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1Laboratoire Univers et Théories (LUTh), UMR 8102 CNRS, Observatoire de Paris,
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The growth rate of cosmic structure is a powerful cosmological probe for extracting information on the
gravitational interactions and dark energy. In the late-time Universe, the growth rate becomes nonlinear and
is usually probed by measuring the two-point statistics of galaxy clustering in redshift space up to a limited
scale, retaining the constraint on the linear growth rate f. In this paper, we present an alternative method to
analyze the growth of structure in terms of local densities, i.e., fðΔÞ. Using N-body simulations, we
measure the function of fðΔÞ and show that structure grows faster in high-density regions and slower in
low-density regions. We demonstrate that fðΔÞ can be modeled using a log-normal Monte Carlo random
walk approach, which provides a means to extract cosmological information from fðΔÞ. We discuss
prospects for applying this approach to galaxy surveys.
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The growth rate of cosmic structure contains important
information on the matter-energy content of the Universe
and the gravitational interactions that shape the cosmic
web. A powerful way to extract this information is to use
redshift-space distortions (RSDs) in galaxy clustering
(e.g., Refs. [1–4]), or in the cross-correlation between
clusters/voids and galaxies [5–8]. However, when using
RSDs, among other cosmological probes, we are limited by
the accuracy of our model to reproduce complex patterns in
the galaxy clustering on small scales. Hence, we are often
forced to throw away data in the nonlinear regime in order
to extract unbiased cosmological information—in this case,
the linear growth rate (e.g., Refs. [8–12]). One way to
overcome this issue is to use perturbative approaches to
model the global clustering in the quasinonlinear regime
down to a certain small scale where models break down.
While nonlinear modeling allows us to extract an unbiased
value of the linear growth rate, in principle, two-point
statistics such as the correlation function are sensitive to the
variance of the field. Applying them to a nonlinear field
will not allow us to extract all of the information. This is
because a nonlinear density field is usually non-Gaussian,
and cannot be fully characterized by its variance. One can
use higher-order statistics such as three-point or four-point
correlation functions to regain the information beyond the
variance, but this is currently computationally expensive.

In this study, we propose a different approach to the same
problem: instead of measuring the globally averaged linear
growth rate f at different scales by forward modeling the
nonlinear growth of the matter power spectrum/correlation
function, we accept that the growth of structure depends on
local densities and aim to model this dependency, i.e.,
fðΔÞ, where Δ ¼ ρ

ρ̄ − 1 is the local density contrast. To do
this, we analyze the growth rate using numerical simu-
lations in and around overdense and underdense regions
and show how it can be predicted as a function of local
density and for a given cosmology. This prediction relies on
log-normal Monte Carlo random walks, a method intro-
duced in Ref. [13]. We find that our model is successful in
tracking the evolution of the growth rate in different local
density environments. This, in principle, provides an
independent method to extract cosmological information
from the quasilinear and nonlinear regimes. Our method of
understanding the nonlinear growth is in the same spirit as
modeling the distribution of densities within spheres
[14–16], density split statistics [17,18], the position-
dependence power spectrum [19,20], and the modeling
of the nonlinear aspect of the baryon acoustic oscillations
[21,22]. A more complete study will be presented in a
companion paper.
We perform our analysis using N-body simulations

from the DEUS Consortium. These are described in
Refs. [23–25] and are publicly available. These simulations
are run in a ΛCDM model with the WMAP 5-year
cosmology [26] with (w ¼ −1; Ωm ¼ 0.26; σ8 ¼ 0.79).*ixandra.achitouv@obspm.fr
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They have box lengths of 648 h−1 Mpc with 10243 par-
ticles. They are generated using the RAMSES code [27];
halos are found using a friend-of-friends finder with link
length b ¼ 0.2, [28] and cover a range of masses
M ∼ ½1012–1015� h−1M⊙.
We first identify regions of different density contrast

ΔðRÞ (i.e., environment) in the simulations, where R
is the radius of the region. We follow the method
presented in Ref. [13] to identify low-density regions,
i.e., voids. This algorithm imposes density thresholds
at the radius of our choice, therefore allowing the flexibility
to represent a large variety of void profiles. Here we
choose Rv ¼ 20 h−1Mpc (motivated by the resolution of
the simulation) and the same criteria for the voids as those
used in Refs. [8,12,13]: δðR1Þ < −0.9, δðR2Þ < −0.7, and
δðRv ¼ Rv þ dRÞ > δðRvÞ, where R1 ¼ 1.5 h−1Mpc,
R2 ¼ 3 h−1Mpc, and δ is the density contrast of the halo
field at R; see Ref. [13] for more details. Note that the
choice of the criteria for the voids is not important for the
outcome of this analysis as long as they are able to sample a
wide range of Δ, covering Δ ∼ −1. This also applies to our
selection for overdense regions.
We run this void finder on the halo catalog and find∼2300

