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2Dipartimento di Fisica, Università di Bari, Via G. Amendola 173, 70126 Bari, Italy
3Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via E. Orabona 4, 70125 Bari, Italy

4Collège de France, 11 place M. Berthelot, 75005 Paris, France
5Theory Department, CERN, CH-1211 Geneva 23, Switzerland

(Received 19 September 2018; published 21 November 2018)

We discuss the properties of the gas of primordial “stringy” black holes possibly formed in the high-
curvature phase preceding the bouncing transition to the phase of standard cosmological evolution. We
show that the regime dominated by such a string-hole gas can be consistently described by explicit
solutions of the string effective action including first-order α0 corrections. We present a phase space analysis
of the stability of such solutions comparing the results obtained from different actions and including the
possibility of Oðd; dÞ-symmetric configurations.
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I. INTRODUCTION

Since the rise of string theory as an effort to unify quantum
field theory and general relativity, there has been a number of
attempts to construct very early Universe cosmological
scenarios embedded in string theory. Notable string cos-
mologies include string gas cosmology [1,2], pre–big bang
cosmology [3–7] (see also the review [8]), and ekpyrotic
cosmology [9,10]. There has also been a lot of effort put into
trying to build a stringy realization of inflationary cosmol-
ogy (see, e.g., Refs. [11–13]), though with limited success,
given the difficulty of finding (quasi–)de Sitter solutions in
the string landscape (see, e.g., Refs. [14,15] and also
[16,17]). Overall, current string cosmologies have led to
interesting predictions, but the theories often remain incom-
plete, or conceptual issues persist. Nevertheless, studying
string cosmologymight be one of the best approaches to test
the validity of string theory.
A common feature ofmany string cosmologies is that they

do not start with an initial big bang singularity. In string gas
cosmology and pre–big bang cosmology, it is the T-duality
of string theory that protects the models from reaching a
singularity. T-duality roughly states that a small value of the
radius of theUniverse (R) is equivalent to a large value of the

radius. More precisely, the symmetry goes as R → α0=R,
where α0 ∼ l2

s is the string theory dimensionful parameter
related to the fundamental string length ls. Thus, one
expects R ∼ ls to define a minimal length scale at which
point the Universe experiences a curvature bounce, i.e., a
transition from growing to decreasing spacetime curvature.
Details of how this is realized dynamically remains a
challenge, but there has been recent progress in the context
of string gas cosmology [18]. In pre–big bang cosmology,
the duality is called the scale factor duality [19–21], and the
symmetry goes as a → 1=a, where a is the scale factor.
Again, resolving the singularity dynamically in this context
is nontrivial but can be realized, for instance, with a nonlocal
potential [3,22], with quantum loop corrections [23–25], or
with limiting curvature [26] (see also the reviews [6,27,28]),
though the latter might be unstable to cosmological pertur-
bations [29]. A key difference between the T-duality of
string gas cosmology and the scale factor duality of pre–big
bang cosmology is that the former requires space to be
initially compact, while the latter does not need compacti-
fication as the Universe can be infinitely large.
The approach of this paper is to consider a generic

universe before the big bang, so generally a contracting
universe in the Einstein frame. The goal is to describe the
state of matter and the corresponding cosmological evolu-
tion at very high densities, when the energy scale is of the
order of the string mass, Ms ≡ l−1

s , from the point of view
of string theory. As the universe contracts, one expects
matter that satisfies the usual energy conditions of general
relativity to clump and become inhomogeneous. In fact,
the overdensities can be such that matter undergoes
collapse and forms black holes. More precisely, it was
shown in Ref. [30] (see also Ref. [31]) with the theory of

*jquintin@physics.mcgill.ca
†rhb@hep.physics.mcgill.ca
‡gasperini@ba.infn.it
§Gabriele.Veneziano@cern.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 103519 (2018)

2470-0010=2018=98(10)=103519(16) 103519-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.103519&domain=pdf&date_stamp=2018-11-21
https://doi.org/10.1103/PhysRevD.98.103519
https://doi.org/10.1103/PhysRevD.98.103519
https://doi.org/10.1103/PhysRevD.98.103519
https://doi.org/10.1103/PhysRevD.98.103519
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


cosmological perturbations that in a contracting universe
hydrodynamical matter with small sound speed suffers
from the Jeans instability and collapses into Hubble-size
black holes well before a bounce is reached. This instability
in a generic contracting universe was first studied in
Ref. [32], an analysis that was extended by Ref. [33] to
argue that the final state of a contracting universe is a dense
gas of black holes with a stiff equation of state (in which the
pressure equates the energy density). In the context of
string theory, it was shown in Ref. [34] that the past-trivial
string vacuum of the tree-level low-energy effective grav-
idilaton action is also generically prone to gravitational
instability, leading to the formation of black holes. All these
studies thus indicate that the state of a contracting universe
at high densities is composed of many black holes.
When the universe reaches the string scale, the black

holes are then expected to become more stringy in nature.
In fact, the state of a “black-hole gas” is argued in Ref. [35]
to become a “string-hole gas.” String holes represent
marginal black holes with mass equal to Msg−2s (see
Refs. [36,37] as well as [35,38,39]), where gs is the string
coupling. This represents a correspondence curve along
which the physical properties of black holes and strings
match spectacularly well (see, e.g., Refs. [38,40]). In
particular, the Schwarzschild radius and Hawking temper-
ature of a string hole are given by the string length and
mass, respectively. Therefore, string holes naturally
describe the state of collapsed matter at the string scale.
Correspondingly, a string-hole gas is the logical outcome of
a contracting universe in the Einstein frame at high
curvature. The challenge that is tackled in this paper is
to find a string-motivated action that can describe the
dynamics of a string-hole gas in agreement with its
properties. In the string frame, Ref. [35] argued that a
string-hole gas should have vanishing pressure and be
described by a constant Hubble parameter and constant
dilaton velocity, though it was not shown explicitly how
these properties can arise from a string theory action.
The outline of this paper is as follows. We first review in

Sec. II A the concept of string holes and carefully derive in
Sec. II B the properties of a string-hole gas, both in the
Einstein frame and string frame. We then show in Sec. III A
that with tree-level dilaton gravity as a low-energy effective
action of string theory dynamics that matches the properties
of a string-hole gas is only obtained in finely tuned
situations. It is only when α0 corrections are included that
we find more appropriate solutions. We study two different
first-order α0-corrected actions. First, we extend the work of
Ref. [4] in Sec. III B to include the contribution from matter
in the dynamical equations. Second, in Sec. III C, we study
the Oðd; dÞ-invariant action of Ref. [41]. In Sec. IV, we
perform a phase space analysis to judge the stability of the
string-hole gas solutions for both α0-corrected actions, and
we comment on the overall evolutionary scheme. In
particular, we address the issue of connectivity to the

string perturbative vacuum. We summarize the main con-
clusions in Sec. V. The section is also devoted to a
discussion about the possible subsequent fate of a string-
hole gas and its role in leading to a nonsingular bouncing
cosmology, and we mention future research directions.
Throughout this paper, we work with ℏ ¼ c ¼ kB ¼ 1,

and the reduced Planck mass and length are defined,
respectively, by M2−D

Pl ≡ 8πG and lPl ≡M−1
Pl , where G

(also denoted GD) is Newton’s gravitational constant in
D ¼ dþ 1 spacetime dimensions. The number of spatial
dimensions is denoted by d, and we assume that it is an
integer greater than or equal to 3 throughout.

