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We present a covariant ray tracing algorithm for computing high-resolution neutrino distributions in
general relativistic numerical spacetimes with hydrodynamical sources. Our formulation treats the very
important effect of elastic scattering of neutrinos off of nuclei and nucleons (changing the neutrino’s
direction but not energy) by incorporating estimates of the background neutrino fields. Background fields
provide information about the spectra and intensities of the neutrinos scattered into each ray. These
background fields may be taken from a low-order moment simulation or be ignored, in which case the
method reduces to a standard state-of-the-art ray tracing formulation. The method handles radiation in
regimes spanning optically thick to optically thin. We test the new code, highlight its strengths and
weaknesses, and apply it to a simulation of a neutron-star merger to compute neutrino fluxes and spectra,
and to demonstrate a neutrino flavor oscillation calculation. In that environment, we find qualitatively
different fluxes, spectra, and oscillation behaviors when elastic scattering is included.
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I. INTRODUCTION

Neutrinos are one of the dominant energy transport
phenomena at play in neutron-star mergers: heating,
cooling, and pushing the disrupted nuclear matter.
In addition, they change the composition of the matter
via charged-current interactions. Because neutrinos scatter
over length scales both large and small with respect to fluid
scales, accurate models require a neutrino treatment that
respects the freedom of neutrino distribution functions to
vary drastically from geometrically simple distributions in
thermodynamic equilibrium.
This is a challenging task in the environment of a merger,

which generally lacks any spatial symmetries, so that fully
general solutions to the Boltzmann equation are not feasible.
Leakage approximations [1–6] capture some of the qualita-
tive effects of neutrinos on the matter, but provide extremely
limited information about the neutrino field itself.
Monte Carlo methods like those used in supernova simu-
lations [7] and stationarymodels of accretion disks [8] are an
excellent tool but require large computational resources
because of the need to use a large number of particles to

fully and precisely sample the high-dimensional parameter
space (seven dimensional in the general case).
The state of the art today for neutron-star merger

calculations couples radiation and matter using a truncated
moment formalism [9,10], evolving the zeroth- and first-
angular moments of the energy density, that is the total
energy and momentum densities. This method, commonly
called M1 transport, was formulated by [11] and modern-
ized by [12]. M1 transport has recently become popular in
the core-collapse supernova community as well [13–17].
For merger simulations, [18] recently expanded their M1

transport code to also evolve the zeroth-angular moment of
the number density, providing total energy densities and
average energies throughout the simulated volume. Even so,
withM1 transport codes only evolving two angularmoments
and one or two energymoments, they can extract only limited
angular and spectral information from the neutrino fields.
But many interesting unsolved problems require an

accurate model of the neutrino spectra and angular
distributions. With a model of the neutrino emission from
a merger we can (1) examine neutrino effects on the
nucleosynthesis of the ejected material [19,20], (2) explore
the rich flavor oscillation physics likely to occur [21–25],
(3) improve closure relations used in M1 transport
schemes [9,12,15,26,27], and (4) study possible jet for-
mation due to neutrino annihilation [28–34].*mbdeaton@ncsu.edu

PHYSICAL REVIEW D 98, 103014 (2018)

2470-0010=2018=98(10)=103014(25) 103014-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.103014&domain=pdf&date_stamp=2018-11-14
https://doi.org/10.1103/PhysRevD.98.103014
https://doi.org/10.1103/PhysRevD.98.103014
https://doi.org/10.1103/PhysRevD.98.103014
https://doi.org/10.1103/PhysRevD.98.103014


