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We investigate the impact of the post-inflationary thermal histories on the cosmic graviton spectrum
caused by the inflationary variation of their refractive index. Depending on the frequency band, the spectral
energy distribution can be mildly red, blue, or even violet. Wide portions of the parameter space lead to
potentially relevant signals both in the audio range (probed by the advanced generation of terrestrial
interferometers) and in the mHz band (where space-borne detectors could be operational within the
incoming score year). The description of the refractive index in conformally related frames is clarified.
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I. INTRODUCTION

Stochastic backgrounds of cosmological origin have been
suggested more than forty years ago [1–3] as a genuine
general relativistic effect in curved space-times. Since the
evolution of the tensor modes of the geometry is not Weyl-
invariant [1], the corresponding classical and quantum
fluctuations can be amplified not only in an anisotropic
metric but also in conformally flat background geometries
[2,3] (see also [4]). For this reason, backgrounds of relic
gravitons are expected, with rather different properties, in a
variety of cosmological scenarios and, in particular, during
an isotropic phase of quasi–de Sitter expansion [5]. The
backgrounds of cosmic gravitons are analyzed in terms of
the spectral energy distribution in critical units, convention-
ally denoted by Ωgwðν; τ0Þ where τ0 is the present value of
the conformal time coordinate and ν is the comoving
frequency whose numerical value coincides (at τ0) with
the value of the physical frequency.1 The transition from the
radiation-dominated to the matter stage of expansion leads
to the infrared branch of the spectrum ranging between
the aHz and 100 aHz [6–8]. The standard prefixes shall be
used throughout, i.e., 1aHz¼10−18Hz, 1 mHz ¼ 10−3 Hz,
1 MHz ¼ 106 Hz, and so on and so forth.
Between few aHz and 100 aHz, the low frequency

branch of the spectrum is universal and it is caused
by the tensor modes of the geometry reentering after

matter-radiation equality. For higher frequencies the spec-
tral energy distribution bears the mark of the evolution of
the Hubble rate prior to the radiation-dominated epoch. The
simplest possibility (so far consistent with observational
data) is that a quasi–de Sitter phase of expansion is followed
by a radiation-dominated stage: in this case the spectral
energy density is quasiflat [5,9–11] between 100 aHz and
100 MHz. Neglecting all possible complications (damping
of the tensor modes due to neutrinos [12,13], evolution of
relativistic species [14,15], and late-time dominance of the
dark energy [15]) we can estimate2 the typical amplitude of
the spectral energy distribution in critical units which is
h20Ωgwðν; τ0Þ ≤ Oð10−16.5Þ for frequencies ranging between
the mHz and 10 kHz. This minute result follows from the
absolute normalization of the spectral energy distribution
fixed by the upper limit on the tensor to scalar ratio rTðνpÞ at
the pivot frequency3 νp ¼ kp=ð2πÞ ¼ 3.092 aHz.
In spite of the fact that the combination of different

cosmic microwave background (CMB in what follows)
observations imply various sets of upper bounds on rTðνpÞ,
here we shall be enforcing the limit rT < 0.06 for the tensor
spectral index. This limit follows from a joint analysis of
Planck and BICEP2/Keck array data [16] (see also [17]).
However, in a less conservative perspectivewe could require
that rTðνpÞ < 0.17, as demanded by the WMAP9 results
[18,19]. This particular figure holds if the WMAP9 data are
combined with the baryon acoustic oscillation data [20],
with the South Pole Telescope data [21], and with the
Atacama Cosmology Telescope data [22]. The WMAP9*massimo.giovannini@cern.ch
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1In this investigation the scale factor is normalized as
aðτ0Þ ¼ a0 ¼ 1. Natural units ℏ ¼ c ¼ 1will be used throughout.

2Note that h0 is the present value of the Hubble rateH0 in units
of 100 km=ðsec ×MpcÞ.

3The scalar and tensor power spectra are customarily assigned
at a pivot frequency that is largely conventional. In the present
analysis we shall be dealing with a pivot wave number kp ¼
0.002 Mpc−1 corresponding to a pivot frequency νp.
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data (combined with further data sets) lead to bounds on
rTðνpÞ that are grossly similar, for the present ends, to the
Planck Explorer data suggesting rTðνpÞ < 0.11 [23].
One of the tacit (but key) assumptions of the concord-

ance scenario is that radiation dominates almost suddenly
after the end of inflation. This assumption is used, among
other things, to assess the maximal number of inflationary
e-folds today accessible by CMB observations. It is,
however, not unreasonable to presume that in its early
stages the Universe passed through different rates of
expansion, deviating from the radiation-dominated evolu-
tion. The slowest possible rate of expansion occurs when
the sound speed of the medium coincides with the speed of
light [24] (see also [25]). Expansion rates even slower than
the ones of the stiff phase can only be realized when the
sound speed exceeds the speed of light. This possibility is,
however, not compatible with the standard notion of
causality. The plausible range for the existence of such a
phase is between the end of inflation and the formation of the
light nuclei [26–28]. If the dominance of radiation is to take
place already by the time of formation of the baryon
asymmetry, then the onset of radiation dominance increases
from few MeV to the TeV range. In particular, if the post-
inflationary plasma is dominated by a stiff source (i.e.,
characterized by a barotropic index w ¼ p=ρ larger than
1=3) the corresponding spectral energy density inherits a
blue (or even violet) slope for typical frequencies larger than
the mHz and anyway smaller than 100 GHz. In this case,
depending on the parameters characterizing the stiff evolu-
tion, the spectral energy distribution can be of the order of
10−10 in the audio band while in the mHz band is at
most 10−15.
In quintessence scenarios the present dominance of a

cosmological term is translated into the late-time domi-
nance of the potential of a scalar degree of freedom (d.o.f.)
that is called quintessence (see, e.g., [29]). If we also
demand the existence of an early inflationary phase
accounting for the existence of large-scale inhomogene-
ities, the inflaton potential must dominate at early times
while the quintessence potential should be relevant much
later (see the second and third papers in Refs. [26,27]). In
between, the scalar kinetic term of the inflaton/quintessence
field dominates the background. When the inflaton and the
quintessence field are identified, the existence of this phase
is explicitly realized [27] even if a similar phenomenon
may take place also in slightly different scenarios.
Gravitational waves might acquire an effective index of

refraction when they travel in curved space-times [30,31]
and this possibility has been recently revisited by studying
the parametric amplification of the tensor modes of the
geometry during a quasi–de Sitter stage of expansion [32]:
when the refractive index mildly increases during inflation,
the corresponding speed of propagation of the waves
diminishes and the power spectra of the relic gravitons
are then blue, i.e., tilted towards high frequencies.

The purpose of this paper is to compute the spectral energy
distribution of the relic gravitons produced by a dynamical
refractive index without assuming a standard post-infla-
tionary thermal history.
Even though the current upper limits on stochastic

backgrounds of relic gravitons are still far from their final
targets [33,34], the advanced Ligo/Virgo projects are
described in [35,36]. We shall then suppose, according
to Refs. [35,36], that the terrestrial interferometers (in their
advanced version) will be one day able to probe chirp
amplitudes Oð10−25Þ corresponding to spectral amplitudes
h20Ωgw ¼ Oð10−11Þ. In the foreseeable future there should be
at least one supplementary interferometer operational in the
audio band, namely, the Japanese Kamioka Gravitational
Wave Detector (for short Kagra) [37,38] which is, in some
sense, the prosecution and the completion of the Tama-300
experiment [39]. In the class of wide-band detectors we
should alsomention theGEO-600 experiment [40] (which is
now included in the Ligo/Virgo consortium [41]) and the
Einstein telescope [42] whose sensitivities should defini-
tively improve on the advanced Ligo/Virgo targets.
The target sensitivity to detect the stochastic background

of inflationary origin should correspond to a chirp amplitude
hc ¼ Oð10−29Þ (or smaller) and to a spectral energy dis-
tribution in critical units h20Ωgw ¼ Oð10−16Þ (or smaller).
These orders of magnitude estimates directly come from the
amplitude of the quasiflat plateau produced in the context of
single-field inflationary scenarios; in this case the plateau
encompasses the mHz and the audio bands with basically
the same amplitude. Even though these sensitivities are
beyond reach for the current interferometers, a number of
ambitious projects will be supposedly operational in the
future. The space-borne interferometers, such as (e)Lisa
(Laser Interferometer Space Antenna) [43], Bbo (Big Bang
Observer) [44], and Decigo (Deci-hertz Interferometer
Gravitational Wave Observatory) [45,46], might operate
between a few mHz and the Hz hopefully within the
following score year. While the sensitivities of these instru-
ments are still very hypothetical, we can suppose (with a
certain dose of optimism) that they could even range
between h20Ωgw ¼ Oð10−12Þ and h20Ωgw ¼ Oð10−15Þ.
The layout of the paper is the following. In Sec. II we

shall introduce the main technical aspects of the problem
and we shall also analyze the evolution of the effective
horizon and the amplification of the relic gravitons.
Section III will be focused on the analytic (though
approximate) estimates of the graviton spectra while
Sec. IV contains the discussion of the detectability
prospects. Some concluding remarks are collected in
Sec. V. Since the action of the gravitons depends on the
specific frame, different (conformally related) frames lead
to actions that are superficially different but ultimately
equivalent. This discussion (as well as other aspects
pertaining to the same theme) will be relegated to the
Appendices.
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II. REFRACTIVE INDEX AND EFFECTIVE
HORIZON

A. Canonical action

The evolution of the tensor modes of the geometry in the
presence of a dynamical refractive index nðτÞ can be
parametrized in the following manner:

S¼ 1

8l2
P

Z
d3x

Z
dτa2

�
∂τhij∂τhij−

1

n2
∂khij∂khij

�
: ð2:1Þ

In the case n → 1 the action of Eq. (2.1) reproduces the
original Ford and Paker result [3]. Equation (2.1) will be
referred to as the canonical action for the relic gravitons in
the presence of a refractive index. In this section we shall
show that this action can be quantized even though the
presence of the refractive index imposes some technical
differences. From the physical viewpoint the most notable
aspect is that the modes of the gravitational field are
amplified because of the presence of an effective horizon
whose specific form is affected by the evolution of the
refractive index, as we shall show hereunder.
It is convenient to simplify the action Eq. (2.1) by

introducing a generalized time coordinate, conventionally
denoted by η:

nðηÞdη ¼ dτ; bðηÞ ¼ affiffiffi
n

p : ð2:2Þ

With the redefinition (2.2) of the time coordinate, Eq. (2.1)
can be rewritten as

S¼ 1

8l2
P

Z
d3x

Z
dηb2ðηÞ½∂ηhij∂ηhij−∂khij∂khij�: ð2:3Þ

The function bðηÞ plays the role of an effective scale factor:
note, in fact, that in the limit n → 1we have that η coincides
with τ and that, consequently, bðηÞ → aðτÞ. When n ≠ 1
the evolution of bðηÞ defines an effective horizon, namely,

F ¼
_b
b
; _b ¼ ∂b

∂η ¼ 1

n
∂b
∂τ ≡

b0

n
; ð2:4Þ

where the prime denotes a derivation with respect to the
conformal time coordinate τ while the overdot denotes a
derivation with respect to the η time (and not a derivation
with respect to the cosmic time coordinate, as in the
conventional notations). To clarify this point and to avoid
potential confusions the following relations are explicitly
given:

F ¼
_b
b
¼ ∂ ln b

∂η ≡ naF; F ¼ ∂ ln b
∂t ; ð2:5Þ

H ¼ a0

a
¼ ∂ ln a

∂τ ≡ aH; H ¼ ∂ ln a
∂t ; ð2:6Þ

which can be verified by using Eq. (2.2) and the relation of
τ the cosmic time coordinate t, i.e.,

nðηÞdη ¼ dτ ¼ dt=a: ð2:7Þ

The canonical action of Eq. (2.1) can also be expressed in a
more covariant language or even in a different conformally
related frame. In the current literature some authors
expressed the canonical action of Eq. (2.1) in a conformally
related frame and claimed to have a different action for the
refractive index. Since this discussion is not central to the
theme of this paper we relegated the relevant analysis to
Appendices A and B. The interested reader can find there
how the action (2.1) is modified in a different conformally
related frame.

