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We investigate the ability of ground-based gravitational-wave observatories to detect gravitational-wave
lensing events caused by stellar mass lenses. We show that LIGO and Virgo possess the sensitivities
required to detect lenses with masses as small as ∼30 M⊙ provided that the gravitational wave is observed
with a signal-to-noise ratio of ∼30. Third-generation observatories will allow detection of gravitational-
wave lenses with masses of ∼1 M⊙. Finally, we discuss the possibility of lensing by multiple stars, as is the
case if the gravitational radiation is passing through a galactic nucleus or a dense star cluster.

DOI: 10.1103/PhysRevD.98.103022

I. INTRODUCTION

The recent Laser Interferometer Gravitation-Wave
Observatory (LIGO) discoveries of gravitational waves
(GWs) from black hole binaries [1–5] opened a new
frontier for the study of astrophysical objects using gravi-
tational radiation. Much like electromagnetic (EM) radia-
tion in classical astrophysics, gravitational radiation can be
lensed by massive objects. Lensing of gravitational radi-
ation in linearized general relativity can be computed with
the same techniques as those employed in the familiar
lensing of EM waves.
Much of the previous literature on gravitational lensing

of GWs focused on lensing in the geometric optics limit
[6,7], where the wavelength of gravitational waves is small
compared to the spatial scale of the lenses, and ray optics is
sufficient. The lenses responsible for much of the optical
depth in this regime are galaxies, which split the gravita-
tional-wave signal into copies separated by a time delay of
order a few months.
The stellar lensing events that are considered in this work

preempt these strong gravitational lensing by the lens host
galaxy. As a beam of gravitational radiation passes through
the galaxy, it will first be split into two beams due to it being
strongly lensed by the galactic potential. Each of these beams
can then be lensed by stars in the galaxy. Because the time
delay between the arrival of the two beams is 10–100 days for
third-generation (3G) gravitational-wave observatories and
≲1 day for LIGO [8], at first only one beam will be detected
on Earth. If the first of these beams is found to also be lensed
by stars,we can be confident that the beampasses through the
core of a galaxy. If this is the case, then it will also be strongly
lensed by the galaxy, and thus we can expect that in the close
future, the strongly lensed copy of the original beam will
arrive on Earth.

In the wave-optics regime, the Laser Interferometer
Space Antenna (LISA) [9] possesses the necessary sensi-
tivities to extract the lens’ mass from a lensed signal [10].
The goal of our study is to show that such observations can
also be achieved by ground-based observatories.
The sensitivities of advanced LIGO [11] and advanced

Virgo [12] to lensing by intermediate mass black holes
(IMBH) are explored in Ref. [13], which found that
current-generation observatories are capable of detecting
the lensing IMBH with 98% confidence. Further, Ref. [13]
found that LIGO and Virgo can distinguish between a point
mass lens and a singular isothermal lens provided that the
redshifted lens mass is 200 M⊙.
In this work, we focus on the capabilities of ground-

based GW detectors to detect stellar mass lenses. While
stellar mass lenses are more numerous than IMBHs, the
amplitude of their lensing signal is much smaller. This
requires us to extend our study to include upcoming third-
generation gravitational-wave detectors.

II. BACKGROUND AND NOTATIONS

We consider GWs in the perturbed Friedmann-Lemaître-
Robertson-Walker (FLRW) metric, written in terms of the
conformal time η,

ds2 ¼ a2½−ð1þ 2UÞdη2 þ ð1 − 2UÞdr2�; ð1Þ

where r is the spatial coordinate, U is the gravitational
potential of the lenses, and a encodes the universal scale
factor. Considering linear perturbation on this metric,

gαβ ¼ gBαβ þ hμν; ð2Þ
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where hμν is separated into ϕ (its amplitude) and eμν (its
polarization), hμν ¼ ϕeμν, one can see that the equation of
motion for ϕ is simply given by the wave equation,

∂μ

� ffiffiffiffiffiffiffiffi
−gB

p
gμνB ∂νϕ

�
¼ 0; ð3Þ

where gB is the determinant of the metric. In Fourier space,
ϕ̃ðf; rÞ, the equation reads