Angular and spectral neutrino distributions in neutron-
star merger simulations have just recently become available
with a coupled Monte Carlo–M1 scheme [35,36]. In this
work, however, we present a ray tracing method to compute
neutrino distribution functions from the more widely
available state-of-the-art general relativistic M1 transport
hydrodynamics simulations. We choose ray tracing because
it is conceptually simple, numerically inexpensive, and
extends to high resolution in energy and angle by simply
increasing the number of rays sampled. Furthermore, the
computational implementation parallelizes trivially.
With a ray tracing method we approach radiation trans-

port from the perspective of a single observer at a spacetime
event xαo. Our goal is to compute the distribution function
fνσ ðxαo;pβÞ, or the amount of neutrino radiation of species
νσ ∈ fνe; νμ; ντ; ν̄e; ν̄μ; ν̄τg with momentum pβ impinging
on xαo. To do so we trace a geodesic trajectory from xαo in the
backwards direction −pβ to sample the incoming radiation
along that line of sight. By tracing a family of rays
intersecting xαo we build up a picture of the distribution
function there. And by sampling many observation points
we construct a global picture of fνσ ðxα;pβÞ.
The ray tracing framework is conceptually simple

because it solves the equation of radiation transport
[Eq. (8)] along characteristics, reducing it to a one-
dimensional ordinary differential equation. It is numeri-
cally cheap because it confines computations of
fνσ ðxαo;pβÞ to the past light cone of xαo, with the history
of that light cone truncated at large optical depth. It easily
extends to high resolution in energy and angle by simply
increasing the number of rays sampled. And it parallelizes
trivially by ray, since each ray is computed independently.
Several ray tracing formulations for radiation transport

already exist. Most formulations assume an analytic space-
time metric [30,31,37,38]. And many make the simplifying
assumption of blackbody emission from a neutrino surface
[30,37,38], limiting them to equilibrium, optically thick
configurations. Current state-of-the-art ray tracing formu-
lations avoid the assumption of blackbody spectra by
integrating a local emissivity along each geodesic (e.g.,
[31] for neutrinos and [39] for photons). But no formula-
tions to date account for the important scattering and pair
processes outlined in Table I. We build upon these existing
ray tracing formulations by eschewing any assumptions
about the spacetime geometry, integrating local emissiv-
ities, and including elastic scattering in the integration
along each geodesic.
We formulate the ray tracing equations covariantly—

free from assumptions about the spacetime geometry or
coordinates. This is essential because we want to apply the
method as a postprocessing step using time snapshots of
data computed from time-dependent general relativistic
evolutions. The spacetime represented in these snapshots
is not analytic (i.e., Kerr). And even in configurations that
are described well by the Kerr metric (e.g., a low-mass

disk around a massive black hole), the evolution coor-
dinates are unlikely to present the metric in a familiar
analytic form. This is because integrating the Einstein
equations often requires complicated, time-dependent
gauge conditions [40,41].
Elastic scattering (see Table I) can significantly modify

neutrino distributions in angle and dilute the emitted
spectrum over a larger emitting surface [5]. This is
especially pronounced in the case of heavy-lepton neutri-
nos. Inelastic scattering and pair processes can introduce
further modifications. Any phenomena that involve neu-
trino-neutrino interactions, for example neutrino oscilla-
tions [21,42,43] and neutrino-antineutrino annihilation
[29], depend sensitively on the angular distribution. And
spectral changes in neutrino distributions can strongly
affect the nuclear processes occurring in the ejected and
irradiated material [18,21,44,45]. The ray tracing method
we present in this paper captures the dominant effects of
elastic scattering, while leaving the physics of inelastic
scattering and pair processes for later work.
Ray tracing is ideally suited to problems requiring

detailed knowledge of radiation distribution functions
over small regions of spacetime: for example along a
matter or radiation trajectory, or over a small volume
outside a source. Furthermore, our method is time de-
pendent, allowing us to compute radiation fields in
dynamical systems. But it is formulated as a postprocess-
ing step, with the ray tracing computed on volume data
saved in several steps of the fluid evolution. Thus for
dynamical systems the memory demands can be prohibi-
tively large.
More fundamentally, though, ray tracing is limited by its

naive treatment of the Boltzmann equation [Eq. (8)], a
treatment which essentially decouples different neutrino
momenta and species. When solving for fνσðxα;pβÞ, we
have no information about the distribution at different

TABLE I. We analyze neutrino interaction processes in terms
of these categories. ν without a label represents a neutrino or
antineutrino of any flavor, N represents a nucleon n or p, ZA
represents a nucleus with mass number A and charge Z, and γ
represents a high-energy photon. A prime indicates a change in
that particle’s energy.

