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In this paper I will first outline an effective field theory for cosmology (EFTC) that is based on the
standard model coupled to general relativity and improved with Weyl symmetry. There are no new physical
degrees of freedom in this theory, but what is new is an enlargement of the domain of the existing physical
fields and of spacetime via the larger symmetry, thus curing the geodesic incompleteness of the traditional
theory. Invoking the softer behavior of an underlying theory of quantum gravity, I further argue that it is
reasonable to ban higher curvature terms in the effective action, thus making this EFTC mathematically
well behaved at gravitational singularities, as well as geodesically complete, thus able to make new physics
predictions. Using this EFTC, I show some predictions of surprising behavior of the universe at
singularities including a unique set of big-bang initial conditions that emerge from a dynamical attractor
mechanism. I will illustrate this behavior with detailed formulas and plots of the classical solutions and the
quantum wavefunction that are continuous across singularities for a cosmology that includes the past and
future of the big bang. The solutions are given in the geodesically complete global minisuperspace that is
similar to the extended spacetime of a black hole or extended Rindler spacetime. The analytic continuation
of the quantum wavefunction across the horizons describes the passage through the singularities. This
analytic continuation solves a long-standing problem of the singular ð−1=r2Þ potential in quantum
mechanics that dates back to Von Neumann. The analytic properties of the wavefunction also reveal an
infinite stack of universes sewn together at the horizons of the geodesically complete space. Finally a
comparison with recent papers using the path integral approach in cosmology is given.
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I. INTRODUCTION

This paper presents an extension of work I started ten
years ago in the context of 2T-Physics [1,2], and pursued
in a series of papers on cosmology and black holes in
collaboration with Chen, Steinhardt, Turok, Araya, and
James, where the role of Weyl symmetry, in the geodesi-
cally complete form that emerges from 2T-physics, was
emphasized [2–15]. By now, foundational ideas are better
understood and in this paper applied to the quantum
wavefunction for the universe. The current paper highlights
the main concepts and new results on classical cosmologi-
cal solutions, the quantum wavefunction, and associated
propagator.
The paper is organized as follows. Section II introduces

the geodesically complete fundamental theory and its
attractive features, while Sec. III discusses its minisuper-
space, its geometrical structure and the transformation
between systems of minisuperspace coordinates that high-
lights a global system analogous to the Kruskal-Szekeres
global coordinates for a black hole. In Sec. V explicit
analytic classical solutions of the minisuperspace are
given; these display an attractor mechanism leading to

unique dynamically determined initial conditions at the big
bang, and help establish a theorem on the behavior of all
the degrees of freedom (d.o.f.) at cosmological singular-
ities. TheWheeler deWitt equation (WdWe) that also leads
to the same attractor mechanism is solved analytically in
three stages. First, in Sec. IV the WdWe is setup using
geodesically complete global coordinates, quantum order-
ing is settled globally, a 2-step approximation scheme is
devised, and the general physical behavior of the wave-
function is qualitatively determined through an effective
potential in a Schrödinger-like equation. Second, in
Sec. VI the continuity of the wavefunction is determined
across the horizons in the global minisuperspace. Third, in
Sec. VII the full solution for the wavefunction containing
no unknown parameters is explicitly given, and its pre-
dicted form at the big bang is displayed. Finally an overall
discussion is given in Sec. VIII; this highlights the
results of this paper, outlines areas for future progress,
and contrasts this work to other recent papers that
discuss the quantization of minisuperspace in the path
integral approach, including the quantum wavefunction
and propagators.
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II. THE FUNDAMENTAL THEORY

The Lagrangian for the standard model coupled to general relativity and improved with Weyl symmetry to obtain the
geodesically complete version of this theory, without adding new physical degrees of freedom, is [8]

LðxÞ ¼ ffiffiffiffiffiffi
−g

p �
LSMðAγ;W;Z;g

μ ;ψq;l; νR; χÞ þ gμνð1
2
∂μϕ∂νϕ −DμH†DνHÞ

−ðλ
4
ðH†H − w2ϕ2Þ2 þ λ0

4
ϕ4Þ þ 1

12
ðϕ2 − 2H†HÞRðgÞ

�
: ð1Þ

In the first line, LSM contains the usual d.o.f. of the
extended standard model minimally coupled to gravity,
namely, gauge bosons Aγ;W;Z;g

μ , quarks and leptons ψq;l,
right handed neutrinos νR, some candidate(s) for dark
matter χ, and their SUð3Þ × SUð2Þ × Uð1Þ invariant inter-
actions with the Higgs doublet H, as well as the additional
singlet boson ϕ that can couple only to νR, χ because of the
electroweak gauge symmetry. The remaining terms in (1)
give the kinetic terms for the conformally coupled
scalars ðϕ; HÞ, their renormalizable and scale invariant
potential energy capable of dynamically generating the
Higgs mass [16], and their locally scale invariant unique
nonminimal couplings to curvature RðgÞ. Under the local
λðxÞ scale transformations, gμν→λ−2gμν ϕ→λϕ, H→λH,

ψq;l→λ3=2ψq;l, A
γ;W;Z;g
μ → unchanged, the Lagrangian (1)

transforms to a total derivative and therefore the action is
invariant. Because the Weyl symmetry can remove one
gauge d.o.f. This version of the standard model coupled to
gravity has no new physical degrees of freedom although
there is new physics because the domain of the physical
fields are considerably enlarged. This action cannot
contain any dimensionful constants. Weyl invariant
renormalization1 of the nongravitational part of this action
maintains the local Weyl symmetry by taking the renorm-
alization scale to be the field ϕ, thus allowing only those
counterterms that run as a function of Weyl invariant
logarithms such as ln ðH†H=ϕ2Þ [8,9].
Although there exist in the literature other forms of Weyl

invariant field couplings to gravity (in particular using the
“Stuckelberg trick”), usually those are geodesically incom-
plete. Incompleteness is a sign of unwittingly suppressing
physical effects and should be considered to be a serious
problem looking for a cure. As discussed in [2–15], in the
case of only two scalar fields, the form in (1) is unique
and geodesically complete, furthermore all other incom-
plete forms can be obtained from this one by field
redefinitions [8] and artificially deleting patches of field
space. In ([8]) it is shown how more scalar fields can be
included in the geodesically complete theory. In the current

paper, I continue to explore the possibility that the minimal
case (1) may be sufficient.
One of the virtues of this formalism is that it explains

how the dimensionful constants that fill the universe
emerge from the same source. This is seen by choosing
a Weyl gauge, dubbed “c-gauge” [1,8] that fixes ϕðxÞ ¼ ϕ0

(a constant) for all xμ. Although several other gauge
choices [11] are convenient for various computations of
gauge invariants, the c-gauge is most convenient to
recognize the low energy physics. In the c-gauge, the usual
standard model with no additional degrees of freedom,
containing all low energy dimensionful parameters, is seen
to arise from interactions with the scalars ðϕ; HÞ. In
particular, the gravitational constant G, the Higgs vacuum
value, and cosmological constant Λ, are

ð16πGÞ−1 ¼ ϕ2
0=12; hH†Hi ¼ w2ϕ2

0;

ð16πGÞ−12Λ ¼ λ0

4
ϕ4
0: ð2Þ

Universe-filling constants such as these raise the question
whether these are independent or related to each other.
There is no literature that analyzes this question of
cosmological significance. It is hard to imagine three
different mechanisms that would generate such an out-
come. In the current formalism, although the hierarchy of
scales (which is achieved through dimensionless parame-
ters) is not explained, a unique source for all universe-
filling dimensionful parameters is identified. That such
universal parameters are not independent but are actually
related to the same source, resolves a long-standing puzzle
for this author, thus providing more credence to the current
approach with Weyl symmetry.
Another significant feature introduced by the Weyl sym-

metry is the coefficient of curvature, 1
12
ðϕ2 − 2H†HÞRðgÞ,

or a gauge fixed version such as the c-gauge,
ðð16πGÞ−1 − 2

12
H†ðxÞHðxÞÞRðgðxÞÞ. This relative sign is

obligatory and cannot be altered (otherwise a positive
gravitational constant is not possible) [8]. The question
arises whether the dynamics of the theory forces the sign
to flip in some regions of spacetime xμ. It was found through
analytic solutions of the equations of motion that in fact
such a sign flip is the generic behavior [2–15]. In patches of
spacetime where the sign is negative, gravity is repulsive,
hence antigravity rules in those regions of spacetime.

1In this Weyl invariant renormalization scheme, the usual trace
anomaly, of the energy momentum tensor of all matter except ϕ,
is still present, but it is cancelled by an equal anomaly due to the
additional term in the full energy momentum tensor containing
the extra field ϕ [17]. Thus, the local Weyl symmetry survives in
the quantized theory.
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The sign flip from positive to negative can occur only at
gravitational singularities [see explanation in Eq. (7)],
therefore from the perspective of observers like us in the
gravity sector(s), antigravity occurs only on the other side of
cosmological or black hole type singularities. For geodesic
completeness, all gravity and antigravity patches must be
included.
This is the structure predicted by the symmetries of

2T-physics for relativistic 1T-physics [1] and it was one of
the main reasons to start an investigation of this topic in
2008. It turns out that in addition to 2T-physics there are
other cherished symmetries in 1T field theory that require
the same structure, so this is not just an isolated weird field
theory. It was later noted that Weyl-symmetric supergravity
[8,18,19], as well as usual supergravity [20], also predict a
similar sign-changing structure due to the Kaehler poten-
tial, but this was swept under the rug in investigations of
supergravity [20]. Thus, the possibility of a sign flip from
gravity to antigravity, that geodesically completes the
spacetime, remained unknown until the work in [2–15].
The sign-changing feature of the curvature term is an
essential part of geodesic completeness in both spacetime
as well as in field space [2–15]. For answers to questions
raised about unitarity or instability due to this sign flip see
[13]. In short, by now there remains no concerns about
unitarity, instability, or the physical meaning of this setup,
although more work is welcome to better understand the
interesting physics as indicated in [13].
A new feature introduced formally in the current paper

(carried out casually in [2–15]) is how to take into account
the smoothing effects of a quantum theory of gravity as part
of an effective field theory for cosmology (EFTC). The
EFTCwould also be applicable to black holes, black strings
etc. [12]. Although currently there is no universally
accepted theory of quantum gravity (QG), one of its
universally expected features is that gravitational singular-
ities are softer or even possibly nonexistent in a successful
QG. Assuming that this softer behavior is true in principle,
in attempts to capture general effects of QG in the form of
an EFTC, the effective theory would be physically wrong if
the EFTC is too singular. In an EFTC that is compatible
with the smoother behavior of QG there should be some
restriction on which singular curvatures (or their powers)
may appear in the equations of motion when it is being
applied close to singularities.2 One reasonable way to
insure this, is the following proposal which is based on
some past success: namely, define the EFTC to be given by
Eq. (1) that includes the RðgÞ term, with the additional
condition of not admitting any other higher curvature terms

in the effective action when it is being applied near
singularities. This restriction may seem ad-hoc, but the
fact that, in practice, it produces just the desired smoother
mathematical properties of a workable model including
singularities may be taken as its temporary justification.
Namely, this EFTC turns out to be sufficiently well-
behaved mathematically, as well as being geodesically
complete, despite the presence of curvature singularities
in the form of RðgÞ and RμνðgÞ that do appear in its
equations of motion. Higher nontrivial curvatures and/or
their powers exists in the relevant manifolds but these terms
do not appear in the action or equations of motion derived
from the proposed EFTC. Thanks to the underlying Weyl
symmetry that is still present, and that can transform
curvatures to less singular expressions in various gauges,
the singular terms turn out to be mathematically manage-
able in solving equations, computing gauge invariant
physical quantities, and establishing geodesic complete-
ness, as already demonstrated amply in [2–15]. More along
these lines will become apparent in the remainder of
this paper.

III. GEODESICALLY COMPLETE
MINISUPERSPACE

The Friedmann equation, as parametrized in the context
of the ΛCDM model [21–24] provides an approximate
phenomenological parametrization of the evolution of the
universe in terms of some constant dimensionlessmeasured
parameters Ωi

H2ðx0Þ
H2

0

¼ΩΛþ
ΩK

a2Eðx0Þ
þ Ωm

a3Eðx0Þ
þ Ωr

a4Eðx0Þ
þΩσ þΩα

a6Eðx0Þ
þ �� � ;

ð3Þ

where aEðx0Þ is the scale factor in the Einstein frame,Hðx0Þ
is the Hubble parameter, H0 is the Hubble constant, the
½ΩΛ;ΩK;Ωm;Ωr;Ωσ;Ωα� are associated to the energy den-
sities per unit volume respectively for [dark energy, curva-
ture, massive matter (dark and baryonic), radiation (massless
relativistic matter), scalar field, anisotropy]. According to
data, ΩΛ ¼ 0.692� 0.012, Ωm ¼ 0.308� 0.012 show that
dark energy and dark matter dominate the energy balance
today (i.e.,whenaEðx0todayÞ ¼ 1).Radiation is small such that
Ωm þ Ωr ≃ 0.31, ΩK ¼ ð1 −P

i≠KΩiÞ ¼ 0.0002� 0.0026
is computed from all the other Ωi, finally (Ωσ , Ωα) are no
greater than the error bars set on the other parameters.
As the universe expands aEðx0Þ → ∞, ΩΛ will dominate

the future accelerated expansion of the universe. On the
other hand, in the early universe, as aEðx0Þ → 0, no matter
how small the parameters (Ωσ, Ωα) may be, the dominant
term is ðΩσ þ ΩαÞa−6E ðx0Þ, and next are the terms in (3) in
reverse order, with ΩΛ the least influential. Hence a scalar
field and anisotropy combined denominate the d.o.f. that
govern the evolution of the universe close to cosmological

2For example, string theory makes definite predictions of
higher curvature terms. Those are applicable only at low energies,
and not at all close to the singularities. At the Planck scale string
theory provides a totally different and nonsingular description of
the physics, but this is not yet well understood. In any case, the
high curvature terms are absent near gravitational singularities.
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singularities (big bang, big crunch), and these cannot be
neglected in any approach that attempts to understand the
very beginning. The typical cosmologist gives up at that
point, however in this paper I will show that persisting in
this study leads to unique initial conditions.
I emphasize that Eq. (3) for aE is in the Einstein frame.