II. STRING HOLES

A. Black hole/string correspondence

One defines a string hole (SH) as an object that has the
mass of a Schwarzschild black hole (BH) confined within a
radius given by the string length, i.e., MSH ¼ MBH ∼
RD−3
BH =G and RSH ¼ RBH ¼ ls, so MSH ∼ lD−3

s =G. (For a
review of D-dimensional black holes, see, e.g., Ref. [42]).
Introducing the string mass given by the inverse of the
string length, Ms ¼ l−1

s , the string coupling gs, and the
dilaton ϕ, we recall the following relation that holds
in the weak-coupling regime of the closed string sector
(see, e.g., Ref. [27]):�

lPl

ls

�
D−2

¼
�
Ms

MPl

�
D−2

¼ g2s ¼ eϕ ≪ 1: ð1Þ

From this relation, one can say that a string hole lies along
the correspondence curve [35–39]

MSH ∼Msg−2s : ð2Þ

It follows that the properties of strings and black holes
match impressively well along this correspondence curve
[38,40]. For instance, the black hole’s Bekenstein-Hawking
temperature,

TBH ¼ D − 3

4πRBH
; ð3Þ

and the string’s Hagedorn temperature (see, e.g., Ref. [43]
or [44] for an introduction),

THag ¼
1

4π
ffiffiffiffi
α0

p ; ð4Þ

both scale as l−1
s for string holes, where 2πα0 ¼ l2

s .
Similarly, the black hole’s Bekenstein-Hawking entropy
for a string hole,

SBH ¼ ΩD−2RD−2
BH

4G
∼
lD−2
s

lD−2
Pl

∼ g−2s ; ð5Þ
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where ΩD−2 is the area of a unit (D − 2)-sphere, is of the
same order as the entropy of a string,

Sstr ¼ 4π
ffiffiffiffi
α0

p
E ∼ lsMSH ∼ g−2s ; ð6Þ

where we make use of Eq. (2) in the last proportionality for
a string hole.
From the above correspondence, it is natural to expect a

black hole that reaches the size of a fundamental string to
become a string hole. Furthermore, if a contracting universe
is populated with a dense gas of black holes, then the
appropriate description of the gas at the string scale must be
a string-hole gas. Hence, the main subject of this paper is
the study of a string-hole gas as the state of matter at the
string scale at the end of an Einstein-frame contracting
cosmology. The main thermodynamic properties of a
string-hole gas are derived in the next subsection.

B. String-hole gas

Let us consider a gas composed of N string holes.
Considering a dense gas, the string holes have negligible
momentum, and the energyof one stringhole canbe expressed
as ESH¼MSH∼l−1

s g−2s ¼l−1
s e−ϕ by use of Eqs. (1) and (2).

The gas with N string holes thus has total energy

Egas ≡ E ¼ NESH ∼ Nl−1
s e−ϕ: ð7Þ

In the same way, the entropy of one string hole is
SSH ∼ g−2s ¼ e−ϕ, so for a gas of N string holes, one finds

Sgas ≡ S ¼ NSSH ∼ Ne−ϕ: ð8Þ
Let the physical volume of the gas be given by

Vgas ≡ V ¼ fNVSH, where one string hole has volume
VSH ∼ lD−1

s and where f is a function that quantifies the
separation of the string holes (e.g., f ¼ 1 for a densely
packed string-hole gas, while f ≫ 1 for a dilute gas). Here,
we consider a dense gas, so we take f to be of order unity
and nearly constant. Thus, N ∼ Vl1−D

s , and the energy and
entropy of the string-hole gas are, respectively, given by

E ∼ Vl−D
s e−ϕ ∼ Vl−2

s G−1 ð9Þ
and

S ∼ Vl1−D
s e−ϕ ∼ Vl−1

s G−1; ð10Þ
where one uses Eq. (1) to express eϕ ∼ Gl2−D

s .
Accordingly, the energy and entropy densities are given by

ρ≡ E
V
∼ l−D

s e−ϕ ∼ l−2
s G−1; ð11Þ

s≡ S
V
∼ l1−D

s e−ϕ ∼ l−1
s G−1; ð12Þ

respectively.

1. Einstein-frame properties

At this point, there are several ways in which one can
relate the energy and entropy together. Let us consider the
Einstein frame in which the fundamental constant is
Newton’s constant, i.e., G ¼ constant, while the string
length can vary as a function of time. From this point of
view, one can eliminate ls from Eqs. (9) and (10) and relate
the energy and entropy through the expression

S ∼
ffiffiffiffiffiffiffi
EV
G

r
; ð13Þ

or equivalently, from Eqs. (11) and (12), the densities are
related by s ∼

ffiffiffiffiffiffiffiffiffi
ρ=G

p
. We note that these equations

correspond to the entropy and entropy density equations
of a black-hole gas (see Refs. [45–47] as well as [33,48]).
This makes sense; when viewed in the Einstein frame, the
string-hole gas is dominated by its gravitational nature, i.e.,
the strings behave more like black holes, at least
thermodynamically.
We note that the entropy equation (13) has been shown

[45] to be the only formula that is manifestly invariant
under the S- and T-dualities of string theory, at the same
time as approaching the standard Bekenstein-Hawking
black-hole entropy at small densities. This entropy expres-
sion also appears in different high-energy physics contexts
(see Refs. [45–47] and references therein).
Using the thermodynamic identity T−1 ¼ ð∂S=∂EÞV,

keeping G constant since we are in the Einstein frame,
and using Eq. (11), one finds

T ∼
ffiffiffiffiffiffiffi
EG
V

r
¼

ffiffiffiffiffiffi
ρG

p
∼ l−1

s ; ð14Þ

and one notes that the temperature is proportional to the
Hagedorn temperature (4). Furthermore, using the identity
p ¼ Tð∂S=∂VÞE for the pressure, and using Eq. (14) for
the temperature, one finds the equation of state (EOS)

p ¼ ρ: ð15Þ

This matches the EOS of a black-hole gas (see Refs. [45–47]
as well as [33,48]).
Similarly, if one considers a Friedmann-Lemaître-

Robertson-Walker (FLRW) universe with scale factor a
and if one requires the entropy in a comoving volume
Va−d to be constant, then it follows from Eq. (13) that
E ∼ V−1 ∼ a−d and furthermore

ρ ∼ a−2d: ð16Þ

Consequently, from Eq. (11), this implies

a ∼ l1=d
s ∼ e−

ϕ
dðd−1Þ; ð17Þ
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where one uses again the fact that G is a constant in the
Einstein frame. Therefore, if one considers a string-hole gas
in a contracting universe, then the scale factor, the string
length, and the size of the string holes become smaller as
time progresses, while the string coupling, the dilaton, the
energy density, and the (Hagedorn) temperature grow.

2. String-frame properties

Let us consider an alternative point of view: the string
frame in which the fundamental constant is the string
length, i.e., ls ¼ constant, while the gravitational constant
can vary as a function of time. From this point of view, one
can eliminateG from Eqs. (9) and (10) and relate the energy
and entropy through the expression

S ∼ lsE; ð18Þ

and equivalently, it follows that s ∼ lsρ. From T−1 ¼
ð∂S=∂EÞV and keeping the string length constant, it is
straightforward to see that

T ∼ l−1
s ∼ THag; ð19Þ

which is a constant temperature. Furthermore, from
p ¼ Tð∂S=∂VÞE, it follows that

p ¼ 0: ð20Þ

This confirms the result of Ref. [35] and again matches
what one could have guessed: in the string frame, the
string-hole gas is dominated by its stringy nature, and this is
why the EOS is that of a string gas with equal contribution
from momentum and winding modes (see, e.g., Ref. [27]).
Also, the expression (18) matches the leading-order behav-
ior of the entropy of a string gas (see, e.g., Refs. [1,49]).
Similarly, if one requires adiabaticity (S ¼ constant) in a

constant comoving volume in FLRW, then it follows that
the energy must be constant; hence,

ρ ∼ a−d: ð21Þ

From the standard conservation equation (more on this in
the next section), this is in agreement with an EOS p ¼ 0.
With Eq. (11), this implies

a ∼ G1=d ∼ eϕ=d; ð22Þ

where one uses again the fact that ls is a constant in the
string frame. Taking the time derivative of the above, this
further implies

H ¼
_ϕ

d
; ð23Þ

where H ≡ _a=a is the Hubble parameter and a dot denotes
a derivative with respect to the (string-frame) cosmic time t.
To be consistent with the fact that the size of the string

holes is constant in the string frame (RSH ¼ ls ¼ constant),
there are two possible cosmological evolutionary paths
consistent with the constraint (23). First, it could be that
the universe is static in the string frame (H ¼ 0), similar to
the (quasi)staticHagedorn phase of string gas cosmology [1]
(see also Refs. [2,50] for reviews that highlight the chal-
lenges in that context). Second, it could be that the radius of
the string holes is of the order of the Hubble radius
(RSH ∼H−1) with the string-frame Hubble parameter being
constant (H ∼ l−1

s ). In that case, a dense string-hole gas
coincides with having one string hole per Hubble volume.
This last avenue was conjectured in Ref. [35] to correspond
to the string phase in pre–big bang cosmology, and this is
whatwe explore in the rest of this paper.We note that a dilute
gas could also be possible with less than one string hole per
Hubble volume in average, but naively, in this situation,
curvature would continue to grow until the gas becomes
dense. Conversely, an “overdense” gas with more than one
string hole per Hubble volume is most likely forbidden by
entropy considerations. Indeed, a string-hole gas as defined
above exactly saturates the appropriate entropy bound
[51–55] (see Refs. [6,35] and additional references therein).
This is also confirmed in the Einstein frame in which
saturation occurs when the EOS is p ¼ ρ [45,48], and this
is the only safe outcome with respect to entropy bounds in a
contracting FLRW cosmology (see, e.g., Refs. [35,53] and
also [46]). These entropic considerations also reinforce a
string-hole gas to be the state of matter at high densities.
In summary, assuming expansion in the string frame, the

evolution of a string-hole gas corresponds to a constant
Hubble parameter equal to the string mass, while the
dilaton grows linearly with string-frame time according
to the constraint (23). We note that expansion in the string
frame is consistent with contraction in the Einstein frame;
this is shown explicitly in Appendix. The goal is then to
find a string-theoretic effective action that can support the
evolution of a string-hole gas, i.e., an action of which the
equations of motion (EOM) have a phase of string-hole gas
evolution as a solution.

