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We discuss the effect of super-Hubble cosmological fluctuations on the locally measured Hubble
expansion rate. We consider a large bare cosmological constant in the early Universe in the presence of
scalar field matter (the dominant matter component), which would lead to a scale-invariant primordial
spectrum of cosmological fluctuations. Using the leading-order gradient expansion, we show that the
expansion rate measured by a (secondary) clock field which is not comoving with the dominant matter
component obtains a negative contribution from infrared fluctuations, a contribution whose absolute value
increases in time. This is the same effect that a decreasing cosmological constant would produce. This
supports the conclusion that infrared fluctuations lead to a dynamical relaxation of the cosmological
constant. Our analysis does not make use of any perturbative expansion in the amplitude of the
inhomogeneities.
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I. INTRODUCTION

The cosmological constant problem (see [1] for reviews)
is a key challenge for fundamental physics. Basic argu-
ments imply that the vacuum energy of matter fields should
act as a cosmological constant Λ and cause the Universe to
accelerate. Assuming that an ultraviolet cutoff scale close to
the Planck scale is used, the resulting value for Λ is about
120 orders of magnitude larger than the maximal one
allowed by observations. The discovery of the acceleration
of the Universe [2] has added a new perspective to this
problem. If the observed acceleration is due to a small
cosmological constant, then we do not only have to explain
why the cosmological constant is not of the Planck scale,
but also why it happens to be rearing its head at the present
time in the cosmological history of the Universe. This is the

coincidence problem (see e.g., [3] for reviews of the dark
energy problem).
It has been conjectured for some time that de Sitter space

is unstable because of infrared effects [4,5] (see, however,
[6] for arguments supporting the stability of de Sitter
space), and that hence the bare cosmological constant in
the Lagrangian would be invisible today.1 Specifically, it
was suggested by Tsamis and Woodard [10] that the
backreaction of super-Hubble scale gravitational waves
could give a negative contribution to the effective cosmo-
logical constant and cause the latter to relax. The problem
was studied in perturbation theory, and it was found that
one needs to go to two-loop order (fourth order in the
amplitude of the gravitational waves) in order to obtain a
nonvanishing effect. The study of the backreaction effect of
long wavelength cosmological perturbations was initiated
in [11] and it was found that at one-loop order (second
order in the amplitude of the perturbations) super-Hubble
cosmological perturbations lead to a negative contribution
to the cosmological constant (see, also, [12–14]). Based on
this analysis, it was then conjectured in [15] that this
backreaction could lead to a late time scaling solution for
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1See also [7–9] for a discussion on the difficulty of obtaining
de Sitter space in string theory.
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which the contribution of the cosmological constant tracks
the contribution of matter to the total energy density.
The backreaction effect originates from the fact that the

Einstein equations are highly nonlinear. Hence, if we
consider only linear perturbations about a homogeneous
and isotropic cosmological background metric, then the
Einstein equations are not satisfied at quadratic order
from a naive point of view. Then, specifically, each
Fourier mode of the linear fluctuations yields a contribution
to the background metric at quadratic order, and hence
affects quantities such as the Hubble expansion rate.2

Nonlinear effects also cause a correction to the fluctuations
themselves, but initial studies [16] have shown that these
effects are less important than the effects on the
background.
The setup of the backreaction analysis of [11] was the

following. A large bare cosmological constant Λ will lead
to a phase of inflationary expansion of space. Quantum
fluctuations in this quasi–de Sitter phase are continuously
stretched beyond the Hubble radius, freeze out, are
squeezed and will generate an increasing phase space of
super-Hubble modes. In terms of comoving momenta, the
phase space of these infrared modes runs from some value
ki which corresponds to the Hubble radius at the initial time
ti (and represents a physical infrared cutoff) to the Hubble
scale HeHðt−tiÞ. The fact that new modes are continuously
injected into the phase space of infrared modes is crucial for
the backreaction to be effective. Once the backreaction
effect of the long wavelength modes has built up suffi-
ciently, it can cancel out the effects of the bare cosmo-
logical constant and terminate the phase of accelerated
expansion.
Questions about the analysis of [11] were raised in [17]

