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Strong gravitational lensing has been identified as a promising astrophysical probe to study the particle
nature of dark matter. In this paper we present a detailed study of the power spectrum of the projected mass
density (convergence) field of substructure in a Milky Way-sized halo. This power spectrum has been
suggested as a key observable that can be extracted from strongly-lensed images and yield important clues
about the matter distribution within the lens galaxy. We use two different N-body simulations from the
ETHOS framework: one with cold dark matter and another with self-interacting dark matter and a cutoff in
the initial power spectrum. Despite earlier works that identified k≳ 100 kpc−1 as the most promising scales
to learn about the particle nature of dark matter we find that even at lower wave numbers—which are
actually within reach of observations in the near future—we can gain important information about
dark matter. Comparing the amplitude and slope of the power spectrum on scales 0.1≲ k=kpc−1 ≲ 10

from lenses at different redshifts can help us distinguish between cold dark matter and other exotic dark
matter scenarios that alter the abundance and central densities of subhalos. Furthermore, by considering
the contribution of different mass bins to the power spectrum we find that subhalos in the mass range
107 − 108 M⊙ are on average the largest contributors to the power spectrum signal on scales
2≲ k=kpc−1 ≲ 15, despite the numerous subhalos with masses > 108 M⊙ in a typical lens galaxy.
Finally, by comparing the power spectra obtained from the subhalo catalogs to those from the particle data
in the simulation snapshots we find that the seemingly-too-simple halo model is in fact a fairly good
approximation to the much more complex array of substructure in the lens.
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I. INTRODUCTION

Following the many successes of the Λ-cold dark matter
(CDM) standard cosmological model at explaining the
Universe we observe on large scales [1–8], many astro-
physicists have turned their sights to subgalactic scales
as a way of either reaffirming or falsifying it (see, e.g.,
Refs. [9–20]). Observing these small-scale modes is com-
plicated by the fact that they are deep in the nonlinear
regime at low redshifts, and that baryonic effects are
generally important for their dynamical evolution.
Ironically, star formation becomes increasingly inefficient
as halo mass is decreased, meaning that low-mass halos
can be difficult—or impossible—to directly observe within
the Local Group [21]. Furthermore, different dark matter
scenarios that behave like CDM on large cosmological
scales can have observable effects on subgalactic scales.
Exotic dark matter physics at early times can suppress the
formation of low-mass halos (see, e.g., Refs. [22–47]),

while exotic dark matter physics at late times can change
the density profiles of halos [48–58]. Precisely because of
this, probing small-scale structures has become one of the
most promising ways of deciphering the particle nature
of dark matter. Gaining insight on the distribution and
abundance of the dark matter substructure in galactic halos
can be used to check for consistency with predictions of the
CDM paradigm, and if falsified, it can offer clues as to what
exotic microphysical properties it might have.
In recent years, the idea of using strong gravitational

lensing to probe substructure has gained traction. Methods
such as flux-ratio anomalies in strongly-lensed quasars
[59–68], gravitational imaging [69–73], and spatially-
resolved spectroscopy [74–77] have been used to either
directly detect individual subhalos in lens galaxies or
measure the fraction of mass in substructure within the
Einstein radius. These measurements can then be combined
to put constraints on the subhalo mass function (see, e.g.,
Refs. [78–80]).
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Furthermore, efforts to constrain the statistical properties
of subhalo populations by studying collective perturbations
of unresolved subhalos on lensed images are well underway
[81–85]. This is particularly advantageous because of the
prediction from CDM that the subhalo mass function rises
sharply towards lower masses. A useful statistic to study
the collective behavior of the substructure population is the
power spectrum of its projected mass density field. This
idea was put forth by Ref. [86] (see also Ref. [87]), and
expanded upon in Ref. [88], to show how dark matter
microphysics and statistical properties of the subhalo
population can become imprinted on this observable.
Building on these results, Ref. [89] used a semianalytic
galaxy formation model to compute this power spectrum
and found broad agreement with the predictions of
Ref. [88]. Recently, Ref. [90] analyzed a strongly-lensed
image and put an upper bound on the amplitude of the
power spectrum, while Ref. [91] did an in-depth study into
how source and lens properties can affect the observability
of the substructure power spectrum in strong lenses.
Fundamentally, the crucial insight to be gained from

considering the convergence power spectrum is the ability
to describe the effect of substructure in a language that is
closer to what strong lensing observations are directly
measuring. Indeed, while substructure lensing is often
phrased in terms of the subhalo mass function, gravitational
lensing observations primarily constrain the length of the
deflection vectors at different positions on the lens plane.
Since the power spectrum directly describes on which
length scales the substructure contributes most to the
deflection field, it allows a more direct connection to the
actual observations without introducing an intermediate
mass function. For the purpose of using lensing observa-
tions to extract information about dark matter physics, it is
nevertheless important to connect the power spectrum
language to the, perhaps, more familiar halo model of
structure formation, for which predictions for different dark
matter theories are more readily available.
In this paper, we present the first in-depth analysis of

the dark matter substructure power spectrum in zoom-in
N-body simulations of galactic halos at redshifts relevant
to galaxy-scale strong lensing. We consider two high-
resolution simulations of a Milky Way-sized halo, one in
which the simulation particles are modeled as being CDM
(namely, they only interact gravitationally) and another in
which they are allowed to self-interact and a cutoff is
imposed in the initial cosmological matter power spec-
trum. We use these simulations to compute the substruc-
ture power spectrum and study its behavior as a function
of redshift and of dark matter microphysics. We exclu-
sively focus here on the contribution from the subhalos
orbiting the main lens galaxy to avoid complications
related to multiplane lensing. Since the line-of-sight
contribution [92–95] to the power spectrum is unlikely
to be correlated with the galactic contribution we study

here, it can be computed separately. We leave this calcu-
lation to future work.
This paper is organized as follows. In Sec. II, we review

the expected structure of the substructure power spectrum,
as initially derived in Ref. [88]. In Sec. III, we present the
main features of the simulations used in this paper, and
in Sec. IV, we introduce our methodology. In Sec. V, we
present our results, and we conclude in Sec. VI.