The spacetime in this frame is geodesically incomplete but,
via local scale (Weyl) invariance, it can be extended to the
complete spacetime shown in Fig. 1, where the era after the
big bang described by Eq. (3), occupies only the patch
labeled as the future quadrant II, as explained below.
The EFTC model in (1) describes the evolution of the

universe consistently with (3), but in more detail, in terms
of the so-called “minisuperspace” d.o.f. These consist of
the scale factor aðτÞ, anisotropy d.o.f. α1;2ðτÞ in the metric
below (Bianchi I or VIII or IX), and the Higgs field hðτÞ in
the unitary gauge H ¼ ð0; h= ffiffiffi

2
p Þ,

ds2 ¼ a2ðτÞð−ðdτÞ2e2ðτÞ þ ds23Þ
ds23 ¼ e2α1ðτÞðe2

ffiffi
3

p
α2ðτÞdσ2x þ e−2

ffiffi
3

p
α2ðτÞdσ2yÞ þ e−4α1ðτÞdσ2z :

ð4Þ

Then the minisuperspace action, Smini ¼
R
dτLmini, follows

directly [3] from the EFTC in (1) by dimensional reduction,
keeping only the τ-dependence of fields

Lmini ¼
1

2e
½−ð∂τðϕaÞÞ2þð∂τðhaÞÞ2

þa2ðϕ2−h2Þðð∂τα1Þ2þð∂τα2Þ2Þ�−
e
2
V

V ¼ a4ðϕ2−h2Þ2f
�
h
ϕ

�
þa2ðϕ2−h2ÞVKðα1;α2ÞþΩc

ð5Þ

The different parts of the potential energy, Ωc; fðh=ϕÞ,
VKðα1; α2Þ come from the following sources. The para-
meter Ωc is related to the energy density of all the

conformally invariant matter described by the standard
model term LSM in (1), when this matter is approximated
by a “conformal dust” energy momentum tensor. The T00

component for LSM then has the form Ωc=a4, just like
conformally invariant radiation appears in the Freedman
equation (3). So, the coefficient Ωc ¼ Ωm þ Ωr ≃ 0.31,
includes dark matter, baryonic matter, as well as radiation.
The Higgs potential that appears in (1) is written as,
Vðϕ; hÞ ¼ ðϕ2 − h2Þ2fðhϕÞ, and the anisotropy potential that
arises from the metric (4) is written as ðϕ2 − h2ÞVKðα1; α2Þ,
where VKðα1; α2Þ was computed by Misner [25]. These
are given by3

fðh=ϕÞ≡ 2
Ωλððh=ϕÞ2 − w2Þ2 þ ΩΛ

ð1 − ðh=ϕÞ2Þ2 ;

(ΩΛ ¼ λ0
4

3
4π

�
mPtP
H0tP

�
2
≃ 0.692

Ωλ ¼ λ
4

3
4π

�
mPtP
H0tP

�
2
≃ 10120

;

VKðα1; α2Þ≡ kjΩKj
4k − 1

�
e−8α1 þ 4e4α1sinh2ð2 ffiffiffi

3
p

α2Þ
−4ke−2α1 coshð2 ffiffiffi

3
p

α2Þ

�
;

jΩKj ≃ 0.0002; ð6Þ

where mP, tP are the Planck mass and time. In VKðα1;α2Þ
the parameter k ¼ ð0;−1;þ1Þ is used to distinguish the
3-dimensional anisotropic (flat, open, closed)-metrics,
Bianchi I,VIII, IX respectively. Note that, in the chosen
units explained in footnote (3),Ωλ ∼ 10120 is huge. However,
this term in the Higgs potential is suppressed because, just
after the electroweak phase transition (EW), the Higgs sits at
the minimum of its potential, jhðτÞ=ϕðτÞj → jh0=ϕ0j ¼
w ∼ 10−17, during most of the cosmological evolution of
the universe.

A. Mini Weyl symmetry, gauges and
transformations among them

Smini is invariant under local rescaling (Weyl) transforma-
tions using the arbitrary time dependent gauge parameter
λðτÞ, namelya → λ−1a,ϕ → λϕ,h → λh,α1;2 → α1;2. There
are three gauge dependent minisuperspace d.o.f. ða;ϕ; hÞ

FIG. 1. Minkowski ðϕγ; hγÞ versus Rindler ðz; σÞ coordinates. In
region II, the parabolas are at fixed values of z, 0 < z1 < z2 < ∞,
and the rays are at fixed values of σ, −∞ < σ1 < σ2 < ∞.
Similarly in regions I–IV.

3In (5) I choose units such that, the time parameter τ is the
conformal time x0 in (3) rescaled by the Hubble time, τ≡H0x0;
the dimensionful scalar d.o.f. ϕ, h in (1) are rescaled by a factor of
ϕ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12=16πG

p
defined in (2), ðϕ; hÞ ¼ ϕ0ðϕ̄; h̄Þ, so that the

corresponding symbols appearing in the cosmological analysis
below are the dimensionless ðϕ̄; h̄Þ. However, to avoid a pro-
liferation of symbols, instead of ðϕ̄; h̄Þ the same symbols ðϕ; hÞ
will be understood to mean ðϕ̄; h̄Þ when there is no confusion.
Similarly, the dimensionless anisotropy d.o.f. α1;2 in (4) are
rescaled by ϕ0 as compared to previous publications [2–15]. With
this choice of units the minisuperspace action below contains the
same dimensionless parameters Ωi that appear in the pheno-
menological parametrization (3) of the Friedmann equation.
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while α1;2 are scale invariant. Other scale invariants include
ðaϕ; ah; h=ϕÞ. Onemay choose aWeyl gauge inwhich some
combination of ða;ϕ; hÞ is gauge fixed for all τ.
The “γ-gauge” is defined by setting the scale factor to 1

for all τ, aγðτÞ ¼ 1, while ϕγðτÞ, hγðτÞ along with α1;2ðτÞ
are the remaining dynamical d.o.f. The label γ emphasizes
that the d.o.f. are defined in this gauge, however ðϕγ; hγÞ
are actually gauge invariants since ðaϕ; ahÞ ¼ ð1ϕγ; 1hγÞ.4
As will be clarified below, ðϕγ; hγÞ turn out to be global
d.o.f. that cover all the patches of the geodesically complete
mini-superspace partly shown in Fig. 1. It is useful to
define zðτÞ≡ ðϕ2

γ − h2γÞ and the signðzðτÞÞ≡ εzðτÞ. The
sign of ðϕ2 − h2Þ cannot be changed under local Weyl
rescalings, therefore εz ¼ signðϕ2

γ − h2γÞ ¼ signðϕ2 − h2Þ
is gauge invariant, and εzðτÞ ¼ �1 distinguishes between
gravity/antigravity sectors at any given τ as seen from
Eq. (1).
By contrast, the Einstein frame with its own aEðτÞ that

appears in phenomenological equations such as (3),
emerges in the “E-gauge” which is defined by,
ðϕ2

E − h2EÞ ¼ ðϕE − hEÞðϕE þ hEÞ ¼ εzðτÞ, for all τ, and
parametrized by ðϕE þ hEÞ ¼ �0eσðτÞ, and ðϕE − hEÞ ¼
�0εze−σðτÞ, where �0 is an additional set of signs that
distinguish various regions in Fig. 1. The traditional
Einstein-Hilbert theory corresponds to taking only the
patch ðϕE þ hEÞ > 0 and ðϕE − hEÞ > 0, which corre-
sponds to �0 → þ and also εzðτÞ → þ1, so that the
conventional theory is defined in the geodesically incom-
plete future quadrant shown in Fig. 1.
By comparing gauge invariants in these two gauges, such

as a2ðϕ2 − h2Þ ¼ a2Eεz ¼ 1ðϕ2
γ − h2γÞ ¼ z, one learns

a2E ¼ jzj ¼ jϕ2
γ − h2γ j: ð7Þ

So the aE in the Friedmann equation is aEðτÞ ¼
þjzðτÞj1=2 ¼ þjϕ2

γ − h2γ j1=2, noting that z can be positive
(gravity sectors II ad IV in Fig. 1) or negative (antigravity
sectors I&III in Fig. 1). From (7) it is clear that the
singularity in the Einstein frame, a2E ¼ 0, occurs only
when ðϕ2

γ − h2γÞ vanishes, but when this vanishes in the
γ-gauge, ðϕ2 − h2Þ in any gauge must also vanish since the
sign of this quantity is Weyl gauge invariant. The same
argument holds for all gravitational singularities (including
black holes) in the Einstein frame, hence these occur
precisely when the coefficient of R in the original Weyl
invariant action (1) changes sign.
Similarly, by considering another set of gauge invari-

ants, ðaϕ; ahÞ ¼ ðaEϕE; aEhEÞ ¼ ðϕγ; hγÞ, one finds the
following transformation between the global coordinates

ðϕγ; hγÞ and the patchy E-frame coordinates ðz; σÞ, both
sets being Weyl invariants,

u¼ ϕγ þhγ ¼�0 ffiffiffiffiffi
jzj

p
eσ;

v¼ ϕγ −hγ ¼�0 ffiffiffiffiffi
jzj

p
e−σεz; −∞< ϕγ;hγ <∞;

z¼ ϕ2
γ −h2γ ¼ uv;

σ ¼ 1

2
ln

����ϕγ þhγ
ϕγ −hγ

����¼ 1

2
ln
���u
v

���; −∞< z;σ <∞: ð8Þ

For low energy physics, one should also keep track of the
c-gauge, ϕcðxμÞ ¼ ϕ0 ¼ 1 (in the units of footnote 3), that
was used to identify the universal constants (2) and all low
energy physics d.o.f. Using the Weyl gauge invariants h=ϕ
and aϕ one obtains h=ϕ ¼ hE=ϕE ¼ hγ=ϕγ ¼ hc=1 and
aϕ ¼ aEϕE ¼ 1ϕγ ¼ ac1. Hence the Weyl invariant low
energy Higgs field hc and scale factor ac are written in
terms of the Weyl invariant cosmologically global fields
ðϕγ; hγÞ, and the Weyl invariant patchy fields ðz; σÞ of
the E-gauge (related to aE used in cosmological pheno-
menology as in (3)), as follows

hc ¼
hγ
ϕγ

¼ εze2σ − 1

εze2σ þ 1
;

ac ¼ ϕγ ¼ �0 1
2

ffiffiffiffiffi
jzj

p
ðeσ þ e−σεzÞ: ð9Þ

Note that ðhc; acÞ are also global variables (i.e., not patchy).
At the observed low energies in today’s era, εzðτÞ ¼ þ1, in
the future patch �0 → þ, in Fig. 1, we have σ ≃ hc ≃
240 GeV
1019 GeV ⋘ 1 and aEðτÞ ≃ acðτÞ ¼ ϕγðτÞ. However, cos-
mologically none of these quantities are small or close to
each other numerically, so their distinct meanings as
given in (8), (9) should be kept in mind when discussing
physics at various energy regimes and various cosmologi-
cal eras.
The transformation of coordinates displayed in (8) is

precisely the same as the transformation between
2-dimensional flat Minkowski coordinates ðϕγ; hγÞ and
extended Rindler coordinates ðz; σÞ as used recently
in [14], but now understood as part of the d.o.f. in
minisuperspace

ds2mini ¼ −dudv ¼ −dϕ2
γ þ dh2γ ¼ −ð4zÞ−1dz2 þ ðzÞdσ2:

ð10Þ

As shown in Fig. 1, the γ-frame ðϕγ; hγÞ or ðu; vÞ cover
globally all four quadrants of extended Rindler space (see
[14] for more detail) with an unambiguous identification of
timelike ðϕγÞ and spacelike ðhγÞ coordinates is a geodesi-
cally complete minisuperspace. The curvature singularity

4The γ-gauge is also available in the full spacetime xμ. It
amounts to fixing the determinant of the metric gμνðxμÞ to one for
all xμ, i,e, ð−gðxμÞÞ ¼ 1. So the γ-gauge may also be called the
unimodular gauge for gravity.
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that occurs in the E-frame, when a2E ¼ 0, corresponds to
z ¼ 0 which translates to either u ¼ 0 or v ¼ 0 in the flat
global space of Eq. (10). So the cosmological bang or
crunch singularities of the E-frame can occur only at the
horizons of the γ-frame that form the boundaries of the four
Rindler quadrants in Fig. 1.
This globally flat 2D-Minkowski geometry is the intrin-

sic geometrical property of the scale invariant minisuper-
space in any frame, including the geodesically completed
E-frame written in terms of z as in (10). This is the
underlying reason for how it is possible to go through
cosmological singularities—that amount to horizons in
global coordinates—to complete geodesics in complete
field space in minisuperspace, as well as space-time xμ, as
explored extensively in [2–15].