III. DYNAMICS FROM DILATON GRAVITY

A. Tree-level dilaton gravity

We first study the string-frame, tree-level, low-energy
effective string theory action (see, e.g., Refs. [6,27])

S0 ¼ −
1

2ld−1
s

Z
ddþ1x

ffiffiffiffiffi
jgj

p
e−ϕðRþ gμν∇μϕ∇νϕ

þ 2ld−1
s UðϕÞÞ; ð24Þ

where g≡ detðgμνÞ is the determinant of the metric tensor,
UðϕÞ is the potential energy of the dilaton field, and R
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denotes the Ricci scalar in this section. Since we focus on
the gravidilaton sector of the effective string theory action,
we set to zero the potential contribution from the anti-
symmetric field strength coming from the Neveu-Schwarz/
Neveu-Schwarz 2-form.
The above action represents the effective action for

vacuum string theory, but we want to consider the
addition of matter; hence, we take the total action to be
S ¼ S0 þ Sm, where Sm represents the matter action. The
energy-momentum tensor associated with Sm is defined as
usual by Tμν ≡ 2jgj−1=2δSm=δgμν. The matter action may
also depend on the dilaton, so

σ ≡ −
2ffiffiffiffiffijgjp δSm

δϕ
ð25Þ

defines the dilaton (scalar) charge density.
Varying the action (24) in a homogeneous, isotropic, and

flat FLRW spacetime,

gμνdxμdxν ¼ dt2 − aðtÞ2δijdxidxj; ð26Þ

a set of dilaton-gravity background EOM in the string
frame can be written as (see, e.g., Refs. [6,27])

dðd − 1ÞH2 þ _ϕ2 − 2dH _ϕ ¼ 2ld−1
s ðeϕρþ UðϕÞÞ; ð27Þ

_H −H _ϕþ dH2 ¼ ld−1
s

�
eϕ
�
p −

σ

2

�
−U;ϕ

�
; ð28Þ

2ϕ̈ − _ϕ2 þ 2dH _ϕ − 2d _H − dðdþ 1ÞH2

¼ 2ld−1
s

�
eϕ

σ

2
−UðϕÞ þU;ϕ

�
; ð29Þ

where one assumes that the energy-momentum tensor can be
decomposed as a perfect fluid1 with Tμ

ν ¼ diagðρ;−pδijÞ.
Combining Eqs. (27)–(29), one can derive the fluid’s
conservation equation, which goes as

_ρþ dHðρþ pÞ ¼ 1

2
σ _ϕ: ð30Þ

General power-law solutions to these equations are well
known (see, e.g., Refs. [3,6,27,28]) but mostly for vanishing
potential, vanishing dilaton charge, and an EOS of the form
p ¼ wρ. We want to consider a string-hole gas, in which
these assumptions may not all be met. From Eqs. (11) and
(21), a string-hole gas in the string frame has energy density

ρ ¼ Cl−d−1
s e−ϕ ¼ ρ0a−d; ð31Þ

where C is a dimensionless positive constant and ρ0 is a
positive constant with dimensions of energy density. As seen
in the previous section, this implies the constraint equation
H ¼ _ϕ=d. Substituting this constraint and Eq. (31) into the
conservation equation (30), one finds

σ ¼ 2p; ð32Þ

independent of the EOS (only assumingH ≠ 0). Therefore,
one notices that if the dilaton charge density vanishes, the
pressure is zero, which is the naive EOS for a string-hole gas
in the string frame as shown in the previous section.
Conversely, if we expect the pressure to vanish from
thermodynamic arguments, then this tells us that the
string-hole gas matter action should have no explicit ϕ
dependence, so the dilaton charge density vanishes.
Inserting the constraint H ¼ _ϕ=d ¼ constant (which

implies ϕ̈ ¼ _H ¼ 0) and Eq. (32) into Eq. (28) immediately
yields U;ϕ ¼ 0. Therefore, a fixed-point solution satisfying

the constraint H ¼ _ϕ=d ¼ constant is only possible with a
constant potential independent of the dilaton. Then,
Eqs. (27) and (29) further reduce to

−
d
2
H2 ¼ Cl−2

s þ ld−1
s U; ð33Þ

−
d
2
H2 ¼ wCl−2

s − ld−1
s U; ð34Þ

where we set the EOS to be of the form p ¼ wρ. For the
above equations to yield a real solution for H, the only
possibility is to have a constant negative potential,

U ¼ −
1

ld−1
s

�
d
2
H2⋆ þ

C
l2
s

�
; ð35Þ

where the positive constant H⋆ should be of the order of
l−1
s to yield the solution H ¼ H⋆ ∼ l−1

s . This is equivalent
to introducing a fine-tuned negative cosmological constant,
Λ ∼ −Oðl−D

s Þ, in the string frame.2 Any other forms of the
potential UðϕÞ generically cannot support a string-hole gas
evolution with H ¼ _ϕ=d ¼ constant. Furthermore, the
potential (35), which yields the solution H⋆, is only
consistent with Eqs. (33)–(34) provided the EOS is also
tuned to be

w ¼ −1 −
dl2

sH2⋆
C

; ð36Þ

which violates the null energy condition. In summary, this
avenue does not seem particularly appealing, considering it

1We comment on the possible presence of viscosity as a
deviation from a perfect fluid description later in this section.

2We note, however, that such a negative constant value of U
may naturally appear in the tree-level string effective action, but
this would require a noncritical number of dimensions (see, e.g.,
Ref. [27]).
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would require tuning an ad hoc negative cosmological
constant and the EOS to a physically unexpected value.
This conclusion generalizes to nonlocal potentials of the

form Uðϕ̄Þ, where
ϕ̄ ¼ ϕ − ln ad ð37Þ

is the shifted dilaton. Indeed, we note that _̄ϕ ¼ _ϕ − dH ¼ 0

for a string-hole gas satisfying the constraint H ¼ _ϕ=d.
Thus, regardless of the modifications to the EOM for a
nonlocal potential (see, e.g., Refs. [6,27,28] for the exact
modified EOM), ϕ̄ has to remain constant during a string-
hole gas evolution, so any potential Uðϕ̄Þ would simply be
a constant, i.e., a cosmological constant.
In summary, it appears that one cannot support the

evolution of a string-hole gas with tree-level dilaton gravity,
no matter the form of the potential (unless it is a fine-tuned
negative cosmological constant). Therefore, one should
explore the possibility of higher-order corrections.

B. Action with α0 corrections

The low-energy effective action S0 introduced in the
previous subsection is only compatible with the conformal
invariance of quantized strings on a curved background to
zeroth order in α0 ∼ l2

s .When going to first order, conformal
invariance allows new higher-derivative terms such that the
effective action contains terms that scale as the square of the
spacetime curvature and so on. As long as curvature is small,
e.g., l2

sR ≪ 1, then the perturbative expansion is dominated
by the zeroth-order action. However, when the curvature
reaches the string scale, which is the case when H ∼ l−1

s ,
then higher-order terms are necessary. In fact, when the
perturbative expansion breaks down on substring scales,
working with an effective action is no longer viable, and one
would have toworkwith a proper conformal field theory that
could account for α0 corrections nonperturbatively (see, e.g.,
Ref. [56]). This approach, however, is beyond the scope of
this study, and in what follows, we assume that a first-order
α0-corrected effective action is a sufficient approximation
when H ∼ l−1

s .
Demanding general covariance and gauge invariance of

the string effective action, one can write down many
perfectly valid actions that are compatible with the con-
dition of conformal invariance to first order in α0. Those
actions are related by simple field redefinitions of the
metric and dilaton; hence, it is ambiguous which action to
choose (see, e.g., Refs. [6,27] and references therein). For
instance, the simplest consistent action to first order in α0 is
S ¼ S0 þ Sα0 with

Sα0 ¼
kα0

8ld−1
s

Z
ddþ1x

ffiffiffiffiffi
jgj

p
e−ϕRμνκλRμνκλ; ð38Þ

where Rμνκλ is the Riemann tensor and either k ¼ 1 for
bosonic strings or k ¼ 1=2 for heterotic superstrings.