II. THE POWER SPECTRUM OF DARK MATTER
SUBSTRUCTURE WITHIN GALAXIES

In the paradigm of hierarchical structure formation we
expect that large, virialized structures in the Universe
contain an abundance of gravitationally self-bound sub-
structure on a variety of scales. The properties and
distribution of these small-scale structures can be studied
using strongly-lensed images of distant galaxies and
quasars. In the limit that most of the lensing is caused
by a single massive galaxy (thin-lens approximation), the
relevant quantity is the surface mass density Σ of the lens
galaxy, in units of the critical density for lensing Σcrit,
which is usually referred to as the convergence

κðrÞ≡ ΣðrÞ=Σcrit; ð1Þ

where

Σcrit ¼
c2Dos

4πGDolDls
: ð2Þ

Here, c is the speed of light, and G the gravitational
constant. Dxy for fx; yg ¼ fo; s; lg represents the angular
diameter distance between the observer (o), source (s), and
lens (l). The strong lensing regime occurs when κ becomes
of order unity.
The total convergence at a point r on the lens plane can

be decomposed as

κtotðrÞ ¼ κ0ðrÞ þ κsubðrÞ; ð3Þ

where the first term contains the smooth contribution from
the main lens galaxy (including both dark matter and
baryons) and the second term is that of the substructure.
Note that, in Eq. (3) we include the mean convergence due
to substructure κ̄sub in the smooth component κ0, meaning
that hκsubi ¼ 0. In this work, we assume that the sub-
structure contribution is dominated by self-bound dark
matter objects, but note that, baryonic objects, such as
globular clusters and giant molecular clouds, could poten-
tially contribute to the galactic substructure. Under the
assumptions of the halo model [96], all dark matter is
bound in (approximately) spherical halos, meaning that the
κsub term above can be decomposed into a sum of individual
contributions from each of the Nsub subhalos in the lens
galaxy
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κsubðrÞ ¼
XNsub

i¼1

κiðr − riÞ; ð4Þ

where κi and ri represent the convergence and two-
dimensional position of the ith subhalo, respectively. In
reality, the substructure within a lens is varied, and all
contributions to the convergence that cannot be ascribed to
the main lens galaxy do not necessarily come from neatly
distinguishable subhalos. We will deal with this issue in
Secs. IV B and V B.
As shown in Ref. [88], the power spectrum of the κsub

convergence field can be written as the sum of a one-
subhalo and two-subhalo contributions

PsubðkÞ ¼ P1shðkÞ þ P2shðkÞ; ð5Þ

where

P1shðkÞ ¼
κ̄subΣcrit

hmi hκ̃ðkÞ2i; ð6Þ

and

P2shðkÞ ¼
�
κ̄subΣcrit

hmi
�

2

hκ̃ðkÞi2PssðkÞ: ð7Þ

κ̃ðkÞ is the Fourier transform of the subhalo convergence
profile, PssðkÞ is the Fourier transform of the subhalo
spatial two-point correlation function (describing subhalo
clustering), and the angular brackets represent an ensemble
average over subhalo properties such as their mass,
truncation radius, and scale radius.
While the substructure power spectrum given in Eq. (5)

is in principle anisotropic due to the complex structure of a
typical galaxy, we expect the isotropic (monopole) con-
tribution to dominate the signal within the small region
probed by strong lensing. This monopole power spectrum
is simply given by

PsubðkÞ ¼
1

2π

Z
2π

0

PsubðkÞdϕ; ð8Þ

where ϕ is the polar angle of the k vector. We will focus on
this isotropic contribution in the remainder of this paper.
With these general expressions at hand, we showed in

Ref. [88] (see also Refs. [82,97]) that the low-k amplitude
of the one-subhalo term is approximately P1shðkÞ≈
κ̄submeff=Σcrit, where meff ≡ hm2i=hmi. This means that
the one-subhalo term amplitude encodes information on the
subhalo mass function and the abundance of subhalos.
A deviation from this constant value can inform us about
the size of the largest subhalos within the lens galaxy. On
the other hand, the amplitude of the two-subhalo term is
approximately P2shðkÞ ∝ κ̄2subPssðkÞ. Since κ̄sub ≪ 1, the
two-subhalo term is generally subdominant, as we will see

below, but it can dominate the signal on larger scales due to
non-negligible subhalo clustering.
In Ref. [88], we considered two different subhalo

populations: one made of truncated Navarro-Frenk-White
(NFW) [98,99] subhalos, and another made of truncated
cored subhalos (specifically using a truncated Burkert
profile [100]). These two models are interesting since they
roughly bracket the range of possibilities for the inner
density profiles of low-mass subhalos in a broad range of
dark matter theories. The slope of this inner density profile
could, in principle, be extracted from the high-k end of the
power spectrum, since the population of cored subhalos
displays a much steeper power spectrum slope there than
the one of the cuspy subhalos. However, such a measure-
ment is likely to require high signal-to-noise interferomet-
ric data [91].

III. SIMULATIONS

The N-body simulations used in this work are the
Effective Theory of Structure Formation (ETHOS) simu-
lations, originally presented in Ref. [57]. The goal of the
ETHOS project [41,101] is to understand how the funda-
mental dark matter microphysics affect structure formation
on a broad range of scales. To this end, five different dark
matter models were investigated: a cold dark matter (CDM)
scenario and four scenarios that explore the dark matter
parameter space that includes dark matter-dark radiation
(DMDR) interactions, which are responsible for a primor-
dial cutoff in the power spectrum, and self-interacting dark
matter (SIDM), labeled ETHOS1–4, depending on the
choice of parameter values. In this work, we focus on the
CDM simulation together with the ETHOS4 model, which
has been chosen to reproduce the observed kinematics
and properties of Milky Way (MW) dwarf spheroidals.1

We refer the reader to Refs. [41,57] for more details about
the ETHOS4 dark matter model, including the values of the
particle physics parameters used in the simulations.
The simulations are initialized at z ¼ 127 within a

100h−1 Mpc periodic box, from which a MW-sized halo
(1.6 × 1012 M⊙) is chosen to be resimulated. The parent
simulation has 10243 particles, a mass resolution of
7.8 × 107h−1 M⊙, and a spatial resolution (Plummer-
equivalent softening length) of ϵ ¼ 2h−1 kpc. They are
thus able to resolve halos down to ∼2.5 × 109h−1 M⊙ with
32 particles. They resimulate the MW-sized halo to differ-
ent resolution levels. For this work, we use the highest
resolution simulation (level 1), where the dark matter
particle mass is mDM ¼ 2.756 × 104 M⊙, ϵ ¼ 72.4 pc,
and there are approximately 4.44 × 108 high-resolution
particles in each zoomed-in simulation.

1Note that, the halos in the CDM and ETHOS4 simulations
have the same initial conditions (but of course differ in the power
spectrum and dark matter microphysics).
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The cosmological parameters used in the simulations
are: Ωm ¼ 0.302, ΩΛ ¼ 0.698, Ωb ¼ 0.046, h ¼ 0.69,
σ8 ¼ 0.839, and ns ¼ 0.967. The Ωi are the density
parameters for matter (m), dark energy (Λ) and baryons
(b). h is defined as h≡H0=100, where H0 is the
Hubble constant. σ8 is the amplitude of fluctuations on a
scale of 8h−1 Mpc, and ns the primordial index of scalar
fluctuations.