B. The canonical Hamiltonian and the mode functions

From the canonical action of Eq. (2.3) we can deduce the
canonical Hamiltonian. In terms of the canonical normal
modes μijðx⃗; ηÞ ¼ bðηÞhijðx⃗; ηÞ, Eq. (2.3) becomes

S ¼ 1

8l2
P

Z
d3x

Z
dη½ð∂ημijÞð∂ημijÞ − 2F ð∂ημijÞμij

− ð∂kμijÞð∂kμijÞ�: ð2:8Þ

Up to a total time derivative, Eq. (2.8) can also be written as

S ¼ 1

8l2
P

Z
d3x

Z
dη½ð∂ημijÞð∂ημijÞ − ð _F þ F 2Þμijμij

− ð∂kμijÞð∂kμijÞ�: ð2:9Þ

Since μijðx⃗; ηÞ is given as the sum over the two polar-
izations ⊕ and ⊗

μij ¼
ffiffiffi
2

p
lP

X
λ¼⊕;⊗

eðλÞij μλ; eðλÞij e
ðλ0Þ
ij ¼ 2δðλλ0Þ; ð2:10Þ

the action (2.9) becomes immediately

S¼
Z

dηLðηÞ; LðηÞ¼
X

λ¼⊕;⊗

Z
d3xLλðx⃗;ηÞ; ð2:11Þ

Lλ ¼
1

2
½ _μ2λ − ð _F þ F 2Þμ2λ − ð∂kμλÞ2�: ð2:12Þ

From Eqs. (2.11) and (2.12) the canonical momenta are
πλ ¼ _μλ; consequently the canonical Hamiltonian associ-
ated with Eqs. (2.11) and (2.12) is given by

HðηÞ ¼
X

λ¼⊕;⊗
HλðηÞ;

Hλ ¼
1

2

Z
d3x½π2λ þ ð _F þ F 2Þμ2λ þ ð∂kμλÞ2�: ð2:13Þ
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The commutation relations at equal η times

½μ̂λðx⃗; ηÞ; π̂λ0 ðy⃗; ηÞ� ¼ iδð3Þðx⃗ − y⃗Þδλλ0 ; ð2:14Þ

together with the explicit form of the Hamiltonian (2.13),
lead directly to the evolution equations of the operators μ̂λ
and π̂λ:

∂ημ̂λ ¼ π̂λ; ∂ηπ̂λ ¼ ðF 2 þ _F Þμ̂λ þ∇2μ̂λ: ð2:15Þ

The Fourier representations of μ̂λ and π̂λ are

μ̂λðx⃗; ηÞ ¼
1

ð2πÞ3=2
Z

d3k½âk⃗;λfk;λe−ik⃗·x⃗ þ â†
k⃗;λ
f�k;λe

ik⃗·x⃗�;

ð2:16Þ

π̂λðx⃗; ηÞ ¼
1

ð2πÞ3=2
Z

d3k½âk⃗;λgk;λe−ik⃗·x⃗ þ â†
k⃗;λ
g�k;λe

ik⃗·x⃗�;

ð2:17Þ

where ½ak⃗;λ; â†p⃗;λ� ¼ δð3Þðk⃗ − p⃗Þδλ;λ0 . The evolution of the
mode functions fk;λ and gk;λ follows from Eq. (2.15) while
the normalization of their Wronskian is a consequence of
the commutation relations of Eq. (2.14):

_fk;λ ¼ gk;λ; _gk;λ ¼ −k2fk;λ þ ð _F þ F 2Þfk;λ; ð2:18Þ

fk;λðηÞf�k;λðηÞ − f�k;λðηÞgk;λðηÞ ¼ i: ð2:19Þ

The equations for the mode functions reported in Eq. (2.18)
can be decoupled as

f̈k þ
�
k2 −

b̈
b

�
fk ¼ 0; gk ¼ _fk; ð2:20Þ

where the polarization index has been omitted since the
result of Eq. (2.20) holds both for⊕ and for⊗. By recalling
that ĥijb ¼ μ̂ij, the mode expansion of the tensor amplitude
ĥijðx⃗; ηÞ in the η time is given by

ĥijðx⃗; ηÞ ¼
ffiffiffi
2

p
lP

ð2πÞ3=2bðηÞ
X
λ

Z
d3keðλÞij ðk⃗Þ½fk;λðηÞâk⃗λe−ik⃗·x⃗ þ f�k;λðηÞâ†k⃗λeik⃗·x⃗�; ð2:21Þ

where the explicit form of the two polarizations can be
written as

eð⊕Þ
ij ðk̂Þ¼ ðm̂im̂j− q̂iq̂jÞ; eð⊗Þ

ij ðk̂Þ¼ ðm̂iq̂jþ q̂im̂jÞ;
ð2:22Þ

and k̂i ¼ ki=jk⃗j, m̂i ¼ mi=jm⃗j and q̂ ¼ qi=jq⃗j are three
mutually orthogonal directions and k̂. If we now represent
the field operator ĥijðx⃗; ηÞ in Fourier space:

ĥijðp⃗; ηÞ ¼
1

ð2πÞ3=2
Z

d3xĥijðx⃗; ηÞeip⃗·x⃗; ð2:23Þ

we also have from Eqs. (2.21) and (2.23):

ĥijðp⃗;ηÞ¼
1

b

X
λ

½eðλÞij ðp̂Þfk;λðηÞâp⃗λþeðλÞij ð−p̂Þf�k;λðηÞâ†−p⃗λ�:

ð2:24Þ

The two-point functions computed from Eq. (2.24) are
simply4

hĥijðx⃗; ηÞĥijðx⃗þ r⃗; ηÞi ¼
Z

d ln kPTðk; ηÞj0ðkrÞ; ð2:25Þ

hĥijðk⃗; ηÞĥmnðp⃗; ηÞi ¼
2π2

k3
PTðk; ηÞSijmnðk̂Þδð3Þðk⃗þ p⃗Þ;

ð2:26Þ

where j0ðkrÞ is the spherical Bessel function of zeroth
order [47,48]. The tensor power spectrum of Eqs. (2.25)
and (2.26) is then given by

PTðk; ηÞ ¼
4l2

P

π2b2ðηÞ k
3jfkðηÞj2; ð2:27Þ

Sijmnðk̂Þ¼
1

4
½pmiðk̂Þpnjðk̂Þþpmjðk̂Þpniðk̂Þ−pijðk̂Þpmnðk̂Þ�

≡X
λ

eðλÞij ðk̂ÞeðλÞmnðk̂Þ=4; pijðk̂Þ¼ ðδij− k̂ik̂jÞ:

ð2:28Þ

C. Evolution of the effective horizon

The variation of the refractive index can be measured in
units of the Hubble rate in full analogy with what it is
customarily done in the case of the slow-roll parameter,
namely,

4For the sake of notational accuracy, we remind that, through-
out this analysis, natural logarithms will be denoted by ln while
the common logarithms will be denoted by log.
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α ¼ 1

H
∂ ln n
∂t ¼ ∂ ln n

∂ ln a ; ϵ ¼ −
1

H2

∂H
∂t : ð2:29Þ

Equation (2.29) also implies that the evolution of nðaÞ
could be considered as piecewise continuous across a
certain critical value of the scale factor a�; more specifi-
cally the situation we are interested in is the one where

nðaÞ ¼ ni

�
a
ai

�
α

; a < a�; ð2:30Þ

while nðaÞ ¼ 1 for a > a�. It is relatively simple to imagine
a number of continuous interpolation between the two
regimes but what matters for the present considerations is
overall the continuity of nðaÞ, not the specific form of the
profile across the normalcy transition. One of the simplest
possibilities is given by5 nða; ξÞ ¼ niða=aiÞαe−ξa=a� þ 1,
going as aα for a < a� and approaching 1 quite rapidly
when a > a� and ξ > 1. The typical scale a� [roughly
corresponding to the maximum of nðaÞ] may coincide with
the end of the inflationary phase but this possibility is
neither generic nor compulsory. The value of a� corre-
sponds to a critical number of e-folds N� which is of the
order ofNt (i.e., the total number of e-folds) if a� marks the
end of the inflationary phase. This identification is, how-
ever, not mandatory and it will also be relevant, from the
physical viewpoint, to consider the case N� < Nt or
even N� ≪ Nt.
In view of the analysis of Sec. IV, it is relevant to mention

that _b ≥ 0; this means that bðηÞ is always an increasing
function of the η coordinate defined in Eq. (2.2). More
specifically we can express b as a function of a and verify
that bðaÞ always increases:

bðxÞ ¼ affiffiffi
n

p ∝
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n�xαe−ξx þ 1
p ; ð2:31Þ

where n� ¼ niða�=aiÞα. Equation (2.31) is always increas-
ing6 as a function of x ¼ a=a�. Since we shall bound the
attention to the case of expanding scale factors, Eq. (2.31)
implies that the explicit evolution of b (either in τ or in η) is
always monotonically increasing.
The relations between η, τ and the Hubble radius during

the refractive phase are affected by the value of the slow-
roll parameter. This is a generic consequence of Eq. (2.7)

that fixes the relation between η and the conformal time
coordinate:

η ¼
Z

dτ
n

¼
Z

da
a2Hn

: ð2:32Þ

If we now integrate Eq. (2.32) by parts we will haveZ
da

a2Hn
¼ −

1

aHn
þ
Z

da
a2Hn

ðϵ − αÞ; ð2:33Þ

implying, together with Eq. (2.32), that

aHn ¼ −
1

ð1 − ϵþ αÞη : ð2:34Þ

The pump field b̈=b of Eq. (2.20) during the refractive
phase can be written as

b̈
b
¼ _F þF 2¼ n2H2a2½δ2þδð1þα− ϵÞ�; δ¼ 1−

α

2
:

ð2:35Þ

Inserting Eq. (2.34) into Eq. (2.35) we finally obtain

b̈
b
¼ δ2 þ δð1 − ϵþ αÞ

ð1 − ϵþ αÞ2η2 ; ð2:36Þ

which can also be written as

b̈
b
¼ μ2 − 1=4

η2
; μ ¼ 1

2
þ δ

1 − ϵþ α
: ð2:37Þ

The same result can be obtained by assuming a slow-roll
phase

b ¼ affiffiffi
n

p ¼ b�

�
a
a�

�
δ

; b� ¼
a�ffiffiffiffiffi
n�

p ; ð2:38Þ

where aðτÞ ¼ ð−τ=τ�Þ−β and β ¼ 1=ð1 − ϵÞ. Thus, thanks
to Eq. (2.7) we have�
−

η

η�

�
¼

�
−

τ

τ�

�
1þαβ

; η� ¼
τ�

n�ð1þ αβÞ : ð2:39Þ

The result of Eq. (2.39) implies

bðηÞ ¼ b�

�
−

η

η�

�
−ν
; ν ¼ δβ

1þ αβ
: ð2:40Þ

If we now compute b̈=b from Eq. (2.40) we obtain exactly
the result of Eq. (2.37) where μ ¼ ðνþ 1=2Þ. Recalling that
β ¼ 1=ð1 − ϵÞ we have that ν ¼ δ=ð1 − ϵþ αÞ so that the
results of Eqs. (2.37) and (2.40) coincide and are both
consistent with Eq. (2.38).

