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We analyze the passage to a continuum limit of the mode spectrum of primordial perturbations around
flat cosmological spacetimes in quantum cosmology, showing that this limit can be reached even if one
starts by considering a finite fiducial cell as spatial slice. Whereas the resulting system can be described in
an invariant way under changes of the fiducial volume using appropriate variables, both for the background
cosmology and the perturbations, obtaining in this way a discrete mode spectrum owing to the compactness
of the fiducial cell, we show that the desired continuum limit for the perturbations can still be established by
means of scaling transformations of the physical volume when this volume grows unboundedly. These
transformations lead to a model with a continuum of modes and independent of any scale of reference for
the physical volume. For the sake of comparison, we also consider an alternative road to the continuum
in Fourier space that has been employed in geometrodynamics and is based on the use of scaling
transformations of the fiducial volume, together with variables that are independent of them.
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I. INTRODUCTION

The standard cosmological model is based on the
principle [1] that, over sufficiently large regions (of the
order of 100 Mpc), our Universe is homogeneous in
average. This principle is supported by observations of
the large scale structure [2–4] and is consistent with the
isotropy of the cosmic microwave background (CMB) [5]
(usually complemented with theoretical results about gen-
eral relativity (GR) for certain types of matter [6,7]). This
spacetime, homogeneous in average, contains inhomo-
geneous structures that can be explained by the evolution
of primordial fluctuations in the early epochs of the
Universe, amplified through a period of (exponentially)
fast expansion that is known as inflation [8,9].
In the attempt to construct a quantum formalism for

cosmology, the coexistence of this homogeneity with
inhomogeneous perturbations has posed some subtle ten-
sions for models with noncompact spatial sections, because
the integration over an entire spatial slice of the homo-
geneous degrees of freedom is proportional to the volume,
that diverges in the noncompact case. Inhomogeneous
perturbations, on the other hand, can be described as fields,
that can be handled with due care over infinite sections
of constant time. Notice that this kind of problems with

integrals over spatial sections appear, in one way or
another, in all approaches to cosmology constructed from
an action, both with a Lagrangian or with a Hamiltonian
formulation. Traditionally, this tension has been settled
either by restricting all considerations to models with
compact sections, for which the spatial volume is finite,
or by absorbing the spatial volume in a redefinition of the
action that rescales it. This latter line of action is in
principle viable inasmuch as a global multiplicative factor
in the action does not modify the dynamics or the constraint
algebra. In the Hamiltonian formulation and for gravita-
tional systems, that are totally constrained, it amounts to a
scaling of the symplectic structure and of the Lagrange
multipliers of the constraints (ignoring at this stage possible
surface terms). For instance, for models in vacuo the spatial
volume can be absorbed by a redefinition of the Newton
constant, that divides the total action. This is commonly the
procedure in cylindrically symmetric gravity or with plane
symmetry, for the sake of some examples. In these cases,
one adopts a redefined gravitational constant per unit length
in the direction of the cylindrical axis, or per unit area of
the symmetry plane, respectively [10–12]. Out of the
vacuum, the Newton constant provides the coupling with
the matter content, and is not a multiplicative constant
anymore. But the passage to the quantum theory carries
with it the introduction of a global constant that makes the
action dimensionless, e.g., to provide a phase that can be
weighted in a path integral formulation, or simply to render
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dimensionless the symplectic structure (namely, the struc-
ture that determines the Poisson brackets). In most scenar-
ios, this constant can be thought as the Planck constant.
Absorbing the divergent spatial volume by redefining it
might be considered a sort of renormalization.
However, one may argue that scaling the symplectic

structure by a divergent quantity is not fully satisfactory. If
one starts e.g., with a canonical description of GR, one may
judge problematic that its particularization to homogeneous
and isotropic cosmological systems would lead to mean-
ingful canonical relations only after a redefinition of a
global constant that originally was assumed to be finite and
universal. Rather, one might expect that the description of
the system needs to be adapted to the homogeneous and
isotropic reduction. To try and solve this objection along
the sketched line of attack, a possible strategy is to cope
with spatial integrals in a little bit more subtle way. To
avoid divergences owing to infinite spatial volumes when
considering homogeneous degrees of freedom, the integrals
can be performed over a finite fiducial cell. For most
practical purposes, this cell can be regarded as a compact
spatial manifold. But then one must require that the
physical results be independent of the choice of this cell.1

This requirement can be achieved simply by redefining the
basic variables (once specialized to the homogeneous and
isotropic reduction) so that they are conveniently scaled by
a power of the cell volume, in such a way that the resulting
variables are genuinely canonical, with Poisson brackets
that, in particular, are invariant under changes of the cell.
For the sake of an example, this route has been followed in
the application of loop quantum gravity (LQG) [13] to
cosmology, a discipline that is called loop quantum
cosmology (LQC) [14,15]. LQG is a canonical program
for the nonperturbative quantization of GR that uses as
basic variables a densitized triad and a suð2Þ-connection.
LQC has reached notable success in the study of homo-
geneous (and isotropic) universes [16–18], among which
probably the most renamed is the resolution of the big
bang singularity, which is replaced by a bounce, in which
quantum geometry effects behave as a repulsive gravita-
tional interaction [14,17]. In addition, primordial perturba-
tions have also been considered in LQC (see e.g., the
review in Ref. [15]), and the possible consequences of a
quantum geometry on the CMB have been studied [19–23].
If, according to this alternative strategy, one admits the

restriction of the spatial sections to a fiducial cell, and
imposes boundary conditions for the modes of the primor-
dial perturbations that are consistent with this spatial
restriction (e.g., periodic conditions), one gets a quantized
collection of modes, with wave numbers that form a

discrete sequence. One would expect that the limit of a
continuum of perturbative modes ought to be recovered in
the limit of infinite volume for the fiducial cell. However, if
the formulation is truly independent of this cell, as we have
required, and this independence is maintained when the
perturbations are included, it is obvious that one cannot
attain this continuum by enlarging the fiducial cell unbound-
edly. One then may wonder how it is possible to define this
continuum limit properly. The aim of this work is to clarify
this issue and, moreover, show that the continuum limit in
Fourier space is reached without the need to introduce any
artificial scale in the system, something that would have
spoiled the independence on background quantities that is
characteristic of GR and seems desirable in any nonpertur-
bative quantization of it, like LQG.
The modes of the gauge-invariant perturbations, namely