IV. METHODS

We extract the substructure power spectrum from the
simulations in two ways. We first do so by using the
subhalo catalogs obtained using the SUBFIND algorithm

[102] after applying a friends-of-friends (FOF) halo finder
with linking length b ¼ 0.2. This procedure yields posi-
tions for all of the detected subhalos together with several
subhalo properties, such as the mass, half-light radius,
maximum circular velocity, etc. This method is particularly
advantageous because it is easier to compare to theoretical
predictions, since it closely matches the notion of sub-
structure in the halo model. Furthermore, it allows us to
study novel properties of the convergence power spectrum,
such as the contribution and detectability of different mass
bins. We also extract the power spectrum directly from the
particle data in the simulation snapshots (which we shall
henceforth refer to as simulation snapshots for brevity) of
the zoomed-in MW-like halo. The advantage of this method

FIG. 1. Top left: convergence field from the particle data for the CDM simulation at z ¼ 0.5. Top right: convergence field from the
particle data for the ETHOS4 simulation at z ¼ 0.5. Middle left: convergence field from the subhalo catalog for the CDM simulation at
z ¼ 0.5 with a truncated NFW fit to the host superimposed. Middle right: convergence field from the subhalo catalog for the ETHOS4
simulation at z ¼ 0.5 with a truncated Burkert fit to the host superimposed. Bottom left: convergence field from the subhalo catalog for
the CDM simulation at z ¼ 0.5. Bottom right: convergence field from the subhalo catalog for the ETHOS4 simulation at z ¼ 0.5. The
white square in the bottom two panels is centered at the origin and has a size of L ¼ 100 kpc, therefore it represents the region under
consideration in the fiducial case.
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is that we do not impose any notion of how a subhalo is
defined, meaning that all substructure within the simulated
galactic halo are captured.
In our fiducial analysis we use the simulation snapshot

(and its derived subhalo catalog) at z ¼ 0.5 (a typical
redshift for a lens galaxy), and place the background source
at z ¼ 1.5. With the cosmological parameter values used in
the simulations, this yields a critical density for lensing
Σcrit ¼ 2.35 × 109 M⊙=kpc2.
Figure 1 shows the projected density field obtained from

the simulation snapshots (top two panels) and built from the
subhalo catalogs (bottom two panels) with no mass or
resolution threshold imposed. In the middle two panels, we
have superimposed a host profile on the convergence field,
obtained from the subhalo catalogs, to serve as a direct
comparison to the simulation snapshots. See the section
below for details on how this was done. Note that, despite
the fact that Milky Way-like halos are generally less
massive than typical galaxy-scale gravitational lenses,
the two halos we are considering here are not far from
being critical, with their convergence fields peaking
around 0.3.

A. Power spectra from subhalo catalogs

We first extract the three-dimensional (3D) subhalo
positions from the subhalo catalogs. We only keep subhalos
within a comoving cube with side L ¼ 300 kpc centered
on the main lens galaxy, and those that have more than
50 particles, which corresponds to a minimum mass of
1.38 × 106 M⊙. In our fiducial case, we limit the highest
subhalo mass to 108 M⊙, since direct detection methods
are expected to be able to detect subhalos above this mass
in strong lensing images [103–105]. For completeness, we
will also display power spectra that include these more
massive subhalos.
To emulate ensemble averaging, we project the 3D

positions onto Nproj different lens planes, which replicates
observing different lines-of-sight. We thus end up with
Nproj two-dimensional (2D) maps of projected positions
fHpg, where the index p reflects which projection the map
corresponds to. We emphasize that considering Nproj

different projections of the same galaxy can underestimate
the variance of the power spectrum: Ref. [89] compared the
variance between 1000 projections of a same subhalo
population and that of 1000 independent subhalo popula-
tions, and they found that the latter was significantly larger.
They did, however, find that the difference between both
scenarios was much smaller when the largest subhalos are
removed (they imposedmhigh ¼ 109 M⊙), meaning that for
our fiducial case, we do not expect to underestimate the
variance so drastically.
Subhalos in the CDM simulations are shown to be well

fit by NFW profiles, so we fit a (truncated) NFW con-
vergence profile to each subhalo in the projected map

(see Appendix A). This profile is determined by three
subhalo parameters: the total mass m, the scale radius rs
and the tidal truncation radius rt. Note that, truncating
the NFW profile ensures that each subhalo has a total
finite mass.
The subhalo finder assigns a gravitationally-bound mass

to each subhalo, which we identify with the total mass
parameter m of a truncated NFW subhalo. We obtain the
scale radius of our subhalos using the well-known relation
rmax=rs ¼ 2.1626 [106] for the NFW profile, where rmax is
the radius at which the maximum circular velocity of the
subhalo is attained, which the subhalo finder computes. We
finally set the value of the tidal radius rt by numerically
solving the nonlinear relation 2mð< rhalfÞ ¼ m, where rhalf
is the radius containing half the subhalo mass, which is also
reported by the subhalo finder.2

Because of the presence of dark matter self-interaction,
the subhalos in the ETHOS4 simulation are instead fit with
truncated Burkert profiles (see Appendix A), which can be
fully specified by three parameters, namely the total mass
m, the Burkert radius rb, and the tidal truncation radius rt. It
is useful to write the Burkert radius as rb ¼ prs, where p
defines the core size. We use a similar procedure as above
to obtain the values of rs and rt from the subhalo catalog,
fixing p ¼ 0.666 to ensure that the standard kinematic
relation rmax=rs ¼ 2.1626 is preserved. As a check of our
calibration procedure, we compute the predicted values
of vmax from our Burkert fits and compare those to the
corresponding catalog entries, finding at most a 20% scatter
between these values.
Notice that, although we have included all the subhalos

within a cube with side L ¼ 300 kpc, strong lensing cannot
probe such a large area transverse to the line of sight (LOS).
Therefore, after projecting, we limit the box size to either
L ¼ 100 kpc, i.e., �50 kpc from the host center, or
L ¼ 200 kpc, depending on the scales we want to probe.
Conversely, strong lens images do give us access to the
entire LOS volume of the main halo, which is why it is
important to first allow all of the subhalos within the host to
be projected before limiting the box size transverse to the
LOS to a more realistic3 observable size.
Applying this procedure to the 2D position maps fHpg,

we obtain Nproj 2D convergence maps fκpg, which we
Fourier transform and square to obtain an estimate of the

2We note that we could have simultaneously solved for both rs
and rt using the nonlinear relations 2mð<rhalfÞ ¼ m and
ðdv2=drÞjrmax

¼ 0, where v is the circular velocity profile of
the subhalo. Our tests show that doing so leads to differences in
the substructure power spectrum that are smaller than the scatter
between different projections.