5Note that ni ≥ 1 but we shall always consider the case ni ¼ 1
as representative of the general situation.

6We can take, for instance, Nt ¼ Oð60Þ and different values of
N� < Nt. Since 0 < α < 1, bðxÞ increases for 0 < x < 1. More-
over bðxÞ is also increasing for x > 1. There can be situations
where, depending on the values of the parameters, the derivative
of b with respect to x is always positive except for a small region
x ¼ Oð1Þ (i.e., a ≃ a�): in these cases the derivative changes sign
twice so that bðxÞ has a local maximum and a local minimum
both occurring for x ¼ Oð1Þ. In spite of that, bðxÞ always
increases x < 1 and for x > 1.
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III. COSMIC GRAVITON SPECTRA AND
THERMAL HISTORIES

The cosmic graviton spectra can be estimated analytically
[11,14,26,49,50] by adapting some of the standard methods
customarily employed in the conventional case when the
spectral index is not varying. These methods must be
revisited, however, in a slightly different perspective since
the evolution of η and of the conformal time coordinate only
coincide, in the present framework, after the end of inflation.
In the limitn → 1wehave that η → τ and the solutions of the
mode functions coincide with the standard ones. In this
section we are going to compute the power spectra of the
relic gravitons when the corresponding wavelengths are,
respectively, larger and smaller than the effective horizon. In
the last part of the section we shall compute the spectral
energy density within different thermal histories.
We therefore start by noting that Eq. (2.20) is equivalent

to an integral equation whose initial conditions are assigned
at the reference time ηex:

fkðηÞ¼
b
bex

�
fkðηexÞþ½ _fkðηexÞ−F exfkðηexÞ�

Z
η

ηex

b2ex
b2ðη1Þ

dη1

−k2
Z

η

ηex

dη1
b2ðη1Þ

Z
η1

ηex

bexbðη2Þfkðη2Þdη2
�
; ð3:1Þ

where ηex is defined as the turning point at which the
solution to Eq. (2.20) changes its analytic form:

k2 ¼ b̈ex
bex

; b̈ex ≠ 0: ð3:2Þ

Equation (3.2) can be dubbed by saying that at ηex the given
mode k exits the effective horizon defined by the evolution
of b; the second requirement of Eq. (3.2) is for the moment
pleonastic since the exit always occurs in a regime where
b̈ex ≠ 0. Even though bðηÞ never evolves linearly in the
vicinity of the exit, this occurrence may arise close to the
reentry that defines the second relevant turning point of
the problem.

A. The large-scale power spectra

Neglecting the terms Oðk2η2Þ, the lowest order solution
of Eq. (3.1) is

fkðηÞ ¼
bðηÞ
bex

�
fkðηexÞ þ ½ _fkðηexÞ − F exfkðηexÞ�

×
Z

η

ηex

b2ex
b2ðη1Þ

dη1

�
; ð3:3Þ

gkðηÞ ¼
bex
bðηÞ

�
gkðηexÞ þ ½_gkðηexÞ þ F exgkðηexÞ�

×
Z

η

ηex

b2ðη1Þ
b2ex

dη1

�
; ð3:4Þ

where, according to Eq. (2.20), _fkðηexÞ ¼ gkðηexÞ and
_fkðηÞ ¼ gkðηÞ. Equations (3.3) and (3.4) determine the
approximate form of the power spectrum for wavelengths
larger than the Hubble radius. Since the second term
appearing inside the squared bracket at the right-hand side
of Eq. (3.3) is subleading for typical wavelengths larger
than the effective horizon, after inserting Eq. (3.3) into
Eq. (2.27) the tensor power spectrum becomes

PTðk; ηÞ ¼
2l2

P

π2b2�η2�
jAj2ð−kη�Þ2ð1−νÞ;

jAj ¼
ffiffiffiffiffi
2k

p
jfkðηexÞj; ð3:5Þ

where Eq. (2.40) has been used to get an explicit expression
of bðηÞ in the regime η < −η�. The amplitude jAj appearing
in Eq. (3.5) parametrizes, up to an irrelevant phase, the
mismatch between the exact and the approximate solutions
at ηex: for k2 ≪ jb̈=bj the correctly normalized solutions of
Eq. (2.20) are fkðηÞ ¼ e�ikη=

ffiffiffiffiffi
2k

p
. However, as soon as ηex

is approached the amplitude gets slightly modified and by
recalling Eq. (2.37) the exact solution of Eq. (2.20) can be
written in terms of Hankel functions [47,48]

fkðηÞ ¼
Nffiffiffiffiffi
2k

p ffiffiffiffiffiffiffiffi
−kη

p
Hð1Þ

μ ð−kηÞ; N ¼
ffiffiffi
π

2

r
eiπðμþ1=2Þ=2;

μ ¼ νþ 1

2
¼ 3 − ϵ

2ð1þ α − ϵÞ ; ð3:6Þ

whereHð1Þ
μ ðkηÞ is the Hankel function of the first kind.7 For

wavelengths larger than the Hubble radius, the Hankel
function of Eq. (3.6) can be expanded in the limit jkηj≪1
so that thanks to Eq. (2.27) the tensor power spectrum
becomes

PTðk; ηÞ ¼
l2
P2

2μ

π3b2�η2�
Γ2ðμÞð−kη�Þ3−2μ: ð3:7Þ

Since 3 − 2μ ¼ 2ð1 − νÞ [as implied by Eq. (3.6)], the ratio
between Eqs. (3.5) and (3.7) implies that

nT ¼2ð1−νÞ; μ¼νþ1

2
; jAðμÞj¼ΓðμÞffiffiffi

π
p 2μ−1=2; ð3:8Þ

where ν has been defined in Eq. (2.40). The value of jAðμÞj
estimates the theoretical error of the treatment based on
Eq. (3.5) and on the approximate form of the mode
functions. While it is often plausible to neglect the compli-
cation8 of AðμÞ and simply set AðμÞ → 1, at low frequencies
the absolute normalization of the cosmic graviton spectrum

7Unlike the standard case the argument of the Hankel function
in Eq. (3.6) is not kτ but rather kη. Recalling Eq. (2.39) the
solution (3.6) is then simple in terms of η but not in terms of τ.

8This choice is practical for a swift derivation of the slopes
characterizing the spectral energy distribution inside the Hubble
radius.
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is, however, very sensitive to the value of themode functions
for η ¼ OðηexÞ. It is then mandatory to use Eq. (3.7) which
can also be expressed as

PTðk; η�Þ ¼
�
H�
MP

�
2 26−nT

π2
Γ2

�
3 − nT

2

�
n3−nT�

×

				1þ α

1 − ϵ

				2−nT
�

k
a�H�

�
nT
; ð3:9Þ

whereH� denotes the Hubble rate at η�. Equation (3.9) is the
large-scale power spectrum valid for k < a�H�. The scales
that exited the Hubble radius for η > −η� have a different
spectral slope and, in this respect, we have a twofold
possibility. If η� coincides with the end of inflation, then
the power spectrum will still be given by Eq. (3.12) where,
however, Nt ¼ N�. Conversely if the refractive phase
terminates before the end of inflation the power spectrum
will have a further branch for a�H� < k ≤ a1H1:

PTðk;η�Þ¼
�
H1

MP

�
226−n̄T

π2
Γ2

�
3− n̄T
2

��
k

a1H1

�
n̄T
; ð3:10Þ

where n̄T ¼ −2ϵ=ð1 − ϵÞ. It is relevant to remark
that in the limit α → 0 we have μ→ ð3− ϵÞ=½2ð1− ϵÞ�
where μ is the Bessel index appearing in Eq. (3.6).
Equation (3.10) can be further modified by appreciating
that since between −η� and −τ1 the background inflates
and we have

H�a� ¼ ðH1a1ÞeN�−Nt ; n� ¼ niða�=aiÞα≡nieαN� :

ð3:11Þ

Taking into account Eqs. (3.10) and (3.11) the power
spectrum (3.9) finally becomes

PTðk; τ1Þ ¼
�
H1

MP

�
2

qTðni; Nt; N�; nTÞ

×

				1þ α

1 − ϵ

				2−nT
�

k
a1H1

�
nT
; ð3:12Þ

qTðni; Nt; N�; nTÞ

¼ 26−nT

π2
Γ2

�
3 − nT

2

�
n3−nTi eαN�ð3−nTÞ−nTðN�−NtÞ; ð3:13Þ

where MP ¼ ffiffiffiffiffiffi
8π

p
M̄P [see also the definitions after

Eq. (A1)]. Equation (3.12) determines the tensor to
scalar ratio whose explicit form is

rTðkÞ ¼
ϵ

π
qTðni; Nt; N�; nTÞ

				1þ α

1 − ϵ

				2−nT
�

k
kmax

�
nT
;

ð3:14Þ

wherewe defined, for the sake of conciseness, kmax ¼ a1H1.
The results reported so far for the power spectra and for the
relevant spectral indices refer to the case of the canonical
action of Eq. (2.1). In the case of conformally related actions
(such as the ones discussed in Refs. [51]) the relevant results
can be found in Appendix C.