where the challenge was posed to show whether the effects
predicted in [11] are in fact locally measurable. In fact, it
was then shown in [18] (see also [19]) that in the case of
pure adiabatic fluctuations the effects computed in [11] can
be undone by a second-order time reparametrization. On
the other hand, if there is a clock field present in addition to
the matter which dominated the energy density, then, as
shown in [20], the backreaction of cosmological fluctua-
tions can be shown to influence the locally measured
expansion rate in the sense that the locally measured
expansion rate is smaller at a fixed value of the clock field
if there are super-Hubble fluctuations present than if there
are none (assuming that the clock field does not track the
dominant component of matter, i.e., that entropy fluctua-
tions are present). Considering two components of matter, a
first dominant fluid (which sets up the cosmological

fluctuations) and a second sub-dominant clock field is
very natural in the context of late time cosmology where we
measure time in terms of the temperature of the sub-
dominant radiation fluid. The analysis of [20] was extended
in [21] following a new gauge-invariant approach intro-
duced in [22] (and based on [23–25]). This approach was
first applied to analyze at second order in the perturbative
expansion single scalar field models, for which only
expansion rates defined by isotropic observers experience
a nontrivial negative quantum backreaction [26]. Moving to
the above mentioned two field models, in [21], it was in fact
confirmed that, at second order in perturbation theory, the
backreaction of long wavelength cosmological perturba-
tions leads to a decrease in the locally measured expansion
rate (see also [27] for other studies demonstrating that
backreaction effects are for real). Furthermore, in [28], it
was shown physically how super-Hubble fluctuation
modes can modify the parameters of a local Friedmann
cosmology.
All analyses of the backreaction of cosmological

fluctuations performed so far are, however, analyses in
leading-order perturbation theory. Then, in almost all cases,
backreaction effects of long wavelength fluctuations
become important only when perturbation theory breaks
down (see, e.g., [26]).3 Thus, while the fact that the leading-
order perturbative backreaction effect leads to a negative
contribution to the cosmological constant supports the
possibility of an instability of (quasi–) de Sitter spacetime,
it cannot give a definite answer since the effect may be
undone by higher-order effects.
In this paper, we show that the backreaction effect of

super-Hubble cosmological fluctuations on the local expan-
sion rate persists beyond perturbation theory and that, given
fluctuations in the clock field relative to those of the
dominant matter field, the locally measured Hubble expan-
sion rate obtains a negative contribution, a contribution
whose amplitude grows in time. This supports the claim
that (quasi–) de Sitter spacetime is unstable, and that it will
lead to a dynamical relaxation of the cosmological
constant.4

Although our analysis is nonperturbative in the
amplitude of the cosmological perturbations, it is only a

2In this approach, second-order perturbations, which would
have a nonzero average, are incorporated in the left-hand side of
the Einstein equations producing, for example, an effective
Hubble expansion. In this way, one takes into account the
backreaction, which can be evaluated looking at the aforemen-
tioned effect of linear perturbations at quadratic order.

3See [29] for a case in which backreaction of tensor modes can
be important within the perturbative regime, and [30,31] for a first
study of the regime of validity of perturbation theory through
gauge invariant variables. Tensor modes backreaction in a de
Sitter background was also considered in [32].

4Our qualitative result has been obtained quite simply, but with
a little price, since there is a residual gauge dependence of the
result because of our choice of separating average null nonho-
mogeneous fluctuations. Given that our previous results in a fully
gauge invariant framework are compatible with this assumption at
second order in perturbation theory, we consider our analysis as a
qualitative prediction at the nonperturbative level. We shall
address the problem of a fully nonperturbative gauge invariant
analysis in a future investigation.
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leading-order analysis in the gradient expansion. Such an
expansion should be reasonable for super-Hubble fluctua-
tions, and the formalism we are using here was in fact
suggested in [33] and applied to show that there is no
parametric resonance of super-Hubble scale metric fluctu-
ations during reheating (see e.g., [34] for a review) in the
case of pure adiabatic perturbations. The analysis of [33]
also shows that in the case of pure adiabatic fluctuations
there can be no backreaction of super-Hubble fluctuation
modes when the adiabatic field is the clock of the problem.
However one obtains a nonzero backreaction from adia-
batic fluctuation for an isotropic clock [26]. As said,
applying the formalism of [33], we here demonstrate that
in the presence of fluctuations of the clock field relative to
the constant energy density hypersurfaces of the dominant
matter there is a nonvanishing backreaction effect, and that
this effect corresponds to a negative contribution to the
locally measured Hubble expansion rate, a contribution
whose absolute value increases in time.
The article is organized as follow. In Sec. II, we derive an