the tensor modes and, e.g., the modes of the Mukhanov-
Sasaki scalar (which are specially suitable in the case of flat
spatial topology), propagate in the Early Universe subject to
dynamical equations that can be written in GR like those
of a harmonic oscillator with a time-dependent mass. In a
large family of approaches to canonical quantum cosmology
[24–29], the evolution equations of these modes ultimately
remain of the same harmonic-oscillator type (at least in
certain regimes), but the time-dependent masses change with
respect to general relativity, incorporating corrections that
are due to quantum gravitational effects. These corrected
masses are typically given by expectation values of some
(few) operators on the part of the quantum state that
describes the homogeneous geometry [28]. Furthermore,
if this partial wave function displays a kind of effective
behavior, in the sense that it remains peaked on a certain
geometry during the whole of the evolution, instead of
dealing with the quantum expectation values that determine
the time-dependent masses of the perturbations, it should
suffice to approximate them with their effective counterpart,
equal to the evaluation on the peak trajectory. A frequent
scenario is that the trajectory of this peak follows the
Einsteinian dynamics except in certain regions with large
quantum effects (see e.g., [14,30]). Moreover, in cases like
LQC, the new trajectory still follows a Hamiltonian dynam-
ics, described by a Hamiltonian constraint that includes the
quantum corrections in an effective way [14,31].
The scale invariance of the equations of the perturbative

modes for flat topologies in GR, when one goes to the
Fourier continuum, suggests that the final result in canoni-
cal quantum cosmology should be sensitive only to ratios of
geometric scales in the proper continuum limit. Thus, one
should be able to reach a limit with a continuum of modes
such that the final physical equations don’t display any
dependence on the absolute value of the scale factor of the
background homogeneous geometry, but rather on its ratio
at two instants of time. A possible choice of reference is the
usual one in cosmology: the present value of the scale
factor. An equally valid possibility is the value of the scale

1Strictly speaking, it might suffice that the limit in which
the cell becomes noncompact is well defined. However, it is
more natural to demand complete invariance under the choice of
cell, a property that guarantees the existence of the desired
noncompact limit.
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factor at any definite instant of time, e.g., the onset of
inflation or, in the case of LQC, when the bounce that
replaces the Big Bang occurs. We notice that the existence
of the two kind of scaling transformations that we are
commenting, namely a scaling of the fiducial volume of the
chosen cell, and a scaling of the scale factor of the geometry
(which leaves invariant the ratio at two different times),
were already pointed out in Ref. [14], emphasizing the need
to get a formulation with well-defined physical results in
the limit in which the finiteness of the cell is removed.
The rest of this work is organized as follows. In Sec. II

we present our cosmological system and its perturbations,
summarizing well-known results both from GR and from
its canonical quantization. We will provide the relevant
formulas for the study of the background geometry and the
gauge invariant perturbations. In addition, we will briefly
explain the properties of GR that must be respected under
quantization so that our analysis applies as well to
canonical quantum cosmology. In Sec. III we discuss the
invariance of the quantum formulation under changes in the
fiducial volume of the spatial sections, and investigate
the behavior under the multiplication of the scale factor by
a constant. In this way, we are able to prove that one can
reach a well-defined continuum limit for the modes of the
perturbations. Then, in Sec. IV we investigate an alternative
route to this continuum, closer in spirit to a procedure
adopted traditionally in geometrodynamics, namely we
absorb the spatial volume in a redefinition of the funda-
mental action constant of the system (e.g., the Planck
constant). We discuss some further aspects of our results
and conclude in Sec. V. We set the speed of light equal to
one, as well as the Planck constant or, eventually, its
effective counterpart when properly explained.

II. MODE EQUATIONS

A. The classical perturbed cosmological system

Let us start by considering a flat, homogeneous, and
isotropic model of the Fridemann-Lemaître-Robertson-
Walker (FLRW) type, with spacetime metric of the form

ds2 ¼ −N2
0ðtÞdt2 þ a2ðtÞ0hijdθidθj; ð2:1Þ

where N0 is the homogeneous lapse function, a is the scale
factor, and 0hij is the Euclidean metric. Latin indices from
the middle of the alphabet indicate spatial indices. In order
to deal with spatial sections of finite fiducial volume, we
assume the spatial topology of a three-torus, with angular
spatial coordinates θi that have a period equal to a given
constant l0.

2 Note that the fiducial spatial volume is then
V0 ¼ l30. Thus, we will treat l0 as a parameter of our
description that we can change at will in order to modify the
fiducial volume V0. The physical volume of the spatial

sections, on the other hand, is just VP ¼ a3V0. Again, we
notice that we can make the physical volume tend to
infinity while keeping the fiducial one finite by letting the
scale factor become unboundedly large.
Notice that, in principle and for fixed Newton’s constant,

the symplectic structure and the Hamiltonian that generates
the dynamics of the homogeneous system will scale
linearly with the fiducial volume (essentially because both
are defined so far as extensive quantities). Nevertheless, if
one wants canonical relations and dynamics that do not
vary with the choice of fiducial cell, one can introduce
variables for the geometry that absorb the effect of the
transformations in the fiducial element. A standard choice
ðV; BÞ, that in fact differs from the definitions adopted in
LQC only by multiplicative constants independent of the
selected cell,3 is given by the physical volume up to a sign
that determines the orientation of the triad, and by a
variable that is proportional to the Hubble parameter:

jVj ¼ a3V0 ¼ VP; VB ¼ −
1

3
aπa: ð2:2Þ

We use the notation πx to denote a canonical momentum
of the generic variable x, such that their Poisson bracket
equals the unit. Besides, in order to provide a matter content
to the model and render it nontrivial, we include a
homogeneous scalar field, ϕ, that will play the role of
an inflaton, and will be subject to a potential VðϕÞ. Then,
the associated phase space can be described with two
canonical pairs for any value of the fiducial volume: a pair
for the FLRW geometry, ðV; BÞ, and another one for the
inflaton, ðϕ; πϕÞ.
In absence of any matter content other than the homo-

geneous inflaton, the model is subject only to one con-
straint, which is a homogeneous, global Hamiltonian
constraint Hj0 ¼ 0, with Lagrange multiplier given by
the lapse N0, and

Hj0 ¼
1

2V
½π2ϕ − 12πGV2B2 þ 2V2VðϕÞ�: ð2:3Þ

In addition, the energy density ρ and pressure P of the
inflaton are given by the sum and the difference, respec-
tively, of the kinetic and the potential energy densities:

ρ ¼ π2ϕ
2V2

þ VðϕÞ; P ¼ ρ − 2VðϕÞ: ð2:4Þ

Let us consider now small anisotropies and inhomo-
geneities, that we view as perturbations around our

2This corrects a misprint in Ref. [27] and related literature.

