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We study the impact on the galaxy correlation function of the presence of a vector component in the tracers’
peculiar velocities, in the case inwhich statistical isotropy is violated.Wepresent a general framework—based
on the bipolar spherical harmonics expansion—to study this effect in a model independent way, without any
hypothesis on the origin or the properties of these vectormodes.We construct six new observables, that can be
directlymeasured in galaxy catalogs in addition to the standardmonopole, quadrupole, andhexadecapole, and
we show that they completely describe any deviations from isotropy. We then perform a Fisher analysis in
order to quantify the constraining power of future galaxy surveys. For an example, we show that the SKA2
would be able to detect anisotropic rotational velocities with amplitudes as low as 1% of that of the vorticity
generated during shell crossing in standard dark matter scenarios.
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I. INTRODUCTION

Vector perturbations are generated during the history of
the Universe by many mechanisms extending standard
cosmology, e.g. topological defects [1–3], magnetic fields
[4], inflation with vector fields [5,6], or vector-field-based
models of modified gravity [7–10]. But, even in concord-
ance cosmology, the inevitable shell crossing that occurs as
non-linear structures form, leads to the generation of
vorticity and therefore vector perturbations. It is important
to properly characterize the signature of these vector
degrees of freedom (d.o.f.) on the observables of large-
scale galaxy surveys. The reason for this is twofold. On the
one hand, the presence of such vector perturbations—if not
properly taken into account—will “pollute” (i.e., bias) the
measurement of the scalar d.o.f. and act as a source of
systematic error. On the other hand, vector d.o.f. can leave
their imprint on observables, which, in turn, can be used to
constrain their properties and to study the mechanism that
generated them.
Various approaches exist in the literature with the aim of

constraining vector-type deviations of the metric, and they
have mostly focused on the cosmic microwave background
(CMB). They can be grouped into three categories:

(i) The first category is introducing dynamical vector
d.o.f. in the early Universe while maintaining
isotropy and homogeneity at the background level.
Then, one can either maintain statistical isotropy and
homogeneity of the perturbations or allow for
statistically anisotropic perturbations [11,12].

(ii) Alternatively, one can deform the isotropy of the
cosmological background and therefore constrain

its anisotropy, while keeping the matter content
standard, making sure that this anisotropy decays
with time [13].

(iii) Finally, one can introduce an anisotropy directly in
the primordial power spectrum (through some inter-
actions in the early Universe, e.g., Refs. [14,15]).
One then tries to look for “anomalies” in the CMB,
such as in, e.g., Ref. [16]. Signatures of this
primordial signal in galaxy surveys have been
analyzed in Refs. [17–20].

Additionally, late time nonlinear evolution, as it is
simulated in N-body codes, is found to generate vector
perturbations of both the metric [21,22] and the fluid
vorticity [23,24]. Vorticity is generated in N-body simu-
lations by shell crossing. The velocity and especially its
vorticity are difficult to measure precisely in an N-body
code. The usual techniques measure a coarse grained
velocity field which exhibits additional vorticity due to
coarse graining. Recently, in Ref. [25], a novel technique
was developed to measure the mean velocity field averages
over phase space, which is independent of any coarse
graining size. It is interesting to develop statistical tools to
measure these vector modes, which are present also in
standard ΛCDM cosmology, and to distinguish them, e.g.,
from an intrinsic, global anisotropy.
In Ref. [26], some of us considered the impact of

statistically isotropic vector modes in the peculiar velocity
field of galaxies and in particular on the redshift-space
distortion (RSD) observed in galaxy surveys. We have
found that vector contributions to RSD enter in the
monopole, quadrupole, and hexadecapole of the galaxy
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correlation function. While the impact of vector perturba-
tions from topological defects is very small, those from
nonlinear clustering affect especially the hexadecapole
quite strongly, contributing up to 20% of the total signal
on scales smaller than 5 h−1 Mpc. This additional contri-
bution should in principle be detectable with next gener-
ation surveys, such as Euclid or the Square Kilometre
Array (SKA).
In this paper, we consider a vector component of the

peculiar velocities, which violates statistical isotropy, and
study its impact on the galaxy correlation function. This is a
natural generalization of the study in Ref. [26]. We present
a general framework suitable specifically to study this
effect, with no assumptions on the origin or properties of
these vector modes. We show that the anisotropic signal can
be completely characterized by six new observables, which
can be directly extracted from galaxy catalogs. General
results regarding the Fisher analysis of these types of
models are also discussed. We investigate the detectability
of these contributions, for a specific example, with planned
or futuristic galaxy surveys.
This paper can be considered as a contribution to

testing the cosmological principle. In particular, we want
to develop tests of statistical isotropy using large-scale
structure (LSS) observations. While it is clear that our
Universe is not strongly anisotropic, a small anisotropy is
still compatible with, if not favored by, the analysis of CMB
anisotropies and polarization [16]. This might be due to,
e.g., a small global magnetic field or some slight anisotropy
which remained after inflation. In this work, we do not
make assumptions on the model responsible for the global
anisotropy in the vector sector, but we want to investigate
its observational consequences. We study the situation
where scalar perturbations are still statistically isotropic
but vector perturbations are not. It will be interesting not
only to study whether LSS also favors a slight anisotropy of
the Universe but whether the characteristics of any such
anisotropy are in agreement with the one of the CMB.
Furthermore, LSS observations allow for a tomographic
approach; i.e., we can observe many different redshifts,
making it easier to overcome limitations from cosmic
variance.
The paper is structured as follows. In Sec. II, we detail

the general anisotropic structure of vector perturbations. In
Sec. III, we study the effects of a vector component in the
velocity field on the two-point function and present a
suitable decomposition to describe it. Finally, in Sec. IV, we
forecast the constraints on the anisotropic parameters for
upcoming clustering surveys.

II. VECTOR CONTRIBUTION TO
GALAXY VELOCITIES

In this work, we assume that our Universe shows signs
of a violation of statistical isotropy, manifesting itself by
the presence of vector modes in the peculiar velocity of

tracers. We investigate how galaxy catalogs can be used,
independently from other probes, to constrain the ampli-
tude of these anisotropies. We therefore model our
Universe as a perturbed Friedman-Lemaître universe, with
a metric given by

ds2 ¼ a2½−ð1þ 2ΨÞdτ2 − Σidτdxi

þ ð1 − 2ΦÞdxidxi�: ð1Þ

Here, Φ and Ψ are the standard Newtonian-gauge scalar
potentials, and Σi is a pure vector fluctuation, ∂iΣi ¼ 0,
related to frame dragging.1 We defineH ¼ _a=a ¼ aH to be
the conformal Hubble parameter.
The general velocity field for galaxies located at position

r at conformal time τ, viðr; τÞ, can be decomposed into a
scalar (potential) part, v, and a pure vector part, Ωi, with
∂iΩi ¼ 0,

vi ≡ ∂ivþΩi: ð2Þ

The gauge-invariant relativistic vorticity [27] can be
obtained by lowering the index of Ωi with the perturbed
metric. The relativistic vorticity is often denotedΩi (e.g., in
Refs. [27,28]), and it is an additional rotational velocity
over and above the frame-dragging effect. In this paper, we
denote it by Ω̃i ≡ gijΩj=a ¼ aδijðΩj − ΣjÞ for clarity.2 We
mainly concentrate on Ωi as it is the velocity with an upper
index that is relevant for us, and we use the notation
Ωi ¼ δijΩj ≡Ωi.
We assume that galaxies move on timelike geodesics

of the metric, i.e., they obey the Euler equation. Then, to
first order in perturbation theory, we can write, for perfect
fluids,

_Ωi − _Σi þHðΩi − ΣiÞ ¼ 0; ð3Þ

which is equivalent to ∂τΩ̃i ¼ 0. Hence, vorticity is
conserved. This is not only true within linear perturbation
theory but also in full General Relativity as long as matter
can be described as a perfect fluid [28]. The 0i component
of the energy momentum tensor of a perfect fluid is
given by

Ti
0ðVÞ ¼ ½ðρþ PÞvi�ðVÞ ¼ Ti

0 − Ti
0ðSÞ: ð4Þ

Taking the curl of this equation, the scalar part vanishes,
and we obtain

1We have fixed the gauge such that the 0i component of the
metric has no scalar contribution and the vector part of the ij
component vanishes. We also neglect gravitational waves (tensor
perturbations).