expression for the local Hubble expansion rate in terms of
the variables expressing the cosmological perturbations.
We are interested in comparing the average of the expan-
sion rate taken over a hypersurface of constant clock field
between a manifold with cosmological perturbations and
one without, at the same value of the clock field. In Sec. III,
we evaluate this average expansion rate in the leading-order
spatial gradient expansion (which will be a good approxi-
mation to study the effects of super-Hubble fluctuation
modes) and show that the fluctuations result in a negative
contribution ΔH to the expansion rate H which corre-
sponds to a decrease in the effective cosmological constant.
Let us also underline that, since jΔHj is an increasing
function of time, the backreaction effect corresponds in fact
to an instability of (quasi–) de Sitter space and not just to a
renormalization of the cosmological constant. Finally, we
conclude in Sec. IV.

II. LOCAL HUBBLE EXPANSION RATE

In this section, we will derive an expression for the local
Hubble expansion rate from the point of view of a clock
field χ, extending the results of [21]. This is determined in
terms of the normal vector nμ to the constant χ hyper-
surfaces:

nμ ¼
∂μχffiffiffi
ξ

p ; ð1Þ

with ξ≡ gαβ∂αχ∂βχ. This can then be used to determine the
local expansion rate θðxÞ, where x denote the spatial
coordinates, by

θ ¼ ∇μnμ ¼ nμ∂μ log
ffiffiffiffiffiffi
−g

p þ ∂μnμ ð2Þ

Starting from this expression, and following [22], we want
than to compute the average of θ=

ffiffiffiffiffi
Zχ

p
over the constant χ

hypersurface, which will be used to define our effective
expansion rate including the contribution of the fluctua-
tions. Such an average can be defined by [22]

hAiχ ¼
R ffiffiffiffiffiffi

−γ̄
p

ĀR ffiffiffiffiffiffi
−γ̄

p ; ð3Þ

where the barred coordinate system x̄μ ¼ ðt̄; ⃗x̄Þ is the
system where χ is homogeneous, and γ̄ is the determinant
of the induced metric on that hypersurface.
Note that we treat χ as a spectator field in the same way

that the radiation field in late time cosmology can be
viewed as a spectator field in the matter-dominated phase.
The dominant matter component can be modelled as a
different scalar field φ which sets up the cosmological
fluctuations. In the same way that in current cosmology the
dominant matter component is inhomogeneous from the
point of view of the constant radiation temperature surfa-
ces, we assumed that the dominant matter is inhomo-
geneous from the point of view of the constant χ surfaces. It
is the dominant matter field which determines the metric
fluctuations. To describe these fluctuations we will work in
generalized longitudinal gauge (LG) (see e.g., [35] for an
in-depth review of the theory of cosmological perturbations
and [36] for a brief overview) in terms of which the metric
is given by

gμν ¼ diagðe2ϕðtÞ;−e−2ψðtÞ;−e−2ψðtÞ;−e−2ψðtÞÞ; ð4Þ
where ϕ and ψ are functions of space and time. In linear
perturbation theory, ψ ¼ ϕ in the absence of anisotropic
stress. Beyond linear perturbation theory, however, ϕ and ψ
must be treated as independent. Note that this is the unique
gauge in which the metric has no off-diagonal components.
If we want the metric to locally look like a Friedmann
metric for long wavelength fluctuations, then this gauge is
the preferred one (see also [26]).
The coordinate transformation from longitudinal gauge

to the constant χ gauge is [21]

xμ ¼ ðt; x⃗Þ → x̄μ ¼ ðt̄; ⃗x̄Þ
¼ ðχðt; x⃗Þ; x⃗Þ≡ fμðxνÞ; ð5Þ

and the metric in these coordinates, expressed in function of
LG variables, becomes

ḡμνðxÞ ¼
1

ð∂χ∂tÞ2

 
e2ϕ −e2ϕ∂iχ

−e2ϕ∂jχ e2ϕ∂iχ∂jχ − e−2ψδijð∂χ∂tÞ2

!
;

ð6Þ
with its inverse being
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ḡμνðxÞ ¼
 