IV. QUANTUM WAVEFUNCTION—1

The minisuperspace action (5) can now be expressed in
the γ-gauge in terms of the Weyl invariant ðϕγ; hγÞ d.o.f. by
setting aγ ¼ 1. From this point on, the γ label will be
suppressed for simplicity and ðϕ; hÞ will be understood to
mean ðϕγ; hγÞ when there is no confusion.

Lγ
mini ¼

1

2e
½− _ϕ2 þ _h2 þ ðϕ2 − h2Þð _α21 þ _α22Þ� −

e
2
V;

V ¼ ðϕ2 − h2Þ2f
�
h
ϕ

�
þ ðϕ2 − h2ÞVKðα1; α2Þ þ Ωc;

H ¼
�
−π2ϕ þ π2h þ

1

ϕ2 − h2
ðπ21 þ π22Þ þ V

	
¼ 0: ð11Þ

The last line is the constraint that follows from the e equa-
tion of motion, H ¼ ∂Smini=∂eðτÞ ¼ 0. This is the vanish-
ing Hamiltonian H expressed in terms of the canonical
momenta ðπϕ ¼ − _ϕ=e;…; π2 ¼ ðϕ2 − h2Þ _α2=eÞ for any
eðτÞ. Note that there is no need to gauge fix the lapse
function eðτÞ due to τ reparametrization symmetry since the
properties of the canonical phase space in H is insensitive
to a gauge choice for eðτÞ. Straightforward quantization
rules applied to this system, and applying the constraint on
physical states, HΨ ¼ 0, produces the Wheeler deWitt
equation (WdWe) that follows from Lγ

mini,

�
∂2
ϕ − ∂2

h −
1

ϕ2 − h2
ð∂2

1 þ ∂2
2Þ þ V

	
Ψ ¼ 0: ð12Þ

There is no ambiguity of quantum ordering problems in the
quantum phase space as it appears inH above in contrast to
other choices of minisuperspace parametrizations such as
ðz; σ; α1; α2Þ. Choosing the ðϕ; hÞ global coordinates
[which are the ones naturally appearing in the full action
(1)], as the preferred d.o.f. in the definition of the quantum

theory, resolves once and for all this long-standing annoy-
ing quantum ambiguity [26,27].5

Having resolved the quantum ordering, the WdWe can
now be rewritten in the ðz; σÞ basis in the Einstein frame
(i.e., in terms of aE used by phenomenologists) by using
the coordinate transformation (8) and noting the nontrivial
ordering that is uniquely predicted in the z variable,
∂2
ϕ − ∂2

h ¼ 4∂u∂v ¼ 4z∂2
z þ 4∂z − z−1∂2

σ, while the rest
is straightforward. The WdWe in the ðz; σÞ basis is then
manipulated to the following nonrelativistic Schrödinger-
type equation form�

−∂2
z −

1

4z2
ð1 − ∂2

1 − ∂2
2 − ∂2

σÞ −
Ωc

4z

−
1

4
VKðα1; α2Þ −

z
4
Vðσ; εzÞ

	
ð ffiffiffi

z
p

ΨÞ ¼ 0 ð13Þ

whereVðσ;εzÞ¼fðh=ϕÞ after using (8).The term1=4z2 arises
from rewriting ð4z∂2

zþ4∂zÞΨ¼ ffiffiffi
z

p ð4∂2
zþz−2Þð ffiffiffi

z
p

ΨÞ.
Thinking of z as a “time” variable, (13) can be viewed as

a time-dependent Hamiltonian problem in Schrödinger-
equation-type quantum mechanics for which well known
time-dependent methods exist to make progress and inter-
pret the physics. Nevertheless, this is a difficult partial
differential equation in the presence of the Higgs and
anisotropy potentials Vðσ; εzÞ, VKðα1; α2Þ, so numerical
methods will be needed to analyze it fully. However, there
is no substitute for analytic approximations that can guide
such numerical efforts. This provides an incentive to look
for circumstances that make it possible to find approximate
analytic methods to solve (13). I suggest the following
approach.
It was noted following (6) that, the large term Ωλ ∼ 10120

in the Higgs potential is suppressed because, just after
the electroweak phase transition (EW), the Higgs sits at
the minimum of its potential, jhðτÞ=ϕðτÞj → jh0=ϕ0j ¼
w ∼ 10−17, during most of the cosmological evolution of
the universe. Furthermore before EW and close to the
singularity z ≃ 0 in the very early universe, the Higgs and
anisotropy potential terms in (13) are subdominant due to
the factors of a vanishing z. Therefore, the terms involving
VKðα1; α2Þ, Vðσ; εzÞ in (13) can be neglected in the

5The ambiguity in the ordering prescription proposed in [27]
is to write the kinetic terms in (12) in the form of the Klein-
Gordon operator with an added curvature term with an
unknown ξ coefficient, ð∇2 þ ξRðgÞ þ VÞΦ ¼ 0, where ∇2Φ ¼
ð−gÞ−1=2∂μðð−gÞ1=2gμν∂νΦÞ. In the current case the metric is
conformally flat, ds2¼−dϕ2þdh2þðϕ2−h2Þðdα21þdα22Þ¼
−dudvþuvðdα21þdα22Þ, and its curvature is RðgÞ¼6ðϕ2−h2Þ−1.
In this expression replacing Φ by Φ ¼ ðϕ2 − h2Þ−1=2Ψ and also
fixing ξ ¼ −1=6, reproduces precisely Eq. (12) for Ψ. This shows
that the straightforward no-need-to-order prescription applied to
obtain (12) is in agreement with [27] but only when ξ ¼ −1=6,
indicating that the ambiguity in [27] is fully resolved by the
preferred quantum global coordinates.
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computation of the wavefunction near z ≃ 0 before EW, as
well as well as after EW because the Higgs settles down to
the bottom of the potential.
Based on the comments in the previous paragraph,

I observe that, as the systemmoves away from singularities,
the d.o.f. s⃗ ¼ ðα1; α2; σÞ will quickly descend to the ground
state in their respective potential energies, and stay there
during most of the evolution of the universe. This obser-
vation is consistent with general physical behavior of d.o.f.
subjected to attractive time dependent potentials, which is
the case in the current problem. It is also consistent both
with cosmological data as well as the behavior of classical
solutions of these d.o.f. as studied in the past, both
analytically [3–6] and numerically [9]. I use these facts
to devise the following 2-step strategy to approximate the
effects of the potentials in cosmological calculations.
Briefly,
(1) The first step of this strategy is an approximation

that replaces the functions Vðσ; εzÞ; VKðα1; α2Þ by
constant values at their lowest energy configuration

VKðα1; α2Þ → −kjΩKj; Vðσ; εzÞ → 2ΩΛ: ð14Þ

In this step, (13) turns into the following much
simpler second order ordinary differential equation
that has analytic solutions,

ð−∂2
z þ VðzÞÞð ffiffiffi

z
p

ΨÞ ¼ 0;

VðzÞ ¼ −
�
p⃗2 þ 1

4z2
þΩc

4z
−
ΩK

4
þ ΩΛ

2
z

�
: ð15Þ

In this form Ψ is taken to momentum space thus
diagonalizing the operator ð−∂2

1 − ∂2
2 − ∂2

σÞ → p⃗2,
where p⃗ ¼ ðp1; p2; p3Þ are the canonical conjugates
to s⃗ ¼ ðα1; α2; σÞ. Note also in (15) there is an
accidental SO(3) symmetry that rotates the vectors
ðp⃗; s⃗Þ. Then Ψ�jp⃗jðzÞ are the two linearly indepen-
dent solutions of (15). The general solution is the
superposition of the complete set of states in
momentum space, namely

Ψðz; s⃗Þ ¼
Z

d3pe−ip⃗·s⃗ðAþðp⃗ÞΨþjp⃗jðzÞ

þ A−ðp⃗ÞΨ−jp⃗jðzÞÞ; ð16Þ

and this needs to be continuous in the geodesically
complete superspace in Fig. 1. The latter is not trivial
as discussed in Sec. VI.

(2) The second step of the strategy is to ensure that the
momenta p⃗ are limited in magnitude because these
d.o.f. will be sitting in their ground state, so their
kinetic energy cannot exceed the total energy of
the respective ground states. The limit set on the
size of p2

3 has the physical interpretation of the

cosmological parameterΩσ that measures the energy
density of the scalar field in the Friedmann equa-
tion (3). Similarly, the limit set on ðp2

1 þ p2
2Þ has the

interpretation ofΩα that measures the energy density
of anisotropy. This limitation will be taken into
account by requiring the wavepacket coefficients to
behave like Gaussians (or something of that form)
controlled by the parameters ðΩσ;ΩαÞ

A�ðp⃗Þ ∼ e−ðp2
1
þp2

2
Þ=2Ωαe−p

2
3
=2Ωσ : ð17Þ

Before an analytic solution of (15), it is valuable to
understand the qualitative physical behavior of the wave-
packet ð ffiffiffi

z
p

Ψðz; s⃗ÞÞ by examining the potential VðzÞ in (15)
that is plotted in Fig. 2. The values of the parameters
ðjp⃗j;Ωc;ΩK;ΩΛÞ in Fig. 2 are not the measured ones, but
are taken in a range that pictorially emphasize the essential
physical features of the potential VðzÞ. In addition, Fig. 3 is
included for the closely related potential (the solid curve),

ṼðzÞ ¼ −ðp⃗2þ1

4z2 þ ΩΛ
2
zÞ, where Ωc, ΩK are set to 0. The

parameters jp⃗j;ΩΛ in Ṽ are those in V that are the most
dominant at z ¼ 0 (i.e., p⃗2 þ 1) and the most dominant at
large z (i.e., ΩΛ). The dashed curve in Fig. 3 corresponds to
VðzÞ including all the parameters, so comparing the solid
and dashed curves in Fig. 3 shows the qualitative effect of
the additional parameters ðΩc;ΩKÞ. I remark that the
leading terms of the basic solutions Ψ�jp⃗jðzÞ, as z → 0�

FIG. 2. VðzÞ with all parameters Ωi ≠ 0.

FIG. 3. ṼðzÞ. only dominant. jp⃗j, ΩΛ.
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and as z → �∞, that will be needed shortly, are the same
for V or Ṽ.
The physical behavior of the wavepacket ð ffiffiffi

z
p

ΨÞ can be
read off directly from Fig. 2 or Fig. 3 as follows. The
Schrödinger energy eigenvalue in (15) is zero, so the energy
level of the corresponding eigenstate coincides with the
horizontal axis in Figs. 2 and 3. The wavepacket spreads
from z ∼þ∞ as indicated by the left pointing arrow in
Figs. 2 and 3. This corresponds to a contracting universe
evolving from the asymptotic past in quadrant IV in Fig. 1.
The wave packet in this region must then behave like an
incoming scattering state oscillatory solution because the
energy level is higher than the potential. The wave packet
passes through the singularity at z ¼ 0, meaning it prop-
agates continuously through the past horizons in Fig. 1
where the universe experiences a big crunch, so it reaches
into the antigravity regions I and III where z < 0. The wave
packet cannot go deep into antigravity in regions I and III
because of the potential barrier in Figs. 2 and 3, so it gets
reflected toward z ¼ 0, meaning it turns around within
regions I and III and propagates toward to future horizons
in Fig. 1. The part of the wave packet that tunnels under the
mountain in Figs. 2 and 3 cannot be an oscillatory solution
and it must exponentially decay away as z becomes more
negative—this is because the potential is higher than the
total energy in that region and the probability must vanish
in the asymptotic parts in antigravity regions I and III. The
reflected wave packet is oscillatory, it passes through the
singularity at z ¼ 0 again to come back to z > 0 as shown
by the right pointing arrows in Figs. 2 and 3, meaning the
universe propagates through the future horizons with a big
bang into region II in Fig. 1. After this, the wave packet
propagates to larger values of z, meaning the universe
expands in the future region II in Fig. 1.
The qualitative physical properties in this account will be

encoded in the analytic expressions for time dependent
classical solutions for ðzðτÞ; s⃗ðτÞÞ as well as in analytic
wave packets Ψðz; s⃗Þ given in the following sections.