2The difference between aΩj and Ω̃j is only relevant on large
scales.

VITTORIO TANSELLA et al. PHYS. REV. D 98, 103515 (2018)

103515-2



ϵijkðTj
0Þ;k ¼ ϵijk½ðρþ PÞvj�;k

¼ ðv ∧ ∇ðρþ PÞÞi þ ðρþ PÞð∇ ∧ vÞi: ð5Þ

Only the vector velocity Ωj contributes to the second term,
while the first term is nonvanishing when the gradient of the
density fluctuations is not parallel to the velocity. This also
happens in perfect fluids at second order in perturbation
theory; see, e.g., Ref. [22]. At second order therefore,
despite vorticity conservation, vector perturbations of the
metric are generated. They, in turn, induce effects such as
frame dragging. It has been shown recently [24] that the
vector potential found in relativistic numerical simulations
is actually mainly due to the first term of (5) and not to
vorticity, which is also induced in N-body simulations.
The perfect fluid description is just an approximation

when we want to describe the motion of dark matter (or
galaxies). In the real Universe, dark matter particles are free
streaming; i.e., they move on geodesics. As soon as shell
crossing occurs, velocity dispersion can no longer be
neglected, and vorticity is generated for the fluid of the
averaged dark matter particles (or galaxies). In Ref. [29],
the vorticity generation from large-scale structure was
modeled by including velocity dispersion using a pertur-
bative approach.
Clearly, even if in the standard ΛCDM model vector

perturbations are generated by nonlinearities, they are
statistically isotropic. In this work, we assume that the
vectorial part of the peculiar velocity in Eq. (2) acquires an
anisotropic component.

A. Tensor structure of vector perturbations

We summarize here the discussion we presented in
Sec. 2.2 of Ref. [26].
In order to compute the two-point correlation function of

galaxies, we need a model for the two-point autocorrelation
of the vector velocity, hΩiΩji, and its cross-correlation with
the dark matter overdensity hδmΩii. We will characterize
their structure in Fourier space, with our Fourier transform
convention fixed by

fðkÞ ¼
Z

d3rfðrÞe−ik:r: ð6Þ

The autocorrelation of the vector field takes the general
form

hΩiðkÞΩjðk0Þi ¼ ð2πÞ3δð3Þðkþ k0Þ
× ½WijðkÞPΩðkÞ þ iαijðkÞPAðkÞ�; ð7Þ

where PΩðkÞ and PAðkÞ contain information about the
amplitude of the vector field. The Dirac delta function
appearing in the above equation, δð3Þðkþ k0Þ, is a conse-
quence of statistical homogeneity, and if we assume that
scalar spectra are isotropic, the amplitudes, PΩðkÞ and

PAðkÞ, depend on k only through its absolute value
k≡ jkj. One might think it would be more natural for
an anisotropic spectrum to show an anisotropy also in
PΩðkÞ. However, in a real observation, the power spectrum
is usually obtained by averaging the squared Fourier modes
over directions. Here, we mimic this by considering PΩ and
PA to be functions of the modulus k only. In practice, these
are the direction averaged spectra. For scalar perturbations,
this averaging removes all signs of an anisotropy, and for
vector perturbations this is, interestingly, not the case as we
show in this paper.
The tensors Wij and αij are, respectively, symmetric and

antisymmetric tensors, which encode the dependence on
direction. Since Ωi is a pure vector field, Wij and αij must
satisfy kiWij ¼ kjWij ¼ kiαij ¼ kjαij ¼ 0. The PA-term is
parity odd, while the PΩ-term is parity even. If no parity
violating processes occur in the Universe, we may set
PA ¼ 0. The tensorial form for αij is completely fixed by
antisymmetry and transversality,

αij ¼ αεijmk̂
m: ð8Þ

The most general form for Wij is then

Wij ¼
ω

2
ðδij − k̂ik̂jÞ þ ωA

ij; ð9Þ

where we have decomposed the tensor into its trace ω and
trace-free part

ωA
ij ¼ ωij − ωilk̂

lk̂j − ωljk̂
lk̂i þ ωlmk̂

lk̂mk̂ik̂j; ð10Þ

with ωi
i ¼ 0. As usual, k̂ denotes the unit vector in the

direction of the vector k. The first term of (9) respects
statistical homogeneity and isotropy, whereas the second
one is nonzero only when isotropy is violated. In what
follows, we absorb the trace ω into the normalization of the
power spectrum PΩ in Eq. (7). Note that in general the
isotropic and anisotropic contribution do not need to have
the same amplitude PΩðkÞ; in this sense, one can use ωðkÞ
to parametrize the difference between PðisoÞ

Ω and PðaniÞ
Ω .

Interestingly, the only possible parity odd term given in (8)
is statistically isotropic.
The symmetric tensor ωij can be diagonalized or,

equivalently, decomposed into a sum of the tensor products
of its orthonormal eigenvectors ω̂I

i ,

ωij ¼
X3
I¼1

λIω̂
I
i ω̂

I
j; ð11Þ

where the eigenvalues satisfy
P

Iλ
I ¼ 0.

The cross-correlation with dark matter can be nonzero
only if statistical isotropy is violated. Assuming that the
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vector field is fluctuating in some fixed direction ω̂, the
cross-correlation takes the form

hδmðkÞΩiðk0Þi ¼ ð2πÞ3WiPδΩðkÞδð3Þðkþ k0Þ; ð12Þ

where Wi is transverse since Ωi is a pure vector field, i.e.,
divergence free. A nonvanishing hδmΩii always defines a
preferred spatial direction ω̂i and therefore violates stat-
istical isotropy.

III. CORRELATION FUNCTION

Galaxy number counts are observed in redshift space,
rather than in real space. The leading correction arising
from the fact that we observe on the light cone is the Kaiser
term, or redshift-space distortion [30], which is included in
the number counts Δ as

ΔðrÞ ¼ δgðrÞ −
1

H
ni∂iðnjvjðrÞÞ: ð13Þ

Here, δg is the tracer’s density perturbation, related to the
dark matter density perturbation via the bias expansion
δg ≃ b · δm þ…, and vi is the peculiar velocity field. We
have also defined the line-of-sight direction n as

n≡ r
r
; ð14Þ

i.e., the unit vector in the direction of the galaxy lying at r,
with the observer located at r ¼ 0. Splitting the velocity
into the scalar and vector parts, as in Eq. (2), we have

ΔðrÞ ¼ δgðrÞ −
1

H
ninjð∂i∂jvðrÞ þ ∂iΩjðrÞÞ: ð15Þ

The effects of vector perturbations in the general relativistic
number counts were derived in Ref. [31] and studied in
detail in Ref. [32], where it was found that—akin to scalar
perturbations—redshift-space distortion is the dominant
effect. Since in the relativistic angular power spectra,
Clðz1; z2Þ, the RSD cannot easily be extracted, we study
here the impact of the vector modes on the two-point
correlation function of galaxies. In this study, we neglect
both the subdominant vector relativistic corrections from
Ref. [32] and the scalar relativistic corrections derived in
Refs. [33–37].
The two-point correlation function is defined as