3The volume variable used in LQC is v ¼ V=ð2πGγ ffiffiffiffiffiffi
Δg

p Þ,
where γ is the Immirzi parameter and Δg is the area gap, i.e.,
the minimum positive area eigenvalue that is allowed by LQG
[17]. On the other hand, the connection variable of LQC is
b ¼ 4πGγ

ffiffiffiffiffiffi
Δg

p
B.
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FLRW model, both in the geometry and the inflaton
[24,26,28,30,32]. To handle the spatial dependence, we
take advantage of the background symmetries and expand
the perturbations in scalar, vector, and tensor harmonics of
the spatial Laplacian, associated with the fiducial Euclidean
metric [28]. Part of these perturbations are simply gauge
degrees of freedom, that arise due to the possibility of
modifying the original spacetime with a perturbative
diffeomorphism. The physical information encoded in
the perturbations resides in gauge-invariant quantities
[33]. In the considered model, where the matter content
is a scalar field, the only gauge invariants are the tensor
modes of the perturbations and a linear combination of the
scalar perturbations of the metric and the scalar field. In our
case with flat spatial topology, a convenient choice of this
scalar gauge invariant is the so-called Mukhanov-Sasaki
(MS) scalar [34–36].
In the description of these gauge invariant perturbations,

one often uses the coefficients of their mode expansion in

terms of harmonics: TðϵÞ
k⃗

andQk⃗, respectively for the tensor

and the MS modes. Here, k⃗ is the wave vector of the mode,
with its (Euclidean) norm k providing the corresponding
wave number. Besides, ϵ denotes the two possible polar-
izations of the gravitational tensor modes. A rescaling of
these mode coefficients by the scale factor and by suitable
powers of the fiducial volume leads to new mode variables
[28] that indeed satisfy equations of the harmonic-oscillator
type in GR4:

d̄k⃗;ϵ ¼
aTðϵÞ

k⃗ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
V2=3
0

; v̄k⃗ ¼
aQk⃗

V2=3
0

: ð2:5Þ

In the conformal time defined by the choice of lapse
function N0 ¼ l0a ¼ V1=3, and with the corresponding
time derivative denoted with a prime, one obtains the
following mode equations according to the Einsteinian
evolution:

d̄00
k⃗;ϵ

þ fV2=3
0 k2 þ 8πGV2=3½2πGB2 − VðϕÞ�gd̄k⃗;ϵ ¼ 0;

ð2:6Þ

v̄00
k⃗
þ fV2=3

0 k2 þ 8πGV2=3½2πGB2 − VðϕÞ� þUMSgv̄k⃗ ¼ 0;

ð2:7Þ

where the extra term in the equation of the scalar modes,
that we will call the MS potential, is given by the
expression

UMS ¼ V2=3

�
V;ϕϕðϕÞ þ

4πϕ
VB

V;ϕðϕÞ þ 48πGVðϕÞ

−
8

B2
V2ðϕÞ

�
: ð2:8Þ

For the scalar field potential, the comma followed by ϕ
denotes the derivative with respect to the inflaton.
In the following we will use the name time-dependent

mass to refer to the k-independent term that multiplies the
mode variable in our equations of harmonic-oscillator type.
The difference between the scalar and the tensor time-
dependent masses is precisely the MS potential. Besides, a
simple computation shows that the tensor mass can be
rewritten in the alternative forms:

8πGV2=3½2πGB2 − VðϕÞ� ¼ −fjVj1=3fjVj1=3; Hj0g; Hj0g

¼ −
a00

a
: ð2:9Þ

Here, curved brackets denote Poisson brackets.
At this point of our analysis, we emphasize that, if we

insist in adopting the rescaled variables V and B, as well as
the rescaled coefficients introduced for the perturbations,
the only dependence on the fiducial volume that might
survive in the mode equations is that appearing in the term
that contains the square wave number. Nonetheless, this
wave number is defined as the norm of the eigenvalues
of the Laplace-Beltrami operator for the metric of the
three-torus with fundamental period equal to l0 ¼ V1=3

0 .

Therefore, we get that k ¼ 2πjn⃗jV−1=3
0 for any integer

vector n⃗. As a consequence, the term V2=3
0 k2 is in fact

also independent of the fiducial volume. However, we see
that this term is quantized, namely, it only can equal the
square norm of an integer vector multiplied by 4π2. Strictly
speaking, if we then take the limit of infinite fiducial
volume, the relevant mode spectrum remains discrete.
Actually, this is what we should expect, because the
formalism was constructed to be independent of the value
of the fiducial volume, and for finite values the spectrum of
the Laplace operator is not continuous. As we will show
later in our discussion, this tension, that would put into
question the passage to the continuum picture, can still be
solved by adopting an alternative road to the Fourier
continuum of perturbative modes.

B. Quantum corrections to the perturbed system

In the framework of canonical quantum cosmology
[24,28], one adopts the following strategy to study our
cosmological system. The action of the perturbed cos-
mology is truncated at quadratic perturbative order, regard-
ing the homogeneous variables as zero modes that are
treated exactly at that truncation order. The truncated
system inherits a symplectic structure and constraints from

4These new coefficients differ by a factor of V−1=6
0 from those

used in Refs. [23,29]. In consonance, their respective canonical
momenta are related with those in such references by a rescaling
with V1=6