void centers. We measure the dark matter density profiles
around our selected void centers to avoid complications due
to the halo bias.We select the overdense regions by randomly
sampling positions of dark matter particles belonging to
halos above the mass resolution at z ¼ 0, until we reach the
same number of overdensities as the number of voids, to
make sure that these two samples have similar noise
properties. Keeping the same comoving coordinates for
the under-/overdense regions fixed (identified from
z ¼ 0), we measure the evolution of the density profiles at
redshifts z ¼ f0.00; 0.05; 0.11; 0.67; 1.50g (corresponding to
scale factors a¼f1.00;0.95;0.90;0.60;0.40g, respectively).
In Fig. 1 we show the mean matter density profiles of

these over-/underdense patches (dots) at different redshifts.
From these profiles we measure numerically the growth
rate within the radius R at a ¼ 0.95 using three consecutive
snapshots at a ¼ f1.00; 0.95; 0.90g by computing

fðRÞ≡ d lnΔðRÞ
d ln a

; ð1Þ

where ΔðRÞ is the cumulative density contrast. The
comoving coordinates of the centers of our under-/over-
dense regions are kept unchanged at different epochs.
The resulting growth rates are shown in Fig. 2 by the

black data points. We bin the f values according to their
local density Δ to show the values of fσ8 as a function of
the local density, where σ8 ¼ 0.79 is a constant. Note that
the density contrasts of different scales Rmay end up in the
same bin of Δ. In this sense, the behavior of fðΔÞ is no
longer an explicit function of the scale R, but rather
depends solely on the local density Δ, which could be

FIG. 1. Cumulative matter density profiles around overdense
(red) and underdense (blue) regions, measured from ΛCDM N-
body simulations at different redshifts indicated by the legend.

FIG. 2. Growth rate parameterfσ8 measured in a range of regions
characterized by their density contrasts Δ from a ΛCDM N-body
simulation (dots with black errors). The blue error bars correspond
to the expectation of the statistical errors for the upcoming TAIPAN
survey covering a volume of 1.3 ðh−1 GpcÞ3 [29]. The errors are
expected to shrink by another factor of∼4 and∼6 for theDESILRG
and ELG surveys, respectively [30]. The red curve shows ourmodel
prediction from the log-normal MCRW approach. The horizontal
dashed line shows the linear expectation. The vertical dashed line
indicates the mean density of the Universe.
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contributed by perturbations of different scales. The error
bars correspond to the standard deviation computed from
the mean measurements of 64 subcubes of length
162 h−1 Mpc. The horizontal dashed line corresponds to
the linear growth rate. Although Eq. (1) has a logarithmic
divergence for Δ → 0, we can see how the growth rate
varies compared to the linear one, indicated by the
horizontal dashed line in Fig. 2. The growth of structure
slows down in low-density regions and speeds up in high-
density regions. While fðRÞ is expected to reach a linear
value on large scales, the growth rate in terms of Δ only
crosses the linear value when jΔj is small. It is therefore
important to go beyond a single value of the linear f by
modeling the whole spectrum of fðΔÞ to effectively extract
cosmological information.
In general, we expect the overall averaged growth rate on

small scales to be higher than in linear theory. This is
because the amplitudes of the late-time matter power
spectrum/correlation function tend to be higher than the
linear version on small scales. These higher amplitudes
must arise from a higher growth rate. This suggests that the
larger/smaller growth rate in over-/underdense regions seen
in Fig. 2 does not exactly cancel out for the global average
on these scales. In fact, the matter power spectrum/
correlation function on small scales is dominated by
high-density regions. Therefore, the branch of the curve
with Δ > 0 shown in Fig. 2 contributes more to the global
average growth rate than the Δ < 0 branch does. This is
also consistent with the general trend of the inferred value
of the growth rate from redshift-space distortions (e.g.,
Refs. [8–10]). The models used to analyze the redshift-
space distortion measurements are considered within a
fitting range that excludes the small-scale clustering. For
instance, in Ref. [9] the authors inferred a linear growth rate
using galaxy-galaxy redshift-space distortions with a cut-
ting scale along the line of sight > 10 h−1Mpc.
While the small-scale information with the expected

