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We develop a cosmological model based on action-dependent Lagrangian theories. The main feature
here is the nonconservation of the energy momentum tensor due to the nontrivial geometrical construction
of the theory. We provide the basic set of equations necessary to study both the cosmological background
expansion as well as the linear matter perturbation growth. We show that the simplest realization of the
Universe as described by only one component is not viable as expected from the existing correspondence
between this model and the case of viscous cosmological fluids. However, modeling the energy content of
the Universe as composed by two pressureless fluids, i.e., one a typical cold dark matter fluid and the other
a pressureless “dark energy” fluid which is responsible for driving the late-time acceleration expansion, is
qualitatively compatible with observational data.
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I. INTRODUCTION

The real world is pervaded by all sorts of dissipative
processes; what imposes a suitable description of these
phenomena on any consistent physical process is its
respective scope. Nonetheless, this issue is usually left
outside the standard variational formulations. In the
classical mechanics context, one usually approaches it
by using the so-called Rayleigh dissipation function, which
is a useful tool to deal with dissipative forces with linear
dependence in the velocity [1–3]. Although this method
provides a quite handy procedure for the description of
such friction forces, the Rayleigh’s function method pos-
sesses clear limitations. For instance, it fails in addressing a
broader class of dissipating cases existing in nature with
more general dependencies upon the velocity and the
history of the system. Besides, this function arises as a
correction in the Euler-Lagrange equation which does not
affect at all the underlying variational formalism. In fact, it
was demonstrated in [4] that the Rayleigh’s function is

prohibited from emerging from a variational principle,
unless the dissipative coefficient is not a constant anymore.
These limitations are significant and point towards the
search for possible extensions.
Many attempts at incorporating dissipation effects into

the traditional principle of least action were made over
the last century. They basically rely on the use of
time-dependent Lagrangians [5], auxiliary coordinates
that describe the reverse-time system [6], or a fractional
derivatives formalism [7,8]. However, these proposals face
serious conceptual (or operational) obstacles which can
undermine them as feasible alternatives, as they can
either plague the theory with nonphysical Lagrangians or
give rise to nonlocal differential operators, whose imple-
mentation introduces an undesirable complexity to the
study of some problems.
Another noteworthy alternative dates back to the

1930s, where G. Herglotz presented an elegant variational
treatment to this issue by assuming action-dependent
Lagrangians in the context of classical mechanics. In his
approach, Herglotz was indeed successful in describing the
class of dissipative systems whose motion is damped by a
friction force, characterized by the aforementioned term
proportional to velocity [9]. Most important, the Herglotz
variational formulation is free from the conceptual and
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practical obstacles found in the other approaches. In recent
works, one of us, in partnership with some colleagues,
extended the original Herglotz formalism to a covariant
language [10,11]. As it was shown in the work [10], such a
covariant generalization laid the cornerstone for the con-
struction of a new theory of gravity in which dissipative
effects would be a natural consequence, coming from first
principles and having a purely geometric origin. In this
vein, the authors derived explicitly, from a generalized
action, the modified field equations of the theory.
Additionally, they showed that the dynamics of the model
shall include a nonstandard conservation law for the
energy-momentum tensor as a consequence of the breaking
of diffeomorphism resulting from the incorporation of
dissipative processes into the description of the gravity.
Some possible effects of this theory of gravity on the
cosmological environment were explored by us in a further
work [12]. There we verified an analogy of the background
dynamics arising in this model with that one of a bulk
viscous cosmology in the Eckart formalism. This feature
provided us an immediate mapping between the coefficient
of bulk viscosity with the coupling parameter encoding the
modification of gravity. We also addressed the evolution of
matter perturbations at the linear level, which allowed us to
glimpse a possible way out to avoid some drawbacks faced
by the viscous model, perhaps leading to the reconcilement
of the obtained pattern of perturbations growth with the
expected background dynamics.
In this work, we deepen our previous study on the

cosmological aspects of the action-dependent gravity by
investigating its viability in light of some important obser-
vational data. As a first step, we consider a model endowed
with a single matter fluid whose conservation departs from
the usual one due to the geometriclike dissipative effects
induced by thismodified gravity.Due to the inviability of the
single component model shown below, we model in Sec. III
a cosmological model in which there are two pressureless
components. One of them remains obeying the conservation
equation while the second couples to the nontrivial geo-
metrical construction of the action-dependent Lagrangian
theory and therefore yields to an accelerated expansion. We
investigate the viability of this model and then present our
conclusion in Sec. IV.