0 .
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GR [24]. In fact, one can find a canonical set of variables
for the entire system so that the perturbations are described
by the linear perturbative constraints, their associated gauge
degrees of freedom, and a complete set of gauge invariants
like, e.g., the tensor and the MS mode coefficients that we
have been using in our discussion, together with canonical
momenta for them [37]. To preserve the canonical structure
of the whole system, including the homogeneous sector,
one needs to correct the zero modes with suitable quadratic
contributions of the perturbations [28,38,39]. These cor-
rections can be viewed as a kind of backreaction in our
definitions. Replacing the original zero modes with the new
ones, the treatment of the cosmological model and the
formulation that we have explained in the previous sub-
section continues to be valid [28]. Furthermore, in those
interesting situations where the backreaction is not relevant,
the old and new zero modes may be identified without any
physical consequence.
Employing this canonical description, it becomes clear

that physical quantum states can depend only on zero
modes and perturbative gauge invariants. These states are
still subject to a global constraint, that can be understood as
the zero mode of the gravitational Hamiltonian constraint,
truncated at quadratic perturbative order. It is given by the
sum of a term that is formally identical to the homogeneous
constraint Hj0 and the contributions of the tensor and MS
Hamiltonians, that we will call THj2 and sHj2, respectively,
and that are quadratic in the gauge invariant perturbations
[28]. We recall that these Hamiltonians generate the
dynamical evolution of the tensor and MS perturbations
in GR. In order to find solutions to this global constraint
that can be of physical interest, it is convenient to introduce
an ansatz of separation of variables, so that one can
factorize the dependence of the quantum states on the
FLRW geometry and on each of the different gauge
invariant modes. In this ansatz, each partial wave function
of the quantum state is allowed to depend on the inflaton,
that is therefore employed as an internal time of the system
to which one can refer the evolution of each part of
the state.
The part that contains the FLRW geometry can be

quantized according to the specific rules that one adopts
in canonical quantum cosmology for the representation
of the homogeneous gravitational sector. It is common to
use a representation in which the volume variable V acts
by multiplication. In particular, following these rules one
promotes to operators the coefficients of the tensor and MS
Hamiltonians that depend on the FLRW geometry. Besides,
in the spirit that the gauge invariant modes are mere
perturbations, it is usual to assume that the interaction
with them does not produce significant changes in the
quantum state of the FLRW geometry. With the ansatz of
separation of variables and this assumption, it is not
difficult to derive equations for the evolution of the gauge
invariant perturbations [28]. The dynamical equations that

one obtains for the perturbative modes in this way are very
similar to those displayed in Eqs. (2.6) and (2.7), but with a
modified time-dependent mass for the tensor and for the
scalar gauge invariants. It is straightforward to convince
oneself that, with a quantization strategy like the one that
we have described, the new masses are in fact provided by
(ratios of) expectation values of quantum operators on the
quantum state of the homogeneous geometry. In this
manner, quantum effects are incorporated into the dynami-
cal description of the primordial perturbations. Moreover,
from the fact that the classical time-dependent masses had
been defined without any reference to the fiducial volume
using homogeneous geometric variables (directly related to
V and B), and as far as the quantization of these variables
respects the independence on the fiducial structure (see e.g.,
[28]), it turns out that the situation with respect to this
invariance is the same that we encountered above.
Let us focus on the scenario that seems more relevant

for cosmological applications, namely, we will restrict our
attention to quantum states of the FLRW geometry that are
(approximate) solutions of homogeneous and isotropic
quantum cosmology, so that the effect of the perturbations
on them is negligible, i.e., the backreaction of the pertur-
bations can be ignored. Furthermore, we will consider
states that are peaked on effective trajectories, as we
mentioned in the Introduction. Typically, these trajectories
are generated, rather than by the classical constraint Hj0,
by an effective counterpart of it, Heff

j0 , that one obtains by
incorporating the effect of quantum gravitational correc-
tions on the homogeneous sector.5

For sufficiently concentrated states, a good approxima-
tion consists in substituting the quantum expectation values
by their evaluation on the peak trajectory, i.e., on the
effective solution. When one does so, the resulting time-
dependent masses are similar to those of the classical case,
except for the incorporation of quantum corrections owing
to the following. First, now the homogeneous background
does not necessarily follow a GR trajectory, but rather a
modified effective one, as we have indicated. And second,
there may be quantum corrections arising from the repre-
sentation as operators of the factors that depend on the
FLRW geometry in the tensor and MS Hamiltonians. In
principle, all these corrections might break the invariance
of the mode equations under changes of the fiducial
volume. However, it is conceptually and physically most
reasonable that a quantization of the system based on the
variables V and B should respect this invariance, since the
fiducial cell must not play any physical role, but only
provide an auxiliary structure to define the passage to
quantum mechanics properly. So, as far as the quantum
representation of the FLRW geometry and the definition of

5An example is the effective Hamiltonian of LQC, obtained
from that of GR by replacing 16π2G2γ2ΔgB2 with
sin2 ð4πGγ ffiffiffiffiffiffi

Δg
p

BÞ [14,17].
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the peaked quantum state are independent of V0, as it is
natural to require, the time-dependent masses of the
perturbations would not include this fiducial volume. In
this sense, the situation with respect to the invariance of the
mode equations under a change of fiducial cell that we
found in the classical formulation must be maintained.
It may be helpful to show, for the sake of an example, the

explicit form of the time-dependent masses in a specific
quantum implementation. Let us consider e.g., the so-called
hybrid approach to LQC [29,32]. The mass of the tensor
modes is [29]

V2=3

�
sin2ð4πGγ ffiffiffiffiffiffi

Δg
p

BÞ
γ2Δg

− 8πGVðϕÞ
�
; ð2:10Þ

with γ and Δg defined in footnote, whereas the additional
MS potential of the scalar time-dependent mass is
modified to

ŪMS ¼ V2=3

�
V;ϕϕðϕÞþ

8πGγ
ffiffiffiffiffiffi
Δg

p
πϕ

V

sinð8πGγ ffiffiffiffiffiffi
Δg

p
BÞ

sin2ð4πGγ ffiffiffiffiffiffi
Δg

p
BÞ

×V;ϕðϕÞþ 48πGVðϕÞ− 128π2G2γ2Δg

sin2ð4πGγ ffiffiffiffiffiffi
Δg

p
BÞV

2ðϕÞ
�
:

ð2:11Þ

A similar behavior with respect to the independence on V0

is also reached if one follows the dressed metric approach
to LQC, even if in this latter case the quantization strategy
is a little bit different, and the peak trajectory of the
quantum state for the homogeneous geometry is directly
lifted to the truncated perturbative phase space, without
imposing a global constraint on the system that the FLRW
cosmology and the perturbations form [26,29].