ξðr1; r2; z1; z2Þ ¼ hΔðr1; z1ÞΔðr2; z2Þi: ð16Þ

Without redshift-space distortion, and neglecting subdomi-
nant evolution effects, the correlation function depends
only on the galaxies’ separation

x≡ jr1 − r2j ð17Þ

and on the mean distance of the pair from the observer
r̄ ¼ 1

2
ðr1 þ r2Þ or, equivalently, its mean redshift z̄ ¼

1
2
ðz1 þ z2Þ. Redshift-space distortion introduces an addi-

tional dependence on the orientation of the pair with respect
to the line of sight n (we work in the small angle or flat-sky
limit where we neglect the difference between the line of
sight to r1 and r2). It is customary to expand ξ in a basis of
Legendre polynomials so that, in the flat-sky approxima-
tion, n1 ¼ n2 ¼ n, we can write

ξðz̄;x;nÞ ¼
X
l

ξlðz̄; xÞPlðμÞ; ð18Þ

where Pl is the Legendre polynomial of degree l and
μ ¼ n · x̂, with x̂ being the direction of the vector con-
necting the two galaxies.
Let us now review the standard flat-sky expression for

the correlation function in the presence of scalar perturba-
tions (see, e.g., Ref. [38] for details). We will use this result
both for comparison with the vector case and to compute
our covariance matrix in Sec. IV. Including the Kaiser term,
we write

ξisoðsÞðz̄; x; μÞ ¼ c0ðz̄ÞC0ðz̄; xÞ − c2ðz̄ÞC2ðz̄; xÞP2ðμÞ
þ c4ðz̄ÞC4ðz̄; xÞP4ðμÞ: ð19Þ

We can identify the multipole coefficients in Eq. (18) as

ξlðx; z̄Þ ¼ ilclðz̄ÞClðz̄; xÞ: ð20Þ

We have also defined

Clðz̄; xÞ ¼
Z

dk
2π2

k2Pðz̄; kÞjlðkxÞ; ð21Þ

together with the coefficients

c0 ¼ b2 þ 2

3
bf þ f2

5
; ð22Þ

c2 ¼
4

3
bf þ 4

7
f2; ð23Þ

c4 ¼
8

35
f2: ð24Þ

Here, jn is the n-order spherical Bessel function, f is the
growth rate, f ≡ d lnD1=d ln a (with D1 being the linear
growth function), and Pðz̄; kÞ is the matter power spectrum
at redshift z̄. We have made the standard assumption that
the galaxy bias b is deterministic, and, like the growth rate
f in ΛCDM, it is scale independent.
We now turn to the study of the vector component. We

split the vector contribution to the correlation function into
a statistically isotropic and anisotropic part
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ξðvÞ ¼ ξisoðvÞ þ ξaniðvÞ; ð25Þ

where we have emphasized that the source of violation of
statical isotropy comes from the vector sector. First, we
summarize the structure of the isotropic contributions to the
correlation function coming from vector perturbations, and
we then propose a general framework to compute the
anisotropic part.
The new vector contribution to the correlation function

in Eq. (25) comprises three terms:
(1) cross-correlation with the density
(2) cross-correlation with the scalar velocity
(3) autocorrelation.

The first two vanish in flat sky since they are odd under
n → −n and ξ is evidently even; see Ref. [26]. Hence,
combining Eqs. (15) and (16), we write

ξðvÞðxÞ ¼
1

Hðz1ÞHðz2Þ
Z

d3k
ð2πÞ3 k

2ðn1 · k̂Þðn2 · k̂Þ

× ni1Wijðk̂Þnj2PΩðkÞeik·x: ð26Þ

This object has a complicated tensor structure, which
characterizes the anisotropy of the vector field. However,
when isotropy is assumed, we simply writeWij¼δij− k̂ik̂j,
so that, see Ref. [26],

ξisoðvÞ ¼
1

H2

Z
d3k
ð2πÞ3 k

2ðn · k̂Þ2ð1þ ðn · k̂Þ2Þ

× PΩðkÞeik·x: ð27Þ

Rewriting the n · k̂ contributions in terms of Legendre
polynomials and integrating over the direction of k, we
obtain for the isotropic contribution [26]

ξisoðvÞðz̄; x; μÞ ¼
2

15
P0ðμÞCΩ

0 ðxÞ

−
2

21
P2ðμÞCΩ

2 ðxÞ −
8

35
P4ðμÞCΩ

4 ðxÞ; ð28Þ

with

CΩ
n ðxÞ ¼

1

2π2
1

H2

Z
dkk4PΩðkÞjnðkxÞ: ð29Þ

Notice here the extra k2 factor multiplying PΩ, which is
absorbed in the scalar case when the velocity power
spectrum is reexpressed in terms of the density power
spectrum.
Statistically isotropic vector perturbations modify the

shape of the multipoles coefficients in the Legendre
expansion of ξ. One can estimate this effect and study
its detectability. This was the strategy followed in
Ref. [26]. In the anisotropic case, however, the standard
multipole expansion fails to capture the additional angular

dependence encoded in Wij. In the next section, we
therefore consider the decomposition of this dependence
into bipolar spherical harmonics (BipoSH) [39].

A. Statistically anisotropic contribution

When statistical isotropy is violated, the correlation
function is no longer only a function of μ ¼ n · x̂.
Therefore, the standard expansion in Legendre polynomials
does not properly describe the angular dependence of ξ. The
correlation function can, however, be expanded in terms of
the orthonormal set of BipoSH. Since this approach captures
an arbitrary angular dependence of the observable under
consideration, it has been used in cosmology to analyze
CMB [40–45] and LSS [15,19,20,46–51] data.
In the small angle approximation the correlation function

depends on two directions ξðn;xÞ, and we hence expand

ξðx;n; z̄Þ ¼
X
ll0JM

ξJMll0 ðx; z̄ÞXJM
ll0 ðx̂;nÞ; ð30Þ

with

XJM
ll0 ðx̂;nÞ ¼ fYlðx̂Þ ⊗ Yl0 ðnÞgJM

¼
X
mm0

CJM
lml0m0Ylmðx̂ÞYl0m0 ðnÞ; ð31Þ

where CJM
lml0m0 are the Clebsch-Gordan coefficients which

are related to the Wigner 3j symbols by, see Ref. [52],

CJM
lml0m0 ¼ ð−Þl−l0þM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p �
l l0 J

m m0 −M

�
: ð32Þ

In other words, XJM
ll0 ðx̂;nÞ isolates the total angular

momentum J and helicity M contribution. The useful
property of the BipoSH XJM

ll0 is that they filter the isotropic
signal into the J ¼ 0 mode and any nonzero coefficient
with J > 0 indicates anisotropy. In fact, if there is no
anisotropic signal in the power spectrum, i.e., if ξ depends
on n only via μ ¼ x̂ · n, we can compute the coefficients
via