ð∂χ∂tÞ2e−2ϕ − j∇⃗χj2e2ψ −e2ψ∇⃗χ

−e2ψ ð∇⃗χÞt −e2ψ I

!�����
f−1ðxÞ

¼
 

e−2ϕ −e2ψ∇⃗χ

−e2ψð∇⃗χÞt −e2ψ I

!�����
f−1ðxÞ

; ð7Þ

where we made _χ ¼ 1. All the quantities on the right-hand
sides are evaluated at ðf−1ÞμðxνÞ. Above we have used the
fact that

ξ ¼ e−2ϕ
�∂χ
∂t
�

2

− e2ψð∇⃗χÞ2

under the gauge transformation becomes

ξ̄ðxÞ ¼ e−2ϕðf−1ðxÞÞ: ð8Þ

Hence, the induced metric on the constant χ surfaces
becomes

ds2 ¼ e2ϕ
ðdx⃗ · ∇⃗χÞ2

_χ2
− e−2ψdx⃗2: ð9Þ

From (6) it follows that the determinant of the metric takes
the form

ffiffiffiffiffiffi
−ḡ

p ¼
�
1
∂χ
∂t
eϕ−3ψ

�
f−1ðxÞ

: ð10Þ

We will now compute the local measure of expansion
directly in the barred coordinates, i.e., using

θ̄ðxÞ ¼ ∇̄μn̄μ ¼ n̄μ∂μ log
ffiffiffiffiffiffi
−ḡ

p þ ∂μn̄μ; ð11Þ

where n̄μ is the normal vector to the constant χ hyper-
surfaces in the barred coordinates. In the following, all
quantities which define the barred variables are evaluated at
f−1ðxÞ. We then have

n̄μðxÞ ¼
�∂xα
∂fμ
�
f−1ðxÞ

nαðf−1ðxÞÞ ð12Þ

which becomes

n̄μðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξðf−1ðxÞÞ
p �

_χ ∇⃗χ
�
·

�
1=_χ −∇⃗χ=_χ

0⃗
t I

�
ð13Þ

and, finally, gives

n̄μðxÞ ¼ eϕð1; 0⃗Þ; ð14Þ

corresponding indeed [see Eq. (1)] to the case of a
homogeneous χ̄ which labels the time coordinate. One
also has

n̄μ ¼ ḡαμn̄α; ð15Þ

where the inverse metric is given in Eq. (7) so that

n̄μ ¼ ð1;−e2ψ ð∇⃗χÞtÞjf−1ðxÞ: ð16Þ

We also have from Eq. (10)

logð ffiffiffiffiffiffi
−ḡ

p Þ ¼ ϕ − 3ψ − log _χ ð17Þ

which implies

∂μ½logð
ffiffiffiffiffiffi
−ḡ

p Þ�f−1ðxÞ ¼
�
∂μðϕ − 3ψÞ þ ∂μ _χ

_χ

�
: ð18Þ

In the leading-order gradient expansion, the spatial deriva-
tive terms in the above are negligible. Making use of n̄0 ¼
expð−ϕÞ we then get

θ̄ðxÞ ¼ ḡ00
�
_ϕ − 3 _ψ −

χ̈

_χ

�
þ ḡ0i∂iðϕ − 3ψ − log _χÞ þ ∂μḡ0μ; ð19Þ

which then yields

θ̄ðxÞ ¼ −3e−ϕ _ψ : ð20Þ

In order to compute the spatial average of θ over the
constant χ hypersurfaces, we need the determinant of the
induced metric γ̄ij on these surfaces [see (3)]. This metric is
obtained from the spatial part of (6)

γ̄ij ¼
e2ϕ

_χ2
ð∇⃗χÞt∇⃗χ − e−2ψ I ð21Þ

so that the measure factor is given by

ffiffiffiffiffiffi
−γ̄

p ¼ e−3ψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3e2ðϕþψÞ j∇⃗χj2

_χ2

s
: ð22Þ

In the leading-order gradient expansion, we can neglect the
spatial gradient terms, and hence the above expression
reduces to

ffiffiffiffiffiffi
−γ̄

p ¼ e−3ψ : ð23Þ

We want now to compute the effective expansion rate
Heff . As introduced before, this can be defined as
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Heff ¼ _χð0Þ
1

3

�
θffiffiffi
ξ

p
	
: ð24Þ

Noting that ξ̄ ¼ e−2ϕ, we would have at a classical level

Heff ¼
1R

dx
ffiffiffī
γ

p ðxÞ
Z

dx
ffiffiffiffiffiffiffiffiffi
γ̄ðxÞ

p
eϕðf−1ðxÞÞθ̄ðxÞ: ð25Þ

where, in the equation above, we have considered _χ ¼ 1.

