LCDM in
the plot) at z ¼ 49, H/H0 ratio, simulation particle mass ratio, drag force αðaÞ and fifth force βða ¼ 1; kÞ. Together with the ME-
GADGET code and these tables, one can reproduce all the scientific simulations we have shown in this paper.
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spectra for the PC simulations in Fig. 9 and the FC
simulations in Fig. 10. We find that at z ¼ 1, the matter
power spectra of all the IDE models are similar to that
of the ΛCDM model, except for some normalization

FIG. 6. The dark matter density distributions are shown in
reddish colors and the dark energy distributions are shown in the
contours for four PC simulations. The colors of the contour
represent the DE density, blue (green) contours represent low
(high) DE density. The DM density distribution share the same
scale and unit with Fig. 5, the dark energy contour is in arbitrary
units, but the same for these four plots, just to illustrate that the
dark energy perturbation is only effective on large scales.

FIG. 8. The dark energy perturbations Δd at z ¼ 0 for different
ωd and ξ2 are shown here. Δd > 0 means dark energy follows the
dark matter distribution, while Δd < 0 means dark energy
follows the dark matter distribution inversely. More deviation
from ωd ¼ −1 leads to more clustering and larger ξ2 leads to
more anticlustering.

FIG. 5. Density distribution comparison between FC IDE_I
simulation and ΛCDM simulation. The upper left (right) panel
shows the density distribution of ΛCDM simulation at z ¼ 1
(z ¼ 0.) The lower left (right) panel shows the density distribu-
tion of FC IDE_I simulation at z ¼ 1 (z ¼ 0). The density
distribution is plotted over a slice of the simulation box with
10h−1 Mpc thick. The color denotes the surface density in
1010hM⊙ Mpc−2. There is no significant difference at z ¼ 1,
but obviously, IDE_I becomes less dense at z ¼ 0 due to the
transfer from dark matter to dark energy.

FIG. 7. The dark matter density distributions are shown in
reddish colors and the dark energy distributions are shown in
the contours for four FC simulations. The plotting sets are
similar to Fig. 6.
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differences in the PC simulations leading to some overall
offsets. However, at z ¼ 0, the matter power spectra of
IDE_I and IDE_II are clearly different from those of
IDE_III, IDE_IV and ΛCDM. It is clear that the matter
power spectrum of IDE_I is suppressed with a steeper

slope at k > 0.1h Mpc−1 than other models. In contrast,
the matter power spectrum of IDE_II is enhanced at
k > 0.8h Mpc−1 with a shallower slope compared to the
ΛCDM model. This can easily be attributed to the
direction of the energy flow. In the constrained IDE_I,

FIG. 9. The matter power spectra of PC simulations at z ¼ 1 (z ¼ 0) are shown on the left (right) panel. All models are similar to
ΛCDM at z ¼ 1, except for some normalization difference. Notice that we have rescaled IDE_I (IDE_II, IDE_III, IDE_IV) by a factor of
1
4
(1
2
; 1; 2) for better illustration at z ¼ 0. The slope of matter power spectrum of IDE_I and IDE_II is clearly different with the other

models at z ¼ 0. The calculated nonlinear matter power spectra by [33] are given in dash-dotted lines. ΛCDM model, IDE_III and
IDE_IV can be well represented by [33], but it fails for IDE_I and IDE_II due to the nontrivial nonlinear evolution of these two models.

FIG. 10. Similar plot to Fig. 9, but shows the matter power spectra of FC models. All matter power spectra of different models are
almost identical to the ΛCDM model at z ¼ 1, except for IDE_I with some minor difference. Notice that we have rescaled IDE_I
(IDE_II, IDE_III, IDE_IV) by a factor of 1

4
(1
2
; 2; 4) for better illustration at z ¼ 0. At z ¼ 0, IDE_I and IDE_II are clearly different from

the other three. IDE_III and IDE_IV keep identical to ΛCDM at z ¼ 0. The FC models are better normalized to the ΛCDM model than
the PC models, without rescaling, all five curves are almost identical at large scales.
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energy flows from DM to DE, while for IDE_II the
energy transfers in the opposite direction. For IDE_III
and IDE_IV models, we find that the matter power
spectra from the FC simulations are very similar to that
of the ΛCDM model.
We also compare the matter power spectra measured

from our simulations with the halofit nonlinear power
spectrum [33]. The purpose of doing so is to check the
validity of employing the halofit model to calculate
nonlinear corrections adopted in [15]. For models whose

matter power spectra are not much different from that of
the ΛCDM model, such as IDE_III and IDE_IV, it is safe
to use halofit. However, for models with clearly different
matter power spectra from that of the ΛCDM model, i.e.,
IDE_I and IDE_II, using halofit blindly can lead to
meaningless and wrong results. The nonlinear evolution
in these models is highly nontrivial, and it is drastically
different from the ΛCDM model. In short, halofit should
not be used as a simplification without self-consistent
analysis and simulation.

FIG. 11. The halo mass functions of PC simulations at z ¼ 1 (z ¼ 0) are shown on the left (right) panel. Notice that due to the energy
flow from DM to DE, the red line, representing IDE_I, is much lower than the others at z ¼ 0. The amplitudes of the models are different
due to the different normalizations given by the PC parameters.