V. DYNAMICAL ATTRACTOR
AND INITIAL CONDITIONS

It is helpful to begin with the classical solution version of
the physical scenario at the end of last section. The classical
action Smini is then defined by inserting the approximation
(14) in (11)

Smini ≃
Z

dτ



1

2e

�
−

1

4z
ð∂τzÞ2 þ zð∂τs⃗Þ2

	

−
e
2
½2ΩΛz2 − jΩKjzþ Ωc�

�
: ð18Þ

The equations of motion for zðτÞ and s⃗ðτÞ that follow from
this action are reduced to first order differential equations

zð∂τs⃗Þ ¼ p⃗;

ð∂τzÞ2 ¼ ½4p⃗2 þ 8ΩΛz3 − 4jΩKjz2 þ 4zΩc�: ð19Þ

Here p⃗ is the canonical conjugate to s⃗ which is a constant
∂τp⃗ ¼ 0 due to the Euler-Lagrange equations of motion
that follow from Smini. The first order differential equation
of motion for zðτÞ is a rewriting of the constraint that
follows from ∂Smini=∂e ¼ 0. This is a first integral of the
second order differential equation of motion for zðτÞ that
can be derived from Smini.
I have obtained the general solution of (19) with arbitrary

initial conditions for zðτÞ and s⃗ðτÞ. The reader can verify
that zðτÞ is given analytically in terms of the doubly
periodic JacobiCN½ujm� elliptic function usually denoted
as cnðujmÞ, as follows

zðτÞ¼−jz0jþz2
1−cnð ffiffiffiffiffiffiffiffiffiffiffiffiffi

8ΩΛz2
p

τjmÞ
1þcnð ffiffiffiffiffiffiffiffiffiffiffiffiffi

8ΩΛz2
p

τjmÞ ; m≡1

2
þjz0jþz1

2z2
;

z1≡1

2

�
jz0jþ

ΩK

2ΩΛ

�
>0;

z2≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20þ2jz0jz1þ

p⃗2

2ΩΛjz0j

s
> ðz1þjz0jÞ: ð20Þ

Here z0, z1, z2 are constants determined by ðp⃗2;ΩΛ;ΩK;ΩcÞ
as given below. In particular z0 is the value of zðτÞwhere the
bracket in (19) vanishes, ½� � �� ¼ 0, which occurs at the
instant _zðτÞ ¼ 0. Due to the τ-translation symmetry of this
system, one may choose this instant to be τ ¼ 0. Note that z0
is negative since it corresponds to the location of the barrier in
Figs. 2 and 3, so it is determined as the only real finite root of
the cubic equation ½4p⃗2 þ 8ΩΛz3 − 4jΩKjz2 þ 4zΩc� ¼ 0.
Thus, z0 ≡ zðτ ¼ 0Þ, is zðτÞ at the instant τ ¼ 0 when it
reaches its most negative classical (as opposed to quantum)
value in the antigravity regime. The explicit solution for the
relevant root z0 is written as follows (the other two roots are
complex because of the physical values of the parameters
ðp⃗2;ΩΛ;ΩK;ΩcÞ given is Sec. III).

z0¼−
1

6ΩΛ
ððRþRcosϕÞ13− ðR−RcosϕÞ13−ΩKÞ< 0;

R≡ ½ðΩ3
K −54Ω2

Λp⃗
2−9ΩΛΩcΩKÞ2þð6ΩΛΩc−Ω2

KÞ3�12;

cosϕ≡ 1

R
ð54Ω2

Λp⃗
2þ9ΩΛΩcΩK −Ω3

KÞ> 0: ð21Þ

The reader canverify analytically that (20)–(21) is the general
solution of (19) by using properties of the Jacobi elliptic
functions, namely ∂ucnðujmÞ ¼ −snðujmÞ × dnðujmÞ,
sn2ðujmÞ þ cn2ðujmÞ ¼ 1 and dnðujmÞ ¼ 1 −m sn2ðujmÞ.
The exact solution for s⃗ðτÞ that follows from zð∂τs⃗Þ ¼

p⃗ is,
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s⃗ðτÞ ¼ s⃗0 þ p⃗
Z

τ

0

dτ0

zðτ0Þ ¼ s⃗0 þ p⃗
Z

zðτÞ

−jz0j

dz0

z0 _z0

¼ s⃗0 þ p⃗
Z

zðτÞ

−jz0j

dz0

z0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p⃗2 þ 8ΩΛz03 − 4jΩKjz02 þ 4z0Ωc

p
¼ s⃗0 þ p⃗fðzðτÞÞ; ð22Þ

Here, s⃗0 ¼ s⃗ðτ ¼ 0Þ is an integration constant chosen as the
value of s⃗ðτÞ at the instant τ ¼ 0when zðτÞ is most negative
in the antigravity regime. The positive square root is used in
determining _z from (19) because of the choice of integra-
tion region 0 < τ. The function fðzðτÞÞ that is common to
all directions of p⃗, can be written explicitly in terms of the
Jacobi Π function and has the same double periodicity
properties as zðτÞ. The result fðzðτÞÞ is valid not only for
τ > 0 but also for τ < 0 because the solution for zðτÞ is
symmetric under τ-reversal, zð−τÞ ¼ zðτÞ as seen in the
figures below.
These functions are plotted in Figs. 4–6 using nonreal-

istic values of the phenomenological parameters to empha-
size the important physical features of ðzðτÞ; s⃗ðτÞÞ. Figure 4
shows a universe zðτÞ (recall a2EðτÞ ¼ jzðτÞj) that begins to
contract from infinite size ðzð−Tþ=2Þ ∼∞Þ, passes
through zero size ðzð−T0Þ ¼ 0Þ, reaches a maximum
size in antigravity ðzð0Þ ¼ −jz0jÞ, contracts back to zero
size ðzðT0Þ ¼ 0Þ and then expands up to infinity
ðzðTþ=2Þ ∼∞Þ. This classical behavior of zðτÞ is in line
with the qualitative description of a wave packet given
following Figs. 2 and 3.
An interesting feature in Fig. 4 is the periodicity seen in

conformal time for zðτ þ TþÞ ¼ zðτÞ; This is because of the
periodicity of the Jacobi elliptic function. Cosmic observers
that use cosmic t as time (not conformal time τ), can detect

only one period of the periodic Jacobi elliptic functions.
But it is intriguing that more generally the plot in conformal
time in Fig. 4 shows a universe that gets renewed periodi-
cally an infinite number of times, like a cyclic universe.6

The spiking behavior of s⃗ð�T0Þ¼�∞when zð�T0Þ¼0
at the cosmological singularities, as seen in Fig. 5 is
quite general. This occurs for all values of the integration
constants ðs⃗0; p⃗Þ, so the simultaneous divergence of the
scalar σðτÞ and anisotropy ðα1ðτÞ; α2ðτÞÞ when zðτÞ hits
zero cannot be avoided. The constant s⃗0 is represented in
Fig. 5 as the point the vertical axis intersects the curve s⃗ðτÞ.
To emphasize the spiking property of s⃗ðτÞ, I also produce a
parametric plot ðzðτÞ; s⃗ðτÞÞ that amounts to a plot of s⃗ as a
function of z, or vice-versa, as seen in Fig. 6.
It is revealing to reorganize the four d.o.f. ðz; s⃗Þ into the

form ðϕp̂; hp̂Þ defined as follows

up̂ ≡
ffiffiffiffiffi
jzj

p
ep̂·s⃗; vp̂ ≡

ffiffiffiffiffi
jzj

p
e−p̂·s⃗

ϕp̂ðτÞ ¼
1

2
ðup̂ðτÞ þ εzvp̂ðτÞÞ;

hp̂ðτÞ ¼
1

2
ðup̂ðτÞ − εzvp̂ðτÞÞ; ð23Þ

where p̂ ¼ p⃗=jp⃗j is a unit vector. These generalize ðϕ; hÞ
by including anisotropy through the angles p̂. A parametric
plot of these functions is given in Fig. 7, where the
trajectory along the arrows show the progress as τ increases
from −Tþ=2 to Tþ=2. The motion is in the plane slicing the
touching cones and containing the vector p̂ perpendicular
to the vertical axis. A revolution of this figure around the
vertical axis is equivalent to changing the direction of the
vector p̂. The interior of the cones correspond to the gravity
regions II and IV while the exterior of the cones correspond
to the antigravity regions I and III. The trajectory of the
universe in this figure is equivalent to the solution for
ðzðτÞ; s⃗ðτÞÞ plotted in Fig. 6 but now re-plotted in these new

FIG. 4. zðτÞ, crunch → antigravity → bang.

FIG. 5. s⃗ðτÞ near zðτÞ ≃ 0.

FIG. 6. Parametric (s⃗ðτÞ, z(τ)).

6This is similar in spirit but different in detail than [9] where λ0
was taken artificially negative to imitate tunneling-like effects in
the metastable Higgs potential. Here, since λ0 ∼ ΩΛ > 0 is
positive, the renewal in regions jτj > Tþ=2 has no relation to
the possible tunneling of the Higgs in a metastable renormalized
Higgs potential. A physical interpretation of the reason behind
this cyclic-universe type periodicity remains open.
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coordinates. The figure visually shows that the universe
contracts in region IV, passes in all directions p̂ through a
4-dimensional pin hole, ϕp̂ðτcÞ ¼ hp̂ðτcÞ ¼ 0 at the crunch
time τc ¼ −T0, expands a little into antigravity, and turns
around during antigravity to pass again through a pin hole,
ϕp̂ðτbÞ ¼ hp̂ðτbÞ ¼ 0 at the bang time τb ¼ þT0, and then
expands in region II.
This plot is a generalization of a similar one in [5], but

shows more dramatically the pin hole effect in four
dimensions including anisotropy. This emphasizes the
theorem stated below that the scalar and anisotropy
d.o.f. spike to infinity at the singularity. In the reorganized
pin hole version this makes it evident that the dynamics is
one of an unavoidable attractor to the tips of the cones. The
trajectory of the universe cannot cross the cosmological
horizons represented by the walls of the cones in Fig. 7. The
trajectory can evolve to the neighboring Rindler regions
only by going through the “pin hole” and tangentially to the
walls of the cones. This result is a remarkable unique
cosmological prediction for the initial conditions of the
universe at the “beginning.” This is a sufficiently important
cosmological prediction of the EFTC introduced in Sec. II,
that I will highlight it as a theorem:
Theorem: The attractor mechanism displayed in Fig. 7

produces dynamically unique initial values for all d.o.f. at
cosmological singularities z ¼ 0. Quantitatively, at both the
bang/crunch, the fields ðϕp̂ðτÞ; hp̂ðτÞÞ must vanish simul-
taneously for every p̂ while their ratio must be plus or
minus one,

ϕp̂ðτb=cÞ ¼ hp̂ðτb=cÞ ¼ 0;
hp̂ðτb=cÞ
ϕp̂ðτb=cÞ

¼ �1: ð24Þ

Thus, the universe must pass through a “pin hole” while
matching all d.o.f. on both sides of the pin hole in all
directions p̂. An alternative description of the “pin hole”
initial values in the 4D variables, ðzðτb=cÞ; s⃗ðτb=cÞÞ ¼
ð0;�∞⃗Þ, is given in Fig. 6. This theorem emerges not
only in the classical analysis given above, but also in the
quantum analysis given in Sec. VI.
A remark about Misner’s “mixmaster universe” problem

[25] is in order. The classical solution for ðzðτÞ; s⃗ðτÞÞ that
includes anisotropy, as given in (20), (22) and plotted in
Figs. 4–7, clearly did not suffer from this problem even
in the case of Bianchi-IX metric (k ¼ 1), so it invites an
explanation. This solution was obtained under the
assumption that VKðα1; α2Þ was replaced by a constant
as in (14), so naturally the rattling around that causes
Misner’s mixmaster did not happen in the constant poten-
tial. Therefore one must reexamine if the approximation
of neglecting the details of the potential is valid. I have
performed the following computation: I inserted the sol-
ution above into the full action (11) without approximating
VKðα1; α2Þ and asked under what conditions the potential
energy for this generic solution as a function of τ can be
neglected as compared to its kinetic energy as a function of
τ while satisfying H ¼ 0. The answer to this question is
that, it is true that the kinetic terms for the solution do
dominate and the potential term zðτÞVKðα1ðτÞ; α2ðτÞÞ
vanishes as τ → τb=c. In more detail, based on this analysis,
the solutions (20), (22) are legitimate approximations as
long as the conserved momenta satisfy the inequality,
0 < 4jp1;2j≲ jp3j≲ jp⃗j. It is significant that without a
nonzero jp3j it is not possible to satisfy this inequality,
which means the Higgs is crucial. This simple result for the
avoidance of mixmaster is consistent with the considerably
more complicated Belinskii-Khalatnikov-Lifshitz analysis
[28] that concludes the mixmaster is avoidable when there
are scalars in the theory.
In the current EFTC the presence of the Higgs is essential

for avoiding the mixmaster, as well as for creating the
dynamical attractor that predicts initial conditions. So the
Higgs in this EFTC has important cosmological roles in
shaping our universe.