However, working with the above action (i.e., with the
square of the Riemann tensor) in a cosmological context is
rather cumbersome, because the field equations contain, in
general, higher than second derivatives of the metric tensor.
Such a formal complication can be avoided, however, by
performing an appropriate field redefinition [4] and con-
sidering the action with

Sα0 ¼
kα0

8ld−1
s

Z
ddþ1x

ffiffiffiffiffi
jgj

p
e−ϕðG − ð∇μϕ∇μϕÞ2Þ; ð39Þ

where G≡ RμνκλRμνκλ − 4RμνRμν þ R2 is the Gauss-Bonnet
invariant, Rμν ≡ gκλRκμλν is the Ricci tensor, and R≡
gμνRμν is the Ricci scalar. This was first considered by
Gasperini et al. [4] (GMV hereafter; also studied in
Refs. [23,24,57] and discussed in [6,27]). Therefore, for
a first attempt, we examine the action S ¼ S0 þ Sα0 þ Sm
with Sα0 given by Eq. (39), and for the rest of this paper,
we assume that the dilaton has no potential; i.e., we set
UðϕÞ ¼ 0 in S0.
GMV already showed that this action admits no homo-

geneous and isotropic fixed-point solution with _̄ϕ ¼ 0, i.e.,
with H ¼ _ϕ=d ¼ constant for a string-hole gas. However,
GMV only considered the vacuum action with no matter,
i.e., S ¼ S0 þ Sα0 . To find dynamics for the string-hole gas,
one must include the matter action Sm as before. The EOM
that follow from varying the corresponding action in a
FLRW background are

ρ¼1

2
l1−d
s e−ϕ

�
_ϕ2þdðd−1ÞH2−2dH _ϕ−

3kα0

4
F ρðH; _ϕÞ

�
;

σ¼−l1−d
s e−ϕ

�
−2ϕ̈þ2d _Hþ _ϕ2þdðdþ1ÞH2−2dH _ϕ

þkα0

4
F σðH; _ϕ; _H;ϕ̈Þ

�
;

p¼ 1

2d
l1−d
s e−ϕ

�
−2dðd−1Þ _Hþ2dϕ̈−d2ðd−1ÞH2

þ2dðd−1ÞH _ϕ−d _ϕ2þkα0

4
FpðH; _ϕ; _H;ϕ̈Þ

�
; ð40Þ

where we define

F ρðH; _ϕÞ≡ c1H4 þ c3H3 _ϕ − _ϕ4;

F σðH; _ϕ; _H; ϕ̈Þ≡ 3c3 _HH2 − 12ϕ̈ _ϕ2 þ ðc1 þ dc3ÞH4

− 4dH _ϕ3 þ 3 _ϕ4;

FpðH; _ϕ; _H; ϕ̈Þ≡ 12c1 _HH2 þ 3c3ϕ̈H2 þ 6c3 _HH _ϕ

þ 3dc1H4 − 2ð2c1 − dc3ÞH3 _ϕ

− 3c3H2 _ϕ2 þ d _ϕ4; ð41Þ

and
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c1 ≡ −
d
3
ðd − 1Þðd − 2Þðd − 3Þ;

c3 ≡ 4d
3
ðd − 1Þðd − 2Þ: ð42Þ

These equations generalize the EOM that were already
derived, e.g., in Refs. [4,6,27], to include matter; the
vacuum limit (ρ ¼ p ¼ σ ¼ 0) reduces to the EOM in
Refs. [4,6,27]. We note that the above three EOM are not all
independent. Indeed, one can verify that the continuity
equation

_ρþ dHðρþ pÞ ¼ 1

2
σ _ϕ ð43Þ

relates the three EOM.
We now seek to find solutions to the above EOM that

could describe a string-hole gas. To do so, one sets
ρ ¼ Cl−d−1

s e−ϕ, σ ¼ 2p, and H ¼ _ϕ=d. Furthermore, we
relate the pressure and energy density through an EOS of
the form p ¼ wρ. We expect the EOS to be p ¼ 0 for a
string-hole gas in the string frame from the thermodynamic
arguments of Sec. II B 2, so the EOS parameter w is set to
zero later on. Nevertheless, the more crucial property for a
string-hole gas is that peff ≡ p − σ=2 ¼ 0; thus, we per-
form a slightly more general analysis in what follows with a
generic EOS parameter w. One then looks for fixed-point
solutions with y1 ≡H ¼ constant, y2 ≡ _ϕ ¼ constant, and
ϕ̈ ¼ _H ¼ 0. The constraint H ¼ _ϕ=d implies y2 ¼ dy1,
and the three differential EOM reduce to three algebraic
equations for y1,

−dy21

�
1 −

3kα0y21Δ
4

�
¼ 2Cl−2

s ;

dy21

�
1 −

kα0y21Δ
4

�
¼ −2wCl−2

s ;

−d2y21

�
1 −

kα0y21Δ
4

�
¼ 2dwCl−2

s ; ð44Þ

where we define Δ≡ 2d2 þ d − 2. We note that Δ is
strictly positive (in fact, Δ ≥ 19 for d ≥ 3). The second
and third equations above are completely equivalent, which
is due to the fact that the three EOM are not independent.
Therefore, one only has to solve the first and second
equations for y1. Requiring real solutions for y1, one can
show that these two equations yield the same nontrivial
solutions,

y1 ¼ H ¼ � 2

ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1 − wÞ
kð1 − 3wÞΔ

s
; ð45Þ

if and only if w < 1=3 and

C ¼ 8πdð1 − wÞ
kð1 − 3wÞ2Δ ; ð46Þ

where we use 2πα0 ¼ l2
s to simplify the expressions. The

solution for _ϕ immediately follows by multiplying Eq. (45)
by d.
A couple of comments are in order. One first notes that

jHj ∼ l−1
s as expected. Second, one notices that the restric-

tionsw < 1=3 and Eq. (46) imposeC > 0, whichmeans that
no real and consistent solution (except the trivial solution
H ¼ _ϕ ¼ 0) would have followed from setting C ¼ 0. This
reproduceswhat was stated byGMV, i.e., that there exists no

consistent nontrivial solution satisfying the constraint _̄ϕ ¼ 0

(which is equivalent toH ¼ _ϕ=d ¼ constant) in vacuum. In
summary, the GMV α0-corrected action that includes a
string-hole gas matter action does allow for consistent
solutions with the properties of a string-hole gas for any
w < 1=3 and provided ρ has the appropriate amplitude, with
C given in Eq. (46).
The unique physical solution for the EOS p ¼ 0 (w ¼ 0)

is then

H ¼
_ϕ

d
¼ 2

ls

ffiffiffiffiffiffi
2π

kΔ

r
; ð47Þ

taking the positive solution for expansion in the string
frame. For instance, in d ¼ 3 dimensions and for k ¼ 1, the
solution is H ¼ 2l−1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=19

p
. In the case w ¼ 0, the

physical solution is valid only if C ¼ 8πd=ðkΔÞ, which
might appear as a fine-tuning problem. However, we recall
that C is only an arbitrary constant amplitude for the energy
density [cf. Eq. (31)], and it is certainly tunable depending
on the total energy density of the universe and the other
matter contents prior to the string-hole gas phase. In sum,
the α0-corrected action considered in this subsection has
background EOM that have a unique and natural solution
[Eq. (47)] corresponding to a string-hole gas evolution.