Absorption/emission νe þ n ↔ e− þ p
ν̄e þ p ↔ eþ þ n

νe þ AZ ↔ e− þ AðZ þ 1Þ
Elastic scattering νþ N ↔ νþ N

νþ AZ ↔ νþ AZ

Inelastic scattering νþ e− ↔ ν0 þ e−
0

νþ eþ ↔ ν0 þ eþ0

Thermal pair processes νþ ν̄ ↔ e− þ eþ
νþ ν̄þ N þ N ↔ N0 þ N0

νþ ν̄ ↔ γ
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momenta fνσ ðxα;p0
βÞ, or about the distribution of the

relevant antineutrino species fν̄σ ðxα;p0
βÞ; these missing

data are essential ingredients for the source terms of the
Boltzmann equation describing the creation and destruction
of neutrinos due to the interaction processes described in
Table I.
In this paper we outwit this limitation by incorporating

coupled source terms that depend on either previously
evolved or analytical estimates of the neutrino fields. To
incorporate scattering processes in our method, we employ
estimates of the lowest-order moment of the neutrino
distribution function computed in an M1 transport simu-
lation. If moments are not available either from an M1
transport evolution or a trustworthy analytical estimate,
we may drop the coupling terms and our method reduces to
the current state-of-the-art ray tracing methods neglecting
scattering. Our method is not a stand-alone radiation
transport scheme, but serves as the final component of a
hybrid scheme, piggybacking on a lower-order radiation
transport method as a postprocessing step.
In Sec. II we derive the ray tracing equations from the

Boltzmann equation and describe our numerical scheme.
In Sec. III we present tests of the code. In Sec. IV we
present neutrino fields in the dynamical environment
following the merger of two neutron stars, and compute
neutrino flavor oscillation along an outgoing ray, includ-
ing the effects of coherent forward scattering with
ambient neutrinos. In Sec. V we summarize our work
and anticipate improvements.
Greek tensor indices (α; β;…) range over all four

coordinates, whereas latin indices (i; j;…) range over
the spatial coordinates 1–3, or over a more general set,
e.g., the set of all elastic scattering interactions. We use
naturalized units in which fℏ; c; kBg ¼ 1. And for most of
the remainder of this article we suppress neutrino species
label νσ since the formulation is general to any species.
Where we do reference particular species we use the three
categories relevant to the energy scales of mergers, νe, ν̄e,
and νx ¼ fνμ; ν̄μ; ντ; ν̄τg.

II. RAY TRACING FORMULATION

The neutrino distribution function, fðxα;pβÞ is an
invariant quantity counting the number of neutrinos in
a given six-volume of phase space centered on ðxα; pβÞ.
The phase space volume elements are defined with respect
to a fiducial observer passing through event xα with
velocity uα:

dV ≡ ffiffiffiffiffiffiffi
−ψ

p
dxdydzut; ð1Þ

dP≡ 1ffiffiffiffiffiffiffi−ψp dpxdpydpz
ε

pt ; ð2Þ

where ψ represents the determinant of the spacetime
metric, the index t indicates the time component of the
given four-vector, and