ξJMll0 ¼
Z

dΩn

Z
dΩxξðx;n; z̄ÞXJM�

ll0 ; ð33Þ

and we simply obtain

ξJMll0 ðx; z̄Þ ¼
4πffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p ξlðx; z̄ÞδJ;0δM;0δl;l0 ; ð34Þ

recovering the expansion of Eq. (18). In particular, we see
that no off-diagonal component is generated (we have
l ¼ l0) and that all the isotropic signal is contained in the
J ¼ 0 coefficient. On the other hand, if anisotropy is
included, we will generate J ≥ 1 and l ≠ l0 modes.
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Therefore, to search for anisotropy, we only look at the
J ≥ 1 modes, and we set ξ ¼ ξaniðvÞ in the expansion

of Eq. (30).
We focus on the computation of the statistically aniso-

tropic contribution to the galaxy correlation function (16).
To this end, it is useful to compute the anisotropic
contribution to the power spectrum of (13) and then
Fourier transform it. Explicitly, the Fourier transformation
of galaxy number counts in the Kaiser approximation,
Eq. (13), is given by

hΔ̃ðk;n; z̄ÞΔ̃ðk0;n; z̄Þi ¼ ð2πÞ3Pðk;n; z̄Þδðkþ k0Þ; ð35Þ

where the power spectrum is given by (omitting the
dependence on n; z̄)

PðkÞ ¼ Piso
ðsÞ þ Piso

ðvÞ þ Pani
ðvÞ

¼ ðbþ fðn · k̂Þ2Þ2PδδðkÞ

−
k2

H2
ωðn · k̂Þ2ð1 − ðn · k̂Þ2ÞPΩðkÞ

−
k2

H2
ðn · k̂Þ2n̂injωA

ijPΩðkÞ; ð36Þ

where all the isotropic contribution is in the first two lines
and the anisotropic one, Pani

ðvÞ, is in the last line. The tensor

ωA
ij is defined in Eq. (10). The isotropic contribution

depends on directions only through the angle between
the mode k and the line of sight; i.e., it can be expanded in a
basis of Legendre polynomials as

Pisoðk;n; z̄Þ ¼
X
l

plðk; z̄ÞPlðn · k̂Þ: ð37Þ

We observe that this is not a specific property of redshift-
space distortions but simply a consequence of statistical
isotropy. Hence, Eq. (37) holds for all the relativistic
contributions to the galaxy number counts.
When statistical isotropy is violated, we expand the

power spectrum in terms of the orthonormal set of bipolar
spherical harmonics, as

Pani
ðvÞðk;n; z̄Þ ¼

X
ll0JM

πJMll0 ðz̄; kÞXJM
ll0 ðk̂;nÞ; ð38Þ

where

XJM
ll0 ðk̂;nÞ ¼

X
mm0

CJM
lml0m0Ylmðk̂ÞYl0m0 ðnÞ: ð39Þ

In the case where there is not anisotropic signal in the
power spectrum, the coefficients πJMll0 simply reduce to

πJMll0 ¼
4πffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p plðkÞδJ;0δM;0δl;l0 ; ð40Þ

and we recover the expansion of Eq. (37).
For convenience, we can split the anisotropic contribu-

tion to the power spectrum (36) in three contributions

Pani
ðvÞðkÞ ¼ −

k2

H2
ðn · k̂Þ2n̂in̂jωA

ijPΩðkÞ
¼ PðaÞðkÞ þ PðbÞðkÞ þ PðcÞðkÞ; ð41Þ

where we have separated the three cases
(a) ωA

ij ¼ ωij,

(b) ωA
ij ¼ −ωilk̂

lk̂j − ωljk̂
lk̂i,

(c) ωA
ij ¼ ωlmk̂

lk̂mk̂ik̂j,
so that

Pani
ðvÞðk;n; z̄Þ
¼

X
ll0JM

ðπJMðaÞ
ll0 þ πJMðbÞ

ll0 þ πJMðcÞ
ll0 ÞXJM

ll0 ðk̂;nÞ: ð42Þ

Note that this splitting has no direct physical interpretation;
each contribution has a scalar component, which, however,
disappears in the sum of Eq. (42). These contributions can
be written in terms of the eigenvectors and eigenvalues ω̂I

and λI. After a long but straightforward computation,
we find

πJMðaÞ
ll0 ¼ −

16π3=2

45

k2

H2
PΩðkÞ

X
I

λIY�
2Mðω̂IÞ

×

�
δl;0δl0;2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0 þ 1

5

r �
2 2 l0

0 0 0

�
δl;2

�
δJ;2;

ð43Þ

πJMðbÞ
ll0 ¼−

16π3=2

5

k2

H2
PΩðkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þð2l0 þ1Þ

p

×

ffiffiffiffiffi
2

15

r X
I

λIY�
2Mðω̂IÞ

×

�
2

�
3 1 l

0 0 0

��
3 1 l0

0 0 0

��
1 2 10

l 3 l0

�

þ3

�
1 1 l

0 0 0

��
1 1 l0

0 0 0

��
1 2 1

l 1 l0

��
δJ;2; ð44Þ

πJMðcÞ
ll0 ¼ −

16π3=2

15

k2

H2
PΩðkÞ

X
I

λIY�
2Mðω̂IÞ

×

�
1

5
δl;2δl0;0 þ

8

105

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p �
4 2 l

0 0 0

�
δl0;4

þ 4

7
ffiffiffi
5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p �
2 2 l

0 0 0

�
δl0;2

�
δJ;2; ð45Þ
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where curly brackets fg denote the Wigner 6j symbols; see,
e.g., Ref. [53]. We first note that vector anisotropies can
only generate J ¼ 2 modes. This is not surprising as they
are the product of two j ¼ 1 states which can give either
J ¼ 0, which is isotropic, or J ¼ 2. The triangular relation
imposed by the 3j and 6j symbols determines the limits of
the sum in the expansion in Eq. (42). It is easy to see that
both l and l0 have to be even and, more precisely, in
f0; 2; 4; 6g. We can now reconstruct the correlation func-
tion (16) from the power spectrum. This is similar to the
isotropic case in which the Fourier- and real-space coef-
ficients in the Legendre expansion are related by

ξlðxÞ ¼ il
Z

k2dk
2π2

jlðkxÞplðkÞ: ð46Þ

Explicitly, the coefficients of the BipoSH expansion of the
correlation function, Eq. (30), are related to the ones of the
power spectrum, Eq. (38), by

ξJMll0 ðxÞ ¼ il
Z

k2dk
2π2

jlðkxÞπJMll0 ðkÞ: ð47Þ

With this, we can rewrite the real-space version of
Eqs. (43)–(45) in terms of the CΩ

n , which we defer to an
Appendix: Eqs. (C1)–(C3). The sum of the three contri-
butions can be cast in matrix form as (remember all terms
with J ≠ 2 vanish)

ðξ2Mll0 Þ ¼
16π3=2

5

X
I

λIY�
2Mðω̂IÞ

×

0
BBBBBBBBBBBB@

0 0 1
35
CΩ
0 0 0 0 0

0 0 0 0 0 0 0

1
25
CΩ
2 0 − 1

5

ffiffiffiffi
2
35

q
CΩ
2 0 2

225

ffiffi
2
7

q
CΩ
2 0 0

0 0 0 0 0 0 0

0 0 0 0 − 4

9
ffiffiffiffiffiffi
385

p CΩ
4 0 0

0 0 0 0 0 0 0

0 0 0 0 − 8

63
ffiffiffiffi
55

p CΩ
6 0 0

1
CCCCCCCCCCCCA

;

ð48Þ

where CΩ
l ¼ CΩ

l ðz; xÞ. Equation (48) is one of the main
results of this paper. It shows in complete generality that
any anisotropic signal induced by redshift-space distortion
in the galaxy correlation function is encoded in the
functions ξ2Mll0 (which depend in principle on redshift and
on galaxy separation). The six nonzero coefficients ξ ¼
fξ2M02 ; ξ2M20 ; ξ2M22 ; ξ2M24 ; ξ2M44 ; ξ2M64 g are therefore the equivalent
of the monopole, quadrupole, and hexadecapole that are
measured in standard redshift surveys, when anisotropies
are assumed to be absent. As we will show below, these six
coefficients can be directly extracted from catalogs of

galaxies, by averaging over pairs of galaxies with an
appropriate weighting. A detection of a nonzero ξ2Mll0 would
represent a smoking gun for the presence of anisotropies in
the galaxies peculiar velocities. Note that the dependence of
the ξ2Mll0 on the model responsible for the anisotropies is
encoded in the CΩ

l ðz; xÞ and in the eigenvectors ω̂I and
eigenvalues λI . In the following, we construct estimators for
the six nonzero coefficients ξ, and we forecast the detect-
ability of these coefficients with future surveys.