C. Oðd;dÞ-invariant α0-corrected action

As we mentioned in the previous subsection, there are
several consistent α0-corrected actions related through field
redefinitions. In this subsection, we consider a different
choice for Sα0, specifically

Sα0 ¼
kα0

8ld−1
s

Z
ddþ1x

ffiffiffiffiffi
jgj

p
e−ϕðG − ð∇μϕ∇μϕÞ2

− 4Gμν∇μϕ∇νϕþ 2ð∇μϕ∇μϕÞ□ϕÞ; ð48Þ

where Gμν ≡ Rμν − Rgμν=2 is the Einstein tensor and □≡
gμν∇μ∇ν is the d’Alembertian. This action shares the
Gauss-Bonnet and ð∇ϕÞ4 terms with the action (39),
but the second in line in Eq. (48) is new; nevertheless,
this action is still free from higher derivatives in the
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cosmological field equations. The actions (39) and (48) are
related by a field redefinition (see Ref. [27]). This action
was first introduced by Meissner [41] (see also Ref. [58]),
who showed that it is invariant under theOðd; dÞ symmetry
to first order in the α0 expansion.
The Oðd; dÞ symmetry plays a key role in string theory

and even more in the context of pre–big bang cosmology
(see Refs. [6,27] and references therein). Indeed, the
cosmological scale factor duality a → 1=a [19] is actually
extendable to a continuous symmetry, the transformation
group of which is Oðd; dÞ. It was found that the action of
the group transforms known solutions to the effective
cosmological string theory into new solutions [21,59].
The symmetry was shown to be present for the low-energy
action to zeroth order in α0 with the presence of matter [60],
but it was also argued to apply to all orders in α0 [19,21].
The action that has the symmetry to first order in α0 is the
one found by Meissner [41], and it is the one introduced
above that we consider below.
SinceS0 is already invariant underOðd; dÞ transformations

[6,27,60], it is natural to consider the α0-corrected action (48)
that bares the same symmetry. Let us comment on the nature
of the symmetry for a string-hole gas. Considering an
isotropic and homogeneous cosmology for simplicity, the
EOM of the full action S ¼ S0 þ Sα0 þ Sm are Oðd; dÞ
invariant under the transformations a → 1=a, ϕ̄ → ϕ̄,
ρ̄ → ρ̄, p̄ → −p̄, and σ̄ → σ̄, where the shifted dilaton is
given by Eq. (37) and the other shifted variables are ρ̄ ¼ ρad,
p̄ ¼ pad, and σ̄ ¼ σad. Thus, for a string-hole gas with
p ¼ σ=2 ¼ 0, we expect ρ̄ ¼ Cl−d−1

s e−ϕ̄ ¼ ρ0, p̄ ¼ 0, and
σ̄ ¼ 0, and readily, we notice the Oðd; dÞ invariance. Let us
mention that in general, though, deviations from a perfect
fluid description could change this conclusion. Indeed, it was
shown in Ref. [60] that a particular nontrivial action of the
Oðd; dÞ group can transform a perfect fluid with a diagonal
stress tensor into a fluid with nondiagonal elements in its
stress tensor.Moreprecisely, a perfect fluidwithEOSp ¼ wρ
transforms into a pressureless fluid (so p → 0) with shear
viscosity given by η ¼ −wρ=ð2HÞ. However, for a string-
hole gas, the perfect fluid EOS is precisely expected to be that
of a pressureless fluid to start with (w ¼ 0), so the trans-
formation turns out to be trivial, and no shear viscosity
appears. Therefore, a string-hole gas with vanishing pressure
in the string frame has a valid and consistent perfect fluid
description from the point of view ofOðd; dÞ invariance of its
action. If one allows w ≠ 0 to describe a string-hole gas (but
still with peff ¼ p − σ=2 ¼ 0), then a more refined analysis
should drop the perfect fluid description and include the
possible effects of viscosity, as was first considered in
Ref. [46]. We keep the exploration of this possibility for
future work.
Let us now derive the EOM. We consider the FLRW

metric

gμνdxμdxν ¼ NðtÞ2dt2 − e2βðtÞδijdxidxj; ð49Þ

where, in this subsection, we introduce the lapse function
NðtÞ [which we later set to NðtÞ≡ 1]. Also, the scale factor
is written as aðtÞ ¼ eβðtÞ, so the Hubble parameter becomes
HðtÞ ¼ _βðtÞ. This is only a matter of convenience to
compute the EOM below. The action S ¼ S0 þ Sα0 thus
reduces to the form S ¼ −ðls=2Þ

R
dtVtLðtÞ, where Vt ≡

l−d
s

R
Σt
ddx is the volume of the spatial hypersurface of

constant time Σt (at time t) in string units, and the
Lagrangian density is

LðtÞ ¼ edβ−ϕ
�
1

N
½−2dβ̈ − dðdþ 1Þ _β2 þ 2dF _β þ _ϕ2�

−
kα0

4N3
½−3c3F _β3 þ ðdþ 1Þdðd − 1Þðd − 2Þ _β4

þ 3c3β̈ _β
2 − 2dðd − 1Þ _ϕ2 _β2 þ 2ϕ̈ _ϕ2

þ 2d _ϕ3 _β − 2F _ϕ3 − _ϕ4�
�
; ð50Þ

where F≡ _N=N. After integration by parts, the action
reduces to

S¼ls

2

Z
dtVtedβ−ϕ

�
1

N
½− _ϕ2−dðd−1Þ_β2þ2d_β _ϕ�

þ kα0

4N3
½c1 _β4þc3 _ϕ _β

3−2dðd−1Þ _ϕ2 _β2þ4

3
d _ϕ3 _β−

1

3
_ϕ4�

�
:

ð51Þ
Let us add to the above action a matter action Sm described
by an energy density ρ, pressure p, and dilaton charge
density σ as before. Then, varying the total action with
respect to N, ϕ, and β [and afterward setting NðtÞ≡ 1], one
finds three EOM, which are the same as the set of
equations (40), except the functions F ρ, F σ , and Fp that
are replaced by

F ρðH; _ϕÞ ¼ c1H4 þ c3H3 _ϕ − 2dðd − 1ÞH2 _ϕ2

þ 4

3
dH _ϕ3 −

1

3
_ϕ4; ð52Þ

F σðH; _ϕ; _H; ϕ̈Þ¼ 3c3 _HH2−8dðd−1Þ _HH _ϕþ4d _H _ϕ2

−4dðd−1Þϕ̈H2þ8dϕ̈H _ϕ−4ϕ̈ _ϕ2

þðc1þdc3ÞH4−4d2ðd−1ÞH3 _ϕ

þ2dð3d−1ÞH2 _ϕ2−4dH _ϕ3þ _ϕ4; ð53Þ
FpðH; _ϕ; _H; ϕ̈Þ ¼ 12c1 _HH2 þ 6c3 _HH _ϕ − 4dðd − 1Þ _H _ϕ2

þ 3c3ϕ̈H2 − 8dðd − 1Þϕ̈H _ϕþ 4dϕ̈ _ϕ2

þ 3dc1H4 − 2ð2c1 − dc3ÞH3 _ϕ

− ð3c3 þ 2d2ðd − 1ÞÞH2 _ϕ2

þ 4dðd − 1ÞH _ϕ3 − d _ϕ4: ð54Þ
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Note that we reexpressed the Hubble parameter _β
with H.
As in the previous subsection, we consider a string-hole

gas with ρ ¼ Cl−d−1
s e−ϕ, σ ¼ 2p, p ¼ wρ, and H ¼ _ϕ=d.

One looks for fixed-point solutions with y1 ≡H ¼ constant,
y2 ≡ _ϕ ¼ constant (so _H ¼ ϕ̈ ¼ 0), and y2 ¼ dy1. The
three EOM then reduce to two independent algebraic
equations:

−dy21

�
1 −

3ðd − 2Þkα0
4

y21

�
¼ 2C

l2
s
; ð55Þ

dy21

�
1 −

ðd − 2Þkα0
4

y21

�
¼ −

2wC
l2
s

: ð56Þ

Those two equations share the same nontrivial solutions,

y1 ¼ H ¼ � 2

ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1 − wÞ

kðd − 2Þð1 − 3wÞ

s
; ð57Þ

if and only if the amplitude parameter satisfies

C ¼ 8πd
kðd − 2Þ

1 − w
ð1 − 3wÞ2 ð58Þ

and as long as w < 1=3. These expressions are not the same
as Eqs. (45) and (46), but they only differ by numerical
factors that depend on the number of spatial dimensions.
Essentially, Δ ¼ 2d2 þ d − 2 in Eqs. (45) and (46) is
replaced by d − 2 in Eqs. (57) and (58). The solutions are
certainly of the same order, and as before (as expected),
jHj ∼ l−1

s . The physical solution with w ¼ 0 reduces to

H ¼
_ϕ

d
¼ 2

ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

kðd − 2Þ

s
; ð59Þ

and it requires C ¼ 8πd=ðkðd − 2ÞÞ. As before, we argue
thatC is an arbitrary constant, so this does not represent fine-
tuning. Therefore, the Oðd; dÞ-invariant α0-corrected action
of this subsection yields a unique and natural solution, which
corresponds to a string-hole gas evolution but which is
different from the solution of the previous subsection. The
differences are due to the fact that the physical effects of the
higher-curvature corrections are not invariant, in general,
under field redefinitions truncated to first order in α0. Such an

ambiguity affects all models truncated to any given finite
order of the α0 expansion and can be resolved, in principle,
only by considering exact conformal models, which auto-
matically include the corrections to all orders. In the
following section, restricting our discussion to the first order
in α0, we perform a phase space analysis of the two previous
solutions in order to find the most appropriate one to
describe—in this approximation—the main properties of
the string-hole gas and of its dynamical evolution.