B. The power spectra after reentry

Terrestrial interferometers and space-borne detectors
operate at the present time and will necessarily measure
the cosmic graviton spectrum for typical wavelengths
shorter than the Hubble radius. While the largest wave-
lengths of the problem (i.e., smallest k modes) reentered
after matter-radiation equality, the shortest wavelengths
(i.e., largest k modes) crossed the effective horizon at
different epochs after the end of the inflationary stage of
expansion and even before the onset of the radiation-
dominated phase.
The reentry depends on the post-inflationary thermal

history and on the expansion rate that can be very different
from the one of a radiation-dominated plasma. When the
refractive index is not dynamical the previous observation
leads to a characteristic class of violet spectral energy
distribution [26,28,50] and it will be interesting to see what
happens in the present situation. Provided the reentry
occurs when

k2 ¼
				 b̈rebre

				; b̈re ≠ 0; ð3:15Þ

then kηre ¼ Oð1Þ. However, as already remarked above
[see Eq. (3.2)], if b̈re → 0 in the vicinity of the turning
point, then kηre ≪ 1. For η ≥ ηre, the solution of Eq. (2.20)
can be expressed as

fkðηÞ ¼ cþðkÞf̄reðηÞ þ c−ðkÞf̄�reðηÞ;
gkðηÞ ¼ cþðkÞḡreðηÞ þ c−ðkÞḡ�reðηÞ; ð3:16Þ

where f̄reðηÞ and ḡreðηÞ are the mode functions inside the
effective horizon (i.e., quantum mechanically normalized
plane waves in the crudest approximation). From the
continuity of fkðηÞ and gkðηÞ, Eqs. (3.3) and (3.4) imply

fkðηreÞ ¼ f̄ex

�
bre
bex

�
þ brebexðḡex − F exf̄exÞJ ðηex; ηreÞ;

ð3:17Þ

gkðηreÞ ¼
bex
bre

ḡex þ f̄ex

��
bre
bex

�
F re −

�
bex
bre

�
F ex

�
þ brebexF reðḡex − F exf̄exÞJ ðηex; ηreÞ; ð3:18Þ

J ðηex; ηreÞ ¼
Z

ηre

ηex

dη
b2ðηÞ : ð3:19Þ
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By continuity, Eq. (3.16), evaluated at ηre, must coincide
with Eqs. (3.17) and (3.18); thus, c�ðkÞ can be determined
after some simple algebraic manipulation9:

cþðkÞ ¼ ð−iÞ
��

ḡ�ref̄ex

�
bre
bex

�
− f̄�reḡex

�
bex
bre

��

− f̄�ref̄ex

�
F re

�
bre
bex

�
− F ex

�
bex
bre

��

þ brebexðḡex − F exf̄exÞðḡ�re − F ref̄�reÞJ ðηex; ηreÞ
�
;

ð3:20Þ

c−ðkÞ ¼ i

��
ḡref̄ex

�
bre
bex

�
− f̄reḡex

�
bex
bre

��

− f̄ref̄ex

�
F re

�
bre
bex

�
− F ex

�
bex
bre

��

þ brebexðḡex − F exf̄exÞðḡre − F ref̄reÞJ ðηex; ηreÞ
�
:

ð3:21Þ

Inside the Hubble radius, the mode functions are plane
waves or, more precisely, the limit of Hankel functions for
large values of their arguments [47,48]. We can then
express directly Eqs. (3.20) and (3.21) by using the plane
wave limit of the corresponding mode functions:

cþðkÞ¼
e−ikðηre−ηexÞ

2ik

�
bre
bex

ðik−F reÞþ
bex
bre

ðikþF exÞ

þbrebexðF re− ikÞðF exþ ikÞJ ðηex;ηreÞ
�
; ð3:22Þ

c−ðkÞ¼
e−ikðηreþηexÞ

2ik

�
bre
bex

ðikþF reÞ−
bex
bre

ðikþF exÞ

−brebexðF reþ ikÞðF exþ ikÞJ ðηex;ηreÞ
�
: ð3:23Þ

Since the coefficients c�ðkÞ satisfy jcþðkÞj2 − jc−j2 ¼ 1, it
is sufficient to determine just one of the two square moduli.
If the exit occurs for η < −η� and the reentry takes place
when the refractive index is not dynamical, Eqs. (3.22) and
(3.23) can be written more explicitly

cþðkÞ¼
e−ikðτre−ηexÞ

2ik

�
are
bex

ðik−HreÞþ
bex
are

ðikþF exÞ

þarebexðHre− ikÞðF exþ ikÞJ ðηex;τreÞ
�
; ð3:24Þ

c−ðkÞ¼
e−ikðτreþηexÞ

2ik

�
are
bex

ðikþHreÞ−
bex
bre

ðikþF exÞ

−arebexðHreþ ikÞðF exþ ikÞJ ðηex;τreÞ
�
; ð3:25Þ

where this time

J ðηex; τreÞ ¼
Z

η�

ηex

dη
b2ðηÞ þ

Z
τre

τ�

dτ
a2ðτÞ : ð3:26Þ

Because bðηÞ always increases throughout the refractive
phase and even later [see Eq. (2.31) and discussion therein],
in Eqs. (3.22) and (3.23) the terms proportional to jbex=brej
can be neglected in comparison with jbre=bexj. Following
this logic, the approximate form of jc−ðkÞj2 becomes

jc−ðkÞj2≃
1

4

�
bre
bex

�
2
�
1þF 2

re

k2

�
× ½1−2F exb2exJ þb4exðF 2

exþk2ÞJ 2�: ð3:27Þ

Equation (3.27) allows for a swift determination of the
power spectrum and of the spectral energy distribution in
the limit kτ ≫ 1, i.e., when the relevant wavelengths are all
inside the Hubble radius:

Pðk; τÞ ¼ 4k2

π2M̄2
P
jc−ðkÞj2

�
1þO

�
1

k2τ2

��
; ð3:28Þ

Ωgwðk;τÞ¼
k4

3H2M̄2
Pπ

2a4
jc−ðkÞj2

�
1þO

�
1

k2τ2

��
: ð3:29Þ

By taking the ratio between Eqs. (3.28) and (3.29) we
recover the standard relation between the power spectrum
and the spectral energy density valid when the relevant
wavelengths are shorter than the Hubble radius at a given
epoch:

Ωgwðk; τÞ ¼
k2

12a2H2
PTðk; τÞ

�
1þO

�
1

k2τ2

��
: ð3:30Þ

Consequently, inside the Hubble radius we can evaluate
indifferently either the power spectrum or the spectral energy
distribution. Equation (3.30) holds when all the modes are
inside the effective horizon and also depends on the specific
thermal history. Different thermal histories lead to a different
power spectrum and to a different spectral energy distribu-
tion. To determine the spectral energy distribution we shall
therefore consider different thermal histories and the evolu-
tions of the associated effective horizons.

9For the derivation of Eqs. (3.20) and (3.21), it is useful to
recall that f̄reḡ�re − f̄�reḡre ¼ i, as implied by the constancy of the
Wronskian when the second-order differential equation for fk is
written in the form (2.20); the constancy of the Wronskian also
implies for η > ηre that the coefficients c�ðkÞ must satisfy
jcþðkÞj2 − jc−j2 ¼ 1.
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C. Different thermal histories

The different thermal histories and their effects on the
spectral energy distribution can be understood by drawing
the effective horizon in various physical situations. In Fig. 1,
on the vertical axis, we plot the common logarithm of F ¼
_b=b and we simultaneously compare it with the wave
numbers of the problem.10 In practice the conditions kηex ¼
Oð1Þ and kτre ¼ Oð1Þwill always be verified except that in
the case of a reentry during radiation when kτre ≪ 1 and
a00re ¼ 0. According to Fig. 1 we have three different classes
of modes: (i) the modes exiting the effective horizon during
the refractive phase and reentering after equality (i.e.,
k < aeqHeq), (ii) the modes exiting the effective horizon
during the refractive phase and reentering during radiation
(i.e., aeqHeq < k < a�H�), and (iii) the modes exiting the
effective horizon after the end of the refractive phase and
reentering during radiation (i.e., a�H� < k < a1H1). The
different regions are separated in Fig. 1 by three horizontal
arrows and the typical wave numbers (i.e., k1, k�, and keq)
define the three branches of the spectral energy density (or of
the power spectrum). Either the inflationary phase continues
after b� or the radiation-dominated epoch suddenly kicks in.
Between these two possibilities, the former is more generic
than the latter which would correspond, in the notation of
Fig. 1, to the limit b� → a1; this is why, in Fig. 1, we
preferred to distinguish clearly the two scales by assuming
b� ≪ a1. The three different branches of the spectral energy
distribution illustrated in Fig. 1 can be deduced from
Eqs. (3.27)–(3.29); the result of this explicit computation is

Ωgwðk; τreÞ ≃
�
H1

MP

�
2

Bðb�; n�; ϵ; nTÞ
�

k
a�H�

�
−2ϵ=ð1−ϵÞ

;

a�H� < k ≤ a1H1; ð3:31Þ

Ωgwðk; τreÞ ≃
�
H1

MP

�
2

Bðb�; n�; ϵ; nTÞ
�

k
a�H�

�
nT
;

aeqHeq < k ≤ a�H�; ð3:32Þ

Ωgwðk; τreÞ ≃
�
H1

MP

�
2

Bðb�; n�; ϵ; nTÞ
�

k
a�H�

�
nT

×

�
k

aeqHeq

�
−2
; k ≤ aeqHeq; ð3:33Þ

where Bðb�; n�; ϵ; nTÞ is given by11

Bðb�;n�;ϵ;nTÞ¼
2

3π

�
ΩR0

ΩM0

�
n3−nT�

				1þ α

1− ϵ

				2−nT : ð3:34Þ

The spectral index nT appearing in Eqs. (3.31)–(3.34) is
instead:

nT ¼ 3α − 2ϵ

ð1þ α − ϵÞ ¼
3α

1þ α
þ ðα − 2Þϵ
ð1þ αÞ2 þOðϵ2Þ; ð3:35Þ

where the second equality follows in the limit ϵ ≪ 1. As it
must, the exact expression of Eq. (3.35) coincides with
Eq. (3.12). The quasiflat branch of Eq. (3.31) is caused by
the modes that exited the effective horizon for a > b� and
reentered during the radiation-dominated epoch (i.e., for
a > a1). The second branch of the spectrum, reported in
Eq. (3.32), involves the modes that exited the effective
horizon during the refractive phase and reentered all along
the radiation stage. Finally, the standard infrared branch

* log a

lo
g

| b
/b

 |

.
k  <  k  <  k 

ab a

k

k

* eq max
k  =  k  max 1

eq

*

eq1

FIG. 1. We schematically illustrate the evolution of the effective
horizon in the minimal situation where the radiation background
suddenly dominates after inflation.

max

.

b a a a
* 1 s eq log a 

| b
/b

|
lo

g

eq 

k  =  k1 max

k s

k
*

k eq

k  <  k  <  k <  k
* s

FIG. 2. We schematically illustrate the evolution of the effective
horizon in the case where the dominance of radiation is delayed
by the presence of a stiff phase.

10This comparison is physically motivated since the crossing
condition can also be written as: k2 ¼ F 2 þ _F .