III. RESCALING OF THE PHYSICAL VOLUME
AND CONTINUUM LIMIT FOR THE MODES

We are now in an adequate position to discuss the limit of
a continuous spectrum of modes. The key observation is
that the time-dependent mass of the perturbations is
homogeneous of degree 2=3 in the volume variable V in
GR. This is just a consequence of the fact that the total
Hamiltonian is an extensive quantity classically. If one
passes to conformal time, so that the lapse becomes
homogeneous of degree 1=3 in the physical volume, the
zero mode of the Hamiltonian constraint adopts corre-
spondingly a degree equal to 2=3. The time-dependent
mass is then the wave number-independent part of the
partial derivative of this constraint with respect to the
square of the scaled configuration mode variable, which
behaves essentially as an intensive variable precisely thanks
to the scaling that we have chosen for it.
In this classical treatment, the commented degree of

homogeneity can be easily checked explicitly from the

left-hand side of Eq. (2.9) and the expression of the MS
potential in Eq. (2.8) which, together with the homo-
geneous Hamiltonian (2.3), guarantee that the time-
dependent mass scales with the power 2=3 of V in GR.
In the effective regime of canonical quantum cosmology,

on the other hand, this degree of homogeneity might be
altered in principle by quantum corrections. Nonetheless, it
is not difficult to see that this will not happen if all functions
of V are directly represented as multiplicative operators,
and the momentum B acts as a derivative with respect to V,
perhaps up to the addition of a homogeneuos function of
this volume variable of degree −1. Remarkably, this is the
typical situation that one finds in geometrodynamics. It is
probably less obvious that the same properties are main-
tained in other contexts for canonical quantum cosmology,
like the one provided by LQC. In this last case, corrections
to the definition of the inverse of the volume change the
degree of homogeneity in this variable [14]. Nonetheless,
none of these changes affect the equations of the perturba-
tions in the effective regime that we are studying.
That this is the actual behavior in LQC can be easily

seen for the tensor perturbations using expression (2.10).
Besides, at the order of our perturbative truncation and as
far as the dynamical equations of the modes are concerned,
we can use the effective constraint [obtained from Eq. (2.3)
by the replacement explained in footnote] to check that
the inflaton momentum scales like the volume V. As a
consequence, it follows that the MS potential (2.11) has
indeed the same behavior with respect to scalings of V
as the tensor mass. On the other hand, our dynamical
equations for the modes are defined with respect to a
conformal time, which is obtained with a choice of the
lapse function that, as we have pointed out, scales like V1=3.
Therefore, the second derivative with respect to this time
shares the homogeneity properties of the time-dependent
mass, namely, it changes as V to the power 2=3.
Remarkably, the same result about the degree of homo-

geneity in V can be seen to apply to the dressed metric
approach to LQC [29]. In fact, this is the only important
point needed for our arguments: the homogeneity in the
dependence on V of the time-dependent masses, and of the
second derivative with respect to the conformal time, with
homogeneity degree equal to 2=3. Furthermore, our dis-
cussion would continue to be applicable beyond the effective
regime provided that such a homogeneity is valid for the
(ratios of) expectation values that determine the time-
dependent masses and the change to the conformal time.
Based on our comments, if we now extract from V a (c-)

number VR and adjust the conformal time consequently,
all the mode equations remain formally the same except for
the term proportional to the square wave number, that gets a
relative factor of V−2=3

R compared to the rest of contribu-
tions. It is thus easy to convince oneself that, by means of
this rescaling of the physical volume variable, we pass in
practice from wave vectors that are given by any (nonzero)
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integer vector n⃗ multiplied by 2π to a rescaled sequence of
wave vectors of the form 2πn⃗V−1=3

R . This rescaling can be
used with a double purpose.
On the one hand, we can absorb a global scale in the

definition of the physical volume. For instance, we can set
the actual physical volume equal to one by choosing VR to
coincide with the (expectation) value of V at the present
instant of time. Other choices are identically acceptable. To
mention one example, an appealing possibility in LQC is to
use this global scale to fix the expectation value of V equal
to a given constant when the quantum bounce occurs in the
FLRW state, namely when the minimum expectation value
of V is reached.
On the other hand, we can employ the considered

rescaling to reach at last the desired continuum limit for
our spectrum of perturbative modes. Once we have factored
out VR in the volume V, we can let this (c-)number tend to
infinity. The spacing between components of the allowed
wave vectors, equal to 2πV−1=3

R , would then tend to zero,

and the limit of 2πjn⃗jV−1=3
R for unboundedly large jn⃗jwould

take all possible positive values, leading indeed to a
continuous picture. From this perspective, while the
description of the perturbed system has been made inde-
pendent of the fiducial volume by construction, the
continuum limit is attained in Fourier space by exploiting
the behavior under rescalings of the physical volume.
Let us emphasize that, in this continuum limit, the mode

equations become independent of the global scale VR, as it
should happen in the case with flat topology that we are
discussing. In addition, the effective homogeneous solu-
tions are insensitive to that scale, as far as the effective
homogeneous constraint guarantees that the inflatonmomen-
tum gets rescaled in the same way as the volume V. This
ensures that those solutions can be constructed consistently
using the constraint after having set thevolumeV equal to any
specified constant at a given instant of time, along the lines
that we explained above.
In order to check the validity of this continuum limit,

let us also analyze the behavior of the tensor and MS
Hamiltonians of the gauge invariant perturbations. Their
respective expressions in GR are the following [28,40]:

THj2 ¼
X
n⃗;ϵ

THkðn⃗Þ;ϵ
j2 ; sHj2 ¼

X
n⃗

sHkðn⃗Þ
j2 ; ð3:1Þ

THkðn⃗Þ;ϵ
j2 ¼ 1

2jVj1=3 ðfkðn⃗Þ
2

þ 8πGV2=3½2πGB2 − VðϕÞ�gjd̄k⃗;ϵj2 þ jπd̄k⃗;ϵ j2Þ;
ð3:2Þ

sHkðn⃗Þ
j2 ¼ 1

2jVj1=3 ðfkðn⃗Þ
2 þ 8πGV2=3½2πGB2 − VðϕÞ�

þUMSgjv̄k⃗j2 þ jπv̄k⃗ j2Þ: ð3:3Þ

We use the notation k⃗ðn⃗Þ ¼ 2πn⃗, with kðn⃗Þ its norm, and
the sum of modes is made over all (nonzero) integer vectors
n⃗ and over the two polarizations in the case of the tensor
modes. Accordding to our previous comments, similar
expressions would be expected in canonical quantum
cosmology, in the effective regime that we are considering.
Again for the sake of an example, in hybrid LQC the only
changes are the substitution of the square of 4πGγ

ffiffiffiffiffiffi
Δg

p
B

by its square sinus, and of the MS potential UMS by its
effective counterpart given in Eq. (2.11). If we then extract
VR from V, as we discussed above, the wave vectors k⃗ðn⃗Þ
get replaced in practice by new ones, k⃗Rðn⃗Þ ¼ 2πn⃗V−1=3