FIG. 12. Similar plot to Fig. 11, but shows the halo mass functions of FC simulations. After proper normalization with the FC
parameters, IDE_III, IV and ΛCDM, at both z ¼ 1 and z ¼ 0, are not distinguishable. We clearly see the number of halos in IDE_I is
much less than the other models at z ¼ 0.
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C. Halo mass function

We identify halos with an overdensity parameter
Δ200 ¼ 200 with respect to the mean background density
using AHF [37], and measure the halo mass functions in our
simulations. The halo mass functions of PC simulations are
shown in Fig. 11, while those of FC simulations are shown in
Fig. 12. It can be seen from Figs. 11 and 12 that the halo
mass function in IDE_I from z ¼ 1 to z ¼ 0 compared to the
ΛCDM model changes dramatically. For IDE_II, there is
also a noticeable difference. Such differences compared to
the ΛCDM model can be used to provide strong constraints
by our further analysis in the future. It is worth noting that
using N-body simulations, we are in a position to constrain
IDE models better than previous linear level studies using
PBSH [23]. This shows the benefit of performing self-
consistent simulations in studying nonlinear structure for-
mation in IDE models.

V. SUMMARY AND DISCUSSION

We have devised a fully self-consistent simulation pipe-
line for IDE models, the core of which is the novel N-body
simulation code. We have modified GADGET2 [31] so that it
can accept arbitrary inputs including Hubble diagram,
simulation particle mass, velocity dependent acceleration
and DE perturbation. This modified code is called ME-
GADGET. We use ME-GADGET to simulate the nonlinear
evolution of IDE models. This idea was first suggested by
[19]. However, they only considered a specific DE model
with constant perturbation and adopted the initial condi-
tions from the ΛCDM model. Both of these are major
drawbacks which we have successfully overcome in our
pipeline. We performed comparison and convergence tests
and found that our pipeline is accurate as well as efficient.
We have tested the effect of neglecting DE perturbation at
small scales by varying the number of mesh grids used to
calculate the gravity. We show that the effect is less than 1%
if the number of mesh grids is enough to cover the main
effective DE perturbation scales. We have also tested that
the effects of different box sizes and resolutions are less
than 5% in the matter power spectrum. Thus, we have
successfully developed a fully self-consistent pipeline for
simulating IDE models which includes (a) simulating the
effect of DE perturbation at large scales, (b) generating
the preinitial conditions, (c) using second-order Lagrangian
perturbation theory consistently, and (d) employing the
CAMB code to generate the initial matter power spectrum.
Using the cosmological parameters constrained by [23],

we performed nine sets of scientific simulations applying
our pipeline. These parameters passed the constraints from
Planck CMB observation and PlanckþBAOþSNIaþH0
combined measurements. IDE_I and IDE_II, whose inter-
actions between DM and DE are proportional to the energy
density of DE, show significant difference between the
direct simulations and the prediction from the naive halofit
attempt. Since the nonlinear matter power spectrum close to

z ¼ 0 is powerful for studying nonstandard cosmological
models by comparing with observations, a self-consistent
pipeline is indispensable. The significant differences
between IDE_I, IDE_II and the ΛCDM model indicate
that tighter constraints can be put on these models by
comparing the simulation results with observations at low
redshifts. We have shown that simulations are vital for
providing further constraints in the future using large-scale
structures at low redshifts.
We summarize our results from the simulations in the

following four points:
(1) In general, if energy flows from DM into DE, the

structure formation will be suppressed, and vice
versa. However, the effect of the interaction between
DM and DE on the nonlinear evolution is nontrivial.
Simulations are necessary for studying large scale
structures for IDE models.

(2) If the interaction parameter is small, such as ξ1ðξÞ ∼
0.001 in IDE_III and IDE_IV models, halofit can
still be a good approximation. But if the interaction
parameter is large, such as ξ2 > 0.03 in IDE_I and
IDE_II, halofit is not appropriate.

(3) DE perturbations grow together with DM density
perturbations, but at much larger scales of
∼100h−1 Mpc. The growth of DE perturbations
depend on the equation of state and the interaction
parameters.

(4) Although allowed by combined Planck, BAO, SNIa
and H0 observations, the results of simulations of
IDE_I and IDE_II models are significantly different
from the ΛCDM model in nonlinear structure forma-
tion at z ¼ 0. This indicates that low redshift obser-
vations can be a powerful tool for refining IDEmodels
in the future.However for IDE_III and IDE_IVmodels,
we cannot count on the nonlinear simulation to dis-
tinguish them from the ΛCDM model.

In the future, we plan to use the ME-GADGET code to
perform multiple simulations with larger box sizes and
higher mass resolutions, and cover larger parameter space
to build up emulators for the observable. We will use our
simulations to put further constraints on IDE models using
observations of large scale structures at low redshifts. We
forecast a large improvement in the constraints for the
IDE_I and IDE_II models. Further studies will also be done
for IDE models with quantum field theory origin.
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