3We note that our projected area with sides of comoving length
L ¼ 100 kpc is still larger than a typical galaxy-scale strong
lensing region. This allows us to capture the impact of subhalos
that are on the outskirts of the strong lensing region but can still
influence the lensed images.
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2D power spectrum for each individual map jκ̃pðkÞj2. A
factor of A2

pix=Abox is necessary to normalize each power
spectrum, where Apix is the pixel area and Abox is the box
area. An estimate of the monopole substructure power
spectrum Psub;pðkÞ from the pth convergence map is finally
computed by azimuthally averaging jκ̃pðkÞj2,

Psub;pðkÞ ¼
1

2π

Z
2π

0

jκ̃pðkÞj2dϕ: ð9Þ

Repeating this procedure for our Nproj maps, we can
compute the average substructure power spectrum
P̄subðkÞ as well as the 68th and 90th percentiles character-
izing the distribution of power spectrum values at each
wave number. We generally find that for a given k bin, the
power spectrum values are not Gaussian-distributed.
Carrying out this procedure we obtain the total subhalo

power spectrum, including both the one- and two-subhalo
contributions [see Eq. (5)]. It is however possible to isolate
the two-subhalo term by simply carrying out the procedure
above directly from the position projections. For each map
Hp, we create a 2D map S of

Sp;j ¼
Np;j − N̄p

N̄p
; ð10Þ

where for the pth projection,Np;j is the number of subhalos
in the jth spatial pixel, and N̄p is the average number of
subhalos per pixel. We can then follow the same procedure
to Fourier transform and azimuthally average to obtain
PssðkÞ. The two-subhalo contribution can then be computed
according to Eq. (7), given a choice of the subhalo
convergence profile. It is important to avoid over-counting
the subhalo clustering, since it contributes both in the
PssðkÞ term and the hκ̃ðkÞi term. To avoid this issue when
isolating the two-subhalo term, we randomize all the
subhalo positions within a given projection before making
the convergence maps.
Finally, we want to point out that the smallest k mode

accessible is determined by the box size as kmin ¼ 2π=Lbox,
while the largest k mode accessible is determined by the
pixel size, kmax ¼ 2π=Lpix ¼ 2πNpix=Lbox, where Npix is
the number of pixels on a given size of the box. Unless
otherwise mentioned, we limit the box size to Lbox ¼
100 kpc (symmetrically centered about the host center).
For computational efficiency, we limit the image resolution
to be 501 × 501 pixels. Thus, kmin ≈ 0.06 kpc−1 and
kmax ≈ 30 kpc−1.

B. Power spectra from simulation snapshots

The level-1 ETHOS simulations we use in this work
contain almost half a billion particles, meaning that it
can be quite costly to carry out this analysis at the
N-body particle level. We use the publicly available code

nbodykit [107] to perform parts of our analysis.4 All
of its algorithms are parallel, which greatly expedites the
analysis procedure.
Starting from particle catalogs, nbodykit can build a

density mesh equal to 1þ δðxÞ, meaning that to obtain the
convergence field, we have to rescale the mesh with factors
of the average number density of particles n̄, Σcrit, and the
N-body particle mass mpart:

κðxÞ ¼ n̄mpart

Σcrit
ð1þ δðxÞÞ: ð11Þ

Much like our analysis based on the subhalo catalogs, we
limit the particles out to 300 kpc from the host center, but
we do not impose any resolution or mass thresholds for
inclusion.
Unlike our catalog-based analysis, where we were able to

isolate the substructure contribution κsub in Eq. (4), we
instead directly obtain the total convergence κ from the
simulation snapshot. To isolate the substructure signal we
are interested in, we therefore have to subtract the main host
halo contribution κ0. Our approach to remove this con-
tribution consists of averaging many different projections to
approximate the host profile,

κhostðrÞ ≈ hκboxðrÞi; ð12Þ

and then subtracting this average map from a given
projection p to obtain our estimate of the 2D substructure
power spectrum

jκ̃pðkÞj2 ¼
�Z

d2re−ik·rðκbox;pðrÞ − κhostðrÞÞ
�
2

; ð13Þ

before performing the angular averaging as in Eq. (9).
Because of the discrete nature of the simulation particles,

we impose a conservative kmax cut beyond which we do
not trust the results. For our choice of box size and
Nmesh ¼ 1024, we impose kmax ¼ 3 kpc−1.

V. RESULTS

A. Subhalo catalog

Figure 2 shows the convergence power spectrum for the
fiducial CDM (blue) and ETHOS4 (cyan) simulations for
the larger box size, L ¼ 200 kpc. This larger projected area
allows us to be sensitive to the two-subhalo term on
sufficiently large scales. For the CDM case, the two-
subhalo term appears as an upturn in the power spectrum
for k≲ 0.06 kpc−1. To show that this upturn is indeed due
to subhalo clustering, we have overlaid the isolated two-
subhalo contribution in dashed red, obtained with the

4nbodykit is an open source large-scale structure toolkit
written in Python.
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method outlined in Sec. IVA. As explained in
Refs. [88,108], this two-subhalo term corresponds to the
so-called “host” contribution arising because all subhalos
are gravitationally bound to their host galaxy. Of course,
such small values of k are unobservable with the small field
of view of typical strongly-lensed images.
This figure has been made with 90 different projections.

The solid lines correspond to the median, and the shaded
regions to the 68% and 90% confidence level areas. The
vertical dashed line corresponds to the truncation wave
number for the CDM simulation, defined as ktrunc≡
1=rt;max. As predicted in Ref. [88], the break in the power
spectrum is related to the size of the largest subhalos, and
the two-subhalo term becomes dominant below ktrunc. We
can see that the amplitude of the one-subhalo term is well
approximated by κ̄submeff=Σcrit (just as for ktrunc we only
show this for the CDM simulation for clarity, but the
same applies to the power spectrum obtained from the
ETHOS4 simulation). The amplitude of the power spec-
trum is noticeably lower in ETHOS4, since there are many
fewer subhalos. This dearth of small-mass subhalos is also
responsible for the steeper slope at k≳1 kpc−1 in ETHOS4.
The power spectrum slope on these scales appears as a key
observable that can probe the abundance of small-mass
subhalos in lens galaxies. Finally, we can see that the two-
subhalo term does not appear to contribute significantly to
the ETHOS4 power spectrum on large scales. Indeed, the
small overall number of subhalos in this case makes it
difficult to probe the subhalo clustering signal.
In Fig. 3, we show how the power spectrum shape and

amplitude change as a function of redshift (top) and the
highest subhalo mass included (bottom) for the CDM (left)
and ETHOS4 (right) simulations. The fiducial cases are
kept in the same color as in Fig. 2 (but notice that with
L ¼ 100 kpc the two-subhalo term is no longer clearly

discernible in the CDM simulation). For the redshit
evolution, we consider three different epochs: z ¼
f0; 0.5; 1g. These redshifts correspond to the redshift of
the simulation snapshot from which the subhalo catalog
was obtained. For all cases, the source is assumed to be
at z ¼ 1.5.
Since the convergence and the Einstein radius become

ill-defined quantities as zlens → 0, we artificially put our
simulated z ¼ 0 lens galaxy at a redshift zlens ¼ 0.5 in order
to compute their convergence field. In order words, we use
the critical density for lensing Σcrit corresponding to having
a lens at z ¼ 0.5 and source at z ¼ 1.5 to compute the
substructure convergence field of our simulated z ¼ 0
galactic halo. For the other two epochs (z ¼ f0.5; 1g),
Σcrit is computed self-consistently using the redshift of the
simulated halo as the lens redshift.
Note, however, that to isolate the effect of the redshift

evolution in the top two panels of Fig. 3, we plot the
product PsubΣcrit, since the value of the critical density
changes between z ¼ 1 and z ¼ 0.5 by about a factor ∼2.
This means that any differences in the three curves are
telling us something about subhalo accretion and evolution
within the lens halo.
The redshift dependence shown in Fig. 3 qualitatively

agrees with what one would expect within the standard
cosmological evolution: as we approach z ¼ 0, more
subhalos are accreted into the host halos, implying that
the amplitude of the power spectrum increases. This
increase is more pronounced in the CDM case as more
subhalos with m < 108 M⊙ are accreted between z ¼ 0.5
and z ¼ 0 in this model. Also, as subhalos are accreted and
move closer to the host center, mass loss due to tidal
interaction becomes important. For the ETHOS4 simula-
tion, we find that this leads, on average, to a reduction of
the effective subhalo mass meff between z ¼ 0.5 and