ε≡ −pμuμ ð3Þ

is the neutrino energy measured by our observer.
The number of particles in a given six-volume is

dN ¼ g
ð2πÞ3 fdVdP; ð4Þ

where g counts the number of spin states accessible to
the particles (g ¼ 1 for neutrinos), and f is the distribution
function. Each of dV, dP, dN, and f are spacetime
invariants [46–48].
We may decompose the neutrino momentum like

pβ ¼ εðuβ þ lβÞ; ð5Þ

with lβ the direction normal subject to the constraints
uαlα ¼ 0 and lαlα ¼ 1. With this decomposition we can
write the arguments to the distribution function fðxα; ε;lβÞ.
Because lβ is subject to two constraints (normalization

and orthogonality to the observer’s velocity) it has only two
remaining degrees of freedom; we make this explicit by
defining its spatial Cartesian components with respect to
spherical polar angles

lα → qðs; sin a cos b; sin a sin b; cos aÞ; ð6Þ

with q and s functions of a and b. Now our symbol for the
distribution function, fðxα; ε; a; bÞ, makes manifest its
seven independent arguments.
We also define a rotated frame

lα0 ¼
∂xα
∂xα0 lα

in which the Cartesian components of the direction 1-form
are defined

lα0 → qðs; sinA cosB; sinA sinB; cosAÞ; ð7Þ

so that momenta with vanishing polar angle A move
outward along coordinate radial rays. This transformation
is chosen so that for an observer far from the source,
incoming radiation will be concentrated into a narrow beam
around cosA ≈ 1, independent of that observer’s position in
coordinate space. For explicit definitions see Appendix A.
In Minkowski spacetime, and for a stationary observer

uβ → ð−1; 0; 0; 0Þ, we would have s ¼ 0, q ¼ 1, and
ε ¼ −pt. In that case cosA may be identified with the
familiar forward direction cosine μ [49,50].
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A. Boltzmann equation

In the limit of large oscillation lengths (see Sec. IV B),
neutrino radiation obeys the relativistic Boltzmann equa-
tion, which, suppressing the arguments of f for simplicity,
is written,

d
dλ

f ¼ C½f�; ð8Þ

where d=dλ denotes a derivative with respect to the affine
parameter defining the neutrino momentum [Eq. (20)
below] and C½f� is the source term arising from interactions
with the medium. As we will show below in Eq. (23), the
affine parameter has dimension length energy−1, so the
source term has dimension energy length−1. The source
term varies over phase space ðxα; pβÞ, and depends locally
on the distribution function f and nonlocally on the
distribution function of this neutrino and its antiparticle
at different momenta, f0 and f̄0. For simplicity we sym-
bolize all of these dependences with the shorthand C½f�.
The various neutrino interactions contributing to C½f� are
detailed in Appendix B.
We make the right-hand side of Eq. (8) explicit by

writing the source term linear in f:

d
dλ

f ¼ E −Kf ð9Þ

¼ KðS − fÞ; ð10Þ

where we have introduced E, the invariant total emissivity,
and K, the invariant total opacity. These describe respec-
tively the energy gained and the energy lost per length
traveled by the neutrino, true scalar quantities which take
identical values for all observers. In the second form we
have introduced the source function S ≡ E=K, which
makes manifest the behavior of the right-hand side, driving
f toward S over a length scale K−1 in the affine parameter,
or from Eq. (23) below, over a proper length scale ε=K
measured by the fiducial observer.
These coefficients are computed by considering their

dependence on neutrino and antineutrino distribution
functions at other momenta (i.e., Fermi blocking). We
consider the two dominant classes of interactions in this
work: the absorption/emission (AE) and elastic scattering
(SE) processes listed in Table I; note that we also include
the important thermal pair processes (PP) for heavy-lepton
neutrinos by incorporating an approximate pair emissivity
into their absorption/emission coefficients; see Appendix B
for details. Thus we separate these coefficients:

E ¼ EAE þ ESE; ð11Þ

K ¼ KAE þKSE: ð12Þ

The absorption/emission coefficients are computed from
sums over the relevant emissivities and opacities for the
reactions

νe þ n ↔ e− þ p;

ν̄e þ p ↔ eþ þ n;

νe þ AZ ↔ e− þ AðZ þ 1Þ;

with AZ representing a nucleus of mass number A and
charge Z. In terms of the emissivity jðεÞ describing number
of neutrinos of energy ε emitted per length, and the
absorption opacity χaðεÞ describing the number absorbed
per length, the coefficients are