11Note that ΩM0 and ΩR0 denote throughout the present values
of the critical fractions of matter and radiation in the concordance
paradigm. Both Bðb�; n�; ϵ; nTÞ and nT are affected by the
different forms of the graviton action. While the following results
come directly from Eq. (2.1), the modifications induced by a
different form of the original action can be found in Appendix C.
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corresponds to modes that are exiting the effective horizon
during the refractive epoch and reentering during thematter-
dominated phase (i.e., k < keq in the terminology of Fig. 1).
There are no compelling reasons why the physical situation
illustrated by Fig. 1 should be considered preferable to some
other potentially viable evolution of the effective horizon.
Different thermal histories can be envisaged and cannot be
ruled out by the present version of the concordance scenario.
Prior to nucleosynthesis, there are no direct tests of the
thermodynamical state of the Universe and, therefore, the
effective equation of state of the primeval plasma can be
arbitrarily different than the one of radiation. In Fig. 2 the
effective horizon is illustrated in the case where the post-
inflationary expansion rate is slower than the one of a
radiation-dominated plasma; in this case between a1 and as
we have

_b
b
¼ H ¼ aH ∝ a−ð3wþ1Þ=2; w >

1

3
; ð3:36Þ

where w denotes the barotropic index of the stiff post-
inflationary phase. Note, for comparison, thatH ∝ a during
inflation while, in the radiation stage, H ∝ 1=a (see also
Fig. 1). In the case of a stiff post-inflationary phase we have
instead that (at most) H ∝ a−2, as implied by Eq. (3.36)
for w → 1.
The evolution sketched in Fig. 2 leads to a spectral

energy distribution characterized by four different
branches: the wave numbers k < aeqHeq correspond to
scales hitting the effective horizon the first time during the
refractive phase and reentering after matter-radiation equal-
ity: their spectral energy distribution will then have the
same slope as Eq. (3.33). Following the same way of
reasoning Ωgw ∝ jkτ�jnT whenever aeqHeq < k < a�H�: in
Fig. 2 this part of the spectrum corresponds to those modes
exiting during the refractive phase and reentering during
the radiation epoch. The supplementary branch of the
spectrum implied by Fig. 2 is caused by those modes
exiting in the course of the inflationary phase and reenter-
ing during the stiff phase: in this branch the spectral energy
density scales asΩgw ∝ jkτsjmT where the spectral indexmT

is now given by

mT ¼ 4 −
2

1 − ϵ
−

4

3wþ 1
: ð3:37Þ

If the expansion rate is slower than radiation, the slope in
this branch can be very steep (i.e., even violet) with mT ¼
Oð1Þ in the limit w → 1. Incidentally if the expansion rate
is faster than radiation12 it can happen that mT < 0.
While the cases illustrated by Figs. 1 and 2 are the most

promising from the viewpoint of the potential signals (as
we shall see in the following section), there are other

possible evolutions of the effective horizon where the
resulting spectral energy distribution does not have a flat
(or decreasing) plateau and it always increases. In this
connection, Fig. 3 illustrates a possibility complementary
to the one of Fig. 2 but leading to a different spectrum. Both
in Figs. 2 and 3 a stiff phase precedes the ordinary radiation
epoch. However, the refractive and the stiff phases of Fig. 3
are longer then in Fig. 2. This occurrence implies the
possibility of modes exiting the effective horizon during
the refractive phase and reentering during the stiff phase.
This different dynamical situation implies that the inter-
mediate branch of the spectrum (i.e., a�H� < k < asHs) is
not quasiflat anymore. Furthermore, using Eqs. (3.27) and
(3.29), Ωgw scales as jkτsjsT where now sT is given by

sT ¼ 2−
4

3wþ1
þnT ≃2−

4

3wþ1
þ 3α

1þα
þOðϵÞ: ð3:38Þ

For instance, for w ¼ 1 we will have that sT ¼ 1þ α while
mT ¼ Oð1Þ. The slope of Eq. (3.38) is always increasing
and since also the other branches of the spectral energy
density are increasing (thought at a different rate), all the
energy of this spectrum will be concentrated in the highest
frequency regime and this is the reason why the detect-
ability prospects are, in this situation, less promising than in
the case of a sufficiently long plateau at high frequency.
Various other examples can be analyzed by using the
approximate methods described in this section but they are
not central to the present discussion. We remark, once
more, that the results reported here refer to the action (2.1).
There can, however, be conformally related parametriza-
tions of the action for the relic gravitons (see Appendix A).
In this case a generalized action can be written depending
on a parameter γ (see Appendix B). The results of this
section are clearly affected by the value of γ and some
discussions of this point can be found in Appendix C.
The results of this section can be summarized, in short, as

follows. If the radiation background suddenly follows the

*

.

log ab a a a

| b
/b

|
lo

g

k  =  k 

k

k

k

* 1 s eq

*

s

eq

1 max

maxseqk  <  k  <  k <  k

FIG. 3. The dominance of radiation is delayed but the refractive
and the stiff phases are both longer than in Fig. 2.

12For instance in the case w → 0 we would have mT → −2.
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inflationary phase, the spectral energy density has overall
three different branches. If the thermal history is different
there might be either one or two further branches in the
spectrum. Generically, the presence of the refractive index
induces a growing spectral energy distribution at intermedi-
ate frequencies and a quasiflat plateau at high frequencies. In
the intermediate branch the spectral index is directly related
to the rate of evolution of the refractive index during
inflation [i.e., α, see Eq. (3.35)]. If the radiation-dominated
epoch does not immediately follow the inflationary phase,
the high-frequency region is not quasiflat and the slope does
also depend on the barotropic index of the post-inflationary
epoch [see Eqs. (3.37) and (3.38)]. It is useful to recall that
this situation is radically different from the one of conven-
tional inflationary models where the intermediate branch of
the spectrum is quasiflat. Conversely, in the present case, the
spectral energy distribution is quasiflat at high frequencies
and increasing over the intermediate frequencies. In the
following sections, the different branches of the spectral
energy distributions and the typical frequencies will be
explicitly discussed.

IV. DETECTABILITY PROSPECTS

A. Basic considerations

The phenomenological signatures of the relic gravitons
are customarily assessed in terms of the comoving frequency
that is defined as ν ¼ k=ð2πÞ, where k denotes the comoving
wave number. Four complementary quantities describe the
cosmic graviton background: (a) the tensor power spectrum
[denoted by PTðν; τ0Þ], (b) the spectral energy distribution
[i.e., Ωgwðν; τ0Þ], (c) the chirp amplitude hcðν; τ0Þ, and
(d) the spectral amplitude Shðν; τ0Þ (measured in units of
Hz−1 ¼ sec). Except for Shðν; τ0Þ the three remaining
variables are dimensionless. The chirp amplitude is, by
definition, h2cðν; τ0Þ ¼ PTðν; τ0Þ=2. The tensor power spec-
trum at the present time is related to the spectral energy
distribution as

Ωgwðν; τ0Þ ¼
3π2ν2

4H2
0a

2
0

PTðν; τ0Þ: ð4:1Þ

Equation (4.1) as well as all other equations in this section
involve wavelengths shorter than the Hubble radius at the
present time τ0. The chirp amplitude and the spectral
amplitude are directly related to Ωgwðν; τ0Þ in the following
manner:

hcðν; τ0Þ ¼
1

π

ffiffiffi
3

2

r �
H0a0
ν

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωgwðν; τ0Þ

q
;

Shðν; τ0Þ ¼
3H2

0a
2
0

4π2ν3
Ωgwðν; τ0Þ: ð4:2Þ

Equation (4.2) implies that h2cðν; τ0Þ ¼ 2νShðν; τ0Þ and
since the detectors of gravitational radiation are operating

in the audio band (i.e., between a few Hz and 10 kHz) it
is useful to recall the explicit relations between the
various quantities mentioned above for typical frequencies
ν ¼ Oð100Þ Hz where the sensitivities of wide-band detec-
tors to cosmic graviton background are (approximately)
maximal13:

hcðν;τ0Þ¼1.263×10−20
�
100Hz

ν

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20Ωgwðν;τ0Þ

q
; ð4:3Þ

PTðν;τ0Þ¼3.190×10−40
�
100Hz

ν

�
2

h20Ωgwðν;τ0Þ; ð4:4Þ

Shðν; τ0Þ ¼ 7.981 × 10−43
�
100 Hz

ν

�
3

h20Ωgwðν; τ0Þ Hz−1:

ð4:5Þ

From Eqs. (4.3)–(4.5) the orders of magnitude of the
different variables employed in the description of relic
graviton backgrounds can be explicitly assessed.

B. Pivotal frequencies

The spectral energy distribution is characterized by
various typical frequencies which are determined from
the wave numbers appearing in Figs. 1–3. The smallest
frequency range of the spectrum follows from the pivot
wave number kp at which the scalar and tensor power
spectra are assigned [16–19]:

νp ¼ kp
2π

¼ 3.092 × 10−18 Hz ¼ 3.092 aHz: ð4:6Þ

The frequency associated with the dominance of dark
energy is of the same order of Eq. (4.6) and it is fixed
by ΩM0 and ΩΛ; in the case of the concordance paradigm
we have

νΛ ¼ 1.638

�
h0

0.719

��
ΩM0

0.258

�
1=3

�
ΩΛ

0.742

�
−1=3

aHz: ð4:7Þ

Since the equality wave number is keq¼0.0732½h20ΩR0=
ð4.15×10−5Þ�−1=2h20ΩM0Mpc−1 the related frequency
νeq is

νeq ¼ 1.317 × 10−17
�
h20ΩM0

0.1364

��
h20ΩR0

4.15 × 10−5

�
−1=2

Hz:

ð4:8Þ

The frequency νbbn ¼ Oð10−2Þ nHz enters the big-bang
nucleosynthesis constraint directly [see below Eq. (4.13)]

13Since Ωgw contains the inverse of ρcrit, h20Ωgw is in fact
independent on h0.
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and sets the scale for the suppression of the cosmic
graviton background due to neutrino free streaming
[12,13]. The explicit expression of the big-bang nucleo-
synthesis frequency is14

νbbn ¼ 2.252×10−11
�

gρ
10.75

�
1=4

�
Tbbn

MeV

�

×

�
h20ΩR0

4.15×10−5

�
1=4

Hz: ð4:9Þ

The presence of the refractive phase illustrated in Figs. 1
and 2 introduces two further frequencies:

ν� ¼ pðα; ϵ; N�; NtÞνmax;

pðα; ϵ; N�; NtÞ ¼
				1þ α

1 − ϵ

				eN�ðαþ1Þ−Nt ; ð4:10Þ

νmax ¼ 1.95 × 108
�

ϵ

0.001

�
1=4

�
AR

2.41 × 10−9

�
1=4

×

�
h20ΩR0

4.15 × 10−5

�
1=4

Hz; ð4:11Þ

where AR denotes the amplitude of the power spectrum of
curvature inhomogeneities at the wave number kp. Even if
Eq. (4.11) suggests that νmax ¼ Oð200Þ MHz, the value of
the end-point frequency of the spectrum may exceed νmax
since it depends on the post-inflationary thermal history
[32]. For the thermal histories of Figs. 2 and 3, the spectral
energy distribution may extend up to νspike ¼ νmax=σ >
νmax (with σ < 1). While a similar spike (with different
physical features) may also arise when the refractive index
is not dynamical [32], in this particular case two new
frequencies appear and they are defined as

νs ¼ σ3ðwþ1Þ=ð3w−1Þνmax; νspike ¼ νmax=σ;

σ ¼
�
Hmax

Hr

� 1−3w
6ðwþ1Þ

; ð4:12Þ

where Hr denotes the Hubble rate at the onset of the
radiation dominance, i.e., right after the stiff phase. The
difference between νmax and νspike comes essentially from
the redshift during the stiff stage of expansion.