ð∇2 þ ω̃2Þϕ̃ ¼ 4ω̃2Uϕ̃; ð4Þ

where ω̃ ¼ 2πf is the GW frequency. Following [10], we
define the amplification factor Fðω; rÞ as the ratio between
the lensed and unlensed ϕ̃.
The setup of our problem consists of three parallel

planes, called the source, lens, and observer planes. The
angular diameter distances along the normal from the
observer plane to the source and lens planes are labeled
DS and DL, respectively, while the distance between the
source and lens planes is labeled as DLS. GWs are emitted
by a point in the source plane, and they travel freely to the
lens plane, where they are lensed by a gravitational
potential U that is assumed to be localized in the thin
(width ≪ c=f) lens plane, before reaching the telescope at
the observer plane.
Coordinates can be set up on the three planes. We use the

notation of Refs. [10,14], where ξ is the coordinate at the
source plane, η is the coordinate at the lens plane, and δ is
the coordinate in the observer plane. We also employ the
following dimensionless coordinates,

x ¼ ξ

ξ0
;

y ¼ DL

DS

η

ξ0
;

d ¼
�
1 −

DL

DS

�
Δ
ξ0

;

where ξ0 is some characteristic length scale defined by
ξ0 ¼ DLθE, where θE is the Einstein angle for a point mass
lens,

θ2E ¼ 4GML

c2
DLS

DLDS
; ð5Þ

where ML is the lens mass. Furthermore, we will work
with the dimensionless frequency, which for the point mass
lens is

ω ¼ 4GMLð1þ zÞ
c3

ω̃; ð6Þ

where z is the lens redshift. From this point on we will
adopt units where G ¼ c ¼ 1.

Using this setup, the solution of Eq. (4) is given by the
Fresnel-Kirchhoff integral,

Fðω; yÞ ¼ ω

2πi

Z
d2x exp ½iωTðx; yÞ�; ð7Þ

where the time delay function Tðx; yÞ is given by

Tðx; yÞ ¼ 1

2
ðx − y − dÞ2 −ΨðxÞ; ð8Þ

with Ψ being the lensing potential.

A. Wave optics lensing

Integrating Eq. (7) with the stationary phase method is
valid when the wavelength is much smaller compared to the
characteristic scale of the lens. This condition requires

ω ≫ 1: ð9Þ

A detector operating in the frequency band of LIGO, with a
characteristic frequency of f ∼ 100 Hz, is capable of
detecting lenses where ω ≪ 1. In this regime, the geometric
optics approximation breaks down, and one has to integrate
Eq. (7) in full.
For a point mass lens located at η ¼ 0, ψðxÞ ¼ log jxj,

and Eq. (7) integrates to [10,15]

FðωÞ ¼ exp

�
πω

4
þ i

ω

2

�
log

�
ω

2

�
− 2ϕmðyÞ

	

Γ
�
1−

i
2
ω

�

× 1F1

�
i
2
ω;1;

i
2
ωy2

�
; ð10Þ

FIG. 1. The amplification as a function of ω for a point mass
lens where y ¼ 1, 5, 10, 40 (dashed, dotted, dot-dashed, and solid
lines). When the position of the source projected to the lens plane
is small (y ∼ 1), one can obtain amplification that is ∼linear in ω.
In the LIGO band (ω ∼ 0.01–0.1 for a solar mass lens) this results
in a deviation from the unlensed signal of a few percent. As the
distance increases, the amplitude of the deviation becomes
smaller.
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where y≡ jyj is the dimensionless impact parameter,

ϕmðyÞ ¼ ðxm − yÞ2=2 − log xm; ð11Þ
and

xm ¼ yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p

2
: ð12Þ

The amplification for ω ∼ 0.01–0.1 and a variety of y
values is plotted in Fig. 1. For a frequency of 100 Hz, this
corresponds to lenses of mass 1–10 M⊙.
Two examples of lensed waveforms are shown in Fig. 2.

The unlensed waveforms are PhenomA phenomenological
models during the inspiral [16,17]. While more complex
phenomenological models exist, the PhenomA model
suffices for this illustrative purpose.

III. METHOD

We have modified the parameter estimation algorithm
currently used by the LIGO and Virgo collaborations
[18,19] to allow for the presence of a lens along the line
of sight to the source. This is a stochastic sampler that
explores the parameter space and produces posterior dis-
tributions for the unknown parameters on which the
gravitational-wave signal depends. In the absence of a
lens, these include masses and spins of the two compact
objects, the sky position, distance, orientation, and polari-
zation of the source, as well as the time and phase at
coalescence [19]. Throughout this work, we use the
effective-precession waveform IMRPhenomPv2 [20].
Our lens model allows for two extra parameters: the mass

of the lens, ML, and the parameter y0 ≡ yML, which are
sampled together along the other. Once a waveform corre-
sponding to the unlensed signal is generated, hUnlensedðθ⃗Þ, the

two lens parameters are used to calculate Eq. (10),
which yields the lensed signal hLensedðθ⃗;Mlens; y0Þ ¼
FðMlens; y0ÞhUnlensedðθ⃗Þ, where θ⃗ are the compact binary
coalescence (CBC) parameters in the absence of the lens.
While the physical parameters of the lensing model are