VI. QUANTUM WAVEFUNCTION—2

I now turn to the solution of theWdWe (13). First I analyze
its full form before the suggested approximation strategy in
Eqs. (14)–(17) and confront the problem of continuity in
general. The partial differential equation (12) or (13), in any
of the ðϕ; hÞ or ðu; vÞ or ðz; σÞ bases, is a mathematically
well-defined quantum problem that includes continuous
passage through singularities at u ¼ ðϕþ hÞ ¼ 0 or v ¼
ðϕ − hÞ ¼ 0 (which means E-frame singularity at z ¼ 0 or
aE ¼ 0). Continuity of the wavefunction through the global
coordinates at u ¼ 0 or v ¼ 0 is not trivial and poses a main
challenge whose full resolution is given below in Eq. (28).
The tricky technical problem is outlined as follows. The total

FIG. 7. Evolution of the universe must pass through all gravity
and antigravity regions but only by shrinking to zero size,
IV → 0 → ðI& IIÞ → 0 → II. At zero size ϕp̂ ¼ hp̂ ¼ 0 and
their ratio is �1 as seen by the tangential slopes to the horizons
up̂ ¼ 0 or vp̂ ¼ 0.
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potential in (12), (13) is dominated by the Ωc-term close to
the singularity z → 0. Since the potentials become imma-
terial in this limit, one may go to momentum space and
solve the two basic solutions of (12) in ðu; vÞ basis,
(4∂u∂v − 1

uv ð∂2
1 þ ∂2

2Þ þΩc þ � � �ÞΨ ¼ 0, near the singu-
larity z ¼ uv ∼ 0. These are similar to (16)

Ψ∶ A�ðp⃗Þe−ip1α1−ip2α2u−iðp3�jp⃗jÞ=2viðp3∓jp⃗jÞ=2S�jp⃗jðuvÞ;
ð25Þ

with the leading terms in S�jp⃗jðuvÞ ≃ ð1þOðΩcuvÞÞ, and
any real p⃗≡ ðp1; p2; p3Þ. The complete solutionΨ near z ¼
uv ¼ 0 is the general linear superposition over these two
basic solutions summed up as in (16), although now this is
without approximating the potentials, but examiningonly the
vicinity of z ¼ 0. So, the form (25) near the singularity
persists despite the potentials.
The problem with continuity is that, at either u → 0

when v is finite, or at v → 0 when u is finite, i.e., at any
point on the horizons in Fig. 1, the basic solutions (25)
seem to oscillate wildly so that their values on either side of
the horizons appear to be undeterminable. However, under
the integral

R
d3p, with sufficiently smooth A�ðp⃗Þ, such

wildly oscillating integrands produce a definite vanishing
value for the integral, thus giving Ψ → 0 at the horizons.
If this were true, the coefficients A�ðp⃗Þ would be chosen
independently on either side of each horizon in Fig. 1, so
that a solution Ψ within each of the four quadrants would
vanish at the horizons, and be independent from the
solutions within all other quadrants in Fig. 1.
A discontinuous wavefunction due to uncontrollable

oscillations is rejected since it is not a solution of (12)
and furthermore gives problems with the Hermiticity of the
Hamiltonian just as in the case of the singular ð−1=r2Þ
potential in ordinary quantum mechanics. Until now this
remained an unsettled problem7 that goes back to Von
Neumann. Various suggested solutions are nonunique and
differ physically in different physical approximations to a
regulated ð−1=r2Þ [29]. A resolution seems to be in sight by
using wavepacket solutions as just outlined above, because
the wild oscillations are controlled in a complete set of
normalizable wave packets and continuity appears to be
satisfied withΨ → 0 at both sides of all horizons. However,
this is problematic for a geodesically complete cosmology
advanced in this paper, because there seems to be no
relation between the wavefunctions for the past (region IV),
the future (region II) or antigravity (regions I and III), and

therefore no information from the past seems to survive to
the future of the big bang.
The very tricky subtlety that resolves this problem is

that the story for vanishing wave packets Ψ → 0 at all
horizons is not true. This is because, according to (8) one
can rewrite the basic solutions near the singularity (25) as
follows

e−ip1α1−ip2α2u−iðp3�jp⃗jÞ=2viðp3∓jp⃗jÞ=2 ∼ e−ip⃗·s⃗
ffiffiffiffiffi
jzj

p ∓ijp⃗j

¼ ð
ffiffiffiffiffi
jzj

p
e�p̂·s⃗Þ∓ijp⃗j; ð26Þ

where p̂ ¼ p⃗=jp⃗j. Then, when jzj → 0, there are regions of
the integral

R
d3p that do not oscillate wildly by having

jp̂ · s⃗j → ∞ in tandem with
ffiffiffiffiffijzjp

→ 0 so that eitherffiffiffiffiffijzjp
ep̂·s⃗ or

ffiffiffiffiffijzjp
e−p̂·s⃗ remains finite while the other goes

to zero. Defining up̂ ≡
ffiffiffiffiffijzjp
ep̂·s⃗, vp̂ ≡

ffiffiffiffiffijzjp
e−p̂·s⃗, as in

(23), the two solutions near z ¼ 0 in (26) take the form

u−ijp⃗jp̂ or vijp⃗jp̂ ; ð27Þ

such that u−ijp⃗jp̂ remains finite when vijp⃗jp̂ oscillates wildly
and vice versa. So there is a part of the superposition inΨ at
each horizon in which the wild oscillations do not occur,
thus making a finite contribution to Ψ. This region is
always in the minisuperspace region where jp̂ · s⃗j → þ∞
as z → 0 for all available directions p̂. This finite part of Ψ
has to be the same on either side of each horizon in order to
have a continuous wavefunction between neighboring
quadrants in the full 4D minisuperspace ðz; s⃗Þ. This then
resolves the problem of continuity which is now achieved
simply by analytic continuation in the complex up̂, vp̂
planes. The details of this continuity mechanism was
discussed recently in great detail in [14] for the case
p̂ ¼ ð0; 0;�1Þ. The techniques are the same and it amounts
to a simple generalization of [14] to the general p̂.
The outcome is that, close to the singularity z ¼ 0 the

probability amplitude Ψ gets its support from the region
where the scalar and anisotropy d.o.f. s⃗ diverge, in agree-
ment with Fig. 6. Equivalently, the support for nonzero Ψ
close to the singularity is found in the equivalent variables
ðup̂; vp̂Þ in the neighborhood of the pin hole as in Fig. 7.
Hence the theorem for unique initial conditions emerges
both in classical and quantum dynamics.
With this information one can now carry out the task of

imposing continuity of the wavefunction as in [14], and
find that the past, antigravity and future wavepacket
coefficients are related to each other. This leads to the
complete general analytic solution of the full continuous
wavefunction Ψ, with only one set of independent wave-
packet coefficients ðaðp⃗Þ; b†ðp⃗ÞÞ that appear in the sol-
utions in the various quadrants, as displayed in Eq. (28).

7The connection to ð−1=r2Þ becomes evident in Eq. (15) that
displays the attractive ð−1=z2Þ potential as the leading singular
term of the potential, corresponding precisely to the cosmological
singularity of order a−6E in the Friedmann equation (3). The
unique solution to this problem in the setting of this paper, using
the complete set of normalized and continuous wave packets,
given in the next paragraph was not attempted before.
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ΨIIðz; s⃗Þ ¼z>0
Z

∞

−∞
d3p

�
aðp⃗Þ e

−ip⃗·s⃗ ffiffiffi
z

p −ijp⃗jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3jp⃗j

p Sjp⃗jðzÞ þ b†ðp⃗Þ eip⃗·s⃗
ffiffiffi
z

p ijp⃗jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3πjp⃗j

p S−jp⃗jðzÞ
	
;

ΨI&IIIðz; s⃗Þ ¼z<0
Z

∞

−∞
d3p

2
64 aðp⃗Þ

n
e−ip⃗·s⃗

ffiffiffiffi
−z

p −ijp⃗jSjp⃗jðzÞffiffiffiffiffiffiffiffiffiffiffi
16π3jp⃗j

p þ e−ip⃗·s⃗
ffiffiffiffi
−z

p ijp⃗jS−jp⃗jðzÞffiffiffiffiffiffiffiffiffiffiffi
16π3jp⃗j

p ðΩΛ
18
Þi
jp⃗j
6 Γð−ijp⃗j

3
Þ

Γðijp⃗j
3
Þ

o

þb†ðp⃗Þ
n
eip⃗·s⃗

ffiffiffiffi
−z

p ijp⃗jS−jp⃗jðzÞffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3πjp⃗j

p þ eip⃗·s⃗
ffiffiffiffi
−z

p −ijp⃗jSjp⃗jðzÞffiffiffiffiffiffiffiffiffiffiffi
16π3jp⃗j

p ðΩΛ
18
Þ−i

jp⃗j
6 Γðijp⃗j

3
Þ

Γð−ijp⃗j
3
Þ

o
3
75

ΨIVðz; s⃗Þ ¼z>0
Z

∞

−∞
d3p

�
aðp⃗Þ e

−ip⃗·s⃗ ffiffiffi
z

p ijp⃗jS−jp⃗jðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3jp⃗j

p ðΩΛ
18
Þijp⃗j6 Γð−i jp⃗j

3
Þ

Γði jp⃗j
3
Þ

þ b†ðp⃗Þ e
ip⃗·s⃗ ffiffiffi

z
p −ijp⃗jSjp⃗jðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3jp⃗j

p ðΩΛ
18
Þ−ijp⃗j6 Γði jp⃗j

3
Þ

Γð−i jp⃗j
3
Þ

	
: ð28Þ

The form of (28) is consistent with the form (25) if taken
only near z ∼ 0 without approximating the potentials. It is
also consistent with the form (16) if the suggested approxi-
mation strategy of Sec. IV is applied. In the latter case the
functions S�jp⃗jðzÞ that appear in these expressions is
computed analytically and given below; in that case the
solution for the wavefunction above is valid in all regions of
the geodesically complete superspace depicted in Fig. 7.
The labels II, I and III, IVon the wavefunctions in (28) refer
to the corresponding regions in Fig. 7, namely the inside
and outside regions of the cones. As expected from the
qualitative discussion of Figs. 2 and 3, the ΨIIðz; s⃗Þ and
ΨIVðz; s⃗Þ, that are the future and past positive-z gravity
sectors respectively, are oscillatory (scattering-type wave
packets), while ΨI&IIIðz; s⃗Þ that are at negative-z have fast
decaying asymptotic behavior as z → −∞ deep into the
antigravity region. The asymptotic behavior of the func-
tions S�jp⃗jðzÞ as z → �∞ were used in order to fix all
relative coefficients in these expressions so that the correct
physical behavior is obtained (oscillatory in II and IV and
decay in I and III). So, the probability of the universe to
spend time in the antigravity regions I and III during its
evolution is limited by the fast decay of ΨI&IIIðz; s⃗Þ away
from the z ¼ 0 singularity. The simple explanation for this
behavior is easily understood from the shape of the
potential barrier as discussed above in relation to Figs. 2
and 3.
How continuity works requires some guidance.

Continuity at the future horizons in Fig. 7 requires the
wavefunction ΨI&IIIðz; s⃗Þ and ΨIIðz; s⃗Þ to share the same
ðaðp⃗Þ; b†ðp⃗ÞÞ coefficients as follows. The part proportional
to aðp⃗Þ in ΨIIðz; s⃗Þ at z > 0 is directly related to the first
term in ΨI&IIIðz; s⃗Þ at z < 0, as written in (28). The second
term proportional to aðp⃗Þ in ΨI&IIIðz; s⃗Þ vanishes at the
future horizon due to the fast oscillations. The part propor-
tional to b†ðp⃗Þ in comparing ΨI&IIIðz; s⃗Þ andΨIIðz; s⃗Þ at the
future horizons in Fig. 7 works exactly the same way.
For the past horizon, the arguments are quite similar, and in
this way the second terms in ΨI&IIIðz; s⃗Þ proportional
ðaðp⃗Þ; b†ðp⃗ÞÞ are analytically continued from z < 0 to
z > 0 thus connecting to ΨIIðz; s⃗Þ as written in (28), while

the first terms in ΨI&IIIðz; s⃗Þ proportional to ðaðp⃗Þ; b†ðp⃗ÞÞ
vanish at z ¼ 0 for the past horizon due to the fast
oscillations. This continuity of the overall ΨII;I&III;IV can
be rephrased in terms of the ðup̂; vp̂Þ basis, as genuine
analytic continuation around cuts in the complex planes
of the variables ðup̂; vp̂Þ in every direction p̂. This is
explained in great detail in [14] for the special direction
p̂ ¼ ð0; 0;�1Þ.
The form (28) of the general solution is complete

because it is based on the complete set of solutions for
the basis functions and can be applied to all possible
physical circumstances. Like in field theory, the wave-
packet coefficients ðaðp⃗Þ; b†ðp⃗ÞÞ can be interpreted as
analogs of creation/annihilation operators for positive/

negative frequency massless plane waves e−ip⃗·s⃗�ijp⃗j ln
ffiffiffiffi
jzj

p

at the horizons, since Sjp⃗jðzÞ→z→0
1, while interpreting

ln
ffiffiffiffiffijzjp

as the analog of time close to the horizons in
Fig. 7. This is similar to the case of the plane wave basis at
black hole horizons. One may set up a Bogoliubov trans-
formation between these and creation/annihilation opera-
tors for plane waves at the asymptotics of region II, similar
to the case of black holes or similar to the one given in [14]
for the special direction p̂ ¼ ð0; 0;�1Þ.
For the physical application of interest in this paper,

namely the wavefunction for the universe, additional
boundary conditions are required in the asymptotic regions
of II and IV. Namely, the wave packet ΨIVðz; s⃗Þ must have
only incoming asymptotic waves (not horizon waves),
where incoming is defined in region IV at z → þ∞ as
the leading oscillatory behavior eiωz

3=2
with positive ω.