II. THEORY

The so-called Herglotz problem, originally built within
classical mechanics scenario, consists in generalizing the
action principle by introducing in the Lagrangian an action-
dependence as follows

S ¼
Z

Lðx; _x; SÞdt: ð1Þ

In his work he demonstrated that such a formulation
showed up as a successful way to describe dissipative

phenomena from first principles. A covariant generalization
of this problem provides a theory of gravity recently found
by Lazo et al. [10] in which

L ¼ ffiffiffiffiffiffi
−g

p ðR − λμsμÞ þ Lm ð2Þ

where sμ is an action-density field and λμ is a coupling term
which may depend on the spacetime coordinate. According
to the Lazo et al. approach, this action-dependence intro-
duced in (2) through sμ is only with respect to the standard
Einstein-Hilbert action, not to the matter action. As such,
the modification of gravity provided by this theory is of a
purely geometric nature. This approach leads to a geo-
metrical viscous gravity model in which the dynamics of
this theory is described by the generalized field equations

Rμ
ν −

1

2
Rδμν þ Kμ

ν −
1

2
Kδμν ¼ 8πG

c4
Tμ
ν ð3Þ

along with the modified conservation law

8πG
c4

Tμ
ν;μ ¼ Kμ

ν;μ −
1

2
K;ν; ð4Þ

where the semicolon symbol denotes covariant derivatives.
The departure from GR is clearly encoded in the quantity
Kμν given by

Kμν ¼ λαΓα
μν −

1

2
ðλμΓα

να þ λνΓα
μαÞ; ð5Þ

where λμ plays the role of a cosmological four-vector
necessary in this nonconservative structure. Henceforth, we
work in the units c ¼ 1 and 8πG ¼ 1.
For the purposes of our study, we are going to use the

conformal Newtonian gauge, whose metric is given by

ds2 ¼ aðηÞ2½−ð1þ 2ΦÞdη2 þ ð1 − 2ΨÞδijdxidxj�: ð6Þ

Since in (6) the time evolution is parametrized by the
conformal time, the four vector shall be rewritten as
λμ → λ̃μ, where

λ̃μ ¼ ðaλ0; 0⃗Þ: ð7Þ

This nonconservative theory is sourced by the energy
momentum of a perfect fluid

Tμ
ν ¼ ðρþ pÞuμuν þ pδμν ; ð8Þ

where the four-velocity obeys the constraint uμuμ ¼ −1.
Solving Kμ

ν for the metric (6), one finds the following
components,

K0
0 ¼

3Hλ0
a

−
3λ0
a

Ψ0 −
6λ0H
a

Φ; ð9Þ
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Ki
j ¼

λ0
a
½H − 2HΦ −Ψ0�δij; ð10Þ

Ki
0 ¼

2λ0
a

ð∂jΦÞδij; ð11Þ

K0
i ¼ −

2λ0
a

ð∂iΦÞ; ð12Þ

K ¼ 6H
a

λ0 −
12λ0H

a
Φ −

6λ0Ψ0

a
; ð13Þ

where H ¼ a0=a and the prime symbol means derivative
with respect to the conformal time. Aiming at analyzing
separately the both regimes, let us now extract from the
above equations both the background and the perturbative
contributions.