R .
With this replacement, the configuration and momentum
parts of the tensor and MS Hamiltonians (in the effective
regime) become homogeneous functions of VR, but with
different degrees of homogeneity. To get the same degree in
both types of contributions, we simply redefine

d̄k⃗;ϵ ¼
d̆k⃗;ϵ
V1=6
R

; v̄k⃗ ¼
v̆k⃗
V1=6
R

;

πd̄k⃗;ϵ ¼ V1=6
R πd̆k⃗;ϵ

; πv̄k⃗ ¼ V1=6
R πv̆k⃗ : ð3:4Þ

Note that this redefinition does not affect the linear
equations of motion for the modes.
In terms of these new variables for the perturbations,

it is straightforward to check that the individual mode
contributions to the tensor and MS Hamiltonians become
homogeneous of degree equal to zero in VR. On the other
hand, notice that the spacing between the components of
the rescaled wave vectors k⃗R is 2πV−1=3

R . Therefore, to
transform the sum over modes in our Hamiltonians directly
into a (Lebesgue) integral over real (three-dimensional)
wave vectors in the continuum, the sum over n⃗ must absorb
a factor ð2πÞ3V−1

R , for instance from a rescaling of the lapse
function, or equivalently by redefining the time coordinate
in which our Hamiltonians generate the dynamics. In this
manner, one finally gets a well-defined continuum limit for
the Hamiltonians of the perturbations, in which the sum
over discrete modes becomes an integral over continuous
real modes. As a side remark, we point out that the
rescaling of the lapse to produce the factor V−1

R is also
needed in the homogeneous sector if we want its dynamics
to be independent of this (c-)number, because the effective
Hamiltonian for proper time should be homogeneous of
degree one in V provided that the inflaton momentum
scales also as V in the analyzed trajectories (even if these
did not happen to be exact homogeneous solutions).
We conclude by remarking that the restriction to compact

spatial sections has fundamental advantages, while being
compatible with the recovery of a well-defined continuum
limit in Fourier space. This compactness ensures that the
zero modes are isolated in the spectrum, allowing a
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distinguished treatment for them in the perturbative trun-
cation and facilitating a way to avoid infrared divergences.

IV. RESCALING OF THE FIDUCIAL VOLUME
AND CONTINUUM LIMIT FOR THE MODES

Let us now explore an alternate route to the continuum
limit for the perturbative modes based on constant scale
transformations of the fiducial volume. This route rests on
the use of variables that do not rescale with that auxiliary
volume, so that the corresponding Poisson brackets vary
with changes of the fiducial structure. In fact, this alternate
route has been traditional in geometrodynamics. Here, we
will investigate its implementation in canonical quantum
cosmology and its limitations.
If one does not use homogeneous variables that rescale

with the fiducial volume, this volume can be extracted from
the action as a global multiplicative factor. This factor can
be absorbed by redefining the fundamental action constant
of the theory (e.g., the Planck constant), so that the effective
constant becomes equal to the ratio of the original one by
the fiducial volume. In the kind of gravitational systems
that we are studying, this has two effects. First, it produces
a rescaling of the symplectic structure. Then, the variables
of the system do not need to be rescaled in order to remain
canonical when the fiducial volume changes, because this
change is effectively absorbed in the symplectic structure,
and thus in the Poisson brackets that this structure deter-
mines. Second, the Lagrange multipliers of all the con-
straints get redefined as well, so as to compensate the
changes of the fiducial volume.
In the case of our perturbed system, an adequate set of

canonical homogeneous variables with the rescaled sym-
plectic structure is fV̌; B;ϕ; π̌ϕg, where

V̌ ¼ V
V0

; π̌ϕ ¼ πϕ
V0

: ð4:1Þ

For the gauge invariant perturbations, a careful calculation
shows that the rescaling of the symplectic structure gets
compensated by the passage from discrete modes, with
nontrivial Poisson brackets in the form of Kronecker deltas,
to continuous modes, with Dirac deltas. Keeping this result
in mind, we simply change of discrete canonical pairs
before taking the limit to a continuum of modes:

ďk⃗;ϵ ¼ V1=6
0 d̄k⃗;ϵ; πďk⃗;ϵ

¼
πd̄k⃗;ϵ

V1=6
0

;

v̌k⃗ ¼ V1=6
0 v̄k⃗; πv̌k⃗ ¼

πv̄k⃗
V1=6
0

: ð4:2Þ

Expressed in terms of these variables, the time-
dependent mass is equal to V2=3

0 times a quantity that is
independent of the fiducial volume, both for the tensor and

the MS perturbations. This statement is valid, at least, for
GR, for its straightforward quantization in geometrody-
namics, and for LQC in the hybrid and the dressed metric
approaches. Moreover, according to the philosophy of
employing quantities that are independent of the fiducial
volume, let us change from the conformal time employed
so far in our dynamical equations to the conformal time
determined by the scale factor of the model. Notice that the
difference between the old and the new conformal times is a
multiplicative constant, and that the relation of the new
conformal time with the proper time is independent of the
fiducial volume. Our change affects the second time
derivatives in our equations of harmonic-oscillator type,
multiplying those derivatives by the factor V2=3

0 , exactly as
we found above for the time-dependent mass. Then, we
conclude that the wave number that contributes with its
square in our equations, once we have divided them by V2=3

0

to eliminate a global spurious factor, is k ¼ 2πjn⃗jV−1=3
0 .