IV. PHASE SPACE ANALYSIS

At this point, two distinct solutions that correspond to a
string-hole gas evolution given two different α0-corrected
actions have been found: the solutions (47) and (59) follow
from GMV’s action and Meissner’s action, respectively. In
the perspective of a greater evolutionary scheme, we now
seek to determine the stability of those fixed points in the
whole phase space of cosmological solutions. For instance,
the nontrivial fixed points found by GMV [4] in vacuum
were shown to be attractors in phase space and smoothly
connected to the string perturbative vacuum (i.e., to the
asymptotic state with vanishing string coupling and flat
spacetime, gs → 0 and H → 0). Conversely, the attractor
fixed points from Meissner’s action in vacuum are dis-
connected from the low-energy trivial fixed point (see
Refs. [6,27]). We analyze the phase space with the addition
of matter and in particular for a string-hole gas in the
subsequent subsections.

A. Stability of the fixed point with GMV’s action

Recall the GMV EOM given by Eq. (40). In general, for
an EOS of the form p ¼ wρ and assuming that σ is also
proportional to ρ, one can see that there are only three
independent variables in configuration space: H, _ϕ, and
eϕρ. One can choose to use the Hamiltonian constraint [the
first equation of the set (40)] to eliminate eϕρ from the other
two evolution equations. This amounts to projecting the
configuration space onto a two-dimensional vector space,
where the vectors are of the form yA ¼ ðH; _ϕÞ, A ∈ f1; 2g.
One can thus reexpress the set (40) as two independent
differential equations, written in vector form as _yA ¼
ð _H; ϕ̈Þ ¼ CA, where C1 and C2 are functions of H and _ϕ
only [i.e., CA ¼ CAðyBÞ]. For example, when p ¼ σ=2 ¼ 0
(w ¼ 0), their expressions are

C1ðH; _ϕÞ ¼ −
1

D

�
16HðdH − _ϕÞ þ 2kl2

s

π

�
3c3
4

ðdþ 3ÞH4 −
3c3
2d

H3 _ϕ − 2ðd − 1Þð2d − 1ÞH2 _ϕ2 þ 2ð2d − 3ÞH _ϕ3 − _ϕ4

�

þ 3k2l4
s

4π2

�
3c23
16d

ðdþ 1ÞH6 þ 3c1H4 _ϕ2 þ c3
d
ð2d − 3ÞH3 _ϕ3 −

9c3
4d

H2 _ϕ4 þ _ϕ6

��
; ð60Þ
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C2ðH; _ϕÞ ¼ −
1

D

�
8½dðd − 1ÞH2 − _ϕ2� þ kl2

s

π

�
3c3
4

ðd − 7ÞH4 þ 3c3
2d

ð2d − 3ÞH2 _ϕ2 − 8ðd − 1Þ2H _ϕ3 þ ð4d − 3Þ _ϕ4

�

−
3k2l4

sc3
16π2d

H½3c1H5 þ 6c1H4 _ϕþ 3c3H3 _ϕ2 þ 4dðd − 3ÞH2 _ϕ3 − 3ð4d − 3ÞH _ϕ4 þ 6 _ϕ5�
�
; ð61Þ

where

D≡ 16þ 3kl2
sc3

πd

�
ðdþ 3ÞH2 þ 2H _ϕ −

3

d − 2
_ϕ2

�

þ 3k2l4
sc3

4π2d
H

�
3c3
4

H3 − 3ðd − 3ÞH _ϕ2 þ 6 _ϕ3

�
: ð62Þ

For w ¼ 0, we recall that the string-hole gas fixed point is
given by Eq. (47), and here we denote it as

yA⋆ ¼ ðH⋆; _ϕ⋆Þ ¼
2

ls

ffiffiffiffiffiffi
2π

kΔ

r
ð1; dÞ: ð63Þ

One can check that C1ðH⋆; _ϕ⋆Þ ¼ C2ðH⋆; _ϕ⋆Þ ¼ 0

(CAðyB⋆Þ ¼ 0), so _H⋆ ¼ ϕ̈⋆ ¼ 0 (_yA⋆ ¼ 0) as expected.
The Jacobian matrix for the system of differential

equations is then

JAB ¼ ∂ACB; ð64Þ

and its eigenvalues are

r� ¼ 1

2
f∂HC1 þ ∂ _ϕC

2 � ½ð∂HC1 þ ∂ _ϕC
2Þ2

− 4ð∂HC1∂ _ϕC
2 − ∂ _ϕC

1∂HC2Þ�1=2g: ð65Þ

After calculating the partial derivatives and evaluating at
the fixed point ðH⋆; _ϕ⋆Þ, one finds

r� ¼ � 2

ls

ffiffiffiffiffiffiffiffiffiffiffiffi
2πdΔ
kQ

r
; ð66Þ

where

Q≡ 16d5 − 32d4 − 46d3 þ 47d2 þ 36d − 20: ð67Þ

Since rþ > 0 > r−, it follows that the fixed point ðH⋆; _ϕ⋆Þ
is a saddle point, and therefore, it is generally not stable and
certainly not an attractor in phase space.
If one worries only about perturbations around the fixed

point that preserve the condition H ¼ _ϕ=d, one may check
the directional derivative of CA with respect to the unit
vector parallel to the line corresponding to H ¼ _ϕ=d. The
unit vector is expressed as uA ¼ ð1þ d2Þ−1=2ð1; dÞ. The
expression for the directional derivative is then

DuCA ≡ uB∂BCA ¼ ∂HCA þ d∂ _ϕC
Affiffiffiffiffiffiffiffiffiffiffiffiffi

1þ d2
p ; ð68Þ

and upon calculating the partial derivatives and evaluating
at the fixed point ðH⋆; _ϕ⋆Þ, one finds

DuC1jðH⋆; _ϕ⋆Þ ¼ −
P1

lsQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

kð2d4 þ d3 þ d − 2Þ

s
;

DuC2jðH⋆; _ϕ⋆Þ ¼ −
P2

lsQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΔ

kð1þ d2Þ

s
; ð69Þ

where

P1 ≡ 4dðdþ 2Þð2d − 1ÞΔ;
P2 ≡ 8d4 − 8d3 − 18d2 þ 20d: ð70Þ

Noting thatPA > 0 andQ > 0 for any d ≥ 3, it follows that

DuCAjðH⋆; _ϕ⋆Þ < 0; A ¼ 1; 2; ð71Þ

and thus, the fixed point ðH⋆; _ϕ⋆Þ is stable in the direction
corresponding to the lineH ¼ _ϕ=d. This implies that if one
considers perturbations about the string-hole gas saddle
point that respect the condition H ¼ _ϕ=d the string-hole
gas evolution is stable. However, for general perturbations
about the saddle point, the trajectories might flow away
from the string-hole gas evolution.
Further insight can be gained numerically. For example,

setting k ¼ 1, ls ¼ 1, and d ¼ 3, one finds two real positive
nontrivial fixed points that satisfy CAðH; _ϕÞ ¼ 0: the string-
hole gas fixed point with yA⋆ ¼ ð2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

2π=19
p

; 6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=19

p Þ and
another fixed point approximately located at (1.546,3.520).
The phase space trajectories are plotted in Fig. 1. The string-
hole gas fixed point is depicted by the red dot, and visual
inspection confirms that it is a saddle point (see the left plot
of Fig. 1 for a close-up). The other fixed point, depicted by
the black dot, is the attractor of standard (vacuum) pre–big
bang cosmology3 (see, e.g., Refs. [4,6,27]).We note that this
is exactly the fixed point found byGMV, and it appears in the

3Our numerical values differ from those of Refs. [4,6,27]
simply due to the choice of units. We work with k ¼ ls ¼ 1,
while Refs. [4,6,27] set kα0 ¼ 1, so basically the numbers differ
by a factor of

ffiffiffiffiffi
2π

p
.
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phase space no matter what the EOS parameter w is since
eϕρ → 0 at that point.
The dashed gray curves in Fig. 1 depict the line _ϕ ¼ dH.