A. Cosmological background

Let us begin by considering a universe with one
single matter fluid, whose background expansion is fully
described by the equations below

H2 ¼ a2ρ
3

; ð14Þ

2H0 þH2 þ 2aHλ0 ¼ −a2p; ð15Þ

ρ0 þ 3H
�
ρþ pþ 2λ0H

a

�
¼ 0: ð16Þ

It is worth noting that at the background expansion level
the modifications induced by the tensor Kμν is equivalent to
the usual GR description sourced by a fluid with effective
pressure

peff ¼ pþ 2λ0H
a

; ð17Þ

which resembles the same structure as a bulk viscous fluid
pressure. This means that regarding λ0 < 0 accelerated
expansion is potentially achieved.
Since we are focusing on the late-time aspects of the

Universe, let us neglect the radiation contribution to the
cosmological expansion. We assume a universe purely
dominated by a dark matter endowed with a pressure p
and an energy density ρm which relates each other by means
of an equation of state parameter given by w≡ p=ρm. In the
case of a one-fluid approach, i.e., (H≡HðρmÞ), it is worth
noting that the modified continuity equation (16) admits an
analytical expression for the matter density evolution
leading to

H
H0

¼ −
2λ0

3H0ð1þ wÞaþ
�
1þ 2λ0

3H0ð1þ wÞ
�
a−ð5þ3wÞ=2:

ð18Þ

From this equation, we can calculate the deceleration
parameter. Its current value is

q0 ¼ −
�
1 −

3ð1þ wÞ
2

−
λ0
H0

�
: ð19Þ

From the above expression, the current phase of accelerated
expansion is achieved only if λ0=H0 < −ð0.5þ 1.5wÞ.
Considering that, throughout this work, we shall always
stick to the cases when w is very close to zero (w ∼ 10−7 at
most), it is reasonable to set λ0=H0 ≲ −0.5 as the upper
bound to be respected by the main parameter of the model.
From now on, whenever we refer to today’s Hubble factor,
we shall use H0 (i.e., defined in terms of the cosmic time)
instead of H0. The main reason is a more clear physical
meaning which is present in the former when comparing
with the latter. However, notice that the results we have
obtained in the upcoming sections are not spoiled by this
choice since H0 ¼ H0.

B. Cosmological perturbations

We can compute now the components of the field
equations. Considering absence of shear we are led to
fix Ψ ¼ Φ. Taking this assumption into account we can
write the relevant ones for our study, namely the (0 − 0) and
(i − j), given by

∇2Ψ − 3HΨ0 − 3H2Ψ ¼ δρ=2; ð20Þ

and

Ψ00 þ ð3Hþ aλ0ÞΨ0 þ ð2H0 þH2 þ 2aHλ0ÞΨ ¼ a2δp
2

;

ð21Þ

respectively. Here we have set 8πG
c4 ¼ 1. Our strategy is to

solve numerically Eq. (21) for the potential Ψ and use its
solution in Eq. (20) to obtain the growth of matter
perturbations δ≡ δρ=ρ. Contrary to the bulk viscous
cosmology, the λ0 contributions do not add scale-dependent
terms to the linear dynamics.
An alternative procedure is to manipulate the con-

servation law (4). The only nontrivial equations emerging
from it are the first-order continuity and Euler equations,
namely

ðδρÞ0 þ ρð1þ wÞθ þ 3Hδρð1þ c2sÞ − 3Ψ0ρð1þ wÞ

¼ 12λ0
a

ðHΨ0 þH2ΨÞ − 2λ0
a

∇2Ψ ð22Þ

and

ρð1þ wÞθ0 þ ρ0ð1þ wÞθ þ c2s∇2ðδρÞ þ 4Hρð1þ wÞθ
þ ρð1þ wÞ∇2Ψ ¼ −4λ0H∇2Ψ; ð23Þ
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with θ≡ ∂iv, vi ¼ vi ≡ v and c2s ≡ δp=δρ defines the
sound speed. In the equations above we can use the
background continuity equation (22) to get rid of the ρ0
terms. Besides, it is convenient to study the system in the
quasi-static regime for which the spatial derivatives domi-
nate over the temporal ones. Considering such a hypoth-
esis, we can combine (16) and (23), and take the time
derivative of the resulting expression to describe the
behavior of the linear density perturbations by means of
the single second-order differential equation below:

δ00 þ ½H − 3λ0a − 3Hð2w − c2sÞ�δ0

−
�
3H2

2
½1þ wþ ð1 − 3wÞðw − c2sÞ� − 3aλ0Hðw − c2sÞ

− 9Hw½λ0aþHðw − c2sÞ� þ 4λ0aH
�
1þ 3

2
c2s

�

− 2ðλ0aÞ2
�
δ − c2s∇2δ ¼ 0: ð24Þ

The above equation has to be solved numerically in order to
assess the evolution of the density contrast and conse-
quently the growth function according to

DðaÞ ¼ δðaÞ
δða0Þ

→ fðaÞ≡ d lnDðaÞ
d ln a

: ð25Þ

Today’s scale factor is set to unity, a0 ¼ 1. The variance
of the density field smoothed on 8h−1 Mpc scales varies in
time linearly with the normalized growth such that
σ28ðaÞ ¼ σ28ða0ÞDðaÞ. We assume for this value of the
variance of the density field at a0 the value σ28ða0Þ ¼ 0.8,
which is consistent with current observations.
In Fig. 1, we present results for the fσ8 observable using

the model with expansion rate (18) with perturbations given
by (24). Observational data presented in all figures is the
GOLD RSD sample compiled Ref. [13]. The solid black
line represents the standard flat ΛCDM model. The dashed
black line corresponds to the Einstein–de Sitter cosmo-
logical model which is the same as adopting λ0 ¼ 0. In the

FIG. 1. The evolution of fσ8 as a function of the redshift. The solid black line represents the standard ΛCDM model and the dashed
black line the Einstein–de Sitter model. Dotted (dashed) red line is plotted for the nonconservative model with λ0 ¼ −0.3H0

(λ0 ¼ −0.5H0). Accelerating cosmologies occurs only for λ0 < −0.5H0.
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left-top panel of Fig. 1, we assume the Universe is filled
with pressureless matter (w ¼ 0). The dotted red line λ0 ¼
−0.3H0 seems to a reasonable fit to the data. However, at
the background level this value does not provide an
accelerated expansion. According to Eq. (19), accelerating
cosmologies are reached only if λ0 < −0.5H0. Such values
(see the dashed red line), on the other hand, clearly do not
lead to acceptable data fitting.
One can wonder whether the equation of state parameter

of the matter fluid is able to modify this picture. As shown
in the remaining panels of Fig. 1, where we have adopted
w ≠ 0 values. This parameter impacts the evolution of the
matter perturbations since it is proportional to the speed of
sound of the fluid. As seen in Fig. 1, values of order
w ∼ 10−7 impact the growth function, but they lead to no
significant changes to the background. Therefore, the
parameter w is not able to heal this pathological behavior.
This fact reveals another similarity of this model with the

case of a unified bulk viscous model in which the set of
available model parameter space that fits the background
expansion is not in agreement with first-order observables
like the matter power spectrum or the CMB data [14,15].

III. PRESSURELESS DARK ENERGY MODEL

In the above section, we have realized that a one-fluid
description of the cosmic substratum does not represent a
viable model in the present nonconservative scenario. Then
we propose now a new strategy considering a two-fluid
model where the matter sector is decomposed into two
pressureless components as follows

Tμν → Tμν
m þ Tμν

x : ð26Þ

The component Tμν
m is conserved as usual, whereas the

remaining component, denoted by Tμν
x , obeys the modified

conservation law (4). At some extent this decomposition
can be interpreted as the dark sector of the Universe being

composed by two types of pressureless dark matter.
However, one of them couples to the geometrical sector
via the nonconservation appearing in the theory described
above. At first sight, this model does not possess any
special advantage with respect to the standard ΛCDM, as it
is also endowed with two dark fluids of an unknown nature.
However, notice that contrary to the standard cosmology,
the present model carries a dark energy component obeying
a dust equation of state instead of a vacuum one. This
feature makes such a model “less exotic” than ΛCDM,
since it does not lead to the violation of any energy
conditions and also allows for the avoidance of the so-
called discrepancy between observed and the theoretically
predicted results for the vacuum energy density. The
assumptions above imply in