IV. FORECAST FOR LSS SURVEYS

We now forecast the constraints on the anisotropy
parameters—which we define later—as expected from
future redshift surveys. In the next section, we define
our estimators for the BipoSH coefficients and compute
their covariance matrix. For simplicity, and since here we
are only interested in the anisotropic signal, we fix all
standard cosmological parameters to their Planck best fit
values in this analysis. We expect the degeneracies with
standard cosmological parameters to be very mild; never-
theless, marginalization over them would probably increase
the uncertainties somewhat.

A. Estimator and covariance

To estimate the expansion coefficients, the obvious
choice is to weight the correlation function by X2M

ll0, in
the same way that we weight the two-point function by the
Legendre polynomials Pl to estimate the multipoles. In a
binned survey, the estimator is

ξ̂2Mll0 ðxÞ ¼ aN
X
i;j

ΔiΔjX2M�
ll0 ðx̂ij; n̂ijÞδKðxij − xÞ; ð49Þ

where δK is theKronecker delta,Δi is the galaxy overdensity
in the bin labeled by the index i, and we have defined
xij ¼ xi − xj, nij ¼ 1=2ðxi þ xjÞ. The normalization fac-
tor aN is found by imposing that the estimator is unbiased,

hξ̂2Mll0 i ¼ ξ2Mll0 ; ð50Þ

in the continuous limit

X
i

→
1

L3
p

Z
d3xi; δKðxij − xÞ → LpδDðxij − xÞ; ð51Þ

where Lp denotes the pixel size and V is the total volume of
the survey. We obtain

aN ¼ 3L5
p

Vx2
: ð52Þ

We also have aN ¼ 1=NðxÞ, where NðxÞ is the number of
pixels which contribute to the estimator. The variance of the
estimator is defined as
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varðξ̂2Mll0 Þ≡ varMll0 ¼ hðξ̂2Mll0 Þ2i − hξ̂2Mll0 i2; ð53Þ

and we recall that hΔiΔji contains a Poisson noise con-
tribution and a cosmic variance (CV) contribution,

hΔiΔji ¼
1

dn̄
δij þ CΔ

ij; ð54Þ

where dn̄ is the mean number of galaxies per pixel. The
correlationCΔ

ij is due both to the scalar and vector parts ofΔ.
However, the scalar component strongly dominates over the
vector one, so that we can neglect the latter. Physically, this
reflects the fact that, even though the coefficients ξ2Mll0 are
constructed to remove the scalar isotropic signal and to
isolate the vector anisotropic signal, the covariance of these
coefficients is still affected (and dominated) by the scalar
contribution. We then obtain three different contributions to
the variance which are understood respectively as the
Poisson term (P), the mixed term (M), and the CV term
(C). Explicitly, we find

varPðx; x0Þ ¼
6V

x2N2
tot
δDðx − x0Þ; ð55Þ

varMðx; x0Þ ¼
24

πNtot

Z
dkk2Pðk; z̄ÞjlðkxÞjlðkx0Þ

×
X
w

cwβwll0 ; ð56Þ

varCðx; x0Þ ¼
12

πV

Z
dkk2P2ðk; z̄ÞjlðkxÞjlðkx0Þ

×
X
σ

c̃σβσll0 ; ð57Þ

where Ntot is the total number of tracers in the catalog and
the indicesw, σ take valuesw ¼ 0, 2, 4 and σ ¼ 0, 2, 4, 6, 8.
The explicit form of the coefficients βσll0 and details on the
derivation of the various contributions of the variance can be
found inAppendixA,wherewe also compute the covariance
matrix of the estimator, defined as

covðξ̂2M1

l1l1 0
; ξ̂2M2

l2l2 0
Þ≡ covM1M2

l1l1 0l2l2 0

¼ hξ̂2M1

l1l1
0 ξ̂
2M2

l2l2 0
i − hξ̂2M1

l1l1
0 ihξ̂2M2

l2l2
0 i: ð58Þ

B. Fisher forecasts

We now want to forecast the constraints on the aniso-
tropic parameters from a survey. Given a model for the
anisotropy power spectrum, i.e., a parametrization for PΩ,
we are left with the 5 d.o.f. of the symmetric traceless
tensor ωij and an overall amplitude AV for the vector power
spectrum, which can be reabsorbed in a redefinition of ωij.
Following our decomposition in Eq. (11), we identify the
d.o.f. as the eigenvalues and eigenvectors of ωij. On the one

hand, the eigenvalues are of zero sum so that we can pick
the first two λ1, λ2 as independent and the third one is fixed
to −ðλ1 þ λ2Þ. On the other hand, we find it convenient to
parametrize the three orthonormal eigenvectors ω̂I in terms
of the three angles of an Euler rotation which rotates the
canonical basis of R3 into the ω̂I,

ω̂I ≡ Rðα; β; γÞ · êI; ð59Þ
where êI are the three orthonormal vectors of R3 and
Rðα; β; γÞ is the rotation matrix with Euler angles α, β, γ.
Furthermore, we can absorb the amplitude AV in the
eigenvalues by defining λ̃I ¼ AVλI . In summary, the
5 d.o.f. of the tensor ω̄ij and the overall amplitude AV

are encoded in our parameter space

θ ¼ fλ̃1; λ̃2; α; β; γg: ð60Þ
The Fisher matrix is defined as

Fθθ0 ≡ 1

2

∂2χ2

∂θ∂θ0 ¼
X
A;A0

∂hξ̂Ai
∂θ

				
f
cov−1AA0

∂hξ̂�A0 i
∂θ0

				
f
; ð61Þ

where, schematically, A ¼ fl1;l1
0;M1; xi; z1g, A0 ¼

fl2;l2
0;M2; xj; z2g, and the derivatives are evaluated at

the fiducial model. The Fisher matrix contains therefore a
sum over the six nonzero coefficients which constitute our
data, over all pixels separations xi, xj and over all bins of
redshifts zi, zj. The covariance matrix properly accounts for
all correlations between these quantities, except for the
correlations between different redshift bins zi ≠ zj, which
we assume to be uncorrelated, since the bin size that we
consider is sufficiently large. We then have

covAA0 ¼ covl1l1 0l2l2 0 ðxi; xjÞδM1M2
δz1z2 : ð62Þ

We recall that, according to the Cramer-Rao inequality, the
Fisher matrix provides a lower bound on the marginal
parameter uncertainty σθ as

σθ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þθθ

q
: ð63Þ

We start by constraining the parameters λ1, λ2. The
submatrix is then written

Fλ̃Aλ̃B
¼

X
fzbing

X
i;j

X
l1l0

1
l2l02

X
M

∂ξMl1l01ðxi; zÞ
∂λ̃A cov−1l1l01l2l02

ðxi; xjÞ

×
∂ξM�

l2l02
ðxj; zÞ

∂λ̃B
¼

X
fzbing

X
i;j

X
l1l0

1
l2l02

5

4π
ð2þ P2ðδABÞÞξ̃l1l01ðxi; zÞ

× cov−1l1l01l2l02
ðxi; xjÞξ̃�l1l01ðxj; zÞ; ð64Þ
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where we have defined

ξ2Ml1l01
≡ AV

X
I

λIY�
2Mðω̂IÞξ̃l1l01

ð65Þ

by explicitly writing the amplitude AV of PΩ out of the CΩ
l .