ML and y, we used the parameter y0 to smoothly handle the
no-lens case without discontinuities or ill-defined param-
eters. The parameter y0 ¼ yML is trivially correlated to the
lens mass,ML. However, as they enter different parts of the
waveform models and not always in the same combination,
they are not degenerate.
Given a GW signal (real or simulated), the algorithm can

be run with the lens parameters (“Lens” model) to measure
or put an upper bound on the lens mass. After the evidence
[21] for both the “Lens” and “No lens”model is calculated,
one can compute the odds ratio defined as

Odds ¼ PðlensjdataÞ
Pðno lensjdataÞ : ð13Þ

IV. RESULTS

A. Current-generation observatories

We ran our code on simulated signals observed by LIGO
and Virgo with signal-to-noise (SNR) values of 15,30, and
60, where we injected lenses of 0,1,10,20,30,60, and
100 M⊙ with an impact parameter of an Einstein angle,
θE. The masses of the simulated CBC signal are compatible
with heavy binary sources similar to GW150914.
The results are plotted in Fig. 3. At a SNR ratio of 30,

which is moderately high for current-generation observa-
tories, lenses can be detected at > 3σ when they possess
masses larger than ∼30 M⊙. Higher SNR events allow

FIG. 2. The amplitude of waveforms from a 30þ 30 M⊙
binary at 1 parsec lensed by a 30 M⊙ lens. We exemplify a
strongly lensed event with a lens at y ¼ 1 (dashed) and a weakly
lensed event with a lens at y ¼ 10 (solid). An unlensed signal
would sit on top of the y ¼ 10 line. Note that in addition to the
oscillating features at high frequency that are characteristic of
wave interference, there is an overall amplification of the signal.

FIG. 3. The odds ratio computed as defined by Eq. (13). The
circles, crosses, and stars denote SNR values of 10, 30, and 60,
respectively. Dashed, dot-dashed, and dotted lines connecting the
points are drawn to guide the eye. Odds values > 1 indicate that
the lensed model is preferred over the unlensed model. The solid
horizontal line indicates a 3σ detection.
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smaller lenses to be detected. At SNR ¼ 60, lenses as small
as ∼10 M⊙ can be detected. LIGO and Virgo can poten-
tially detect smaller lenses if the impact parameter is
significantly smaller than an Einstein radius, but such
cases are expected to be rare.
If the mass function of black holes follows the mass

function of massive stars, it is reasonable to expect the
mass function of binary black holes to be bottom heavy.
Assuming that binary black holes are uniformly distributed
in space, this bottom-heavy mass function means that
SNR > 60 events would be rare. However, there is the
possibility that most LIGO black holes are macrolensed
by intervening galaxies [22]. Such a macrolensing event
would lower the mass requirement for a binary to be the
gravitational-wave source of an SNR ¼ 60 event, while
allowing said binary to be located at a larger distance. This
would enhance the rate of SNR > 60 events and thus open
the possibility of LIGO detecting stellar-mass lensing
events.
As a straightforward application, we run our algorithm

on the stretch of public LIGO data containing the gravi-
tational-wave event GW150914 [1,23]. We find that the
waveform detected for GW150914 is consistent with a lens
mass of M ¼ 0; i.e., GW150914 is most probably not a
microlensed event, with an upper bound 90% confidence
interval for the lens mass of 50 M⊙.

B. Third-generation observatories

Proposed ground-based 3G GW observatories, such as
the Einstein Telescope [24] and the Cosmic Explorer [25],
allow detections of BBH events from high redshift [25–27],
and will detect nearby events with SNR of hundreds or
thousands [28]. Such high SNR events can potentially
allow much smaller lenses to be detected. To show this, we
ran our algorithm on a simulated GW150914-like source
as observed by a third-generation observatory, with an
injected lens of 1 M⊙. Figure 4 shows the resulting
posterior distribution for the lens mass. As seen in
Fig. 4, 3G observatories can detect lenses as small as
1 M⊙. As there are many more lenses with such masses
than those with masses of ∼30 M⊙, we expect that
detection of lensing events by stellar mass lenses will be
mostly confined to 3G detectors. If the lenses obey the mass
function for stars, the number of lensed events that we can
expect from a 3G detector is greater than that of current-
generation detectors by a factor q, where