III. EVALUATION OF THE LOCAL HUBBLE
EXPANSION RATE

As we have seen in the previous section, the effective
Hubble parameter is given by

Heff ¼
1

3

h−3e−3ψT _ψTi
he−3ψT i ; ð26Þ

where ψT is what we called ψ in the previous section. The
reason for this change in notation is that in the following we
want to denote by ψ the fluctuating part of ψT .
We can separate the background contribution from the

total ψT by writing

ψT ¼ − lnða=a0Þ þ ψ : ð27Þ

There are two ways to set up this separation. In the first, we
take aðtÞ to be a solution to the Friedmann equations in the
absence of fluctuations. In this case, the spatial average of
the fluctuation ψ only vanishes at linear order in perturba-
tion theory, but not at higher order. This is the view which
was taken in [21]. Here, on the other hand, we consider all
contributions to the metric which are homogeneous in
space to be part of aðtÞ, or, more generally, to be part of the
observable that we want to study including the backreaction
of the metric perturbation which have a nonzero average. In
this manuscript, we consider as our observable the one
defined in (26). Hence, the spatial average of ψ vanishes
even beyond linear order in perturbation theory. On the
other hand, the scale factor aðtÞ will not naively satisfy the
Friedmann equations if fluctuations are present. The clock
field χ evolves according to the full metric, not according to
the metric which obeys the Friedmann equations in the
absence of fluctuations. Hence, we will consider the
separation where the spatial average of ψ vanishes.5

We then write Eq. (26) as

Heff ¼
1

3

hþ3a3e−3ψðHhom − _ψÞi
ha3e−3ψi

¼ he−3ψHhomi
he−3ψi −

he−3ψ _ψi
he−3ψi ; ð28Þ

where Hhom is the Hubble expansion rate in the absence of
perturbations, from which it is evident that in order to
obtain the contribution to Heff from the cosmological
fluctuations we must compute the quantity

ΔHeff ≡ −
he−3ψ _ψi
he−3ψ i : ð29Þ

In the following, we will evaluate the above expression
for the cosmological background of interest to us, namely
an inflationary phase driven by a bare cosmological
constant but in presence of a scalar field φ supporting
gauge invariant fluctuations. In the absence of fluctuations,
the expansion is characterized by a constant Hubble
expansion rate H. Like in inflationary cosmology, we
assume that the phase of accelerated expansion begins at
some time ti, and we denote by ki the comoving momen-
tum whose wavelength is equal to the Hubble radius at the
initial time. Causal dynamics of the accelerated phase
cannot determine anything about fluctuations on larger
length scales, and we will introduce a physical infrared
cutoff by setting any initial super-Hubble fluctuations
to zero.
Let us begin by evaluating ΔHeff to leading order in

perturbation theory. By expanding the term e−3ψ in the
expression of ΔHeff , we obtain

ΔHeff ≈ −
hð1 − 3ψÞ _ψi
hð1 − 3ψÞi : ð30Þ

The term linear in _ψ vanishes when taking the average.
Hence, we obtain

ΔHeff ≈ −h−3ψ _ψi: ð31Þ

Let us note that, according to our definition, in Eq. (25),
θ̄ðxÞ ¼ θðf−1ðxÞÞ with f defined in Eq. (5). Writing
f−1ðxÞ¼ðhðt; x⃗Þ; x⃗Þ with hðt; x⃗Þ¼hðt;0Þþhð1Þðt; x⃗Þþ���,
one finds that in the leading order in the gradient expansion
the spatial dependence of ψ and _ψ is unaffected by the
change of variable, since corrections induced by hð1Þ are
suppressed for large scales.
We can spatially Fourier expand the fluctuation ψ