higher growth rate is usually disregarded due to the
limitations of models, the main idea of our study is to
provide a description for the growth rate on these nonlinear
scales. To develop this model, we could try to reproduce the
density profiles shown in Fig. 1, for instance, by using the
well-known Zel’dovich approximation [31], which links
the initial density profiles ΔðainiÞ to a later-time ΔðaÞ
assuming no shell crossing and mass conservation (e.g.,
Ref. [32]). These approximations as well as the spherical
evolution (e.g., Refs. [33,34]) have been investigated in the
literature, and recently the authors of Ref. [32] found that
both Zel’dovich and spherical evolution lead to a similar
evolution of an initially spherical density perturbation,
which is in very good agreement with N-body simulations
in some special cases [e.g., voids that are compensated,
ΔðR ¼ RvÞ > 0, where Rv is the radius of a void].
However, these two methods that describe the nonlinear
evolution have one main disadvantage: they require as an

input the initial density perturbationΔðR; ainiÞ. Because the
evolution of this initial density profile becomes nonlinear at
late times, a small modification in the initial input can lead
to very different predictions of ΔðR; a ¼ 1Þ. This makes it
very difficult, from an observational point of view, to
precisely probe the initial densities and connect them to
cosmologies, although recent developments have been
made through probing projected void density profiles
(e.g., Ref. [18]).
In this study, we adopt an approach that has the

advantage of not requiring the initial conditions of density
profiles. Instead of modeling the global nonlinear evolution
of densities in terms of scales as done in perturbation
theories, we generalize the nonlinear evolution of the
growth rate f as a function of the local density, which is
equivalent to having a model for fðΔÞ, where ΔðRÞ is the
value of the density contrast within the radius R. Our
approach is referred to as log-normal Monte Carlo random
walks (MCRWs) and was developed in Ref. [13]. It relies
on the empirical observation that the late-time probability
density function (PDF) of the galaxies (and, hence, the dark
matter density fluctuations) is well described by a log-
normal PDF (e.g., Refs. [35–37]). This has been confirmed
by several studies using N-body simulations (e.g.,
Refs. [37–39]) even in the highly nonlinear regime (down
to R ∼ 2 h−1Mpc for ΛCDM [40]). Using this log-normal
(LN) assumption, we have generated a set of log-normal
Monte Carlo random walks [13]. These walks are ensem-
bles of density contrast vectors ΔLNðRÞ that are numeri-
cally generated from a log-normal distribution, and aim to
describe the density contrasts around random positions in
the late-time Universe. The starting point of this method
uses the framework of excursion set theory [41]: for
Gaussian initial density perturbations, the evolution of
the density contrast, smoothed on a scale R and at a
random position (e.g., x ¼ 0), is

∂ΔðR;x ¼ 0Þ
∂R ¼

Z
d3k
2π3

δ̃k
∂W̃ðk; RÞ

∂R ; ð2Þ

where δ̃k and W̃ðk; RÞ are the Fourier transforms of the
density fluctuation, and the filter function (top-hat in real
space), respectively. For Gaussian initial conditions, δ̃k
satisfies hδ̃kδ̃k0i≡ δDðk − k0ÞPlinðkÞ, where PlinðkÞ is the
linear matter power spectrum. For each initial realization of
the density fluctuations δ̃k, the stochastic differential Eq. (2)
can be solved numerically assuming that ΔðR → ∞Þ ¼ 0
(e.g., Ref. [41]). Hence, we have a discrete set of
values fΔðR1Þ;ΔðR2Þ; ::ΔðRNÞg at each smoothing scale
fR1; R2;…RNg that is by definition one random walk.
Repeating this process for a large number of initial density
fluctuations allows us to generateGaussian randomwalks. In
order to describe the later-time nonlinear density fluctuation,
we follow Ref. [13] and take the log-normal transformation
of each Gaussian random walk using
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ΔLN þ 1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2NLðRÞ

p

× exp

�
Δ

σlinðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ σ2NLðRÞÞ

q �
; ð3Þ

with

σ2linðRÞ≡ 1

2π2

Z
PlinðkÞW̃2ðk; RÞk2dk; ð4aÞ

σ2NLðRÞ≡ 1

2π2

Z
PNLðkÞW̃2ðk; RÞk2dk; ð4bÞ

where PNL is the nonlinear power spectrum. Hence, to
generate these random walks, we need estimates of both
Plin and PNL, which we obtain using CAMB [42] with the
fiducial cosmology of the DEUS N-body simulations
(ΛCDM).
To compare the nonlinear growth rate obtained from the

MCRWs with the one obtained from N-body simulations,
we proceed as follows. We start by generating, at a ¼ 1,
100 000 log-normal random walks that have “physical”
properties: for the overdense regions we require thatΔLN >
Δ for ΔLN > 0 and for the underdense regions if ΔLN < 0
then Δ < 0. To obtain the profiles at higher redshift, we do
not recompute all of the walks at different redshifts, but
rather we keep the values of all of the linear trajectories at
a ¼ 1, Δiða ¼ 1Þ, where i is the label of one selected
random walk. We can therefore directly compute ΔiðaÞ ¼
Δiða ¼ 1ÞDþðaÞ=Dþða ¼ 1Þ [where DþðaÞ is the linear
growth factor at a] and hence Δi