Once this is imposed in momentum space on ΨIVðz; s⃗Þ it
turns out the wave packet ΨIIðz; s⃗Þ automatically has only
outgoing asymptotic waves because of the relations of the
wavepacket coefficients in the different regions as dis-
played in (28). This asymptotic boundary condition deter-
mines b†ð−p⃗Þ as a function of aðp⃗Þ

b†ð−p⃗Þ ¼ aðp⃗ÞΓð−i
jp⃗j
3
Þ

Γði jp⃗j
3
Þ

�
ΩΛ

18

�
ijp⃗j
3

e−
πjp⃗j
3 : ð29Þ
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To get this result, the asymptotic form of Sjp⃗jðzÞ given in
Eq. (33) below is used.
In addition, ðaðp⃗Þ; b†ðp⃗ÞÞ must be limited to Gaussians

as explained in (17) as part of the approximation strategy in
Sec. IV, therefore

aðp⃗Þ ¼ Ae−ðp2
1
þp2

2
Þ=2Ωαe−p

2
3
=2Ωσ ; ð30Þ

and similarly for b†ðp⃗Þ related by (29). The wavefunction
in this form has no remaining unknown parameters since
the overall A is just a normalization factor.
Major conclusions of this discussion are
(1) Anisotropy and Higgs jp̂ · s⃗j must be at infinity for

all available directions p̂ when aE ¼ 0, or equiv-
alently at the pin hole of Fig. 7 in terms of the
ðup̂; vp̂Þ basis.

(2) The general solution for the wavefunction for all
physical applications as given in (28) depends only
on one set of wavepacket coefficients ðaðp⃗Þ; b†ðp⃗ÞÞ,
analogous to the creation/annihilation operators of
a field, that are shared in all patches of the geo-
desically complete minisuperspace. From this it is
evident that, if the ðaðp⃗Þ; b†ðp⃗ÞÞwere quantized, the
resultant Fock space would be complete, and would
describe the physics for all gravity and antigravity
patches, in a unitary Hilbert space. This is in
agreement with the complementary discussion given
in [13] on unitarity and stability.

(3) The wavefunction for the universe is given by the
restricted form of ðaðp⃗Þ; b†ðp⃗ÞÞ in Eqs. (29) and
(30). In this completely fixed form the wavefunction
has a unique dynamically generated initial value at
the “beginning.” This predicted last form is a topic of
discussion in Sec. VII.

VII. QUANTUM WAVEFUNCTION—3

The wavefunction for the universe derived in the
previous section is simplified as follows. It has no unspeci-
fied attributes and depends only on the phenomenologically
measured parameters ðΩΛ;Ωc;ΩK;Ωσ;ΩαÞ that appear in
the Friedmann equation (3)

ΨIIðz; s⃗Þ ¼z>0A
Z

∞

−∞

d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jp⃗j

p e−
p2
3

2Ωσe−
p2
1
þp2

2
2Ωα e−ip⃗·s⃗Hþ

jp⃗jðzÞ

ΨI&IIIðz; s⃗Þ ¼z<0A
Z

∞

−∞

d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jp⃗j

p e−
p2
3

2Ωσe−
p2
1
þp2

2
2Ωα

× e−ip⃗·s⃗ðHþ
jp⃗jðzÞ þH−

jp⃗jðzÞÞ

ΨIVðz; s⃗Þ ¼z>0A
Z

∞

−∞

d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jp⃗j

p e−
p2
3

2Ωσe−
p2
1
þp2

2
2Ωα e−ip⃗·s⃗H−

jp⃗jðzÞ

ð31Þ

where the overall A is fixed by normalization, and the
functions H�

jp⃗jðzÞ are

Hþ
jp⃗jðzÞ ¼

� ffiffiffiffiffi
jzj

p −ijp⃗jSjp⃗jðzÞ

þ
ffiffiffiffiffi
jzj

p
ijp⃗jS−jp⃗jðzÞe−

πjp⃗j
3

ðΩΛ
18
Þijp⃗j3 Γð−i jp⃗j

3
Þ

Γði jp⃗j
2
Þ

�

H−
jp⃗jðzÞ ¼

� ffiffiffi
z

p ijp⃗jS−jp⃗jðzÞ
Γð−i jp⃗j

3
Þ

Γði jp⃗j
3
Þ

þ ffiffiffi
z

p −ijp⃗jSjp⃗jðzÞe−
πjp⃗j
3

��
ΩΛ

18

�
ijp⃗j
6 ð32Þ

Finally there remains to give an explicit S�jp⃗jðzÞ that
depends on ðjp⃗j;ΩΛ;Ωc;ΩKÞ. The S�jp⃗jðzÞ that solves
the WdWe (15) for the potential V in Fig. 2 with all
parameters ðjp⃗j;ΩΛ;Ωc;ΩKÞ nonzero is not known ana-
lytically at this time, although I think this could be
obtained. It can certainly be determined numerically or
other approximations, such as the Wentzel-Kramers-
Brillouin approximation. However, I have constructed
analytic solutions for all the cases listed below in which
some of these parameters ðjp⃗j;ΩΛ;Ωc;ΩKÞ are set to zero.
The most useful approximation is case-1 given below.

This case captures best the physical features of the full
S�jp⃗jðzÞ because the potential ṼðzÞ shown in Fig. 3 agrees
with the leading terms of the full VðzÞ at both limits z → 0�
and z → �∞

Case-1∶ ðΩc;ΩKÞ→0; VðzÞ→ ṼðzÞ¼−
�
p⃗2þ1

4z2
þΩΛ

2
z

�
;

HΨ¼
�
∂2
ϕ−∂2

h−
∂2
1þ∂2

2

ϕ2−h2
þ2ΩΛðϕ2−h2Þ2

�
Ψ¼0;

Sjp⃗jðzÞ¼
X∞
n¼0

ð−ΩΛ
18

z3ÞnΓð1−i jp⃗j
3
Þ

n!Γðnþ1−i jp⃗j
3
Þ

¼ 0F1

�
1−i

jp⃗j
3
;
−ΩΛz3

18

�

Sjp⃗jðzÞ →
z→�∞Γð1−i jp⃗j

3
Þeπjp⃗j

6

2
ffiffiffi
π

p ð−1Þ−1=4
�
ΩΛz3

18

�−1
4
þijp⃗j

6

×

"
e
iπ
4
þπjp⃗j

6
−2i

ffiffiffiffiffiffiffi
ΩΛz3

18

q
þe

−iπ
4
−πjp⃗j

6
þ2i

ffiffiffiffiffiffiffi
ΩΛz3

18

q #
þ��� ð33Þ

The hypergeometric function 0F1ða;WÞ, is an entire
function in the finite complex W plane for any complex
a. The asymptotic property of this Sjp⃗jðzÞ was used in order
to fix the correct relative coefficients in Eqs. (29), (31),
and (32).
Other analytic solutions of interest in various limits of the

Ωi include the following
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Case-2∶ ðΩΛ;ΩK; p1; p2Þ → 0;

VðzÞ → ṼðzÞ ¼ −
�
p2
3 þ 1

4z2
þΩc

4z

�
;

HΨ ¼ ð∂2
ϕ − ∂2

h þ ΩcÞΨ ¼ 0;

Sjp3jðzÞ ¼
X∞
n¼0

ð− Ωc
4
zÞnΓð1 − ijp3jÞ

n!Γðnþ 1 − ijp3jÞ

¼ 0F1

�
1 − ijp3j;

−Ωcz
4

�
: ð34Þ

This is the case with p̂ ¼ ð0; 0;�1Þ that was studied in
[14] (no anisotropy in this case). The WdWe (12) for
case-2 simplifies a great deal in the global basis ðϕ; hÞ

as above. This “massive” Klein-Gordon equation in 1þ 1
dimensions is easily solved. The alternative bases, namely
Minkowski ðϕ; hÞ versus Rindler ðz; σÞ, are fully equiv-
alent to each other in the classical theory. However, in
the quantum theory there is a nontrivial analyticity
property in connecting ðϕ; hÞ ↔ ðz; σÞ due to branch
points and branch cuts in Ψðu; vÞ. The unique definition
of Ψðu; vÞ introduces an infinite number of sheets in the
complex u and v planes. This is interpreted as a new
multiverse for which an extensive discussion is given in
[14]. The new multiverse is present in the general case
all Ωi ≠ 0.
A case with vanishing ΩΛ → 0, but all other parameters

nonvanishing, is

Case 3∶ ΩΛ → 0; VðzÞ → ṼðzÞ ¼ −
�
p⃗2 þ 1

4z2
þ Ωc

4z
−
ΩK

4

�
;

HΨ ¼
�
∂2
ϕ − ∂2

h −
∂2
1 þ ∂2

2

ϕ2 − h2
−ΩKðϕ2 − h2Þ þ Ωc

�
Ψ ¼ 0.

Sjp⃗jðzÞ ¼

8>>>><
>>>>:

¼ e−
1
2

ffiffiffiffiffi
ΩK

p
z
P∞

n¼0

Γ
�

1−ijp⃗j
2

− Ωc
4
ffiffiffiffi
ΩK

p þn

�
Γð1−ijp⃗jÞ

Γ
�

1−ijp⃗j
2

− Ωc
4
ffiffiffiffi
ΩK

p
�
Γð1−ijp⃗jþnÞ

ð ffiffiffiffiffi
ΩK

p
zÞn

n!

¼ e−
1
2

ffiffiffiffiffi
ΩK

p
z
1F1

h�
1−ijp⃗j

2
− Ωc

4
ffiffiffiffiffi
ΩK

p
�
; ð1 − ijp⃗jÞ; ffiffiffiffiffiffiffi

ΩK
p

z
i ; ð35Þ

Here 1F1ða; b;WÞ is another hypergeometric function that is entire in the complexW plane. The asymptotic behavior of the
potential ṼðzÞ is now dominated by the curvature constant ΩK .
The classical solution analogous to Fig. 7, namely ðzðτÞ; s⃗ðτÞÞ turns out to be completely periodic in this case, and gives

the generic trajectory in Fig. 8 as compared to Fig. 7.
The analytic solution for this trajectory is given in terms of ordinary periodic functions, and of course agrees with the

ΩΛ → 0 limit of Eqs. (20)–(22)

zðτÞ ¼ −
2p⃗2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2
c þ 4ΩKp⃗2

p
þ Ωc

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

c þ 4ΩKp⃗2
p

ΩK
sin2ð

ffiffiffiffiffiffiffi
ΩK

p
τÞ;

s⃗ðτÞ ¼ s⃗0 þ
p⃗

2jp⃗j ln
���� ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

c þ 4ΩKp⃗2
p

þ ΩcÞ tan ð
ffiffiffiffiffiffiffi
ΩK

p
τÞ − 2jp⃗j ffiffiffiffiffiffiffi

ΩK
p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

c þ 4ΩKp⃗2
p

þ ΩcÞ tan ð
ffiffiffiffiffiffiffi
ΩK

p
τÞ þ 2jp⃗j ffiffiffiffiffiffiffi

ΩK
p

����: ð36Þ

Another case is the specialized version of case-3 with
vanishing anisotropy,

Case 4∶ ðΩΛ; p1; p2Þ → 0;

VðzÞ → ṼðzÞ ¼ −
�
p2
3 þ 1

4z2
−
ΩK

4

�
;

½∂2
ϕ − ∂2

h −ΩKðϕ2 − h2Þ þ Ωc�Ψ ¼ 0: ð37Þ

Of course, Sjp⃗jðzÞ is just the ðp1; p2Þ → 0 limit of (35)
and ðzðτÞ; σðτÞÞ are just the limits of (36) when
p1 ¼ p2 ¼ s10 ¼ s20 ¼ 0. However, just like case 2, the FIG. 8. Periodic trajectory driven by curvature.
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WdWe has a nice interpretation in the global ðϕ; hÞ space
in Fig. 1: the WdWe (12) reduces to the 1þ 1 dimensional
relativistic harmonic oscillator Hamiltonian that is con-
strained to a single energy eigenvalue fixed to −Ωc, as
indicated in (37). The complete ghostfree unitary analysis
of this equation was first given in [30], its application to
cosmology was outlined in a footnote in [3], and given
again in detail in [13] where it was noted Ωc must be
quantized in this setting. A path integral quantization was
also applied in [31] that is in complete agreement with [13]
but misses on the quantization of Ωc.
Exactly solvable cases (1–4) are of course only limits of

the full case discussed in this paper. These limits are helpful
in better understanding the structure and meaning of the full
solution. But it must be noted that in some of these limits, in
particular those dominated by curvature (cases 3,4), and
those lacking anisotropy, the solution is qualitatively
different.
Finally, I would like to present the wavefunction very

close to the “beginning,” i.e., at the big bang. This is not an
input, but rather it is a unique prediction driven by the
dynamics that attracts to the pin hole in Fig. 7 discussed
earlier. Ψðz; s⃗Þ close to the singularity is obtained by taking
the z → 0 limit of the general solution (31). In this
expression there is no need to know the details of
Sjp⃗jðzÞ because at z ¼ 0 it is exactly 1 in all cases, including
the full case with all nonzero parameters, Sjp⃗jð0Þ ¼ 1. The
next to the leading terms,