ψ ¼
Z

d3kϵkψkeikxþαðkÞ ð32Þ

5Note that this separation between background and perturba-
tion has a subtle gauge dependence, so that, using this definition,
one cannot make fully gauge-invariant statements. On the other
hand, as we shall see, this choice has the advantage of giving
easily access to some qualitative results at a nonperturbative level
in the leading order of the gradient expansion and we believe that
this approach can give a first indication of what the nonpertur-
bative backreaction is. A more rigorous, fully gauge invariant,
calculation is left for future work.
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where ψk represent the amplitudes of the modes (and hence
are positive), αðkÞ are phases, and the ϵk are independent
Gaussian random variables, i.e.,

hϵkϵk0 i ¼ δðk − k0Þ: ð33Þ

Since the fluctuations produced during the inflationary
phase have a roughly scale-invariant spectrum [37], we
have (neglecting the tilt)

PðkÞ ¼ jψkj2k3 ¼ const: ð34Þ

Therefore,

ψk ∼ k−3=2: ð35Þ

To obtain the backreaction effect of super-Hubble
modes, we must integrate over all values of k with k≡
jkj between the Hubble crossing scale and the infrared
cutoff ki described above. We obtain

3hψðt; xÞ _ψðt; xÞi ¼ 3

Z
d3kψk _ψk: ð36Þ

To evaluate this term we use the results of the theory of
cosmological fluctuations which tells us (see e.g.,
Eq. (6.56) of [35]) that ψk is constant on super-Hubble
scales modulo a decaying mode. Thus, we can write ψk as

ψk ¼ A0k þ δAkðtÞ; ð37Þ

where A0k is the constant mode, and δAkðtÞ is the decaying
mode which in an inflationary background scales as

δAk ¼ C7A0ke−Hðt−tHðkÞÞ; ð38Þ

where tHðkÞ is the time when the mode k crosses the
Hubble radius, and H is Hhom. From Eq. (6.56) of [35] it
also can be seen that both modes have equal strength at
Hubble radius crossing, the coefficient C7 is positive and its
absolute value is of order one.6 In particular, this implies
that the spectrum of both A0k and C7A0k is scale-invariant.
Note that the fact that for a super-Hubble fluctuation the
amplitude of the adiabatic mode is a constant plus a
decaying piece is valid also beyond the perturbative regime
(see e.g., [38]). Above, A0k is the contribution considered
previously (35), namely

A0k ∼ k−3=2; ð39Þ

which was obtained since the spectrum of fluctuations
produced during the inflationary phase is (almost) scale
invariant spectrum. From (38) it immediately follows that

_δA ¼ −C7A0kHe−Hðt−tHÞ: ð40Þ

Consequently,

A0k
_δAk ¼ −C7A2

0kHe−Hðt−tHÞ

¼ −C8k−3He−Hðt−tHÞ; ð41Þ

where C8 is another positive constant. Integrating this
contribution over all super-Hubble modes, therefore, yields

hψðt; xÞ _ψðt; xÞi ¼ −C8He−Ht

Z
HeHt

ki

dkk2k−3eHtHðkÞ: ð42Þ

Since eHtH ¼ k=H we obtain

hψðt; xÞ _ψðt; xÞi ¼ −C8e−HtHeHt

�
1 −

ki
H
e−Ht

�
¼ −C8Hð1 − fðtÞÞ; ð43Þ

where fðtÞ is a positive decreasing function of time (always
smaller than 1).
Therefore, substituting the above equation into the

expression for ΔHeff, given by (31), we obtain

ΔHeff ≈ −3C8Hð1 − fðtÞÞ; ð44Þ

where C8 is positive and fðtÞ is a positive decreasing
function of time. We can see that in the perturbative regime
the backreaction effect of super-Hubble cosmological
fluctuations yields an increasingly negative contribution
to the Hubble parameter.
Now let us analyze the effective Hubble parameter

beyond perturbation theory, but in leading order in the
gradient expansion. We begin with the previously derived
general expression ofHeff in Eq. (28). We consider the term

ΔHeff ≡ −
he−3ψ _ψi
he−3ψ i : ð45Þ

At any time we can Fourier expand the fluctuation field
ψðx; tÞ

ψðx; tÞ ¼ AðtÞgðx; tÞ ð46Þ

where AðtÞ characterizes the amplitude of the fluctuation
and gðx; tÞ is a function of unit amplitude whose spatial
average vanishes (since ψ is a fluctuation whose spatial
average vanishes). Neglecting, for a moment, the fact
that modes cross the Hubble radius, it would then con-
clude from the conservation of adiabatic fluctuations on