q ¼ R3G

RCG

R∞
1 M⊙

m−2.3dmR∞
30 M⊙

m−2.3dm
≈
R3G

RCG
100; ð14Þ

where R3G is the overall rate of gravitational-wave detec-
tion by 3G observatories, RCG is the overall rate of
gravitational-wave detection by current-generation
observatories, and we have taken the stellar mass function

to be of the Salpeter form [29]. Note that we have not fully
explored the lower limit of the masses of the lenses that will
be detectable by third-generation observatories. It is likely
that these observatories will detect lenses with masses even
smaller than 1 M⊙.

V. RATE ESTIMATE

The rate of stellar lensing is intrinsically tied to the rate
of strong lensing, as the surface number density of stars in
the core of galaxies is large enough that if a beam passes
within this core, there is an order unity chance that it will
pass within the Einstein radius of a star. The number of
stellar lensing events per year, N�, is therefore

N� ∼ Ng �
�
hc
hE

�
2

; ð15Þ

where hc is the angular size of the galaxy core, hE the
Einstein angle associated with the galaxy potential, and Ng

the number of galaxy (strong) lensing events per year.
The number of galaxy lensing events per year for a 3G

telescope has been calculated to be over 100 events per
year, where for most of these events the source is a binary
black hole [7,30,31]. Plugging in the numbers for a
Milky Way equivalent galaxy, as well as putting the source
at z ∼ 2 and the lens halfway to the source, we obtain that
ðhc=hEÞ2 ∼ 0.01. This gives the number of stellar lensing
events per year as N� ∼ few. However, this number is
extremely conservative. This is because most of the lensing
optical depth is provided by galaxies that are much more
massive than the Milky Way.

FIG. 4. The resulting posterior distribution of lens mass for an
event with an M ¼ 1 M⊙ lens observed by a third-generation
observatory. SNR is set to 3000, and the impact parameter is an
Einstein radius. Note that a vanishing lens mass is clearly
excluded.
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We can scale the factor ðhc=hEÞ2 as follows,
�
hc
hE

�
2

∼
R2
c

Mg
; ð16Þ

where Rc is the radius of the galaxy core and Mg the mass
of the galaxy. The relation between galactic luminosity and
core radius has been found to be L ∼ R0.84

c [32]. Therefore,

Rc ∼ L1.19 ∼M2.38
g ; ð17Þ

where in the last relation we have used the Faber-Jackson
relation. Therefore,

�
hc
hE

�
2

∼M3.76
g : ð18Þ

Thus, the larger the lensing galaxy, the more probable it is
for the gravitational-wave beam to also be stellar lensed.
This is pertinent especially because, as mentioned before,
most lenses are massive galaxies.
Because most sources are expected to be at z ∼ 2, the

typical detection will not have a SNR of thousands.
However, because the gravitational-wave amplitude only
goes down as the distance, the difference in SNR between a
source at z ∼ 0.1 and z ∼ 2 is only ∼20, leaving a SNR in
the hundreds. This is plenty of SNR to detect small lenses
with masses of a few solar masses, because as seen in
Fig. 3, SNR ∼ 60 is enough to provide a ∼3σ detection of
∼10 M⊙ lenses.

VI. WAVE OPTICS LENSING
BY MULTIPLE MASSES

The centers of galaxies are dense enough that the
Einstein rings of stars with angular scales of ∼1 micro-
arcseconds (μas) can overlap. Indeed, the probability for
there to be another star an Einstein radius, ξ0, away from a
particular star is [33,34]

P ≈ 1 − exp ½−σπξ20�; ð19Þ

which approaches unity for a stellar mass density, σ,
corresponding to ∼1 g cm−2 ∼ 4.8 × 109 M⊙=kpc2.
In this regime, it is important to understand the effects of

lensing by multiple masses. Assuming that the lensing
happened in a thin plane, the lensing potential by N point
masses is given by

ψðxÞ ¼
XN
i

log jx − xij: ð20Þ

To simplify our calculation, we employ the fact that distant
lenses do not affect the signal by imposing a cutoff on
ψðxÞ. In particular, we will ignore any lenses that are more
than an Einstein radius away from the source,