Thus, we can attain the continuum limit in the spectrum of
the perturbations by taking the limit of infinite fiducial
volume, V0 → ∞.
Let us also consider the behavior of the different

individual Hamiltonians present in the system, and let us
check that, in the continuum limit, they scale in fact with
the same power of the fiducial volume if we use the new
variables introduced in this section. The resulting power of
V0 can then be absorbed with a single, common redefinition
of the lapse function. For the zero modes of the model, it is
easy to see from Eq. (2.3) in GR [of from its effective
counterpart as long as the quantization and the state of the
FLRW geometry do not introduce any dependence on the
fiducial cell] that the homogeneous Hamiltonian scales
like V0. In the case of the tensor and MS Hamiltonians, the
expressions in GR can be found in Eqs. (3.1)–(3.3). These
expressions are independent of V0 when we use the mode
variables (4.2), except the term that goes with the square of
the wave number. Actually, the same must occur in
canonical quantum cosmology provided that the quantiza-
tion procedure respects the invariance under changes of the
fiducial cell, as it is reasonable to assume. We have already
discussed that this is the case, for instance, in LQC in the
effective regime of the hybrid and dressed metric
approaches. Then, and apart from a multiplicative constant,
we can reinterpret the term that depends on the wave
number as the square norm of the wave vector
k⃗ ¼ 2πn⃗V−1=3

0 , which varies with the fiducial volume.
Nonetheless, in spite of the apparent independence on
V0 of the rest of individual terms, the sums over integer
vectors n⃗ need to absorb a factor V−1

0 to have a well-defined
continuum limit, that reproduces the integrals over real
modes k⃗, as we explained in the previous section. In this
way, we conclude that the Hamiltonians of the gauge
invariant perturbations have a well-defined homogeneity
behavior with respect to V0 in the continuum limit, which is
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indeed the same that we obtained for the homogeneous
Hamiltonian, namely a linear rescaling.
As a possible shortcoming of the use of rescalings of the

fiducial volume to pass to the continuum limit in Fourier
space, we note that, in addition to the conceptual tension
implied by the introduction of a symplectic structure that
varies effectively with the fiducial scale, one still has to deal
with rescaling transformations of the physical volume in
the system reached in the continuum, since these trans-
formations have not been taken into account yet.

V. CONCLUSION

We have considered primordial perturbations around a
flat FLRW cosmology and discussed the route to the
continuum for the modes of those perturbations. In the
framework of canonical quantum cosmology, we have
considered the most interesting and studied case of states
for the homogeneous FLRW cosmology that are peaked
on some sort of effective regime. In particular, we have
commented the application of our arguments to traditional
canonical quantum GR and to the specific nonperturbative
program provided by LQC, both in the so-called hybrid and
dressed metric approaches. In our analysis of the con-
tinuum limit for the perturbative modes, two kinds of
transformations have been employed in one way or another,
namely, rescalings of the fiducial volume of the cell where
the spatial integrations are performed, and rescalings of its
physical volume, which are independent of the former
transformations because they involve changes in the scale
factor (or, equivalently, of the densitized triad of the
homogeneous model).
We have shown that one can indeed use variables V and

B so that the formulation of the homogeneous system
becomes totally independent of the fiducial cell without the
need of an unwanted redefinition of the symplectic struc-
ture as one changes the fiducial volume. Actually, this is
true not only for the homogeneous sector of the system, but
also for its gauge invariant perturbations. Nonetheless, if
one starts with perturbations defined in the fiducial cell, the
description that one gets leads to perturbative modes with a
discrete spectrum that is in fact independent of the fiducial
volume. Therefore, strictly speaking, one would not reach a
continuum spectrum by letting this volume tend to infinity.
Thus, one arrives to an apparent tension in the perturbative
formulation, unless one defends that the treatment of the
homogeneous sector and that of the perturbations can be
carried out with different restrictions on the spatial sections
(taking first a finite cell for the homogeneous geometry and
passing afterwards to the whole of R3 in the study of the
perturbations), as it has been argued in the dressed metric
approach to LQC [19]. But even so, the process to reach the
continuum would result cumbersome, and its generaliza-
tion to other prescriptions in canonical quantum cosmology
would not be clear. Besides, one would still have to analyze
the reformulation of the system when the rescalings of the

physical volume are taken into account. With these moti-
vations in mind, we have explored the possibility of using
precisely these latter rescalings to reach the limit of a
continuous spectrum of modes for the perturbations.
We have proven that, indeed, one can employ the scale

transformations of the physical volume to attain the desired
continuum limit. This result is based on the homogeneity
properties of the time-dependent masses of the perturba-
tions with respect to their dependence on the volume V, and
on the similar homogeneity of the conformal time that is
used in the dynamical equations for these perturbations.
For GR and for effective regimes in canonical quantum
cosmology under reasonable assumptions about the
adopted quantization, the mass turns out to be homo-
geneous of degree 2=3 and the conformal time has
homogeneity degree −1=3. Then, extracting a reference
scale from the physical volume and letting this scale tend to
infinity, we have obtained the continuum limit in Fourier
space. Actually, from a mathematical viewpoint, the limit
would also be well defined if the homogeneity of the time-
dependent masses in canonical quantum cosmology were
distorted with subdominant terms with respect to the used
reference scale, as one expects that it could be the case
beyond the effective regime, in deeper quantum regions
(see e.g., [28]).
In general, the procedure that arises from our analysis is

that we can start the treatment of the system by integrating
the spatial dependence on a compact cell with finite
physical volume and, once the quantization of the model
is performed and the dynamical equations for the gauge
invariant perturbations are obtained, we can use the scaling
transformations of the physical volume to define the
continuum limit for the perturbative modes. This way to
reach the continuum limit has the extra advantage of
eliminating any possible redundancy in rescalings of the
physical volume, showing explicitly that the resulting
continuous system is invariant under changes in the choice
of a reference scale VR for this volume. This is particularly
important when discussing the freedom to set initial
conditions for the corresponding dynamics, since those
conditions would be independent of the reference scale, as
far as physical results in the continuum limit are concerned.
In addition, we have checked that the Hamiltonians that
generate the evolution of the gauge invariant perturbations
are also well defined in this limit.
For the sake of completeness, we have explored an

alternative to define the continuum of modes that has been
often employed in the geometrodynamic formulation of
GR. This alternative concentrates all the attention on
scaling transformations of the fiducial volume, and com-
pensates the changes in this volume by modifying the
symplectic structure conveniently. This change in the
symplectic structure can be thought as the result of an
effective redefinition of the fundamental action constant of
the system (e.g., the Planck constant). We have checked
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that, using this family of symplectic structures together
with variables that do not depend on the fiducial volume
(for instance, V=V0 and B), the perturbed system admits a
well-defined continuum limit by simply letting the fiducial
volume grow to infinity. One may argue that the use of a
family of symplectic structures, and the fact that one would
have still to cope with the rescalings of the physical volume
in the continuous system, have conceptual disadvantages.
Nevertheless, we think that is useful to compare this route
to the Fourier continuumwith the previously discussed one.
Although we have restricted our analysis to flat spatial

topology, there seems to be no fundamental obstruction to
start with other spatial topologies. In principle, the corre-
sponding spatial curvature would appear in the equations of
the discrete modes, modifying the contributions of the
square wave number (see e.g., Ref. [41]). The limit of a
continuum of modes should be reached in a similar way as
discussed here.