FIG. 2. Substructure convergence power spectrum from the subhalo catalog at z ¼ 0.5 and mhigh ¼ 108 M⊙ for both the CDM (blue)
simulation and the ETHOS4 (cyan) simulation for a box with side L ¼ 200 kpc. The shaded gray horizontal region shows the predicted
amplitude from Ref. [88] with κ̄sub andmeff (and their associated errors) obtained from the CDM simulations, and the vertical dashed line
is the median ktrunc ≡ 1=rtrunc;max. The red dashed line is the isolated two-subhalo contribution for the CDM simulation. The wave
numbers k are in comoving coordinates.
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z ¼ 0, which partially compensates for the slight increase
in κ̄sub, to leave the low-k amplitude nearly unchanged.5

Furthermore, the much larger total number of subhalos in
the CDM case also means that the two-subhalo term makes
a non-negligible contribution at z ¼ 0, which tends to
increase the magnitude of the redshift evolution in this case.
In contrast, the ETHOS4 model does not get a significant
two-subhalo contribution at z ¼ 0.
Another important aspect of the redshift evolution is the

difference in the power spectrum slope for k≳ 2 kpc−1.
Again, this effect is more apparent in the ETHOS4
simulation than in the CDM simulation, due to the lower
central densities of subhalos in the former, making them
more susceptible to tidal effects and mass loss. We indeed
find that the substructure mass fraction in subhalos with
m < 107 M⊙ grows more rapidly between z ¼ 0.5 and
z ¼ 0 in the ETHOS4 case compared to the CDM case,
hence leading to a net transfer of power from larger to
smaller scales in the power spectrum. This in turn results in
a shallower slope for k≳ 2 kpc−1 at z ¼ 0, as compared
to z ¼ 0.5.

The three different upper mass thresholds we consider in
the lower panels of Fig. 3 are: mhigh ¼ f108 M⊙; 109 M⊙g
and “All subhalos,” where All subhalos means that we
include all subhalos above the resolution threshold. The
behavior as a function of mass similarly shows the intuitive
notion that, as we increase mhigh, the amplitude increases
due to the fact that both meff and Nsub increase. The error
bars are much larger for the case where all of the subhalos
are included because there are only a handful of subhalos
with mass > 109 M⊙, and they do not always get projected
into the center-most region of the host. In the projections
where even a single one of these subhalos is projected into
the region of interest, the amplitude is higher by about an
order of magnitude. This shows that the low-k amplitude
(k≲ 1 kpc−1) is largely determined by the largest subhalos,
as described in Refs. [86,88,89]. Note that for the All
subhalos ETHOS4 power spectrum, the lower bound is
very small. This is simply due to the fact that, except for the
rare cases when a very massive subhalo gets projected into
the center-most region, the highest subhalo mass across
projections is nearly constant for this simulation. On the
other hand, for the CDM simulation, the upper mass bound
displays more variation, which is why the lower bound
is larger.

FIG. 3. Top Left: redshift dependence of the convergence power spectrum times the critical density for the CDM simulation. Top
Right: redshift dependence of the convergence power spectrum times the critical density for the ETHOS4 simulation. The critical density
has been factored out to isolate the redshift evolution of the host. Bottom Left: mass dependence of the convergence power spectrum for
the CDM simulation. Bottom Right: mass dependence of the convergence power spectrum for the ETHOS4 simulation. Note that, the y
axis is the same for a given row, but it differs between rows. The wave numbers k are in comoving coordinates. *As discussed in the text,
the z ¼ 0 power spectra are computed using the subhalo catalog at z ¼ 0 but the distance between the observer and the lens Dol is fixed
to be the same as for a lens at z ¼ 0.5 because Σcrit diverges as z → 0.

5See the Tables I–V in Appendix B for the meff and κ̄sub values
at the different redshifts.
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A question that often comes to mind when discussing the
substructure power spectrum is which mass scale is this
observable most sensitive to. It is generally assumed that
the largest subhalos within the strong lensing region
dominate the observable power spectrum signal, since
subhalos of a higher mass generally warp images more.
However, what we find here is more subtle. Figure 4 shows
the decomposition of the dimensionless6 convergence
power spectrum into four different mass bins together with
the power spectrum, including all subhalos with masses
below 1010 M⊙ for four different projections in the CDM
simulation (one in each panel). Surprisingly, it can be seen
that the 107–108 M⊙ subhalos dominate the signal almost

entirely on scales 2 kpc−1 ≲ k≲ 15 kpc−1. Subhalos with
masses between 109–1010 M⊙ are quite rare, and in fact,
sometimes they are not even present (e.g., lower right
panel) in the strong lensing region. When present, they can
of course dominate the signal at the lowest wave numbers,
as discussed above, but they generally do not make the
largest contribution to the power spectrum on all observable
scales. Another somewhat surprising element shown in
Fig. 4 is the relatively small contribution that the
108–109 M⊙ subhalos make to the overall power spectrum.
Despite being quite numerous and fairly massive, they have
a lesser contribution to the overall signal than their less
massive counterparts, except possibly at the lowest wave
numbers.
A similar decomposition is done for the ETHOS4

simulations, and it is shown in Fig. 5. It can be seen that
the ETHOS4 projections display more variability than
their CDM counterparts, due to the fact that there are
many fewer subhalos. Even in this case, subhalos with mass

FIG. 4. Decomposition of the CDM substructure power spectrum into its contributions from subhalos in different mass ranges. Note
that the wave number axis is shown here on a linear scale. The four panels show different projections of the CDM subhalo populations.
The blue squares show the substructure power spectrum including all subhalos with masses less than 1010 M⊙, while the other point
types show the contributions from separate mass bins. We note that the contribution from the most massive subhalos included here
(109 M⊙ < Msub < 1010 M⊙) varies significantly between different projections, with them making no contribution in the lower
right panel.

6The dimensionless power spectrum is defined (in two
dimensions) as usual:

Δ2
subðkÞ≡ k2PsubðkÞ

2π
:
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m < 108 M⊙ seem to make on average a sizable contri-
bution on scales 2 kpc−1 ≲ k≲ 15 kpc−1.