EAEðεÞ ¼ ε
X

i reactions

jiðεÞ; ð13Þ

KAEðεÞ ¼
1

1 − feqðεÞ ε
X

i reactions

χa;iðεÞ; ð14Þ

where feq is the distribution function of neutrinos in
radiative equilibrium with the matter, i.e., the Fermi-
Dirac distribution function

feqðεÞ≡ ð1þ eε=ðkBTÞ−ηνÞ−1; ð15Þ

with the neutrino chemical potentials dependent on the
local density, temperature, and composition of the fluid via
the neutron, proton, and electron chemical potentials: ηνe ¼
−ην̄e ¼ ηp − ηn þ ηe− and ηνx ¼ 0. The appearance of feq

in Eq. (14) is due to the Fermionic nature of the neutrinos
causing KAE to be different than the simple absorption
opacity, a phenomenon called stimulated absorption [51].
By detailed balance of the absorption/emission reactions,
we may alternatively write the emissivity in terms of the
equilibrium distribution function:

EAEðεÞ ¼ KAEðεÞfeqðεÞ: ð16Þ

Note that the stimulated absorption coefficient KAE is
identical to the coefficient κ� defined in [31]. See
Appendix B 1 for details.
The elastic scattering coefficients are computed from a

background field, and a sum over opacities for the reactions

νþ N ↔ νþ N;

νþ AZ ↔ νþ AZ;

with N standing in for either n or p. In terms of a
background field ΦðεÞ describing the number of neutrinos
of energy ε present at this event, and the scattering opacity
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χðεÞ describing the number scattered to other directions per
length, the coefficients are

ESEðεÞ ¼ KSEðεÞΦðεÞ; ð17Þ
KSEðεÞ ¼ ε

X
i reactions

χs;iðεÞ: ð18Þ

In the isotropic limit of trapped radiation,Φ is equivalent to
feq; in the free-streaming limit at a distance r from a source,
Φ attenuates as r−2. See Appendix B 2 for details.
With these definitions we write a separated form of

Eq. (10):

d
dλ

f ¼ KAEðfeq − fÞ þKSEðΦ − fÞ: ð19Þ

From Eq. (19) we see that absorption/emission interactions
drive the distribution function toward feq over an affine
length scale K−1

AE, and elastic scattering interactions drive it
toward Φ over an affine length scale K−1

SE. [Equation (23)
translates affine length to proper length for a given
observer; in this case the proper length scale is ε=K.]
This paper introduces the use of neutrino densities and

fluxes evolved in anM1 transport simulation to estimate the
background field, Φ. Appendix B 2 details a method to
calculate ΦðεÞ in two different ways:

(i) the spectral method using densities and fluxes
extracted from a simulation evolved over multiple
energy groups to compute the background field
with Eq. (B14),

(ii) the gray method using energy-integrated densities
and fluxes extracted from a gray simulation and
approximating the energy distribution with
Eqs. (B22) and (B23).

B. Trajectories

Each trajectory is uniquely labeled by a pair of vectors
giving an event on the trajectory, xα, and the momentum at
that event, pβ. To designate a family of intersecting
trajectories, we keep constant either the emission event
xαe or the observation event xαo.
Neutrino trajectories obey the geodesic equation, which

may be decomposed into the coupled first-order equations

dxα

dλ
¼ pα; ð20Þ

and
dpβ

dλ
¼ −Γα

βγp
γpα; ð21Þ

wherepα ¼ ψαβpβ,ψαβ is the inverse of the spacetimemetric
ψαβ, and Γα

βγ are the standard connection coefficients,

Γα
βγ ¼

1

2
ψαμðψμβ;γ þ ψμγ;β − ψβγ;μÞ; ð22Þ

with the comma denoting a partial derivative ψμβ;γ ¼
∂γψμβ.
Each trajectory is parametrized by affine parameter, λ,