ψðxÞ ≈
XN
i

Hðjx − xijÞ log jx − xij; ð21Þ

where Hðjx − xijÞ is a top-hat kernel that is unity when
jx − xij is less than an Einstein radius, and zero otherwise.
In doing so, we do not need to include all the point masses
in the lensing galaxy in ψðrÞ, but only the lenses whose
Einstein rings intersect. Obviously, this number depends on
the surface density number of stars in the lensing galaxy.
The upper limit on the stellar surface mass density in a

dense system is Σmax ∼ 1011 M⊙=kpc2 [35]. Assuming that
most of the stellar mass is in stars of mass ∼1 M⊙, this
gives a surface number density of ∼105 pc−2. Using the
fact that at cosmological distances the Einstein angle of
such stars are ∼1 μas, and that stars are randomly distrib-
uted in the lensing plane, we create realizations of star
fields in the lensing plane. Even for such a dense system,
the number of Einstein ring intersections is of order a few.
The expected number of overlapping Einstein rings, NO,
can be estimated as follows. If A1 ¼ 1=σ is the area where
only one star is expected, then

NO ¼ πð2ξ0Þ2
A1

¼ πð2ξ0Þ2σ ð22Þ

¼ 4.3 ×

�
σ

105=pc2

�
: ð23Þ

We therefore expect GWs to be significantly lensed by only
a few lenses. However, as a Poisson process, NO is Poisson

FIG. 5. The amplification factor due to lensing as a function of
ω for 1 (analytical solid line), 2, 3, and 10 (dotted, dot-dashed,
and dashed, respectively) point mass lenses. For 1 M⊙ lenses, the
ω range corresponds to the LIGO frequency range. The lenses are
distributed randomly, but consistently in the lens plane, so that the
two lens case corresponds to the single lens case plus a randomly
distributed second lens, and similarly for the three and ten lens
cases. The position of the source in the source plane is (0, 1), and
the position of the observer in the observer plane is (0, 0) in
Einstein angle units. In this regime where FðωÞ ∝ ω, more lenses
generally generate a larger lensing effect.
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distributed. Therefore, for a σ ¼ 105 pc−2 system, there is a
∼1% chance for the beam to interact with ∼10 lenses.
To this end, we calculate the lensing amplitude FðωÞ by

numerically integrating Eq. (7) using a Levin method
integrator [36]. The resulting magnification amplitudes
for 2, 3, and 10 lenses are plotted in Fig. 5. For 1 M⊙
lenses in the LIGO band, FðωÞ scales linearly with ω. The
general trend is that more lenses yield a larger deviation in
amplitude. This means that if a lensing event is detected at
low ω, it might be difficult to distinguish between lensing
by a single-point mass or lensing by multiple-point masses.
However, if a larger range of ω is observed, these two
models will differ significantly.
The computation in this section assumes that the lensing

potentials of multiple stars can be superposed in the manner
of Eq. (21). In reality, nonlinear effects can produce
caustics in the source plane. Further, these caustics can
overlap and create large magnifications on scales larger
than the Einstein radius. This effect has recently been
observed for a star lensed by a galaxy cluster [37], which
allowed constraints on compact dark matter to be placed
[38]. We leave the computation of caustic curves in the
wave optics regime to a future work.

VII. CONCLUSIONS

We have shown that in order for current-generation GW
observatories to detect gravitational-wave lensing events, a
lens mass of at least ∼30 M⊙ is required, provided that the
gravitational waveform is detected at a signal to noise of
∼30. If the gravitational-wave source is weaker or is located
further away, this number will increase correspondingly.
We also note the possibility that the gravitational wave is
macrolensed by an intervening galaxy in addition to the
stellar lensing event. This could potentially produce an
event with large enough SNR for LIGO to detect stellar
lenses.
Furthermore, we have shown that 3G detectors can detect

lenses of masses as small as 1 M⊙. Since 1 M⊙ lenses are
much more numerous than ∼30 M⊙ lenses, many more
lensing events will be detected by third-generation detec-
tors than current generation detectors.
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Ohme, G. Pratten, and M. Pürrer, Phys. Rev. Lett. 113,
151101 (2014).

[21] E. T. Jaynes, Probability Theory, edited by G. Larry
Bretthorst (Cambridge University Press, Cambridge,
2003), pp. 758.

[22] T. Broadhurst, J. M. Diego, and G. Smoot, III, arXiv:
1802.05273.

[23] LIGO Collaboration, https://losc.ligo.org/events/GW150914
(2016).