We normalize this amplitude such that λmax ≡ 1. The
variables which determine the anisotropy are then the
amplitude AV , the ratio λ2=λ1 ¼ λ2, and the three angles
ðα; β; γÞ which determine the orientation. For the second
equal sign of Eq. (64), we have performed the sum over M
using that

∂ξ2Ml1l01
∂λ̃A ¼ Y�

2Mðω̂AÞξ̃l1l01 − Y�
2Mðω̂3Þξ̃l1l01

; ð66Þ

together with the orthogonality properties of products of
spherical harmonics. We observe that the final result does
not depend on the fiducial values of the parameters λ̃I since
they enter linearly in the estimator ξ̂2Ml1l2. We also note that
we did not need to fix any fiducial direction ω̂I since the
dependence on ω̂I cancels out in the final result.
In Appendix B, we show that the off-diagonal blocks of

the full Fisher matrix (61) are vanishing; hence, Fθθ0 has a
block-diagonal structure,

½Fθθ0 � ¼
�FλAλB 0

0 Fαβγ

�
: ð67Þ

As a consequence of the block structure of the Fisher
matrix, it follows that the constraints on the amplitudes λI
can be derived directly with Eq. (64). In particular, they do
not depend on the fiducial values of the eigenvectors ω̂I .
This reflects the fact that the precision with which we can
measure the eigenvalues does not depend on the direction
of the anisotropy. The constraints on directions, i.e.,
ðσα; σβ; σγÞ, can be obtained by inverting the lower block
of the Fisher matrix. It turns out that the constraints on each
of the directions depend on the fiducial values of both the
eigenvalues and the eigenvectors of ω̄ij. However, this
direction dependence is somewhat artificial, as we could
have chosen our basis directions differently. Instead of
considering each direction independently, it makes more
sense to compute the volume of the ellipsoid described by
the constraints on (α, β, γ), using the Haar measure
dμ ¼ sin βdαdβdγ. Note that with this non-normalized
Haar measure, the volume of the rotation group SOð3Þ
is 2ð2πÞ2 ≃ 79. We can think of this uncertainty volume as
the inverse of a “figure of merit” for the average accuracy
with which we can recover the directional information. This
combined direction constraint has the great advantage that
it does not depend on the fiducial model for the directions
but only on the choice of the eigenvalues’ ratio λA=λB and
the vector amplitude AV . This remaining dependence is

physical and simply reflects the fact that the precision with
which we can measure the direction of the anisotropy does
obviously depend on how large it is.

C. Model for vector perturbations

To illustrate how our general formalism can be used, we
consider an explicit model in which a nonisotropic vector
contribution to the galaxy peculiar velocities gives new
contributions to the correlation function. We derive con-
straints on the directions and amplitudes of anisotropies for
both a Euclid-like and a SKA2-like survey. The specifica-
tions for these surveys are taken from Refs. [54,55],
respectively; the two redshift ranges are z ∈ ½0.7; 2.0� for
Euclid and z ∈ ½0.1; 2.0� for SKA2, and we split them into
14 and 19 bins of thickness Δz ¼ 0.1 respectively, with
Lp ¼ 2 Mpc=h. This choice of Lp is motivated by the fact
that this pixel size gives the best constraints in Ref. [26].
Note that in the isotropic case exploiting separations as
small as 2 Mpc=h does require a good understanding
of the scalar nonlinear signal at those scales, which is
highly nontrivial. In the anisotropic case, however, since
the scalar part does not contribute to the estimators ξ̂2Mll0 , but
only to the covariance, we can exploit very small separa-
tions even without a very precise modeling of the scalar
behavior at those scales. For maximum separation, we
choose 40 Mpc=h.
Until this point, our formalism has been model inde-

pendent, but, clearly, to forecast the detectability of the
anisotropy parameters, we have to assume a shape for
PΩðkÞ. For an example, we choose the isotropic vorticity
power spectrum from N-body simulations, while we note
that, as we have stated before, the isotropic and anisotropic
PΩ can in principle be different.
According to the numerical simulations of Refs. [23,24],

the vorticity power spectrum appears to evolve as
HðzÞ2fðzÞ2D1ðzÞ7 at large scales. At small scales, the
evolution has an additional scale dependence, leading to a
suppression of power at small scales at late times; see Fig. 4
of Ref. [23]. In the following, we will ignore this small-
scale dependence and assume that the power spectrum at
redshift z is given by3

PΩðk; zÞ ¼ PΩðk; z ¼ 0Þ
�

HðzÞfðzÞ
H0fðz ¼ 0Þ

�
2
�

D1ðzÞ
D1ðz ¼ 0Þ

�
7

:

We use the vorticity power spectrum plotted in Fig. 4 of
Ref. [23] to construct the following fit for PΩ,

PΩðk; z ¼ 0Þ ¼ AV
ðk=k�Þnl

½1þ ðk=k�Þ�nlþns
ðMpc=hÞ3; ð68Þ

3Note that the constraints obtained in this way are
conservative, because we underestimate the vorticity power
spectrum at small scales for large redshift.
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where the power at large scales is given by nl ¼ 1.3, the
power at small scales is gienv by ns ¼ 4.3, and the
transition scale by k� ¼ 0.7 h=Mpc. From Fig. 4 of
Ref. [23], we find that the predicted amplitude for PΩ
is AV ¼ 10−5.
In Fig. 1, we use this spectrum to estimate the constraints

on the eigenvalues λ̃1;2. Note that there is no dependence on
the fiducial values of the parameters λ̃I since they enter
linearly in the estimator ξ̂2Ml1l2

. Furthermore, the constraints
do not depend on the orientation of the eigenvectors due to
the block-diagonal structure of the Fisher matrix. The 1σ-
constraints on the amplitude of the eigenvalues are
σλ ≃ 6 × 10−6 with Euclid and even σλ ≃ 1 × 10−7 with
SKA2. It is also interesting to note that the constraints are
better if both eigenvalues have the same sign. This is of
course owing to the fact that then the norm of the third
eigenvalue is larger. With the SKA and optimistic assump-
tions, we should therefore be able to constrain an aniso-
tropic vector signal with an amplitude of 1% of the
amplitude of the vorticity generated by shell crossing in
cold dark matter AV;isoV ∼ 10−5 [23].
In Fig. 2, we show the volume of the ellipsoid described

by the constraints on ðα; β; γÞ. As we discussed above, the
constraint does not depend on the fiducial directions, but it
depends on the fiducial values of λ̃1;2 or, equivalently, on
the choice of AV and the ratio λ1=λ2. In the plot, we fix the
biggest eigenvalue to λmax ¼ AV ¼ 10−5. The features in
the plot can be explained intuitively as follows. We first
note that the constraint asymptotes to a constant for
λ1=λ2 > 1; this is a result of two concurrent effects. On
one hand, as we keep the largest eigenvalue, λ1, fixed, the
other, λ2, becomes smaller, reducing the overall signature of
the anisotropy. On the other hand, as the ratio increases, the

departure from isotropy is more pronounced, yielding
better constraints. Note that we could have fixed the
smallest eigenvalue equal to AV ; in this case, as the ratio
becomes bigger, the overall signature of anisotropy
increases, and the two effects add up to give better
constraints. Second, the constraints are the worst for
λ1=λ2 ¼ 1 or −1=2. In both cases, this is because we
approach a degeneracy: λ1 ¼ λ2 or λ1 ¼ λ3, respectively.
Note that the constraints are slightly better in λ1 ¼ λ2 with
respect to the second case as the overall amplitude is bigger
in this case. The absolute values of the volume show that
Euclid constrains the direction of the anisotropy only
loosely, while the constraints from SKA2 are excellent,
for our choice of amplitude AV ¼ 10−5. Note that the
constraint on the volume scales as A3

V , so that decreasing

0.00003

FIG. 1. Constraints on amplitudes of anisotropies for the model (A). We have rescaled the parameters λI as λ̃I ≡ AVλI . Compare this
with the amplitude of the isotropic vorticity power spectrum generated by shell crossing in the standard cold dark matter scenario, where
AV;iso ∼ 10−5; see, e.g., Ref. [23].