C. Phenomenological constraints

In the low-frequency range the tensor to scalar ratio of
Eq. (3.14) is bounded from above not to conflict with the
observed temperature and polarization anisotropies of the
CMB; in the present analysis we specifically required

rTðνpÞ < 0.06, as it follows from a joint analysis of
Planck and BICEP2/Keck array data [16]. As already
mentioned in the Introduction, slightly less restrictive
bounds are often used in the current literature and they
amount to demanding rTðνpÞ < Oð0.1Þ [18,19,23]. The
pulsar timing measurements impose instead the limit
Ωgwðνpulsar; τ0Þ < 1.9 × 10−8 at the frequency νpulsar ¼
Oð10Þ nHz corresponding to the inverse of the observation
time along which the pulsars timing has been monitored
[52–57]. The big-bang nucleosynthesis sets an indirect
constraint on the extra-relativistic species (and, among
others, on the relic gravitons) at the time when light nuclei
have been formed [58–60]. This limit is often expressed in
terms of ΔNν representing the contribution of supplemen-
tary (massless) neutrino species (see, e.g., [61]) but the
extra-relativistic species do not need to be fermionic. If, as
in our case, the additional species are relic gravitons wewill
have to demand that

h20

Z
νmax

νbbn

Ωgwðν;τ0Þd lnν¼ 5.61×10−6ΔNν

�
h20Ωγ0

2.47×10−5

�
:

ð4:13Þ

The bounds on ΔNν range from ΔNν ≤ 0.2 to ΔNν ≤ 1 so
that the right-hand side of Eq. (4.13) turns out to be
between 10−6 and 10−5. The basic considerations discussed
here can be complemented by other bounds which are,
however, less constraining than the ones mentioned above.
The same logic employed for the derivation of Eq. (4.13)
can be applied at the decoupling of matter and radiation.
While the typical frequency of big-bang nucleosynthesis is
Oð10−10Þ Hz the typical frequencies of matter-radiation
equality is Oð10−16Þ Hz [see Eqs. (4.8) and (4.9)]. Since
the decoupling between matter and radiation occurs after
equality we have that

h20

Z
νmax

νdec

ΩGWðν; τ0Þd ln ν ≤ 8.7 × 10−6: ð4:14Þ

While the bound itself is numerically similar to the one of
Eq. (4.13), the lower extremum of integration is smaller
since νdec ≪ νbbn [see Eqs. (4.8) and (4.9)]. The bound
(4.14) (discussed in Ref. [62] with slightly different
notations) has been also taken into account in the present
analysis. However, since we are dealing here with growing
spectral energy distributions, Eq. (4.14) is less con-
straining: for the same (increasing) slope the lower
extremum of integration of Eq. (4.14) gives a smaller
contribution than the one of Eq. (4.13).

D. Spectral energy distribution

The analytic estimates of the spectral energy density of
Sec. III lead to approximate expressions of the spectral
energy distribution; however, for a more quantitative

14Note that gρ denotes the effective number of relativistic d.o.f.
entering the total energy density of the plasma and Tbbn is the
putative temperature of big-bang nucleosynthesis.
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assessment the cosmic graviton spectrum should be
expressed in terms of Teqðν; νeqÞ, T�ðν; ν�Þ, and Tsðν; νsÞ
denoting, respectively, the transfer functions of the energy
density at low, intermediate, and high frequencies:

Teqðν; νeqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ceq

�
νeq
ν

�
þ beq

�
νeq
ν

�
2

s
;

ceq ¼ 0.5238; beq ¼ 0.3537; ð4:15Þ

T�ðν; ν�Þ ¼
�
1þ c�

�
ν

ν�

�
2ϵþnT þ b�

�
ν

ν�

�
4ϵþ2nT

�
−1=2

;

c� ¼ b� ¼ Oð1Þ; ð4:16Þ

Tsðν; νsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cs

�
ν

νs

�
pðwÞ=2

þ bs

�
ν

νs

�
pðwÞ

s
;

pðwÞ ¼ 2 −
4

3wþ 1
; ð4:17Þ

where the subscripts refer to the typical frequencies involved
in each transition, i.e., νeq, ν�, and νs. To transfer the spectral
energy density inside the Hubble radius, the procedure is to
integrate numerically the equations of the tensor modes; the
derivation ofTeqðν; νeqÞ andTsðν; νsÞ, in a different physical
situation, has been discussed in detail in [50,63,64]. In the
literature it is also customary to introduce the transfer
function of the power spectrum [65,66] and the two transfer
functions have slightly different numerical features that have
been discussed in the past (see, e.g., Ref. [50] for a
comparison). With these specifications, we have

h20Ωgwðν;τ0Þ¼N ρrTðνpÞT 2ðν;νeq;ν�;νsÞ
�
ν

νp

�
nT
e−2βν=νmax ;

ð4:18Þ

T ðν; νeq; ν�; νsÞ ¼ Teqðν; νeqÞT�ðν; ν�ÞTsðν; νsÞ; ð4:19Þ

N ρ¼4.165×10−15
�

h20ΩR0

4.15×10−5

��
AR

2.41×10−9

�
;

ð4:20Þ

where nT ¼ ½αð3 − 2γÞ − 2ϵ�=ð1þ α − ϵÞ [see also
Eq. (3.35)] and rTðνpÞ is the tensor to scalar ratio of
Eq. (3.14) evaluated at the pivot frequency νp. In the
conventional case rTðνpÞ is related to the slow-roll param-
eter ϵ and to the tensor spectral index nT via the so-called
consistency relations (see also, in this respect, Ref. [67]
where a similar model for the violation of the consistency
relations has been discussed). In the present situation rTðνÞ
and nT do not obey the consistency relations and depend on
the rate of variation of the refractive index α and on the
critical number of e-folds N�. If the refractive index is not
dynamical (i.e.,α → 0 and γ → 0) we have, as expected, that

nT → −2ϵ. In Eq. (4.18) β is a parameter Oð1Þ which
depends upon the width of the transition between the
inflationary phase and the subsequent radiation-dominated
phase; for different widths of the post-inflationary transition
we can estimate 0.5 ≤ β ≤ 6.3 [63,64]. The numerical
coefficients appearing in Eqs. (4.15)–(4.17) are determined
from each specific transition: while ceq and beq can be
accurately assessed, c� and b� depend on the parametriza-
tion of the refractive index and, similarly, cs and bs change
depending on the values of w. In the case w → 1 there are
even logarithmic corrections which have been specifically
scrutinized in the past15 (see, e.g., [32]).

E. The constrained parameter space

We shall be predominantly interested in the possibility of
a relatively strong signal in the audio and in the mHz bands.
We recall that the audio band ranges between a few Hz and
10 kHz where the terrestrial wide-band interferometers
operate. The mHz band ranges instead between a fraction of
the mHz and the Hz; in this range space-borne detectors
might one day operate, hopefully within the following
score year. The MHz band extends between 100 kHz and a
few GHz; this band is immaterial for potential signals
coming from conventional inflationary models but could
play a relevant role since most of the signals discussed in
the present paper are concentrated exactly in this region.
The results discussed hereunder refer predominantly16 to

the case where the action for the relic gravitons is para-
metrized as in Eqs. (2.1) and (2.3). In the different figures
reported below, the constrained parameter spacewill also be
illustrated, in some cases, when γ ¼ 1. To account for the
possibility of a detection in the audio band we shall then
impose on the parameter space a further constraint on the
chirp amplitude:

hcðνaudio; τ0Þ > 10−25; νaudio ¼ 0.1 kHz; ð4:21Þ

where νaudio roughly corresponds, in practice, to the
expected maximum of the sensitivity for the (advanced)
Ligo/Virgo interferometers. In the mHz band we shall
instead require

hcðνmHz; τ0Þ > 2 × 10−23; νmHz ¼ mHz: ð4:22Þ

15According to Eq. (4.15), TeqðνÞ → 1 for ν ≫ νeq but in the
realistic situations further suppressions are expected. The neu-
trino free streaming produces an effective anisotropic stress
leading ultimately to an integro-differential equation (see, for
instance, [12,13]). This aspect will be discussed later when
assessing the other minor sources of damping.

16As discussed in Appendix C, the action of relic gravitons can
be parametrized in different ways depending upon the value of a
parameter γ that appears in the generalized action of Eq. (C1). It is
useful, for quantitative reasons, to compare the cases γ ¼ 0
[corresponding exactly to Eqs. (2.3) and (2.1)] and γ ¼ 1.
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Equations (4.21) and (4.22) imply that we should select
regions of the parameter space where the spectral energy
distribution exceeds, respectively, 10−11 and 10−16; more
specifically we are led to demand

h20Ωgwðνaudio;τ0Þ>6.2×10−11; νaudio¼0.1 kHz; ð4:23Þ
h20ΩgwðνmHz;τ0Þ>2.5×10−16; νmHz¼mHz: ð4:24Þ

Since these requirementsmight not be achievedwith rushing
speed, we shall also consider a couple of less pretentious
conditions, namely,

h20Ωgwðνaudio; τ0Þ > 10−9; νaudio ¼ 0.1 kHz; ð4:25Þ

h20ΩgwðνmHz; τ0Þ > 10−12; νmHz ¼ mHz: ð4:26Þ

While from the viewpoint of the experiments, Eqs. (4.25)
and (4.26) are weaker than Eqs. (4.23) and (4.24), from the
viewpoint of the signal itself the opposite is true: if we
enforce Eqs. (4.23) and (4.24), the allowed region of the
parameter space will be larger than in the case of Eqs. (4.25)
and (4.26). See, in this respect, Figs. 4 and 5 where we
illustrate the constrained parameter space for different

FIG. 4. The outer and the inner shaded areas illustrate the regions of the parameter space where all the constraints are satisfied in
conjunction either with the requirements of Eqs. (4.23) and (4.24) (outer regions) or with the stronger demands of Eqs. (4.25) and (4.26)
(inner regions). Both plots refer to the case where the graviton action is parametrized as in Eqs. (2.3) and (2.1) [i.e., γ ¼ 0 in the language
of the generalized parametrization of Eq. (C1).