When projecting the trajectories onto that line, it is clear
from the left plot that the flow is attracted toward the string-
hole gas saddle point in its vicinity. This is in agreement
with the earlier (analytical) result that the string-hole gas
saddle point is stable in the direction of the constraint
H ¼ _ϕ=d.
In the right plot of Fig. 1, we show the phase space

including the trivial fixed point ðH; _ϕÞ ¼ ð0; 0Þ corre-
sponding to the string perturbative vacuum, and the green
curve shows one trajectory passing infinitesimally close to
that fixed point. We notice that it smoothly reaches the
attractor fixed point (black dot), confirming the result of
GMV4 [4]. This also implies, however, that it is not possible
for a trajectory to start near the string perturbative vacuum
and evolve toward the string-hole gas fixed point smoothly.
In the context of pre–big bang cosmology, the goal would
be to start at the string perturbative vacuum and evolve
toward a string-hole gas as the high-energy state of the
universe before a bounce. Although GMV’s α0-corrected
action allows for a unique string-hole gas solution, it does

not seem to be sufficient to describe the evolution of the
universe thoroughly from the perturbative vacuum to the
stringy state at high energies. This is not surprising because
black-/string-hole formation is not a continuous process;
rather, the holes collapse instantaneously from the vacuum
fluctuations that have grown in amplitude. Therefore,
asking for continuous trajectories connecting the vacuum
to the string-hole gas fixed point is ill posed.
Nevertheless, there are arguments to support that a

string-hole gas should be connected to the vacuum in some
way. In a broader cosmological context, one could imagine
starting asymptotically far in the past in a contracting
universe (in the Einstein frame) which has “normal" matter
(e.g., a mix of dust [w ¼ 0] and radiation [w ¼ 1=d]). As
shown in Ref. [30] (see also Refs. [31–33]), starting with
vacuum initial conditions, the pressureless matter would
collapse into a black-hole gas, and as stated in the present
work, it would evolve into a string-hole gas with EOS
p ¼ ρ. From that point of view, a string-hole gas with EOS
w ¼ 1 is naturally an attractor,5 and the same conclusion
would necessarily follow in the string frame, although the
physical intuition might be less obvious in the string frame.
In that context, one cannot describe the entire cosmological
evolution with the stringy actions studied in this paper; they

FIG. 1. Phase space trajectories for GMV’s action in a FLRW background with matter satisfying the continuity equation and
p ¼ σ=2 ¼ 0. Setting k ¼ 1, ls ¼ 1, and d ¼ 3, _H and ϕ̈ are computed from Eqs. (60) and (61), respectively. The red dot denotes the
string-hole gas saddle point (63), and the black dot denotes the attractor fixed point of vacuum pre–big bang cosmology. The dashed
gray curve depicts the line _ϕ ¼ dH, along which the saddle point is stable. The left and right plots show different ranges inH and _ϕ. The
left plot is a blowup of the right plot near the two nontrivial fixed points. In the right plot, the green line shows an example of trajectory
that starts near the trivial fixed point at H ¼ _ϕ ¼ 0 and goes to the attractor fixed point.

4This time, we note that this curve may not be exactly the
solution found by GMV. However, it is close enough since eϕρ is
subdominant at all times along the green trajectory. In particular,
it shares its qualitative behavior: the perturbative evolution
starts in the region _̄ϕ ¼ _ϕ − dH > 0 (above the dashed gray
line), crosses the gray line (where _̄ϕ ¼ 0), and ends at the
attractor fixed point in the region _̄ϕ < 0 (below the gray line).

5Matter with the EOS w ¼ 1 is generally (marginally) an
attractor in a contracting universe, whether it is a black-/string-
hole gas, anisotropies, or a massless scalar field. We use the word
“marginal” since any other component with EOS w > 1, e.g., an
ekpyrotic field with negative exponential potential, would over-
turn this conclusion and become the new attractor (see, e.g.,
Ref. [61]).
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would be applicable only at the time of formation of the
string holes. In that case, when the condition H ¼ _ϕ=d is
met, as we showed above, the string-hole gas evolution is
an attractor in the string frame.

B. Stability of the fixed point with Meissner’s action

We now perform the same stability analysis as in the
previous subsection, except starting with the EOM derived
in Sec. III C for Meissner’s action and setting p ¼ σ=2 ¼ 0.
Here the fixed point is [recall Eq. (59)]

yA⋆ ¼ ðH⋆; _ϕ⋆Þ ¼
2

ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

kðd − 2Þ

s
ð1; dÞ: ð72Þ

As before, we put the set of differential equations in the
form _yA ¼ ð _H; ϕ̈Þ ¼ CAðH; _ϕÞ and compute the eigenval-
ues of the corresponding Jacobian matrix JAB ¼ ∂ACB

evaluated at the fixed point yA⋆ . As a result, we find that
there is one positive and one negative eigenvalue indicating
that the fixed point is again a saddle point. This is
confirmed by visual inspection of Fig. 2 (see the left plot
for a close-up; Fig. 2 is generated the same way as Fig. 1, in
particular, setting k ¼ 1, ls ¼ 1, and d ¼ 3). Contrary to
the saddle point of the previous subsection, though, the
saddle point here turns out to be unstable in the direction of
the string-hole gas constraint H ¼ _ϕ=d. Indeed, evaluating
DuCA at yA⋆ yields two positive values. This is confirmed by
looking at the direction of the flow along the dashed gray
line in the left plot of Fig. 2, which depicts the line _ϕ ¼ dH;
the trajectories are moving away from the fixed point
(in red).

Additional fixed points are found by numerically solving
CAðH; _ϕÞ ¼ 0, and they are shown by the yellow and black
dots in Fig. 2. The black dot is an attractor and was also
found in the context of vacuum pre–big bang cosmology
(see Ref. [27]). However, in this case, one notices that the
attractor fixed point is disconnected from the trivial fixed
point at the origin (see the right plot of Fig. 2), which
confirms the results of Refs. [27,62]. Furthermore, we find
that the string-hole gas saddle point is also not connected to
the string perturbative vacuum as it was the case with
GMV’s action. In fact, trajectories that start near the origin
tend to grow rapidly in _ϕ, while H remains small, and go
nowhere near the fixed points.
In summary, the string-hole gas fixed point, which is a

solution of Meissner’s action, shares several characteristics
with the solution of GMV’s action: both are saddle
points, disconnected from the string perturbative vacuum.
However, the trajectories in the vicinity of the saddle points
behave very differently for both actions. Indeed, the latter
(GMV) is stable in the direction of the string-hole gas
constraint H ¼ _ϕ=d, but the former (Meissner) is unstable.
Therefore, Meissner’s action appears very unlikely to be the
physical action that can describe the evolution of a string-
hole gas and of the universe at high energies.
Let us end by noting that, although the analysis outlined

in this section focuses on the case w ¼ 0, we found that the
qualitative results about the characterization and (in)sta-
bility of the fixed points are the same for any value of
w ∈ ð−1; 1=3Þ. We do not include the quantitative details
for a generic value of w for the sake simplicity and
readability.

FIG. 2. Phase space trajectories for Meissner’s action in a FLRW background with matter satisfying the continuity equation and
p ¼ σ=2 ¼ 0 (and setting k ¼ 1, ls ¼ 1, and d ¼ 3). The red dot denotes the string-hole gas saddle point (72), the yellow dot denotes
the repeller fixed point, and the black dot denotes the attractor (see the text). The two plots show different ranges inH and _ϕ. The left plot
is a blowup of the right plot near the string-hole gas fixed point. Also in the left plot, the dashed gray curve depicts the curve _ϕ ¼ dH,
along which the saddle point is unstable this time.
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V. CONCLUSIONS AND DISCUSSION