LNðaÞ using Eq. (3). From
these profiles we compute the growth rate parameter f
using Eq. (1) and bin the f values according to Δ, as we did
for the simulation. Figure 2 shows the comparison of fðΔÞ
between the model and the simulation. Remarkably, even if
the MCRW density profiles are not required to match those
measured in the N-body simulation, the evolution of the
nonlinear growth rates as a function of the local density
matches well between the model and simulations. Note that
due to the logarithmic divergence of Eq. (1), the values of
fðΔÞ cannot connect smoothly at Δ ¼ 0. The good agree-
ment between our prediction and the N-body simulation
measurement suggests that it is possible to extract cosmo-
logical information from these nonlinear regions.
This is a key result that shows how the nonlinear growth

rate can be described by its local density. One can again
draw an analogy with the island universe picture, where
each region has its own growth rate depending on the mean
density of the island. However, when the size of the island
is small, the coupling between small and large modes
becomes complex. Hence, the log-normal Monte Carlo
random walks offer an alternative way to model the
environmental growth rate to extract cosmological infor-
mation from these nonlinear regions. Alternative methods
such as those in Refs. [14–16], including the separated

universe approach [19,43], may also be helpful in improv-
ing the accuracy for the model prediction.
To summarize, we have proposed an alternative approach

to extract cosmological information from the nonlinear
regime. Instead of modeling “out” the nonlinear evolution
of the growth rate down to a certain scale in the two-point
correlation function or power spectrum, in order to recover
the linear growth rate, we generalized f in terms of local
densities. This allowed us to map the entire spectrum of the
growth rate to its underlying cosmology. We have also
shown as a proof of concept that the log-normal
Monte Carlo random walk approach [13] describes the
function of fðΔÞ reasonably well. This in principle will
allow us to extract cosmological information from mea-
surements of fðΔÞ.
Furthermore, because our approach goes beyondGaussian

statistics (as conventional RSD analysis uses two-point
statistics), we may expect to recover more information.
We expect our approach to be particularly useful for testing
theories of gravity that predict a nonstandard environmental
dependence for structure growth. For example, in the FðRÞ
model, due to the chameleon screening mechanism, the
strength of gravity is different for different local densities
[44,45]. This may alter structure formation in an environ-
ment-dependent manner, which may be better captured by
measuring fðΔÞ. Finally, the fact that the growth rate is
lower/higher invoids/clusters than its linear version indicates
that one needs to employ nonlinear modeling in these low-/
high-density regions (e.g., Refs. [6,10–13,46]) in order to
have unbiased results.
The next question to ask is how to implement our method

when analyzing data from galaxy surveys. The key is to be
able to measure fðΔÞ from data. We outline two possible
approaches to do this. First, with the combination of a galaxy
redshift survey and a lensing survey, one can use the redshift
survey data to define patches of over-/underdense regions in
terms of galaxy number densities Δg with a top-hat smooth-
ing window. We then cross correlate these top-hat regions of
different Δg with the lensing survey to measure their
corresponding matter densities Δ and, importantly, at differ-
ent tomographic bins.This is similar tomeasuring the lensing
signal around galaxies (i.e., galaxy-galaxy lensing) except
that galaxies will be replaced by top-hat regions. This will
allowus to compute the numerical timederivatives ofΔ’s and
measurefðΔÞ usingEq. (1). The recentwork ofRefs. [17,18]
has demonstrated the feasibility of this approach, where the
matter densities of two-dimensional projected Δg’s were
measured using the DES survey. A challenge for this method
is the requirement of having a three-dimensional galaxy
redshift survey overlapping with the lensing survey of
sufficient depth, which is necessary for defining Δg at
different tomographic bins.
Second—similarly to the first approach but now with

only a galaxy redshift survey—one can split the galaxy
density field into top-hat regions of differentΔg’s. Different
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regions would be cross correlated with the entire galaxy
sample, and a RSD analysis would be performed for these
Δg-galaxy correlation functions. The Δg-galaxy correlation
is a generalized version of void-galaxy or cluster-galaxy
correlations, and the latter have been demonstrated to be
able to constrain the linear growth rate [5–8,10,11] with the
knowledge of galaxy bias. Keeping the separated universe
analogy [19], using a simple multipole decomposition and
taking their ratios for those cross-correlation functions
should allow us to estimate the nonlinear growth rates
around those patches. One challenge for this method is the
accuracy of the bias model, which is likely to be nonlinear.
Also, the possible complex environmental dependence for
the properties of galaxies may affect the selection of
galaxies and their biases in a nontrivial way [47,48]. We

will investigate the implementation of our method in
simulations and observations in more detail in future work.
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