FIG. 5. For quantitative comparison it is interesting to illustrate the same analysis of Fig. 4 in the case γ ¼ 1. This case corresponds to a
different parametrization of the graviton action [see Appendix C and, in particular, Eq. (C1)] that has been invoked by some authors to
propose a purportedly different mechanism for the evolution of the refractive index. On the contrary, as argued in the Appendix, these are
just two conformally equivalent representations of the original action of Eqs. (2.3) and (2.1).
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choices of the parameters and in the case of a conventional
thermal history. The shaded areas in both plots describe the
regions where all the phenomenological constraints are
concurrently satisfied while the chirp amplitudes are suffi-
ciently large enough to be detected. More specifically, in
Figs. 4 and 5 the outer regions are obtained by enforcing the
requirements of Eqs. (4.25) and (4.26). Conversely the inner
regions come from the more demanding conditions spelled
out in Eqs. (4.23) and (4.24). The reduction of the areas
between the outer and the inner regions illustrate the
reduction of the parameter space induced by the difference
between the requirements of Eqs. (4.23) and (4.24) and
Eqs. (4.25) and (4.26).
In the case of a different post-inflationary history, the

constrained parameter space gets modified and the relevant
exclusion plots are illustrated in Fig. 6 for a fiducial choice
of the parameters. In the two plots at the right, the

barotropic index corresponds to 2=3 while in the two plots
at the left, the barotropic index is maximal (i.e., w ¼ 1). By
looking at the inner and at the outer exclusion regions we
conclude that a reduction in the sensitivities of the
hypothetical detectors drastically reduces the areas of the
parameter space. Indeed, as in Figs. 4 and 5, the inner and
the outer plots correspond, respectively, to the requirements
of Eqs. (4.25) and (4.26) and to the requirements of
Eqs. (4.23) and (4.24). The reason for this reduction is a
direct consequence of the violet spectral slope in the highest
frequency domain. Still, for a given value of σ, the
constrained parameter space suggests a potentially inter-
esting signal.
The explicit profiles of different models will now be

illustrated. While the same analysis can be easily rephrased
either in terms of the power spectrum PTðν; τ0Þ or in terms
of the spectral amplitude Shðν; τ0Þ we shall be mainly

FIG. 6. We illustrate the constrained parameter space in the case of a thermal history characterized by a stiff post-inflationary phase. As
in the case of Figs. 4 and 5, the outer and the inner regions refer, respectively, to the requirements of Eqs. (4.23) and (4.24) and
Eqs. (4.25) and (4.26).
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interested in the chirp amplitude and in the spectral energy
distribution. This kind of approach is also useful for the
explicit derivation of a template family.
In Fig. 7 we illustrate the chirp amplitude and the

spectral energy distribution in the case of a standard
post-inflationary history. The scales of the two plots on
the horizontal axis are different.17 The explicit differences
among the various models are less pronounced if we look at
the chirp amplitude which is proportional to the square root
of the spectral energy distribution and it is further

suppressed by one power of the frequency. AsN� increases,
the plateau of Fig. 7 becomes less evident. The results of
Fig. 7 can be usefully compared with the ones illustrated in
Fig. 8 where the post-inflationary evolution is characterized
by a stiff epoch. While in Fig. 8 we considered the case
w ¼ 1, in Fig. 9 we took instead w ¼ 2=3. Recalling
Eqs. (3.37) and (3.38), and (4.12), the value of the
barotropic index controls not only the slope of the cosmic
graviton spectrum in the vicinity high-frequency spike but
also the frequency range. Larger values of w correspond to
more violet slopes in the MHz band while the values of σ
are inversely proportional to the frequency of the spike so
that as σ gets smaller than 1 the position of the spike
exceeds the GHz. Both σ and w determine the length of the
stiff phase.

FIG. 7. The chirp amplitude and the spectral energy distribution produced by a dynamical refractive index are illustrated in the case of
a standard post-inflationary thermal history. Note that in this and in the following two figures we took γ ¼ 0.

FIG. 8. The relic graviton background is illustrated in the case of a dynamical refractive index and assuming a post-inflationary
thermal history that includes a stiff phase with w ¼ 1.

17The chirp amplitude is illustrated in a frequency range
encompassing the mHz and the audio bands. Conversely, the
spectral energy distribution covers all the frequencies from the
aHz up to the MHz band.
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In the right plots of Figs. 7–9 we can appreciate a minor
suppression for frequencies of the order of 0.01 nHz. This
suppression is less visible in the chirp amplitude but it is
evident from the spectral energy distribution. For ν < νbbn,
the slight break in the spectrum is due to the neutrino free
streaming. The neutrinos free stream, after their decou-
pling, and the effective energy-momentum tensor acquires,
to first-order in the amplitude of the plasma fluctuations, an
anisotropic stress. The overall effect of collisionless par-
ticles is a reduction of the spectral energy density of the
relic gravitons. Assuming that the only collisionless species
in the thermal history of the Universe are the neutrinos, the
amount of suppression can be parametrized by the function

F ðRνÞ ¼ 1 − 0.539Rν þ 0.134R2
ν;

Rν ¼
r

rþ 1
; r ¼ 0.681

�
Nν

3

�
; ð4:27Þ

where, as usual, Rν is the fraction of neutrinos in the
radiation plasma; clearly in the concordance model
Rγ þ Rν ¼ 1. In the case Rν ¼ 0 (i.e., in the absence of
collisionless particles) there is no suppression. If, on the
contrary, Rν ≠ 0 the suppression can even reach 1 order of
magnitude. In the case Nν ¼ 3, Rν ¼ 0.405 and the sup-
pression of the spectral energy density is proportional to
F 2ð0.405Þ ¼ 0.645. This suppression due to neutrino free
streaming is thus effective for frequencies larger than νeq and
smaller than νbbn.
Besides neutrino free streaming, there are other two

minor effects taken into account in Figs. 7–9: the damping
effect associated with the (present) dominance of the dark
energy and the suppression due to the variation of the
effective number of relativistic species. In the concordance
scenario, the redshift of Λ dominance [i.e., ðΩΛ=ΩM0Þ1=3]
determines the numerical value of νΛ defined in Eq. (4.7).

The adiabatic damping of the mode function due to the
dominance of the dark energy implies a damping of the
order of ðΩM0=ΩΛÞ2 in the spectral energy distribution.
This suppression competes with a potential increase of the
spectral energy distribution for ν < νλ and going as ðν=νΛÞ−2
[14,68]. Finally, for temperatures much larger than the top
quark mass, all the known species of the minimal standard
model of particle interactions are in local thermal equilib-
rium, then gρ ¼ gs ¼ 106.75. Below T ≃ 175 GeV, the
various species start decoupling, the notion of thermal
equilibrium is replaced by the notion of kinetic equilibrium
and the time evolution of the number of relativistic d.o.f.
effectively changes the evolution of the Hubble rate. In
principle, if a given mode k reenters the Hubble radius at a
temperature Tk the spectral energy density of the relic
gravitons is (kinematically) suppressed by a factor which
can be written as [63,64] ðgρðTkÞ=gρ0ÞðgsðTkÞ=gs0Þ−4=3
where, at the present time, gρ0 ¼ 3.36 and gs0 ¼ 3.90. So,
in the case of the minimal standard model the suppression on
Ωgwðν; τ0Þ will be of the order of 0.38. In popular super-
symmetric extensions of the minimal standard models, gρ
and gs can be as high as, approximately, 230. This will bring
down the figure given above to 0.29.

V. CONCLUDING REMARKS

The evolution of the refractive index during the early
stages of a conventional inflationary phase leads to a spectral
energy distribution naturally tilted towards frequencies and
different post-inflationary thermal histories typically add a
further branch to the cosmic graviton spectrum. Overall the
spectrum may then exhibit up to four different branches
extending between the aHz region and the GHz band.
Assuming, in a minimalistic perspective, that the evolution
of the refractive index terminates before the end of inflation,

FIG. 9. The same analysis of Fig. 8 is repeated in the case w ¼ 2=3 for slightly different values of the parameters to illustrate potential
degeneracies in the parameter space.
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the spectral energy distribution involves a quasiflat plateau
at high frequencies that is supplemented by a spike between
theMHz and theGHz.Depending on the thermal history, the
slopes of the spectral energy distribution are red, blue, and
even violet. After imposing the usual phenomenological
constraints, there are still wide portions of the parameter
spacewhere the resulting signal could be detectable, at least,
in principle, either by terrestrial interferometers (in their
advanced and enhanced configuration) or by space-borne
detectors. In spite of less mundane possibilities leading to
growing spectral energy distributions of relic gravitons, the
present findings demonstrate that blue and violet spectra are
compatible with conventional inflationary scenarios in the
presence of a dynamical refractive index.
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APPENDIX A: DIFFERENT
PARAMETERIZATION OF THE

GRAVITON ACTION

Gravitational waves might acquire a refractive index
when they evolve in curved space-times [30,31] and the
impact of this idea on a quasi–de Sitter stage of expansion
has been explored in [32] where the presence of a (time
dependent) refractive index has been introduced for the first
time. For standard dispersion relations the propagating
speed of the tensor modes of the geometry in natural units
coincides with the inverse of the refractive index [i.e.,
cgwðτÞ ¼ 1=nðτÞ] and the basic action can be written, in a
covariant language, as

SðEÞ ¼ 1

8l2
P

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffi
−ḡðEÞ

p �
ḡμνðEÞ∂μh

ðEÞ
ij ∂νh

ðEÞ
ij

þ
�
1

n2
− 1

�
P̄μν
ðEÞ∂μh

ðEÞ
ij ∂νh

ðEÞ
ij

�
; ðA1Þ

wherelP ¼ ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 1=MP andP
μν
ðEÞ is the spatial projector

tensor orthogonal to uðEÞμ :

P̄μν
ðEÞ ¼ ḡμνðEÞ − ūμðEÞū

ν
ðEÞ; ḡμνðEÞū

ðEÞ
μ ūðEÞν ¼ 1: ðA2Þ

In the case n → 1 the action of Eq. (A1) reproduces the
original Ford and Paker result [3]; in comoving coordinates18

and in a conformally flat metric Eq. (A1) assumes the
following form:

SðEÞ ¼ 1

8l2
P

Z
d3x

Z
dτa2E

�
∂τh

ðEÞ
ij ∂τh

ðEÞ
ij −

1

n2
∂kh

ðEÞ
ij ∂khðEÞij

�
:

ðA3Þ

Equation (A3) coincides exactly with Eq. (2.1) but it is
written here in a way that makes clearly apparent the
frame where it is written. The inverse of the refractive
index multiplies each spatial derivative of the tensor
amplitude [see Eq. (A3)]. This is the parametrization
employed in Refs. [30–32] and it is physically moti-
vated. It is, however, possible to adopt a somehow
contrived viewpoint and to describe the dynamics of the
refractive index with an apparently different action,
namely,

S ¼ 1

8l2
P

Z
d3x

Z
dτa2n2

�
∂τhij∂τhij −

1

n2
∂khij∂khij

�
:

ðA4Þ

To get from Eq. (A3) to Eq. (A4) we need a specific
transformation that leaves unaltered the conformal time
coordinate and the tensor amplitude while the scale
factor is simply rescaled through the refractive index
itself:

aE → a ¼ aE
n
; hðEÞij → hij ¼ hðEÞij : ðA5Þ

This transformation exists and it is nothing but a
conformal rescaling. We shall now specifically discuss
how to pass from Eq. (A3) to (A4). The bottom line of
this discussion is that Eq. (A4) has the same physical
content of Eqs. (2.1) and (A3) but it is written in a
conformally related frame. For instance, the authors of
Ref. [51] claim that their action is different from the one
of Ref. [32] [which coincides with the canonical action
of Eq. (2.1)] just because they write it in a conformally
related frame. This way of proceeding, as we shall
argue, is deliberately confusing and demonstrates that
the results of [51] recycle the analysis of [32] by using a
different frame.