Sjp⃗jðzÞ ¼ 1 −
Ωc

4ð1 − ijp⃗jÞ zþ
ðΩ2

c þ 4ΩKð1 − ijp⃗jÞÞ
32ð1 − ijp⃗jÞð2 − ijp⃗jÞ z

2

þOðz3Þ; ð38Þ

are obtained from the series expansion in (35), while at
orderOðz3Þ the parameterΩΛ also contributes as seen from
(33). I will concentrate only on the first term Sjp⃗jðzÞ → 1

and evaluate the integralΨIIðz; s⃗Þ in the proximity of the tip
of the upper cone in Fig. 7 (or 8)

ΨIIðz; s⃗Þ ¼z∼0
Z

∞

−∞
d3p

Ae−
p2
3

2Ωσ
−
p2
1
þp2

2
2Ωα

−ip⃗·s⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jp⃗j

p
×

� ffiffiffiffiffi
jzj

p −ijp⃗j þ
ffiffiffiffiffi
jzj

p
ijp⃗j e−

πjp⃗j
3 ðΩΛ

18
Þijp⃗j3 Γð−i jp⃗j

3
Þ

Γði jp⃗j
2
Þ

�
:

ð39Þ

I will approximate Ωσ ¼ Ωα ≡Ωσ;α to have a rotationally
symmetric integrand that is simpler to evaluate. This is
sufficient to get the general idea. Then the angular
integration over p̂ yields

R
d2p̂e−ip⃗·s⃗ ¼ 4πe−ijp⃗jjs⃗j, while

the remaining radial integral is a function of only ðz; sÞ,
with s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 þ α22 þ σ2

p
> 0. The second term in the

parenthesis oscillates wildly as z → 0, and it vanishes, as
expected in the discussion of Eq. (28) near z ¼ 0. However,
the first term has a stationary region when z → 0 and
s → ∞ in tandem so that es

ffiffiffiffiffijzjp
is finite. This is the

attractor mechanism at work, showing once again that
anisotropy and scalar d.o.f. diverge while the scale factor
vanishes. I find,

ΨIIðz; sÞ ¼z∼0 4πAffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p Z
∞

0

p2dpffiffiffiffiffiffi
2p

p e−
p2

2Ωσ;αðes
ffiffiffiffiffi
jzj

p
Þ−ip

¼ Aπ2ð−1Þ34ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p
Ω7=2

σ;α

ϕðxÞ: ð40Þ

The integral is performed exactly. It is written in terms of
Bessel functions Iνð− x2

4
Þ, and expressed as a function ϕðxÞ

of a finite and positive x,

ϕðxÞ≡ ffiffiffi
x

p
e−

x2
4

� ðx2 − 1ÞI−1
4
ð− x2

4
Þ þ ðx2 − 3ÞI1

4
ð− x2

4
Þ

þx2ðI3
4
ð− x2

4
Þ þ I5

4
ð− x2

4
ÞÞ

	
;

x≡ ejs⃗j
ffiffiffiffiffijzjp

ffiffiffiffiffiffiffiffiffi
Ωσ;α

p : ð41Þ

The x parameter is proportional to some average of the
ðup̂; vp̂Þ parameters in Fig. 7. This ϕðxÞ is a complex
function whose absolute value and phase are plotted in
Fig. 9. The upper curve in Fig. 9, jϕðxÞj, represents the
probabilistic distribution of the wavefunction near the tip of
the cone in Fig. 7. It shows that the probability is larger for
smaller values of ðup̂; vp̂Þ. This means larger probability
when close to the pin hole, consistent with the classical
solution in Fig. 7 that shows horizons are crossed classi-
cally only at the pin hole. Figure 9 conveys a fuzzy
quantum version of the same result, confirming that
anisotropy and Higgs d.o.f. must get larger ðjs⃗j → ∞Þ as
the universe gets smaller (z → 0) so that probability
continuously propagates through the neighborhood of
the pin hole. This further softening of singularities is
due to quantum mechanics.

FIG. 9. Wavefunction near pin hole.
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Predicted corrections to this result near z ≃ 0 follow
directly from (38). The wavefunction for all ðz; s⃗Þ through-
out the geodesically complete superspace is also deter-
mined in Eq. (31), and can be plotted in a similar way.

VIII. DISCUSSION AND OUTLOOK

In this Sec. I will highlight the main results in this paper,
comment on open questions and problems, and compare to
other discussions in recent literature [32–40] that relate to
the quantum treatment of minisuperspace.

A. Overview of results

I defined an EFTC that is mathematically sufficiently
well behaved at gravitational singularities. Part of its
quantitative definition includes the suppression of higher
curvature terms in the effective action by relying on the
softening effects of some underlying theory of quantum
gravity (QG). The remaining singular terms are mathemati-
cally controllable with a local scale symmetry. Quantum
mechanics makes it even softer, since passage through a
singularity occurs in a neighborhood of a point rather than
only at a point, as demonstrated quantitatively in Fig. 9 for
the predicted initial conditions of the wavefunction of the
universe at the big bang.
Advocating that higher curvature terms be banned in an

effective field theory for cosmological applications is a new
point of view that is motivated by notions of QG.
Undoubtedly, this blurry point that seems reasonable at
the outset, needs more discussion, and I hope it will be a
starting point for future investigations and improvements.
The temporary justification for this EFTC is that it provides
a practically working formalism to investigate quantita-
tively singular spacetimes, including cosmology and black
holes, and be able to make predictions that were not
available before. Furthermore, at the fundamental level,
this EFTC is grounded in the successful standard model
and general relativity, with only a modest improvement to
achieve geodesic completeness of its spacetime through a
local scale (Weyl) symmetry. Combined with the softer
classical and quantum mathematical properties, this pro-
vides a physically strong basis for new progress whose
results can be compared to other attempts of QG when
those can produce comparable computations.
This paper is focused on quantizing the d.o.f. of

minisuperspace, including scale, Higgs, anisotropy, dark
matter and dark energy, radiation and curvature, that are
expected to play the main roles in shaping the very early
universe and its later development. One aim was extracting
from them the prediction of this EFTC for the wavefunction
of the universe. This was fulfilled in this paper, culminating
in the prediction of an explicit wavefunction of the universe
that contains no parameters, has dynamically produced
unique initial values, and is continuous in a geodesically

complete universe that includes gravity as well as anti-
gravity patches.
It is straightforward to compute the Feynman propagator

from any point to any other point in the geodesically
complete superspace as follows

Gðϕ0; h0; α01;2;ϕ; h; α1;2Þ ¼ hϕ0; h0; α01;2
��� i
Hþ iε

���ϕ; h; α1;2i
¼ i

Z
dλðλþ iεÞ−1Ψλðϕ0; h0; α01;2Þ

×Ψ�
λðϕ; h; α1;2Þ; ð42Þ

where HΨλ ¼ λΨλ is explicitly given by the WdWe differ-
ential operator in either (12) or (13) and by replacing Ωc by
ðΩc − λÞ. A quick (but not always the best version) solution
for Ψλ is, Ψλ ¼ Ψλ¼0ðΩc − λÞ, where Ψλ¼0, is the complete
set of solutions of the WdWe already obtained in the
previous sections. The result of (42) can be expressed in
either the global coordinates Ψλðϕ; h; α1;2Þ or the patchy
coordinates Ψλðz; s⃗Þ. In the latter case, the choice of ΨII or
ΨI&III or ΨIV depends on the location of the corresponding
“points” ðϕ0; h0; α01;2;ϕ; h; α1;2Þ in the geodesically com-
plete minisuperspace. Although these details are not fully
carried out here for all values of the parameters
ðjp⃗j;ΩΛ;Ωc;ΩKÞ, the complete solution is already avail-
able in the literature for some subcases. This is thanks
to the recognition emphasized in Eq. (10), that the
global minisuperspace ðz; σÞ has the geometry of Rindler
space geodesically completed to 1þ 1 dimensional flat
Minkowski space. Then some computations become very
simple. Namely, the following propagators,
(a) Case-2 in Eq. (34) is equivalent to the massive Klein-

Gordon (KG) equation in 1þ 1 dimensions, so the
associated propagator is simply the massive KG
propagator in the full space in Fig. 1.

Gðϕ0; h0;ϕ; hÞ

¼ i
Z

dpϕdph

ð2πÞ2 expð−iðϕ0 − ϕÞpϕ þ iðh0 − hÞphÞ

× ð−p2
ϕ þ p2

h þ Ωc þ iεÞ−1: ð43Þ
This can be expressed in terms of the patchy coor-
dinates Gðz0; σ0; z; σÞ by the coordinate transformation
(8). It is harder to compute the propagator directly in
the ðz; σÞ basis using the z-version of H in Eq. (34)
including the potential ṼðzÞ. However, with some
labor involving Bogoliubov transformations between
Rindler waves and Minkowski waves, given in [14],
the propagator can be brought to this form.

(b) Case 4 in Eq. (37), is equivalent to the relativistic
harmonic oscillator, whose unitary infinite dimen-
sional quantum basis is given in [30]. The associated
propagator is worked out explicitly in [13]. This can
again be easily rewritten in terms of ðz; σÞ, and in that
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form the propagator is generalized to case-3 in the
ðz; s⃗Þ basis. The case 3 propagator will appear in a
separate paper.

The computations in this paper were possible thanks to
the control provided at cosmological singularities by the
underlying local scaling (Weyl) gauge symmetry in this
EFTC. The new computations at both classical and quan-
tum levels revealed surprizing dominant behavior of some
d.o.f. at the very beginning of the universe. Specifically,
this led to a theorem that states: anisotropy and Higgs
(or another scalar) degrees of freedom must keep growing
indefinitely as the scale factor of the universe keeps getting
smaller when crunch or bang type singularities are
approached. This striking conclusion was derived in the
quantum treatment of the wavefunction through the steps
of Secs. IV, VI, and VII. Specifically, it is because of this
behavior that the wavefunction manages to be continuous
in propagating through cosmological singularities that
separate gravity and antigravity patches. This quantum
conclusion strengthens an earlier similar result in the
classical treatment [5] of the relevant d.o.f. With the
inclusion of the cosmological constant that was missing
in [5], this paper presents a more complete unique classical
solution in Sec. V that displays a spectacular attractor
mechanism and passage through the singularity, as repre-
sented by the pin hole in Fig. 7. Furthermore, the
computations also predicted the mathematically unavoid-
able multiverse aspects of the wavefunction (more thor-
oughly discussed in [14]); the multiverse continues to be
under study to understand its physical significance.
It should not go unnoticed that the Higgs in this EFTC

has important cosmological roles in shaping the very early
universe. These include providing geodesic completeness,
participating in the attractor mechanism and continuity of
the wavefunction from gravity to antigravity patches, and in
the avoidance of the mixmaster chaos (last part of Sec. V).

B. Open problems

There are open questions that deserve further investi-
gation:

(i) Anisotropy is predicted to be huge at the beginning,
then how does it become miniscule in today’s
universe? Some would advocate inflation as a pos-
sible mechanism, but inflation has not yet been
considered as an added feature to this EFTC,
although such a modification of the EFTC may be
considered as an option.However, it is interesting that
a very different and rather naturalmechanismhas also
emerged in this paper for how anisotropy can evolve
from huge at the bang to tiny today. The basic idea is
the observation enunciated just before Eqs. (14)–(16)
that motivated the 2-step strategy for taking into
account approximately the effect of the potentials
VKðα1; α2Þ, Vðσ; εzÞ. Namely, in a time dependent
Hamiltonian, d.o.f. that are subjected to attractive

potentials, will quickly descend to the ground state.
In the case of anisotropy, the time (i.e., z) dependent
potential is ðϕ2 − h2ÞVKðα1; α2Þ ¼ zVKðα1; α2Þ, as
seen in (6), (11). A plot of VK [25] shows that this is
an infinite potential well, of the approximate shape of
an upside down infinite triangular pyramid, whose
strength ðϕ2 − h2Þ ¼ z keeps growing as the universe
expands. The progressively stronger attractive po-
tential will bind anisotropy more and more tightly in
its ground state, thus driving α1;2 → 0. This seems
like a perfect natural mechanism to explain why the
average homogeneous anisotropy is so small in the
later universe even though it is infinitely large at the
bang. It should be mentioned that in discussions of
dynamics in this potential [28,41], it is claimed that
not only average anisotropy but also average inho-
mogeneity (if included in the equations in the first
place) would tend to get smaller as the universe
expands. Renewed vigorous investigations, on
whether this scenario actually produces sufficient
suppression of anisotropy as well as inhomogene-
ities, and the extent to which this supports the 2-step
strategy applied in this paper, would be useful.