[24] M. Punturo et al., Classical Quantum Gravity 27, 194002
(2010).

[25] B. P. Abbott et al., Classical Quantum Gravity 34, 044001
(2017).

[26] S. Vitale and M. Evans, Phys. Rev. D 95, 064052 (2017).
[27] T. E. T. S. Team, The Einstein Telescope Science Team, ET

Design Study Document, ET-0106C-10 (2011).
[28] S. Vitale, Phys. Rev. D 94, 121501 (2016).
[29] E. E. Salpeter, Astrophys. J. 121, 161 (1955).
[30] M. Biesiada, X. Ding, A. Piórkowska, and Z.-H. Zhu, J.

Cosmol. Astropart. Phys. 10 (2014) 080.
[31] X. Ding, M. Biesiada, and Z.-H. Zhu, J. Cosmol. Astropart.

Phys. 12 (2015) 006.
[32] T. R. Lauer, Astrophys. J. 292, 104 (1985).

CHRISTIAN, VITALE, and LOEB PHYS. REV. D 98, 103022 (2018)

103022-6

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.1103/PhysRevLett.105.251101
https://doi.org/10.1088/1475-7516/2013/10/022
https://doi.org/10.1088/1475-7516/2013/10/022
https://doi.org/10.1093/mnras/sty2145
http://arXiv.org/abs/1702.00786
https://doi.org/10.1086/377430
https://doi.org/10.1086/377430
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevD.98.083005
https://doi.org/10.1103/PhysRevD.98.083005
https://doi.org/10.4236/ijaa.2013.31001
https://doi.org/10.1103/PhysRevD.9.2207
https://doi.org/10.1088/0264-9381/24/19/S31
https://doi.org/10.1088/0264-9381/24/19/S31
http://arXiv.org/abs/1803.01944
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1103/PhysRevLett.116.241102
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevLett.113.151101
http://arXiv.org/abs/1802.05273
http://arXiv.org/abs/1802.05273
https://losc.ligo.org/events/GW150914
https://losc.ligo.org/events/GW150914
https://losc.ligo.org/events/GW150914
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/1361-6382/aa51f4
https://doi.org/10.1088/1361-6382/aa51f4
https://doi.org/10.1103/PhysRevD.95.064052
https://doi.org/10.1103/PhysRevD.94.121501
https://doi.org/10.1086/145971
https://doi.org/10.1088/1475-7516/2014/10/080
https://doi.org/10.1088/1475-7516/2014/10/080
https://doi.org/10.1088/1475-7516/2015/12/006
https://doi.org/10.1088/1475-7516/2015/12/006
https://doi.org/10.1086/163136


[33] E. S. Phinney, Structure and Dynamics of Globular Clusters,
in Proceedings of a Workshop held in Berkeley, California,
1992, to Honor the 65th Birthday of Ivan King, edited by
S. G. Djorgovski and G. Meylan (Astronomical Society of
the Pacific, San Francisco, California, 1993), Vol. 50, p. 141.

[34] P. Christian and A. Loeb, Astrophys. J. 798, 78 (2015).
[35] P. F. Hopkins, N. Murray, E. Quataert, and T. A. Thompson,

Mon. Not. R. Astron. Soc. 401, L19 (2010).
[36] A. J. Moylan, D. E. McClelland, S. M. Scott, A. C. Searle,

and G. V. Bicknell, in The Eleventh Marcel Grossmann

Meeting on Recent Developments in Theoretical and Ex-
perimental General Relativity, Gravitation and Relativistic
Field Theories, edited by H. Kleinert, R. T. Jantzen, and R.
Ruffini (World Scientific Publishing Co. Pte. Ltd., 2008),
pp. 807–823.

[37] P. L. Kelly et al., Nat. Astron. 2, 334 (2018).
[38] J. M. Diego, N. Kaiser, T. Broadhurst, P. L. Kelly, S.

Rodney, T. Morishita, M. Oguri, T. W. Ross, A. Zitrin,
M. Jauzac, J. Richard, L. Williams, J. Vega-Ferrero, B. Frye,
and A. V. Filippenko, Astrophys. J. 857, 25 (2018).

DETECTING STELLAR LENSING OF GRAVITATIONAL … PHYS. REV. D 98, 103022 (2018)

103022-7

https://doi.org/10.1088/0004-637X/798/2/78
https://doi.org/10.1111/j.1745-3933.2009.00777.x
https://doi.org/10.1038/s41550-018-0430-3
https://doi.org/10.3847/1538-4357/aab617