In this paper, we revisited the proposal that the stringy
high-energy state of the Universe is a string-hole gas, i.e., a
gas of black holes lying on the string-/black-hole corre-
spondence curve. By analyzing its thermodynamic proper-
ties, we confirmed that a string-hole gas has the same EOS
and entropy equation in the Einstein frame as a black-hole
gas with p ¼ ρ and S ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EV=G

p
. In the string frame, we

found that a string-hole gas has vanishing pressure, and we
derived the corresponding evolution to be given by
H ¼ _ϕ=d ∼ l−1

s . Our goal was then to find such a fixed
point solution from the dynamical cosmological EOM of a
string theory motivated action. We studied the gravidilaton
sector of the low-energy effective action of string theory
and found that, to zeroth order in the α0 expansion, there is
no string-hole gas solution without adding a tuned negative
cosmological constant. However, going to first order in α0,
we studied two different actions, and both yielded a natural
string-hole gas solution. Stability of those fixed point
solutions was assessed by performing a phase space
analysis. We found that both solutions are saddle points
in ðH; _ϕÞ phase space, but the solution coming from the
action of GMV [4] tends to be better behaved since it is
stable in the direction of the string-hole gas constraint
H ¼ _ϕ=d. The solution coming from the action of Meissner
[41] is unstable in the same direction and thus less
appealing, even though it possesses the desired Oðd; dÞ
symmetry of string cosmology to first order in α0. In
summary, our results show that string theory consistently
supports a string-hole gas phase of cosmological evolution,
at least at the level of a gravidilaton effective action and
minimally to first order in the α0 expansion. Our stability
analysis also indicates that a particular choice of action
(GMV’s action) is more appropriate at the level of our
approximation.
We would like to point out some of the limitations of the

current analysis. As mentioned before, the scale at which a
string-hole gas forms and evolves is right at the limit of
perturbative string theory in terms of the α0 expansion. Our
analysis showed that one needs an action that is valid at
least to first order in α0, but one could seek for a yet higher-
order action (e.g., to second order in α0) or an exact
conformal model (valid to all orders in α0) for a more
robust implementation. Beforehand, it might be more
straightforward to try to find a description of a string-hole
gas such that its corresponding matter action has first-order
α0 corrections. Indeed, if first-order α0 corrections are
included in the gravity sector, they may as well be first-
order α0 corrections at the level of the matter action. For
example, higher energy-momentum tensor corrections in
the matter sector have been considered in Ref. [63] for
Einstein gravity, but this has never been studied in the
context of a string theory effective action or for any other
theory beyond Einstein gravity. We note that such a

possibility might also open the window to obtaining a
nonsingular curvature bounce following the string-hole
gas phase.
Another limitation comes from the fact that the current

analysis was only performed within effective field theories
of string theory and did not use perhaps the full “strength”
of string theory. As future work, one could try to construct
the proper matter action for string holes from first princi-
ples rather than using a thermodynamic approach. At the
level of general relativity, there has been recent progress in
describing a black-hole lattice in cosmology (see, in
particular, Ref. [64] in a nonsingular bouncing cosmologi-
cal background as well as, e.g., Ref. [65] and references
therein), which may be viewed as an approximation of a
black-hole gas. Similar ideas with the addition of appro-
priate stringy ingredients could be used to develop a
nonperturbative action for a string-hole gas.
Let us also mention the fact that black holes in string

theory may not be best described by the semiclassical
picture used in this paper. The singularity at the center of
black holes may be resolved in full string theory, and even
the concept of a black-hole horizon may need to be revised.
For instance, a stringy black hole might be better described
by a “fuzzball” (see, e.g., Ref. [66] and references therein).
In that context, a black-hole gas may be realized as a set of
intersecting brane states [45], which is related to the
concept of fractional brane gas (see, e.g., Ref. [67] and
references therein).
Within the context of a string-hole gas as studied in this

paper, we plan to extend the present work to determine
what is the cosmological evolution subsequent to the string-
hole gas phase and what the cosmological observable
predictions intrinsic to the resulting very early Universe
scenario are. First, the goal is to determine how a string-
hole gas phase can be connected to standard big bang
cosmology starting with radiation-dominated expansion. A
string-hole gas phase is not expected to be stable for an
infinitely long period of time. The gas will ultimately
(Hawking) evaporate into radiation [35], a nonadiabatic
process of entropy production that can be viewed as
quantum particle creation in curved spacetime. Given that
the string-hole gas is already saturating the appropriate
entropy bound, the entropy release from the evaporation of
the string holes cannot occur if the spacetime curvature
remains constant or grows to a higher energy scale. Instead,
the decay of the string holes must coincide with a (non-
singular) curvature bounce; in particular, the string- and
Einstein-frames Hubble radii have to start growing. This
would naturally coincide with the beginning of the expand-
ing radiation-dominated phase of standard big bang
cosmology.
Finding dynamics for the process of nonsingular curva-

ture bounce shall be one of the key issues in follow-up
work. Even though the actions studied in this paper
contained higher-curvature corrections, they did not allow
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for nonsingular transitions from the string-hole gas phase to
radiation expansion. Since the process of string-hole gas
decay into radiation is quantum mechanical in nature, one
may expect to find the desired dynamics from an action
including quantum loop corrections. This is physically
equivalent to taking into account the “backreaction” from
particle production due to quantum fluctuations in curved
spacetime [6]. It is precisely this backreaction that might
effectively violate the null energy condition, hence avoid-
ing a big crunch singularity after the string-hole gas phase.
Nonsingular bouncing backgrounds have already been
found with string-theoretic loop corrections (see, e.g.,
Refs. [6,23–25,27] and references therein), but never in
the context of a string-hole gas phase. Loop corrections
might not be the only way, though, to obtain a nonsingular
bounce in string theory. Another possibility, for instance,
would be to consider an S-brane, a stringy object that can
prevent the Universe from reaching a big crunch (see
Ref. [68], also studied in Ref. [69]).
Finally, once a full very early Universe scenario has been

developed at the background level, we shall be able to study
the generation and evolution of the cosmological perturba-
tions and determine what the observable predictions are. If
fluctuations are seeded in the string-hole gas phase, one may
find interesting results. On one hand, the quantum perturba-
tions for a gas of black holes at the string scale may deviate
considerably from the usual Bunch-Davies initial state. On
the other hand, one shall not underestimate the effect of
thermal fluctuations from the gas of string holes. Indeed,
since the radius of the string holes equates the Hubble radius
in the string frame, onemay obtain holographic scaling of the
specific heat capacity (CV ∼ R2) on Hubble scales, similar to
what is obtained from a string gas [2,49]. It shall be
interesting to see what spectra of primordial perturbations
result and how they differ from the results of string gas
cosmology (see, e.g., Refs. [2,49] and references therein),
pre–big bang cosmology (see, e.g., Refs. [6–8,27] and
references therein), and other very early Universe scenarios.
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APPENDIX: STRING-HOLE GAS EVOLUTION
IN THE EINSTEIN FRAME

Given a consistent string-hole gas solution with H ¼
_ϕ=d ¼ constant in the string frame, one can derive the

corresponding solution in the Einstein frame by using the
relation (see, e.g., Refs. [6,27])

H̃ ¼
�
H −

_ϕ

d − 1

�
eϕ=ðd−1Þ: ðA1Þ

In this Appendix, a tilde denotes an Einstein-frame quan-
tity, while no tilde means the string frame. The constraint
H ¼ _ϕ=d thus implies

H̃ ¼ −
H

d − 1
eϕ=ðd−1Þ; ðA2Þ

so one notices that for a constant-Hubble expanding phase in
the string frame (H > 0) the Einstein-frame Hubble param-
eter must be negative (H̃ < 0) and therefore contracting.
Let us recall that the Einstein-frame time is related to the

string-frame time via (see, e.g., Ref. [27])

dt̃ ¼ e−ϕ=ðd−1Þdt: ðA3Þ
Since _ϕ ¼ dH ¼ constant, where one now views H ¼
H⋆ ∼ l−1

s as one of the constant fixed-point solutions
found, e.g., in Sec. III B or III C, one can write

ϕðtÞ ¼ dHðt − t0Þ ðA4Þ
for t ≤ t0. The integration constant t0 is set such that
ϕðt0Þ ¼ 0, at which point gs ¼ eϕ=2 ¼ 1, corresponding to
strong coupling. Thus, the evolution in the perturbative
regime (where gs ≪ 1) translates to t ≪ t0. Upon integra-
tion of Eq. (A3), one can then show that

t̃ − t̃0 ¼ −
ðd − 1Þ
dH

ðe−ϕðtÞ=ðd−1Þ − 1Þ; ðA5Þ

for t̃ ≤ t̃0, where t̃0 in the Einstein-frame time equivalent
to the string-frame time t0. Let us choose t̃0 ¼
−ðd − 1Þ=ðdHÞ < 0, so then

eϕ=ðd−1Þ ¼ d − 1

dH
1

ð−t̃Þ : ðA6Þ

Therefore, Eq. (A2) becomes

H̃ðt̃Þ ¼ −
1

dð−t̃Þ ; ðA7Þ

which confirms H̃ < 0 since t̃ ≤ t̃0 < 0. The above expres-
sion further implies

ãðt̃Þ ∼ ð−t̃Þ1=d ðA8Þ

when integrating H̃ ¼ d ln ã=dt̃. Combining with Eq. (A6),
this implies ã ∼ e−ϕ=ðdðd−1ÞÞ, which is in agreement with
how one expects the Einstein-frame scale factor to behave
for a string-hole gas [recall Eq. (17)].
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