FIG. 2. Volume of the 1σ (solid) and 3σ (dashed) ellipsoids in
the α − β − γ space as a function of the ratio between the λA and
λB. The anisotropic amplitude is set to AV ¼ 10−5. The constraint
should be compared to the cube root of the Haar volumeffiffiffiffiffi
793

p
∼ 4.
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AV by an order of magnitude would degrade the bounds in
Fig. 2 by a factor 10.
We note here that the galaxy correlation function is of

course subject to many systematic effects, arising not least
from imperfect modeling of nonlinearities and galaxy bias.
However, these sources of theoretical uncertainty would
only affect the isotropic part of the signal; it is, e.g.,
possible for nonlinearities in scalars to leak into vectors. On
the other hand, one cannot generate anisotropy from an
isotropic configuration. Nonetheless, anisotropy can be a
result of the survey geometry or from our Galaxy which
blocks a part of the sky and reduces the seeing of the
telescope in an anisotropic way. These effects induce an
incomplete sky map and may result in anisotropic noise
from, e.g., the presence of our Galaxy. Our estimators are
chosen to be optimal for a full sky survey and would need
to be adjusted appropriately for any other geometry and
selection in the standard manner, of course resulting in a
reduction of their power. On the other hand, not much
credence would be given to the signal if it were found that
the anisotropy is closely related to the Galactic plane.

V. CONCLUSIONS

In this paper, we have discussed the effects of an
anisotropic vector component in the peculiar velocity field,
focusing on the redshift-space distortions induced in the
galaxy correlation function. We have presented a general
method to isolate the anisotropic signal through a decom-
position in bipolar spherical harmonics. We provide an
analytical expression for the coefficients of this expansion
which does not require the adoption of a specific model. We
then show how one can practically use this approach to
forecast constraints on the anisotropic sector for two
upcoming redshift surveys.
We derive two types of constraints, both on the total

amplitude of the anisotropy and on the preferred direction
[in terms of the SOð3Þ volume of its Euler angles]. We can
compare our results with the constraints found in Ref. [26]
for the isotropic case, which of course has no preferred
direction. Given the block-diagonal form of the Fisher
matrix, we find that we are able to achieve similar
constraints on the amplitude of the vector modes (since
we also assume the same shape for the spectrum). Let us,
however, note that, even though the constraints are similar,
the interpretation of the result in the anisotropic case is
cleaner, since in this case the scalar d.o.f. do not contribute
to the estimators and therefore they do not need to be
accurately modeled.
This work is meant as a study of the feasibility of

detecting an anisotropic vector signal in the galaxy two-
point function, and together with the analysis carried out in
Ref. [26], it represents a comprehensive study of the
detectability of vector modes in the correlation function.
An interesting future project could be a realistic test of both
methods with the help of an artificial survey from N-body

simulations. Although measuring the velocity field in N-
body simulations is normally challenging [25], this prob-
lem is alleviated here as we only need the field at the
position of the (observed) galaxies, where it can be directly
obtained from the particle velocities. A realistic test would,
however, need ray-tracing in the N-body simulation; see,
e.g., Refs. [56,57]. To simulate an intrinsic anisotropy,
violation of statistical isotropy could be included for
example as part of the initial conditions, see, e.g.,
Ref. [58], or as an external modification of the expansion
rate similar in spirit to Ref. [59] (although the authors’
concrete example of a Bianchi I model does not contain a
vector-type anisotropy) or as an additional vector field, e.g.,
as in Ref. [60] (where the additional vector d.o.f. would not
need to be connected to dark energy; instead we would
need a model with non-negligible spatial contributions).
Given a model for the anisotropy, one needs to determine

not only the eigenvalues and the directions of its eigen-
vectors but also the corresponding vector power spectrum.
Here, we just assumed this to be given by the vorticity
spectrum generated by nonlinear structure formation. This
corresponds to a model where an anisotropy only affects
the direction but not the strength of the generated vorticity,
which is of course not true in general. In full generality, the
power spectrum could be reconstructed from the data as a
function of multipole and redshift, at the price of much
larger error bars.
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APPENDIX A: COVARIANCE MATRIX

The variance of the estimator ξ2Mll0 is given by

varðξ̂2Mll0 Þ ¼ a2N
X
ij

X
km

hΔiΔjΔkΔmiX2M
ll0 ðx̂ij; n̂ijÞ

× X2M�
ll0 ðx̂km; n̂kmÞδKðxij − xÞδKðxkm − x0Þ

¼ varP þ varM þ varC: ðA1Þ

Since hΔiΔji contains a Poisson noise contributions and a
CV contribution,

hΔiΔji ¼
1

dn̄
δij þ CΔ

ij; ðA2Þ

where dn̄ is the mean number of galaxies per pixel and the
three different contributions to the variance are understood,
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respectively, as the Poisson term, the mixed term, and the
CV term. The first terms is easily found,

varPðx; x0Þ ¼
18L10

p

V2ðxx0Þ2
1

dn̄2
X
ij

X
km

δikδjmX2M
ll0 ðx̂ij; n̂ijÞ

× X2M�
ll0 ðx̂km; n̂kmÞδKðxij − xÞδKðxkm − x0Þ

¼ 6V
x2N2

tot
δDðx − x0Þ; ðA3Þ

where we have set the factor ð1þ ð−1ÞlÞ ¼ 2 as only even
l appear in the expansion. The mixed term is

varMðx; x0Þ ¼
18L10

p

V2ðxx0Þ2
1

dn̄

X
ij

X
km

ðδikCΔ
jm þ δjmCΔ

ikÞ

× X2M
ll0 ðx̂ij; n̂ijÞX2M�

ll0 ðx̂km; n̂kmÞ
× δKðxij − xÞδKðxkm − x0Þ

¼ 18L10
p

V2ðxx0Þ2
2

dn̄

X
ij

X
m

CΔ
jmX

2M
ll0 ðx̂ij; n̂ijÞ

× X2M�
ll0 ðx̂im; n̂imÞδKðxij − xÞδKðxim − x0Þ:

We use the flat-sky expression for CΔ
ij,

CΔ
ijðz̄Þ ¼

1

ð2πÞ3
Z

d3keik·ðxj−xiÞPðk; z̄Þðc0P0ðn̂ · k̂Þ

þ c2P2ðn̂ · k̂Þ þ c4P4ðn̂ · k̂ÞÞ; ðA4Þ

and we perform (in the continuous limit) the following
change of variables yj ¼ xj − xi, ym ¼ xm − xi together
with xi ¼ n. We obtain

varMðx; x0Þ ¼
24

πNtot

Z
dkk2Pðk; z̄ÞjlðkxÞ

× jlðkx0Þðc0β0ll0 þ c2β2ll0 þ c4β4ll0 Þ; ðA5Þ

where we have defined the coefficients

βσll0 ¼ ð2lþ 1Þð2l0 þ 1Þ
�
σ l l

0 0 0

��
σ l0 l0

0 0 0

�

×

�
l0 l 2

l l0 σ

�
: ðA6Þ

Finally, the CV term is given by

varCðx; x0Þ ¼
18L10

p

V2ðxx0Þ2
X
ij

X
km

CΔ
jmC

Δ
ikX

2M
ll0 ðx̂ij; n̂ijÞ

× X2M�
ll0 ðx̂km; n̂kmÞδKðxij − xÞδKðxkm − x0Þ;