APPENDIX B: GAUGE-INVARIANCE AND
FRAME INVARIANCE

Indeed, Eq. (A5) transforms separately the back-
ground and the tensor inhomogeneities but it is not
difficult to see that it comes directly from a conformal
rescaling that leaves unaltered the tensor fluctuations of
the geometry. To make this point more apparent, let us
verify explicitly that the transformation (A5) is just a
particular case of the following conformal rescaling of
the four-dimensional metric:

gðEÞμν ¼ Ω2Gμν;
ffiffiffiffiffiffiffiffiffiffiffi
−gðEÞ

q
¼ Ω4

ffiffiffiffiffiffiffi
−G

p
; ðB1Þ

18In the case of a conformally flat metric ḡðEÞμν ¼ a2Eημν (where
ημν is the Minkowski metric) we have ū0ðEÞ ¼ 1=a.
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that implies the transformation (A5) on the background
and on the related inhomogeneities.19

The second relation reported in Eq. (A5) is also a general
consequence of the conformal rescaling (B1). While the
proof of this statement is immediate in the case of the tensor
modes, it is useful to present the complete argument since
there are also symmetric implications in the case of the
scalar modes. Neglecting, for simplicity, the vector modes
of the geometry, the fluctuations of the metric in the
Einstein frame are

gðEÞμν ðx⃗; τÞ ¼ ḡðEÞμν ðτÞ þ δtg
ðEÞ
μν ðx⃗; τÞ þ δsg

ðEÞ
μν ðx⃗; τÞ; ðB2Þ

where δtg
ðEÞ
μν and δsg

ðEÞ
μν denote, respectively, the tensor and

the scalar fluctuations of the geometry in the Einstein
frame. In a conformally flat background geometry of THE
Friedmann-Robertson-Walker type, Eq. (B2) becomes

δtg
ðEÞ
ij ¼ −a2EðτÞhðEÞij ; ∂ih

ij
ðEÞ ¼ hiðEÞi ¼ 0; ðB3Þ

δsg
ðEÞ
00 ¼ 2a2EϕE; δsg

ðEÞ
ij ¼ 2a2EðψEδij − ∂i∂jCEÞ;

δsg
ðEÞ
0i ¼ −a2E∂iBE; ðB4Þ

where hðEÞij is the (divergenceless and traceless) tensor
amplitude appearing in Eq. (A1). By definition, the tensor

amplitude hðEÞij is invariant under infinitesimal diffeomor-
phisms while the scalar fluctuations are not.
Let us now consider exactly the same decomposition in

the conformally related frame defined by Eq. (B1); as in the
case of Eq. (B2), the Gμν can be decomposed into a
homogeneous part supplemented by its own tensor inho-
mogeneities:

Gμνðx⃗; τÞ ¼ GμνðτÞ þ δtGμνðx⃗; τÞ þ δsGμνðx⃗; τÞ; ðB5Þ

where this time the explicit form of the tensor and scalar
fluctuations of the four-dimensional metric will be given by

δtGij ¼ −a2hij; ∂ihij ¼ hii ¼ 0; ðB6Þ

δsG00 ¼ 2a2ϕ; δsGij ¼ 2a2ðψδij − ∂i∂jCÞ;
δsG0i ¼ −a2∂iB: ðB7Þ

The tensor amplitude hij defined in Eq. (B6) is gauge
invariant while the scalar fluctuations of Eq. (B7) are not

immediately gauge invariant. To work out the relation
between the fluctuations in the two frames, we can there-
fore start with the tensor modes; from Eq. (B1), recalling
the explicit forms of the tensor fluctuations in the two
frames [i.e., Eqs. (B3) and (B6)] we can write

δtg
ðEÞ
μν ¼ Ω2δtGμν; ḡðEÞμν ¼ Ω2ðτÞḠμν: ðB8Þ

Inserting Eqs. (B3) and (B6) into Eq. (B8) we have, as
anticipated, that

hðEÞij ¼ hij; aEðτÞ ¼ ΩðτÞaðτÞ; ðB9Þ

which coincides with the transformation posited in
Eq. (A5) if and only if Ω ¼ n. It is therefore legitimate
to conclude that if the two backgrounds are conformally
related, the gauge-invariant tensor amplitudes are also the
same in the two frames. In other words the tensor
amplitudes defined as in Eqs. (B3) and (B6) are both
gauge invariant and frame invariant. In the conformally
related frame the action of Eq. (A1) becomes

SðEÞ → S ¼ 1

8l2
P

Z
d4x

� ffiffiffiffiffiffiffi
−Ḡ

p �
ḠμνΩ2∂μhij∂νhij

þ
�
1

n2
− 1

�
Ω2P̄μν∂μhij∂νhij

��
; ðB10Þ

where the projectors and the four-velocities have been
conformally rescaled as

P̄μν
ðEÞ ¼

1

Ω2
P̄μν; P̄μν ¼ Ḡμν − ŪμŪν;

ḠμνŪμŪν ¼ 1; Ūμ ¼
ūμðEÞ
Ω

: ðB11Þ

If we now posit that the conformal factor with the refractive
index itself coincides [i.e., ΩðτÞ ¼ nðτÞ], the action of
Eq. (B11) becomes exactly

S ¼ 1

8l2
P

Z
d3x

Z
dτa2½n2ðτÞ∂τhij∂τhij − ∂khij∂khij�;

ðB12Þ

which coincides with the action anticipated in Eq. (A4). All
in all, the action of Eqs. (A3) and (A4) are one and the same
action since they are simply related by a conformal
rescaling.
It is interesting to mention, as we close the section, the

analog results for the scalar modes of the geometry which
are, however, less central to the discussion of the present
investigation. Indeed, from Eq. (B1) we will have that

δsg
ðEÞ
μν ¼ δsnḠ

ðsÞ
μν þ nδsGμν: ðB13Þ

19From Eq. (B1) the transformation for the background is
immediate and it is given by ḡðEÞμν ¼ Ω2Ḡμν. In the case of a
conformally flat metric of THE Friedmann-Robertson-Walker
type, we have ḡðEÞμν ¼ a2EðτÞημν and this means ḠðEÞ

μν ¼ a2ðτÞημν.
Thus, since aE ¼ Ωa, this transformation coincides exactly with
the first relation of Eq. (A5) provided, as anticipated, Ω≡ n.
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Recalling then the explicit results of Eqs. (B4) and (B7),
Eq. (B13) implies a specific relation between the perturbed
components in the two frames, i.e.,

ϕ¼ϕE−
1

2

�
δsn
n

�
; ψ ¼ψEþ

1

2

�
δsn
n

�
;

C¼CE; B¼BE: ðB14Þ
Equation (B14) implies that, unlike their tensor counter-
parts, the scalar inhomogeneities defined in Eqs. (B4) and
(B7) are neither gauge invariant nor frame invariant. Note,
however, that the curvature perturbations on comoving
orthogonal hypersurfaces are both gauge invariant and
frame invariant. Indeed, in the two frames they are simply
given by

RE ¼ −ψE −
HE

n0
δsn; R ¼ −ψ −

H
n0
δsn: ðB15Þ

Equation (B15) does not imply that RE ≠ R, as it could be
superficially concluded. On the contrary, the mismatch
between ψE and ψ is exactly compensated by the mismatch
between HE and H. In fact, from the relation between
the background scale factors (i.e., aE ¼ an) we have
2ðHE −HÞ ¼ n0=n so that Eq. (B15) implies R ¼ RE.
We therefore have, as anticipated, that the tensor modes of
the geometry discussed in the bulk of the paper and the
curvature perturbations on comoving orthogonal hypersurfa-
ces are both frame invariant and gauge invariant.20

APPENDIX C: GAUGE INVARIANCE AND
FRAME INVARIANCE

After the appearance of Ref. [32] [where the canonical
actionofEq. (2.1) has been suggested] two similar papers [51]
pursued the same idea. The two approaches ultimately
coincide since they are related by a conformal rescaling
involving the refractive index. To get from the description of
Ref. [32] to the one of Ref. [51] it is sufficient to make a
conformal rescaling and to parametrize the propagating speed
or the refractive index as a power of the scale factor. Following
the suggestionofRef. [32], theauthorsofRef. [51] considered
the evolution of the refractive index in an inflating back-
ground. This choice is, however, potentially confusing: since
the two descriptions are related by a conformal rescaling, the
two backgrounds should also be conformally related [70].
This would mean, in practice, that if the background inflates
in the Einstein frame, it might not inflate in the conformally
related frame. However, since the choice of the pivotal frame
where the background inflates is not constrained, the choice
of Ref. [51] is, in a sense, mathematically legitimate but
physically superficial especially in light of the previous
literature. We are therefore in the situation where the two

conformally related actions are simply two complementary
parametrizations of the same effect.
To account for the different (and sometimes unwise)

choices of the present literature, we can define a general-
ized action for the tensor modes encompassing the various
possibilities suggested so far. If we wish to analyze
different conformally related actions in the same frame-
work we can use a trick and write

S¼ 1

8l2
P

Z
d3x

Z
dτa2n2γ

�
∂τhij∂τhij−

1

n2
∂khij∂khij

�
:

ðC1Þ
When γ ¼ 0, Eq. (C1) coincides with the action of
Eq. (A1); conversely if γ ¼ 1 the action (C1) coincides
instead with Eq. (B12). By keeping the value of γ generic
the two parametrizations can be compared in light of the
present and future detectability prospects. Clearly different
values of γ affect the definition of the η time introduced in
Eq. (2.2); more specifically we will still have that nðηÞdη ¼
dτ but, this time, bðηÞ ¼ anγ−1=2 which coincides with
Eq. (2.2) when γ ¼ 0. As a consequence also, Eq. (2.31)
depends on the choice of γ. For instance if γ ¼ 1, Eq. (2.31)
becomes bðxÞ ¼ a

ffiffiffi
n

p
∝ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�xαe−ξx þ 1

p
.

The value of γ also modifies the definition of δ appearing
in Eq. (2.35) and the explicit form of Eq. (2.38). More
specifically we will have that, for a generic γ,

b ¼ anγ−1=2 ¼ b�

�
a
a�

�
δ

; b� ¼ a�n
γ−1=2
� ;

δ ¼ αðγ − 1=2Þ þ 1: ðC2Þ
As a consequence of Eq. (C2) the value of μ appearing in
Eq. (3.6) is modified as μ ¼ ½3þ 2γα − ϵ�=½2ð1þ α − ϵÞ�.
The explicit expressions of the power spectrum PTðk; η�Þ
and of qTðni; Nt; N�; nTÞ of Eqs. (3.9) and (3.13) are then
modified as

PTðk; η�Þ ¼
�
H�
MP

�
2 26−nT

π2
Γ2

�
3 − nT

2

�
n3−nT−2γ�

×

				1þ α

1 − ϵ

				2−nT
�

k
a�H�

�
nT
; ðC3Þ

qTðni; Nt; N�; nTÞ

¼ 26−nT

π2
Γ2

�
3 − nT

2

�
n3−nT−2γi eαN�ð3−2γ−nT Þ−nT ðN�−NtÞ:

ðC4Þ
The values of the spectral indices of Eqs. (3.35) and (3.38)
are also affected by the different values of γ. Their general
expressions are given by

nT¼
ð3−2γÞα−2ϵ

ð1þα−ϵÞ ¼αð3−2γÞ
1þα

þ½−2þαð1−2γÞ�ϵ
ð1þαÞ2 þOðϵ2Þ;

ðC5Þ
20Note that this property has relevant implications in the

context of some specific class of bouncing models such as the
ones proposed in [69].
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sT ¼ 2−
4

3wþ1
þnT ≃2−

4

3wþ1
þαð3−2γÞ

1þα
þOðϵÞ;

ðC6Þ

reproducing the results of Eqs. (3.35) and (3.38) when
γ → 0. When γ ≠ 0 (and, in particular, when γ ¼ 1) the
spectral index determined in the γ ¼ 0 case is just rescaled
by a γ-dependent prefactor that can be reabsorbed in a
redefinition of the spectral index.
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