(ii) A similar investigation regarding the 2-step strategy
with the Higgs potential is in order. The reasoning
was that at the electroweak phase transition the
Higgs should settle to the minimum of its potential,
jh=ϕj → w ∼ 10−17, and remain there for the sub-
sequent evolution. This seems reasonable in the
gravity sectors where jh=ϕj < 1. However during
evolution in the antigravity sector where jh=ϕj > 1,
the Higgs potential Vðϕ; hÞ ¼ ðϕ2 − h2Þ2fðh=ϕÞ
given in (6) is far from the minimum; then the huge
Ωλ ∼ 10120 term can play an important role. The
modification of Ψ can be assessed qualitatively as
follows: The huge Ωλ term creates a very strong
potential that prevents h from getting large during
antigravity; then the loops in the antigravity sectors
in Fig. 7 (and correspondingly the probability
amplitude jΨI&IIIj at large jzj) will be considerably
smaller since jzj ¼ h2j1 − ðϕ=hÞ2j is prevented
more strongly from growing in antigravity. There
may be other interesting effects during antigravity
that are hard to guess without an explicit computa-
tion. In addition, recall that any function fðh=ϕÞ is
consistent with Weyl symmetry; even sticking with
the standard model form in (6), the renormalized
dimensionless parameters ðΩλ; w;ΩΛÞ as functions
of ln ðh=ϕÞ, are not known beyond lowest order in
perturbation theory. This remaining unknown in the
effective theory can be a source of speculation,
including the possibility of a metastable Higgs
[42] with additional dramatic consequences in our
understanding of cosmology, as discussed in [9].
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Further studies that address such remaining ques-
tions related to the Higgs would be of interest.

(iii) The next goal is to include inhomogeneous small
fluctuations of the metric and Higgs in the minis-
uperspace action (5) and treat them as perturbations
to the unique homogeneous background solution for
ΨII;I&III;IV given in Sec. VII. The results would
eventually be confronted with available data and
phenomenology of the observed properties of the
cosmic microwave background (CMB). The back-
ground wavefunction reported in this paper
ΨII;I&III;IVðz; s⃗Þ already has built in nonperturbative
dominant parts of the metric such as anisotropy, as
well as matter such as the Higgs, as part of the s⃗
dependence. Therefore the suggested expansion in
small fluctuations of the metric and Higgs is very
different than previous attempts, either in the usual
classical approach, or the few quantum versions
attempted in recent literature. This is because the
huge nonperturbative dynamical effects, such as
(js⃗j → ∞ when z → 0), were not known or taken
into account in previous computations. Because of
this, I expect that the previous computations, that as
part of their setup, assumed only perturbative small
fluctuations, should have internal inconsistencies.

C. Comparing quantum approaches

The last remark provides an introduction to a comparison
of the current work to other recent path integral approaches
[32–40] that have discussed the quantum minisuperspace.
Because there is some confusing debate still brewing in
this topic, it would be useful to readers to clarify where the
present work stands relative to this controversy. A main
message is that the other approaches lack some of the
important and essential features in the current paper and
there is room for improvement of the path integral
computations if these features can (I believe with some
difficulty) be incorporated:
(1) The authors in [32–40] use path integral quantization

as opposed to WdWe method to compute the wave-
function of the universe or a related propagator. In
principle all such methods should agree, so different
approaches are welcome. As in item (b) above, I find
agreement for the propagator in case-4 Eq. (37) in the
WdWe method [13] versus the counterpart in the path
integral method [31]. This is a good sign, but beyond
this, so far, there is little available in the other
approaches to compare with the results in the current
paper. As a next easy comparison, I would suggest the
propagator in Eq. (43) for case 2 in (34), that is not
available yet in the path integral formalism.

(2) This paper presents exact quantum solutions for the
WdWe and its propagators. By contrast, the path
integral results are only semiclassical. Sharp dis-
agreements between competing groups, [32–35]

versus [32–39], doing path integral computations
remain unsettled. Part of the controversy is over
the fundamental correctness of Lorentzian versus
Euclidean path integration in the computation of
the wavefunction for the universe. On that score, I
side with Lorentzian as a principle, but also the
agreement of propagators in [13] versus [31] noted
in item (1) lends support to Lorentzian. A second,
more subtle technical part of the controversy, involves
which path is the correct integration path, to define
the quantum theory—this should be settled by com-
paring to theWdWework in this paper. A third part of
the controversy is that one group claims to compute
a wavefunction while the other group insists on
propagators. The current paper based on the WdWe
approach produces exact quantum results for both
quantities. Future semiclassical path integral results
that may disagree with the exact quantum results of
the current paper would, in my opinion, be suspect.

(3) The path integral teams have been working with a
geodesically incomplete mini-superspace that covers
only region II in Fig. 1 or Fig. 7. Signals of the
incompleteness arises in their computations; specifi-
cally, their parameter q > 0, that is related directly to
q ¼ a2E ¼ jzj, runs into contradictions with the
mathematical properties of their equations because
imposing q > 0 (half space of my z) at the quantum
level is problematic; but they sweep this problem
under the rug. For the purpose of comparing to their
results, it is possible to narrow the results of the
present work to only region II, and therein there are
fundamental differences of principle. In particular
initial conditions at the big bang is really an input in
their case (even though it is called “no boundary
proposal”), but it is an output and a prediction in the
current paper as seen in Fig. 9 and related equations.
This difference is connected to the attractor mecha-
nism in Figs. 6 and 7 that is completely lacking in
their approach because the drivers of this mechanism
are absent in their simplified model.

(4) Most importantly, the path integral approaches do not
include some of the minisuperspace d.o.f. Specifi-
cally, anisotropy, scalar field, conformal dust matter
Ωc, are hugely dominant in the early universe as
compared to the cosmological constant ΩΛ. Yet, in
the models investigated in the recent path integral
papers, the cosmological constant is the main ingre-
dient driving the evolution. Leaving out certain terms
in the action produces a much more manageable
integral, but unfortunately this misses the dominant
nonperturbative effects of anisotropy and Higgs
emphasized repeatedly from different classical and
quantum perspectives in the current paper.

(5) In the Lorentzian path integral approach, inconsis-
tencies concerning small inhomogeneous metric
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fluctuations were discovered [32–35]. As reported,
computation shows that the fluctuations come out
larger than the homogeneous background; however,
this is contrary to the setup of the computation in
which linearized fluctuations were assumed to be
smaller than the background to beginwith.As noted at
the end of item (iii) above, this is to be expected since,
as this paper demonstrated, there are very large
nonperturbative effects in the homogeneous metric
and scalar field, namely anisotropy and Higgs, that
should be part of the background. Inhomogeneous
metric and scalar fluctuations, on top on this non-
perturbative background, would be expected to re-
main consistently small and overcome this problem.

Meaningful comparison between the results of the
current paper and the path integral approach will be
possible, for both the wavefunction and the propagator,
when the listed differences in the approaches are ironed out.
These include the choice of models and d.o.f. they contain,
inclusion of potentials and/or implementation of the 2-step
strategy for approximating their effects, semiclassical
versus exact quantum computation, and the inclusion of
nonperturbative effects in the homogeneous background
solution. Given the encouraging agreement for the propa-
gator in one of the simplest cases [case 4 in Eq. (37)] as
reported in [13,31], I expect full agreement when the
computations of various groups focus on the same system
and the same physical quantities.

D. Toward an ultraviolet completion of the EFTC

The geodesically complete EFTC promoted in this paper
is capable of providing detailed quantitative description of
passage through cosmological singularities at both the
classical and quantum levels. This kind of prediction is
also possible for black holes by using the same EFTC as
suggested in [12]. In this way it is demonstrated that events
in the spacetime on the other side of singularities (such as
far past boundary conditions) affect the properties of the
physics in the spacetime past the singularities. So, the
geodesically complete spacetime must be taken into
account for cosmology. When this is done, as in this paper,
initial conditions at the big bang are predicted not guessed.
This in itself is remarkable about this EFTC because other
approaches in cosmology (including stringy approaches)
have not been able to provide comparable detail.
As emphasized earlier in this paper there are three

crucial ingredients in this EFTC: (i) a Weyl symmetry
and associated geodesic completeness, (ii) a ban on higher
derivatives at high energies, and (iii) close connection to
the standard model at low energies, including the Higgs
field. I now address the question of “how could these
ingredients be compatible with an ultraviolet complete
approach, such as string theory?”
The ban on higher derivatives is in fact attributed to a

softening provided by quantum gravity, such as string

theory. This is expected just on the basis that the description
of the physics in the strongly interacting regime is given
in terms of stringy configurations involving string fields
(including stringy modes) as compared to pointlike fields
in the low energy approximation. Past experience with
string theory shows that perturbative string amplitudes
expanded in powers of α0 (string tension of Planck scale)
are reproduced in the low energy effective theory by
including higher derivative terms (such as higher curva-
tures) that are multiplied by powers of α0. But these terms
are valid only at small momenta (small derivatives) or small
energies E when α0E2 ≪ 1. The string amplitudes at high
energies α0E2 ≳ 1 cannot be reproduced by using the higher
derivative terms of the low energy theory. Furthermore,
the stringy description at high energy does not involve
higher curvatures, but instead it involves stringy modes that
provide a much softer behavior of the theory even in a
strongly interacting regime. Therefore, it is completely
wrong to include higher derivative terms in the low energy
theory if the purpose is to describe a phenomenon such as
the transitions through a singularity. This is the justification
for banning higher derivatives in the EFTC.
The EFTC is of course not a substitute for an ultraviolet

complete theory. At best, the EFTC is expected to correctly
describe the physics up to some fraction of the Planck energy
and possibly be inaccurate at higher energies. Nevertheless it
is gratifying that the EFTC in this paper does provide a
mathematically self-consistent answer to questions at the
scale of Planck energies, including passage through singu-
larities. It presently stands as the only tool that provides
quantitative answers to questions at the Planck scale. Until a
more reliable tool becomes available, I believe this is at least
an answer to think about. To be certain of the physical
correctness or inaccuracies of this EFTC description at the
Planck scale one must construct and then analyze an
appropriate string theory and then compare answers.
Unfortunately string cosmology is not an easy task. Past

attempts have encountered a number of difficulties, includ-
ing those described in Sec. III.4 of [43] and references
therein. Part of the problem is that most attempts rely on the
perturbative setup of string theory for strings that propagate
on a cosmological background. However, near a singularity
stringy interactions become strong so that a perturbative
stringy approach cannot work. For instance near null
cosmological singularities (which allow for detailed analy-
sis), strings are known to become highly excited (nontrivial
oscillator modes) suggesting that backreaction is important.
Likewise in discussions of cosmological singularities and
gauge/gravity duality, it can be argued in certain cases (with
spacelike singularities) that the dual gauge theory (which
might have been naively hoped to lead to a controlled
weakly coupled description) also breaks down, implying
that continuing past the bulk big crunch singularity is
unclear (the AdS Kasner singularities of [44] have been
revisited in [45] and subsequent work). If a smooth gauge
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theory description exists allowing continuation past the
singularity (e.g., as certain null singularities suggest), it
would amount to the bulk gravitational description neces-
sarily being strongly coupled. These and related inves-
tigations remain inconclusive themselves but point to some
difficulties of the perturbative setup in string cosmology
and showing that the perturbative setup to string cosmology
is useless. A more useful, but quite difficult, approach
could be string field theory, where nonperturbative solu-
tions in terms of string fields in an appropriate cosmologi-
cal background are possible, thus possibly providing a
better nonperturbative tool.
In any case, I believe that, in both perturbative and

nonperturbative string theory, to capture the correct physics
one must use geodesically complete backgrounds that
include all patches of a complete spacetime on both sides
of singularities. That this is essential has been demonstrated
in this paper in the context of the EFTC. However, the
notion of a geodesically complete space is totally missing
in all previous attempts in string cosmology. Connected to
the same fact, the notion of a stringy background that is also
Weyl symmetric in target space has also been missing in
overall string theory because string theory has a funda-
mental length α0 (the string torsion related to the Newton
constant GN). On the other hand, since the Weyl symmetric
EFTC does exist as in this paper, in which GN is generated
by spontaneous breakdown, and geodesic completeness is
built in, one should wonder which string background could
yield it as a low energy approximation?
The previous paragraph poses a challenge for all quan-

tum gravity (QG) attempts, not only string theory. The low

energy EFTC in the present paper is geodesically complete,
and the Weyl symmetry is crucial. On the other hand all
known attempts for QG, including string theory, have a
dimensionful parameter that is equivalent to the gravita-
tional constant GN , so they are not Weyl symmetric in
target spacetime, and do not have an effective gravitational
function that could change sign so that geodesic complete-
ness of the backgrounds is built in. Clearly, such inherently
geodesically incomplete QG theories could not generate
the EFTC suggested in this paper. However, it is possible to
improve string theory with Weyl symmetry on target
space to make it consistent with the properties of this
EFTC. This is possible by replacing the string tension in
string theory to be a background field that can change
sign, as shown in [11]. How this can be incorporated in the
BRST operator in string field theory has also been
discussed briefly in [13].
The Weyl-improved string theory is of course difficult to

analyze, but at least it has the right properties to be the
ultraviolet completion of the EFTC discussed in this paper.
Future work may reach a stage that provides stringy results
to be compared to those obtained in this paper, thus
showing the level of success or shortcomings of the EFTC.
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