In summary, for cosmological perturbations around a
flat FLRW model, and at least in GR and in effective
regimes of canonical quantum cosmology under natural
conditions, we have seen that it is possible to conciliate
the use of a finite fiducial cell, on the one hand, with the
construction of a formalism that is invariant under changes
in the fiducial volume of this cell and, on the other hand,
with the availability of a continuum limit for the modes in
which the physical volume has been rescaled, for all
physical purposes, by a reference volume that can be
chosen freely.
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ELIZAGA NAVASCUÉS and MENA MARUGÁN PHYS. REV. D 98, 103522 (2018)

103522-10

https://doi.org/10.1093/mnras/stw1075
http://arXiv.org/abs/1611.07915
https://doi.org/10.1088/1475-7516/2017/06/019
https://doi.org/10.1088/1475-7516/2017/06/019
http://arXiv.org/abs/1807.06205
https://doi.org/10.1063/1.1664720
https://doi.org/10.1063/1.1664720
https://doi.org/10.1086/175496
https://doi.org/10.1088/0264-9381/10/11/007
https://doi.org/10.1103/PhysRevD.58.104017
https://doi.org/10.1103/PhysRevD.58.104017
https://doi.org/10.1142/S0218271800000633
https://doi.org/10.1142/S0218271800000633
https://doi.org/10.1088/0264-9381/28/21/213001
https://doi.org/10.1016/j.crhy.2017.02.004
https://doi.org/10.1016/j.crhy.2017.02.004
https://doi.org/10.1103/PhysRevD.73.124038
https://doi.org/10.1103/PhysRevD.74.084003
https://doi.org/10.1103/PhysRevD.74.084003
https://doi.org/10.1103/PhysRevD.80.104015
https://doi.org/10.1088/0264-9381/30/8/085014
https://doi.org/10.1088/0264-9381/30/8/085014
https://doi.org/10.1103/PhysRevD.92.124040
https://doi.org/10.1088/1361-6382/aa60ec
https://doi.org/10.1088/1475-7516/2016/06/029
https://doi.org/10.1088/1475-7516/2016/06/029
https://doi.org/10.1103/PhysRevD.96.103528
https://doi.org/10.1103/PhysRevD.96.103528
https://doi.org/10.1103/PhysRevD.31.1777


[25] I. Agullo, A. Ashtekar, and W. Nelson, A Quantum Gravity
Extension of the Inflationary Scenario, Phys. Rev. Lett. 109,
251301 (2012).

[26] I. Agullo, A. Ashtekar, and W. Nelson, Extension of the
quantum theory of cosmological perturbations to the Planck
era, Phys. Rev. D 87, 043507 (2013).

[27] L. Castelló Gomar, M. Fernández-Méndez, G. A. Mena
Marugán, and J. Olmedo, Cosmological perturbations in
hybrid loop quantum cosmology: Mukhanov–Sasaki vari-
ables, Phys. Rev. D 90, 064015 (2014).

[28] L. Castelló Gomar, M. Martín-Benito, and G. A. Mena
Marugán, Gauge-invariant perturbations in hybrid quantum
cosmology, J. Cosmol. Astropart. Phys. 06 (2015) 045.

[29] B. Elizaga Navascués, D. Martín de Blas, and G. A. Mena
Marugán, Time-dependent mass of cosmological perturba-
tions in the hybrid and dressed metric approaches to loop
quantum cosmology, Phys. Rev. D 97, 043523 (2018).

[30] C. Kiefer and M. Krämer, Quantum Gravitational Contri-
butions to the Cosmic Microwave Background Anisotropy
Spectrum, Phys. Rev. Lett. 108, 021301 (2012).

[31] A. Ashtekar and B. Gupt, Generalized effective description
of loop quantum cosmology, Phys. Rev. D 92, 084060
(2015).

[32] M. Fernández-Méndez, G. A.MenaMarugán, and J. Olmedo,
Hybrid quantization of an inflationary model: The flat case,
Phys. Rev. D 88, 044013 (2013).

[33] J. M. Bardeen, Gauge-invariant cosmological perturbations,
Phys. Rev. D 22, 1882 (1980).

[34] V. Mukhanov, Quantum theory of gauge-invariant cosmo-
logical perturbations, Zh. Eksp. Teor. Fiz. 94, 1 (1988) [Sov.
Phys. JETP 67, 1297 (1988)].

[35] M. Sasaki, Gauge invariant scalar perturbations in the
new inflationary universe, Prog. Theor. Phys. 70, 394
(1983).

[36] H. Kodama and M. Sasaki, Cosmological perturbation
theory, Prog. Theor. Phys. Suppl. 78, 1 (1984).

[37] D. Langlois, Hamiltonian formalism and gauge invariance
for linear perturbations in inflation, Classical Quantum
Gravity 11, 389 (1994).

[38] E. J. C. Pinho and N. Pinto-Neto, Scalar and vector pertur-
bations in quantum cosmological backgrounds, Phys. Rev.
D 76, 023506 (2007).

[39] F. T. Falciano and N. Pinto-Neto, Scalar perturbations in
scalar field quantum cosmology, Phys. Rev. D 79, 023507
(2009).

[40] F. Benítez Martínez and J. Olmedo, Primordial tensor
modes of the early universe, Phys. Rev. D 93, 124008
(2016).

[41] M. Fernández-Méndez, Perturbaciones y Dinámica Efectiva
de Cosmología Cuántica de Lazos Inhomogénea, Ph.D.
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