B. Snapshot particle data

The host convergence field obtained by averaging
projections along different LOS in the CDM simulation
is shown in Fig. 6. The power spectra for both simulation
suites are displayed in Fig. 7. The top (bottom) panel
corresponds to the CDM (ETHOS4) simulation. The
solid blue line is the power spectrum obtained from a
single projection of the N-body particles, without having
performed any host subtraction. The dashed blue line is
the power spectrum after removing the host contribution
from a single projection map, thus approximating the
power spectrum due to the substructure, as per Eq. (13).
The green line is that of the average convergence map,
i.e., approximately the host (the Fourier transform
of Fig. 6).
There are several notable features in these figures. First

of all, notice the suppression in power at high k of the green
lines compared to the solid blue lines, which shows that the
averaging procedure is indeed removing the contribution
from the substructure on these scales. Furthermore, when
the host is subtracted (dashed lines), a lot of power is lost at

low k, but conversely, we regain the power on small scales,
which corresponds to the substructure convergence field
remaining after the host is removed.
The overall amplitude is the same for both simulations,

since both simulations have roughly the same number of
particles in the region of interest. However, in the host and

FIG. 5. Same as Fig. 4 but for the ETHOS4 simulation.

FIG. 6. Convergence field of the host in the CDM simulation
found by averaging many projections along different LOS, as per
Eq. (12).
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in the substructure power spectra at high k (>1 kpc−1), we
can still see the suppression of power of ETHOS4 with
respect to CDM due to the cutoff in the initial matter power
spectrum (and to the self-interactions, albeit to a lesser
extent), which causes both a suppressed number of small-
mass subhalos and reduced central densities for the
remaining ones.
In both figures we also overlay the catalog power spectra

with no high mass cut (i.e., the same two red lines as in
Fig. 3). Unexpectedly, at high k, the amplitude of the power
spectra derived from the catalogs is higher than that
obtained from the corresponding particle snapshot when
looking at the CDM simulation (and comparable in the
ETHOS4 simulation). We expected the opposite since
when we Fourier transform the full simulation box, we
are capturing all of the substructure (e.g., tidal debris), not
just objects found by the halo finder. However, this can be
understood by considering the discrete nature of the

simulation particles, and the fact that when we reach very
small scales (i.e., around the scale radius of subhalos), there
are in fact only a handful of particles. By instead imposing
a smooth, truncated NFW profile at the catalog level, we are
artificially boosting the high-k signal with respect to the
particle power spectrum. This effect is not quite as palpable
in the ETHOS4 simulation since the truncated Burkert fit
is cored in the central regions. By looking at Fig. 1 and
comparing the projections from the simulation snapshots
and those built from the subhalo catalogs, it becomes
apparent that a part of this discrepancy might also be due to
the loss of ellipticity when imposing spherically-symmetric
convergence profiles.
Finally, notice that at small k the dashed lines lie within

the 90% confidence band of the catalog power spectrum.
This is indicative of the fact that the very large substructure
in the lens is well captured by the halo finder, and since
said structure dominates the amplitude (as shown in the

FIG. 7. Power spectrum of the full simulation snapshots at z ¼ 0.5. The CDM (ETHOS4) simulation is in the top (bottom). The solid
blue line is the power spectrum of the full projected field. The green line is the power spectrum of many projections averaged together,
which approximates that of the host halo [as per Eq. (12)]. The dashed blue line is the power spectrum of a single projection with the
average map subtracted, yielding the power spectrum due to the substructure [as per Eq. (13)]. In each plot, we have overlaid
the substructure power spectrum obtained from the catalogs in red, when all the subhalos are included (i.e., the same red lines as in the
bottom two panels of Fig. 3).
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previous section), the particle and catalog power spectra are
similar on these scales. Note that, because the dashed blue
line is the power spectrum obtained from a single projec-
tion, we do not necessarily expect it to match the solid red
line. Nevertheless, it is also possible that there is an
additional contribution coming from the residual host halo
profile, since we are approximating the host as being
spherically symmetric (Fig. 6); however, in the top panels
of Fig. 1, the host appears to have some ellipticity.

VI. DISCUSSION AND CONCLUSION

In this paper we have provided a comprehensive study of
the substructure convergence power spectrum in N-body
simulations. By comparing this observable in two simu-
lations within the ETHOS framework [57] that differ in
their treatment of dark matter microphysics (both at early
and late times through dark matter-dark radiation inter-
actions in the former and DM-DM self-interactions in the
latter), we have been able to identify different ways in
which details in the particle nature of dark matter can come
to light through this observable.
We chose to carry out our analysis in two different, but

complimentary, ways. On one hand, we have an idealized
scenario in which all substructure is perfectly spherical and
identifiable, and can be fit with simple density profiles. On
the other hand, we have a scenario in which there are no
assumptions or definitions built into what is considered to
be a subhalo—instead we capture all of the structures
within the host halo. The former method, of course, benefits
from its simplicity: it allows us to clearly disentangle
different subhalo properties and their impact on the shape
and amplitude of the power spectrum. The latter, however,
more closely approximates reality, where one cannot
choose what perturbs an image or an arc, and one has to
carefully think about how to account for the mass distri-
bution of the main lens galaxy itself.
Doing the catalog analysis, we confirmed many of the

properties outlined by Ref. [88] and brought to light several
new ones. We were able to show how the amplitude and
shape of the power spectrum are related to the abundance,
sizes, and masses of subhalos. Furthermore, we showed the
redshift evolution of the power spectrum, and we saw
a difference in the standard CDM vs DMDRþ SIDM
scenarios. In the former, we observed an expected increase
in the amplitude of the power spectrum as more substruc-
ture was accreted; conversely, in the latter, between z ¼ 0
and z ¼ 0.5 there was nearly no change in the amplitude in
these two redshift bins. This was partly the result of the
lower total number of subhalos accreted during that time
span in ETHOS4, as well the higher susceptibility of
ETHOS4 subhalos to tidal disruption, which caused meff
to shrink within the strong-lensing region. A non-negligible
two-subhalo contribution at z ¼ 0 for CDM also helps to
explain the faster growth of the overall power spectrum
amplitude in this latter case.

The other interesting effect that came to light when
comparing the ETHOS4 redshift evolution between
z ¼ 0 and z ¼ 0.5 was the difference in slope on scales
k≳ 2 kpc−1, which reflected the changing subhalo mass
function as the host evolves. Both of these effects that appear
in the redshift evolution of ETHOS4—the amplitude and the
slope—offer exciting possibilities. In Ref. [88], the highest k
values (≳100 kpc−1) were identified as the most interesting
region in the power spectrum to study the particle nature of
dark matter. This was unfortunate since it is unlikely that we
will be able to measure modes past k ∼ 100 kpc−1 in the
near future, and baryonic structures of comparable sizes
would interfere with the isolation of the dark matter power
spectrum slope on these scales. However, here we have
identified other ways of probing dark matter microphysics
that involve scales that can, in fact, be probed with current
and future observations (0.1 ≤ k=kpc−1 < 100).
Our results highlight the fact that combining different