6The result that the coefficients of both the constant and the
decaying modes are of the same order of magnitude at Hubble
radius crossing can also be seen by matching the sub-Hubble
oscillatory solutions for ψk with the corresponding super-
Hubble modes at Hubble radius crossing, equating both the
amplitude and the time derivative of the modes.
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super-Hubble scales (see e.g., [38]) that the amplitude
AðtÞ has a constant component A0 and a decaying piece
A1ðtÞ, i.e.,

AðtÞ ¼ A0 þ A1ðtÞ; ð47Þ

both multiplying the same function gðx; tÞ. Recall that for
each Fourier mode of the fluctuation, the two modes have
comparable amplitude when the mode exits the Hubble
radius, and the second mode afterwards decreases as
expð−Hðt − teÞÞ, where te is the time when the mode exits
the Hubble radius. If we neglect the fact that new modes
cross the Hubble radius (i.e., neglecting the increase of the
phase space of super-Hubble modes) the function gðt; xÞ
would be independent of time. At first, we will work in an
adiabatic approximation in which we neglect the time-
dependence of g. In evaluating (45), we make use of the fact
that only the second mode in (47) depends on time, and that
the overall amplitude of this mode remains constant when
we take into account that new modes are continuously
exiting the Hubble radius. Hence, _ψ ¼ −HA1g, and

ΔHeff ≡H
he−3AðtÞgðx;tÞA1gðx; tÞi

he−3ψi : ð48Þ

The factor e−3AðtÞgðx;tÞ acts as a weighting function. It gives
larger weight to values of x where gðx; tÞ is negative.
Hence, the expectation value in the numerator of (48) is
negative, and we conclude that

ΔHeff < 0: ð49Þ

Since the phase space of super-Hubble modes is increasing,
the effective overall value of A will increase in time
(because the phase space of infrared modes is increasing).

Hence, the absolute value of ΔHð1Þ
eff will be increasing in

time, i.e.,

d
dt

ΔHeff < 0: ð50Þ

Note that (49) and (50) are the same conclusions obtained
in the perturbative analysis.
The inequalities in (49) and (50) are the main results of

our analysis. They demonstrate that, to leading order in
the gradient expansion, the backreaction of super-Hubble
cosmological fluctuations leads to a decrease in the
expansion rate which an observer described by a clock
field χ (which has a negligible contribution to the
energy density) measures. The absolute magnitude of the

backreaction effect increases in time as more modes
become super-Hubble. The main new feature of the present
analysis (compared to previous work) is that our analysis
does not make use of a perturbative expansion in the
amplitude of the cosmological perturbations. We stress that
a residual gauge dependence is present in this approach,
which, we believe, is nevertheless catching at a qualitative
level, with really minimal efforts, the right phenomeno-
logical behavior of the effect of the backreaction.
We also remind the reader that we have used a quasia-

diabatic approximation in which we at any time t consider
the phase space of modes which are super-Hubble at time t,
and treat it as a time-independent phase space. In this
approximation, we compute the magnitude of the change in
the Hubble expansion rate, finding ΔHeff < 0. In a second
step, we ask how the modes crossing the Hubble radius
change the position space amplitude of the fluctuation, and
then reach the conclusion that the absolute value of ΔHeff
increases in time. It would be nice to find an analysis which
avoids having to make this approximation.

IV. DISCUSSION

We have studied the effect of super-Hubble cosmological
fluctuations on the locally measured Hubble expansion
rate. We worked in the leading-order gradient expansion,
but nonperturbatively in the amplitude of the fluctuations as
a novel step in our approach. We consider a large bare
cosmological constant which leads to accelerated expan-
sion which in turn generates an (almost) scale-invariant
spectrum of cosmological fluctuations on super-Hubble
scales. We have shown that the expansion rate measured by
a clock field which is not comoving with the dominant
matter component obtains a negative contribution from
infrared fluctuations, a contribution whose absolute value
increases in time. This is the same effect which a decreasing
cosmological constant would produce. This supports the
conclusion that infrared fluctuations lead to a dynamical
relaxation of the cosmological constant [15].
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