increasing in the direction of lβ. We label λ ¼ λe at xαe , as in
Fig. 1. If we multiply Eq. (20) by uα ≡ dxα=ds, we find the
element of proper distance traversed by the neutrino as
measured by the fiducial observer uα is

ds ¼ εdλ: ð23Þ

C. The formal solution

We can integrate Eq. (19) directly, with the solution split
into a boundary, absorption/emission, and a scattering term,
f ¼ fbdry þ fAE þ fSE:

fbdryðλ; λeÞ ¼ fðλeÞe−τðλ;λeÞ; ð24Þ

fAEðλ; λeÞ ¼
Z

λ

λe

dλ0e−τðλ;λ0ÞKAEðλ0Þfeqðλ0Þ; ð25Þ

fSEðλ; λeÞ ¼
Z

λ

λe

dλ0e−τðλ;λ0ÞKSEðλ0ÞΦðλ0Þ; ð26Þ

where the optical depth is defined,

τðλ; λ0Þ≡
Z

λ

λ0
dλ00Kðλ00Þ; ð27Þ

and the parametrization conventions are depicted in Fig. 1.
Note that Eq. (27) employs the total absorption plus scatter-
ing opacity, so that the optical depth attenuating the inte-
grands of Eqs. (25) and (26) is the total optical depth.

D. Moments of the distribution function

We may take angular moments of the distribution
function

JðεÞ ¼ ε3

ð2πÞ3
I

dΩ0fðε;l0
βÞ; ð28Þ

HμðεÞ ¼ ε3

ð2πÞ3
I

dΩ0fðε;l0
βÞl0μ; ð29Þ

SμγðεÞ ¼ ε3

ð2πÞ3
I

dΩ0fðε;l0
βÞl0μl0γ ð30Þ

FIG. 1. Affine parametrization of a neutrino trajectory of
momentum pα. The fiducial observer with velocity uα sits at
xαo; the neutrino emission event is at xαe . The affine parameter
increases from the emission event: λe < λ0 < λ00. The green slab
represents dense matter.
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defining the specific energy density, specific momentum
density, and specific radiation pressure tensor, respectively.
Here “specific” refers to the quantity being integrable over
neutrino energy. Integrals (28)–(30) are performed over a
solid angle in momentum space while holding ε constant:
dΩ≡ dðcos aÞdb. We also make use of the specific number
density and specific number flux defined

GðεÞ ¼ ε2

ð2πÞ3
I

dΩ0fðε;l0
βÞ; ð31Þ

KμðεÞ ¼ ε2

ð2πÞ3
I

dΩ0fðε;l0
βÞl0μ: ð32Þ

The energy-integrated moments take the form

X ¼
Z

∞

0

dεXðεÞ; ð33Þ

with X standing in for any of fJ;Hμ; Sμγg or fG;Kμg,
the first having dimension energy length−3, and the second
length−3.
We compute moments for a particular observer by

specifying the four-velocity in Eq. (5). Two choices are
particularly useful: an observer stationary in the coordinate
frame (i.e., Eulerian), or one stationary in the fluid frame
(i.e., comoving) [52]. Explicit definitions are given in
Appendix A. We distinguish moments computed for a
Eulerian observer with a tilde, e.g., J̃, H̃μ, S̃μν; note that
these three Eulerian moments are identical to the lab-frame
moments E, Fμ, and Pμν defined in [9,12,15].

E. Numerical implementation

Much of our numerical implementation is borrowed
from the geodesic evolution system described in [53].
We integrate Eqs. (20) and (21) in the form given by
[54], and Eqs. (25)–(27) in the form given below. By using
the time component of Eq. (20) (dt ¼ dλpt) we may
transform the integrations to coordinate time. The coupled
system of ordinary differential equations is