lenses in order to boost the signal-to-noise of a substructure
power spectrum measurement is highly nontrivial. Indeed,
detailed models for the redshift evolution of the subhalo
population for different host properties would have to be
included in the fit. The other side of that coin is that when (if)
observations are good enough to measure the power spec-
trum with a single lens, comparing the low-k amplitude with
lenses at different redshifts can serve as a diagnostic tool for
dark matter deviations from standard CDM; be it an effect at
an early time that is imprinted on the initial power spectrum
and consequently delays structure formation, or an effect at
late times, like self-interactions that are strong (or weak but
inelastic [109]) enough to cause subhalo stripping and/or
disruption. One would, of course, also have to consider how
the presence of baryons can disrupt substructure as well.
Furthermore, by looking into the mass decomposition of

the power spectrum, we found that it is not exclusively
sensitive to the most massive subhalos. For instance, we
found that the mass range 107–108 M⊙ tends to dominate
the power spectrum on intermediate scales (2 kpc−1≲
k≲ 15 kpc−1), particularly in the CDM simulation. In
more standard gravitational imaging searches for substruc-
ture, sensitivity is assumed to be an increasing function of
mass (and proximity to the images or arcs; see also, e.g.,
Ref. [110] to see how other parameters, like concentration,
can affect distortions). In this different, statistical approach,
we can see that this is no longer necessarily the case,
and observations could probe lower masses in the highly
coveted subhalo mass function.
An important point to keep in mind is that the MW-like

halos we have considered in this work are not typical lens
galaxies (recall that both halos are subcritical, i.e., κ < 1).
Gravitational lenses at cosmological distances from our own
Galaxy, in general, have to be more massive and dense to act
as strong lenses (see, e.g., Ref. [111]). Such galaxies are
expected to have more substructure (since substructure
content scales with host mass), so the results presented in
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this paper should be considered as a useful lower limit on
the amplitude of the convergence power spectrum in
strong lens galaxies. One should also keep in mind that
the increased central density in more typical strong lenses
could increase subhalo tidal disruption [112]. Quantifying
these effects as a function of host halo density is an
interesting future step in understanding this observable.
By comparing the power spectrum obtained directly

from the N-body particles with that from the subhalo
catalogs, we actually saw that the halo model-based
computation (as used in Ref. [88]) is in fact an excellent
approximation to the more detailed density field (as
captured by the simulation snapshots). As we mentioned
above, this does break down at high k, where the imposition
of a smooth convergence profile leads to an overestimation,
with respect to the N-body particle power spectrum, on
those same scales due to the finite spatial resolution of the
mass particles. On intermediate scales, the difference
between the catalog and particle power spectra is well
within forecasted error bars for the convergence power
spectrum [91]. This result lends weight to the robustness of
this observable to study substructure populations at cos-
mological distances from the Milky Way.
A crucial extension to this work is going to involve

carrying this analysis out with a hydrodynamical simula-
tion in order to make robust predictions that can be
compared with observations in the near future, since we
know that on these scales baryonic processes can have quite
significant effects on the dark matter distribution. Some
work has been carried out to study the difference in
distortions due to a population of globular clusters vs dark
matter subhalos [113], showing that milliarcsecond reso-
lution images could distinguish between these in direct
detection efforts. But the impact on the power spectrum has
yet to be addressed.
As mentioned above, it will be particularly interesting

to study the redshift evolution of the amplitude and the
slope on observable scales in these simulations, since this
can be a key way of distinguishing CDM from alternative
dark matter scenarios that cause substructure disruptions.
Another aspect that we leave for future work is considering
the placement of the high resolution box within the
environment of the full cosmological simulation.
Recently, there has been a lot of interest on the relative
importance of perturbations to lensed images by substruc-
ture intrinsic to the lens vs along the line of sight [92–95].
Indeed, it is crucial to understand this well if we want to be
able to falsify or confirm CDM with this observable. If all
of the identified perturbers to a given image are assumed to
be virially bound to the host, one can overestimate the
fraction of substructure in the host, and thus make
an erroneous comparison to a standard CDM prediction.
Thus, quantifying the contribution from the LOS substruc-
ture is crucial in advancing the capability of strong lensing
to constrain the particle nature of dark matter.
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APPENDIX A: TRUNCATED CONVERGENCE
PROFILES

The truncated NFW profile (tNFW) [99] is given by

ρtNFWðrÞ ¼
mNFW

4πrðrþ rsÞ2
�

r2t
r2 þ r2t

�
; ðA1Þ

where rs is the scale radius, rt is the tidal radius and mNFW
is defined below. Integrating this profile along the line of
sight and diving by the critical density for lensing Σcrit, we
obtain the tNFW convergence profile:

κtNFWðxÞ ¼
mNFW

Σcritr2s

τ2

2πðτ2 þ 1Þ2
�
τ2 þ 1

x2 − 1
ð1 − FðxÞÞ

þ 2FðxÞ − πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ x2

p þ τ2 − 1

τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ x2

p LðxÞ
�
;

ðA2Þ

where

x ¼ r
rs
; τ ¼ rt

rs
; ðA3Þ

FðxÞ ¼ cos−1ð1=xÞffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p ; ðA4Þ

LðxÞ ¼ ln

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2 þ x2
p

þ τ

�
; ðA5Þ

and

m ¼ mNFWτ
2

ðτ2 þ 1Þ2 ½ðτ
2 − 1Þ lnðτÞ þ τπ − ðτ2 þ 1Þ�: ðA6Þ

The truncated Burkert profile [88,100] is given by:

ρtBurkðrÞ ¼
mb

4πðrþ prsÞðr2 þ p2r2sÞ
�

r2t
r2 þ r2t

�
; ðA7Þ
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where rb is the core radius, and the scale mass mb is the
mass within the core. Here we set rb ¼ prs, where p is a
constant that represents the size of the core as a fraction of
the scale radius. The convergence field of this density
profile is then [88]:

κtBurkðxÞ ¼
mb

8πΣcritr2s
τ2

8<
:π

 
2p

ffiffiffiffiffiffiffiffiffi
1

τ2þx2

q
p4 − τ4

−

ffiffiffiffiffiffiffiffiffi
1
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q
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where again x and τ are defined as in Eq. (A3).

APPENDIX B: FEATURES OF THE
CONVERGENCE MAPS

The tables in this section display some quantities of
interest extracted from the two simulations. The main value
quoted corresponds to the median across 90 projections for
a box size with L ¼ 100 kpc, while the errors correspond to
the 90% confidence interval. The exception to this is the
first entry in each table, NsubðL ¼ 300 kpcÞ, since this is a
quantity extracted from the original simulations before
doing any projections. The Einstein radius is fixed to
1 arcsecond. With our cosmology, this corresponds to
REin ¼ 6.18 kpc at z ¼ 0.57 and REin ¼ 8.10 kpc at z ¼ 1.
Notice that, in the All subhalos column, the meff ≡

hm2i=hmi entry displays very large upper bounds. This is
due to the fact that when there are very few subhalos with
masses > 109 M⊙ they only rarely get projected into the
region of interest. Even a one order of magnitude difference
in themaximumsubhalomass can changemeff considerably,
yielding a very large upper bound. This is reflected in the
large 90% confidence interval in the red lines of Fig. 3.