ρ0m þ 3Hρm ¼ 0; ð27Þ
and

ρ0x þ 3H
�
ρx þ

2λ0H
a

�
þ ρ0m þ 3Hρm ¼ 0: ð28Þ

Since we have adopted the usual conservation of the
matter component (27) then

ρ0x þ 3H
�
ρx þ

2λ0H
a

�
¼ 0 ð29Þ

The expansion rate now also depends on ρm

H2 ¼ a2

3
ðρm þ ρxÞ: ð30Þ

Therefore, equation (29) does not admit trivial analytical
solution. Rather, we obtain the evolution of ρx by inserting
(30) into (29).
The background expansion rate and the deceleration

parameter for the double dark matter model are plotted in
Fig. 2. It is worth noting that fitting provided by the λ0

FIG. 2. Evolution of background quantities for the two-component model.
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values shown is reasonably consistent with the HðzÞ data
obtained from Ref. [16].
Rather than performing a full statistical analysis to

determine the best-fit parameter our aim now is to show
that admissible values of the λ0 at the background level can
also lead to good fit of the perturbed quantities. In order to
analyze this issue, we calculate the scalar density perturba-
tions of the conserved fluid (m) which obey to the equation

δ00m þHδ0m −∇2Ψ ¼ 0: ð31Þ

The gravitational potential Ψ drives the evolution of matter
fluctuations δm. Our strategynow is to solve equation (21) for
the case δp ¼ 0 since we have assumed both fluids are
pressureless.Weobtain then the evolution forΨwhich can be
inserted into (31). Finally, Eq. (31) is ready to be solved for
the matter density contrast δm.
Figure 3 shows the fσ8 observable corresponding to the

same λ0 values used in Fig. 2. Now, parameter values in the
interval −0.9H0 < λ0 < −0.7H0 seem to yield to a viable
description of available data. Indeed, only a full statistical
analysis would provide the best fit parameters and indicate
whether or not this model can be competitive to the ΛCDM
model, but this is beyond the proposal of this work.

IV. CONCLUSIONS

In this work, we have explored the cosmological conse-
quences of the idea of action-dependent Lagrangians.
Although this idea relies in the realm of nonstandard
approaches for covariant theories of gravity, it has been
deeply analyzed in the recent literature.
By constructing the cosmological solutions of a FLRW

expansion and the scalar perturbations around it we have
demonstrated in this work what kind of cosmologies appear
in this scenario.
In particular, by sourcing the resulting field equations

with a single fluid, which due to the intrinsic features of the
theory does not obey the usual conservation law, it is worth
noting that the effective dynamics resembles that one of a
bulk viscous fluid. As widely explored in the literature and
also shown here in Sec. II such proposal of a single
component driven the FLRW expansion does not provide
a viable description of observational data.
In Sec. III, we introduced the strategy of splitting the

total energy momentum tensor into two pressureless
components. One of then does not couple to the geometric
sector of the theory while the other one does. The former
behaves therefore as a typical cold dark matter fluid while
the latter plays the role of an effective dark energy fluid
yielding to a consistent accelerated expansion at late times.
From the astroparticle point of view our viable model can
be composed by two distinct dark matter-like particles.
Also, by analyzing the growth of scalar perturbations in
such double pressureless components we find a reasonable
agreement with available data.
Our main goal in this work was to set up the a viable

cosmological model composed by two pressureless fluids,
one of them coupled to the geometrical sector via the
features imposed by the action-dependent Lagrangian
formalism. Though we have provided here only the
qualitative aspects of the model but demonstrated its
viability, we hope that a full statistical analysis with an
enlarged set of observational data will provide the best fit
parameters of this model. We hope to present these results
in a future work.
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