ðA7Þ

and we can perform a similar change of variable as above
yj ¼ xj − xi, ym ¼ xm − xk so that, after substituting
Eq. (A4) twice, the two exponentials are written as

eik·ðxm−xjÞeik0·ðxk−xiÞ → eik·ðym−yjÞeiðkþk0Þ·ðxk−xiÞ; ðA8Þ

and the integral over xk enforces k ¼ −k0. The angular
integrals are performed with the properties of BiPoSH as
before, and we obtain

varCðx; x0Þ ¼
12

πV

Z
dkk2P2ðk; z̄ÞjlðkxÞjlðkx0Þ

X
σ

c̃σβσll0 ;

ðA9Þ

where

c̃0 ¼ c20 þ
c22
5
þ c24

9
; ðA10Þ

c̃2 ¼
2

7
c2ð7c0 þ c2Þ þ

4

7
c2c4 þ

100

693
c24; ðA11Þ

c̃4 ¼
18

35
c22 þ 2c0c4 þ

40

77
c2c4 þ

162

1001
c24; ðA12Þ

c̃6 ¼
10

99
c4ð9c2 þ 2c4Þ; ðA13Þ

c̃8 ¼
490

1287
c24: ðA14Þ

The computation for the off-diagonal covariance matrix,
defined in Eq. (58), follows the same stepswith the exception
that Poisson noise does not contribute for off-diagonal
components as it is proportional to δl1l2

δl0
1
l0
2
δM1M2

.
Furthermore, themixed and cosmic contributions are propor-
tional to δM1M2

, and the general case is obtained from
Eqs. (A5) and (A9) by substituting the product of spherical
Bessel functions inside the integral with jl1ðxÞjl2ðx0Þ and
redefining the β coefficients as

βσl1l01l2l02
¼ il2−l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l0

1 þ 1Þð2l2 þ 1Þð2l0
2 þ 1Þ

q

×

�
σ l1 l2

0 0 0

��
σ l0

1 l0
2

0 0 0

��
l0
1 l1 2

l2 l0
2 σ

�
:

ðA15Þ

APPENDIX B: FISHER MATRIX

In this Appendix, we sketch a proof of why the off-
diagonal blocks of the Fisher matrix (67) vanish, i.e.,
FλA;αi ¼ 0. We have
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FλA;αi ¼
X
fzbing

X
i;j

X
l1l01l2l

0
2

X
M

∂ξMl1l01ðxi; zÞ
∂λA

× cov−1l1l01l2l0
2
ðxi; xjÞ

∂ξM�
l2l0

2
ðxj; zÞ

∂αi
¼

X
M

ðY�
2Mðω̂AÞ − Y�

2Mðω̂3ÞÞ
∂
∂αi

�X
I

λIY2Mðω̂IÞ
�

×
X
fzbing

X
i;j

X
l1l01l2l

0
2

ξ̃Ml1l01
ðxi; zÞcov−1l1l01l2l02ðxi; xjÞ

× ξ̃M�
l1l01

ðxj; zÞ; ðB1Þ

with

∂
∂αi

�X
I

λIY2Mðω̂IÞ
�

¼
X
I

λI

�∂θI
∂αi

∂
∂θI þ

∂ϕI

∂αi
∂
∂ϕI

�

× Y2MðθI;ϕIÞ; ðB2Þ

and ðθI;ϕIÞ are the polar angles defining the directions of
ω̂I . We recall that

∂θY2Mðθ;ϕÞ¼−
ðþð�Þ

2
Y2Mðθ;ϕÞ

¼−
ffiffiffi
6

p

2
ð1Y2Mðθ;ϕÞ−−1Y2Mðθ;ϕÞÞ;

∂ϕY2Mðθ;ϕÞ¼ isinθ
ðð−ð�Þ

2
Y2Mðθ;ϕÞ

¼ isinθ

ffiffiffi
6

p

2
ð1Y2Mðθ;ϕÞþ−1Y2Mðθ;ϕÞÞ: ðB3Þ

For definiteness, let us consider the case λA ¼ λ1 and αi ¼ α
in Eq. (B1). One has

Fλ1;α ¼ i

ffiffiffi
6

p

2

X
M

ðY�
2Mðω̂1Þ− Y�

2Mðω̂3ÞÞ

×
X
I

λI sinθIð1Y2Mðω̂IÞ þ −1Y2Mðω̂IÞÞ½…�; ðB4Þ

where the ½…� represents the part of the Fisher matrix (B1)
which does not depend on ω̂I . We recall

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ1

r X
m0

mYlm0 ðθ1;ϕ1ÞsY�
lm0 ðθ2;ϕ2Þ¼ sY�

l−mðβ;αÞeisγ;

ðB5Þ

where here ðα; β; γÞ are the Euler angles of the rotation
rotating the direction ðθ2;ϕ2Þ in ðθ1;ϕ1Þ and not the angles
defined in Eq. (59). In Eq. (B4), the products are between two
harmonics evaluated either at the same directions or at
orthogonal directions. In our case, we have l ¼ 2, s ¼ 0
andm ¼ 1. Furthermore, ðβ; α; γÞ denotes a rotation by either
0 or π=2 since either ω̂1 ¼ ω̂2 or these two vectors enclose an
angle of π=2. In other words, Rðβ;α; γÞe3 ¼ �eI where
I ∈ f1; 2; 3g and Ylmðβ; αÞ ¼ YlmðR−1ðβ; α; γÞe3Þ ¼
Ylmð�eIÞ; see Ref. [61]. The Euler angle γ is irrelevant here
since a rotation around ez leaves ez invariant. But for the
Cartesian axes eI , ϑ is either 0 or π=2, and Y21ðϑ;φÞ ∝
sin ϑ cos ϑ vanishes. This completes the proof that the off-
diagonal boxes in the Fisher matrix vanish.

APPENDIX C: ξ2Mll0

The explicit expressions for the real-space version of
Eqs. (43)–(45) are given by

ξ2MðaÞ
ll0 ¼ −

16π3=2

45
CΩ
l ðz; xÞ

X
I

λIY�
2Mðω̂IÞ

×

�
δl;0δl0;2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0 þ 1

5

r �
2 2 l0

0 0 0

�
δl;2

�
;

ðC1Þ

ξ2MðbÞ
ll0 ¼−

16π3=2

5
CΩ
l ðz;xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þ

p

×

ffiffiffiffiffi
2

15

r X
I

λIY�
2Mðω̂IÞ

×

�
2

�
3 1 l

0 0 0

��
3 1 l0

0 0 0

��
1 2 1

l 0 l0

�

þ 3

�
1 1 l

0 0 0

��
1 1 l0

0 0 0

��
1 2 1

l 1 l0

��
; ðC2Þ

ξ2MðcÞ
ll0 ¼ −

16π3=2

15
CΩ
l ðz; xÞ

X
I

λIY�
2Mðω̂IÞ

×

�
1

5
δl;2δl0;0 þ

8

105

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p �
4 2 l

0 0 0

�
δl0;4

þ 4

7
ffiffiffi
5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p �
2 2 l

0 0 0

�
δl0;2

�
: ðC3Þ
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