1. CDM

a. z= 0

b. z= 0.5

TABLE I. Relevant properties of the CDM subhalo population at z ¼ 0.

mhigh ¼ 108 M⊙ mhigh ¼ 109 M⊙ All Subhalos

NsubðLbox ¼ 300 kpcÞ 9810 10007 10031
NsubðLbox ¼ 100 kpcÞ 1004þ116

−97 1026þ148
−116 1024þ104

−109
NsubðREinÞ 12þ8

−6 13þ8
−5 13þ7

−6
κ̄sub ð3.28þ0.54

−0.37 Þ × 10−4 ð5.06þ1.19
−0.97 Þ × 10−4 ð1.22þ0.94

−0.51 Þ × 10−3

hmi [M⊙] ð7.75þ0.41
−0.57 Þ × 106 ð1.20þ0.18

−0.20 Þ × 107 ð2.99þ2.34
−1.33 Þ × 107

meff ≡ hm2i=hmi [M⊙] ð2.72þ0.17
−0.27 Þ × 107 ð1.64þ0.83

−0.83 Þ × 108 ð7.79þ20.1
−7.30 Þ × 109

rt;max [kpc] 8.17þ11.67
−2.70 9.51þ5.53

−3.33 10.96þ26.50
−2.88

rs;min [kpc] 0.03þ0.00
−0.01 0.03þ0.00

−0.01 0.03þ0.00
−0.01

TABLE II. Relevant properties of the CDM subhalo population at z ¼ 0∶5.

mhigh ¼ 108 M⊙ mhigh ¼ 109 M⊙ All Subhalos

NsubðLbox ¼ 300 kpcÞ 6516 6651 6669
NsubðLbox ¼ 100 kpcÞ 587þ70

−57 584þ103
−59 596þ88

−59
NsubðREinÞ 9þ3

−4 9þ5
−5 9þ5

−5
κ̄sub ð1.90þ0.16

−0.22 Þ × 10−4 ð2.93þ0.72
−0.58 Þ × 10−4 ð4.18þ7.87

−1.55 Þ × 10−4

hmi [M⊙] ð7.67þ0.48
−0.58 Þ × 106 ð1.20þ0.23

−0.19 Þ × 107 ð1.66þ3.04
−0.58 Þ × 107

meff ≡ hm2i=hmi [M⊙� ð2.53þ0.45
−0.37 Þ × 107 ð1.09þ1.04

−0.44 Þ × 108 ð5.95þ128.00
−4.99 Þ × 108

rt;max [kpc] 9.62þ4.14
−3.95 10.90þ6.38

−2.94 12.19þ6.12
−2.87

rs;min [kpc] 0.06þ0.02
−0.02 0.07þ0.02

−0.02 0.06þ0.02
−0.02

7We will be using this value in the z ¼ 0 tables as well for the reasons outlined in Sec. VA.
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c. z= 1

2. ETHOS4

a. z= 0

b. z= 0.5

TABLE III. Relevant properties of the CDM subhalo population at z ¼ 1.

mhigh ¼ 108 M⊙ mhigh ¼ 109 M⊙ All Subhalos

NsubðLbox ¼ 300 kpcÞ 4694 4783 4798
NsubðLbox ¼ 100 kpcÞ 446þ80

−49 459þ75
−46 453þ90

−54
NsubðREin) 11þ4

−6 11þ4
−6 11þ5

−6
κ̄sub ð7.93þ1.71

−1.26 Þ × 10−5 ð1.52þ0.53
−0.52 Þ × 10−4 ð1.74þ2.63

−0.64 Þ × 10−4

hmi [M⊙] ð7.57þ0.66
−0.58 Þ × 106 ð1.43þ0.36

−0.36 Þ × 107 ð1.66þ1.91
−0.51 Þ × 107

meff ≡ hm2i=hmi [M⊙� ð2.60þ0.33
−0.38 Þ × 107 ð2.05þ1.14

−0.95 Þ × 108 ð2.82þ44.1
−1.64 Þ × 108

rt;max [kpc] 10.12þ7.08
−3.28 14.27þ6.15

−5.47 16.00þ10.70
−5.72

rs;min [kpc] 0.08þ0.03
−0.01 0.08þ0.03

−0.02 0.08þ0.03
−0.02

TABLE IV. Relevant properties of the ETHOS4 subhalo population at z ¼ 0.

mhigh ¼ 108 M⊙ mhigh ¼ 109 M⊙ All Subhalos

NsubðLbox ¼ 300 kpcÞ 821 898 918
NsubðLbox ¼ 100 kpcÞ 93þ28

−15 100þ35
−15 101þ47

−14
NsubðREinÞ 1þ2

−1 2þ2
−2 2.00þ2

−2
κ̄sub ð4.06þ1.33

−1.08 Þ × 10−5 ð1.28þ0.49
−0.59 Þ × 10−4 ð7.36þ12.80

−5.65 Þ × 10−4

hmi [M⊙] ð1.05þ0.15
−0.19 Þ × 107 ð2.92þ1.77

−1.11 Þ × 107 ð1.89þ2.58
−1.47 Þ × 108

meff ≡ hm2i=hmi [M⊙] ð3.07þ0.84
−0.90 Þ × 107 ð3.63þ1.79

−2.40 Þ × 108 ð1.08þ2.35
−1.02 Þ × 1010

rt;max [kpc] 10.86þ18.13
−3.54 13.85þ12.21

−4.80 20.28þ45.90
−6.99

rs;min [kpc] 0.06þ0.00
−0.02 0.06þ0.00

−0.02 0.06þ0.00
−0.02

TABLE V. Relevant properties of the ETHOS4 subhalo population at z ¼ 0∶5.

mhigh ¼ 108 M⊙ mhigh ¼ 109 M⊙ All Subhalos

NsubðLbox ¼ 300 kpcÞ 579 629 642
NsubðLbox ¼ 100 kpcÞ 57þ19

−10 60þ19
−8 62þ17

−8
NsubðREinÞ 0.50þ1.5

−0.5 0.5þ2
−0.5 0.5þ2

−0.5
κ̄sub ð3.43þ1.38

−1.02 Þ × 10−5 ð7.17þ2.71
−3.30 Þ × 10−5 ð1.91þ8.38

−0.77 Þ × 10−4

hmi [M⊙] ð1.45þ0.38
−0.32 Þ × 107 ð2.77þ1.16

−1.01 Þ × 107 ð8.06þ37.30
−3.25 Þ × 107

meff ≡ hm2i=hmi [M⊙] ð3.75þ0.70
−0.76 Þ × 107 ð1.47þ3.26

−0.88 Þ × 108 ð1.31þ17.30
−0.36 Þ × 109

rt;max [kpc] 13.33þ59.01
−5.75 20.22þ34.73

−10.95 26.57þ25.22
−14.72

rs;min [kpc] 0.11þ0.02
−0.04 0.11þ0.02

−0.04 0.11þ0.02
−0.04
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