dxi

dt
¼ gij

pj

pt − βi; ð34Þ

dpi

dt
¼ −αα;ipt þ βk;ipk −

1

2
gjk;i

pjpk

pt ; ð35Þ

dτ
dt

¼ −
1

pt K; ð36Þ

dfAE
dt

¼ 1

pt e
−τKAEfeq; ð37Þ

dfSE
dt

¼ 1

pt e
−τKSEΦ; ð38Þ

where the spacetime metric components α, βi, and gij are
defined in Appendix A.
We integrate each ray until we reach a terminal optical

depth of τterm at the earliest effective emission event xαe . The
concept of earliest emission event is a fictitious construct
we use to allow us to truncate the integration at an event
along the ray where any further additions to the field are
negligible due to the large optical depth between xαe and xαo.
We choose τterm ¼ 14 so that e−τterm < 10−6, and we then
discard the contribution of fbdry [Eq. (24)].
Since we do not know the emission event a priori, we

follow the integration backwards in time, from to to te. We
begin each integration by setting initial values for the
variables at to: the observer specifies xio and pi;o, and we set
fAE;o ¼ fSE;o ¼ 0 and τo ¼ 0.
We integrate Eqs. (34)–(38) with adaptive step sizes,

using the third-order Runge-Kutta algorithm, from which
we compute an error estimate by comparing the third- and
second-order solutions. After each step is taken, the error
estimatesΔi for each of the nine variables of Eqs. (34)–(38)
are used to compute an overall error measure of the step,D,
given by

D ¼ max

�
Δi

Aþ RjVij
�
; ð39Þ

where the max is taken over the set of all variables Vi and
their error estimates Δi, and A and R are the absolute and
relative error tolerances. If D ≥ 1 the step size is decreased
and the step recomputed; if D < 1 the next step size is
increased. In practice, the controlling errors come from the
radiation variables τ, fAE, and fSE, for which the relative
tolerances are set to R ¼ 6 × 10−4, and the absolute
tolerances are set to A ¼ 6 × 10−24.
We integrate these equations through the simulated

spacetime over which the following volume data are
known: the spacetime metric ψαβ, its derivatives ψαβ;γ ,
the fluid velocity ui, Lorentz factor W, density ϱ, temper-
ature T, and electron fraction Ye, all defined in
Appendix A. These fields are computed in a preprocessing
step before ray tracing and stored in pseudospectral
representation [55], an efficient scheme for representing
a continuous field with a finite set of data points. If they are
computed from a hydrodynamical simulation, they may be
saved to disk at either one or several specified coordinate
times and interpolated with spectral interpolation in space,
and first-order polynomial interpolation in time (as
described in [53], Appendix B). If computed from a
stationary solution to the general relativistic hydrodynam-
ics equations no time interpolation is needed. In this paper
for simplicity and to limit computational memory loads, we
use only stationary analytical solutions or quasistationary
configurations evolved in simulation, thus using one time
slice and no time interpolation in every case.
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III. CODE TESTS

To test the algorithm, we integrate the ray tracing
equations [Eqs. (34)–(38)] for various observers in the
following configurations. This suite of configurations
defines a hierarchy of increasing physical realism: begin-
ning with a homogeneous medium of effectively infinite
extent (i.e., optically thick) and progressing to a model of
a 1D presupernova, postbounce collapse profile evolved
using an M1 transport hydrodynamical simulation. In the
presupernova model, we compare ray tracing distributions
to those calculated in a Monte Carlo transport simulation.
In the following we present two forms of the integrated

distribution functions, Eqs. (37) and (38):
(i) the scat form including elastic scattering, for

which the solution is f ¼ fAE;scat þ fSE;scat,
(ii) the noscat form treating only absorption/emission

interactions by setting KSE ¼ 0, for which the sol-
ution is f ¼ fAE;noscat.

Note that fAE;scat ≠ fAE;noscat because fAE is integrated
using the absorption plus scattering optical depth in the first
form and using only the absorption optical depth in the
second form. So there is no simple algebraic relation
between the scat and noscat distribution functions. The
differences between the two methods are apparent in Fig. 3
below. Before this work, the noscat form of the equations
was the standard for ray tracing, though many authors
included the scattering optical depth in the integration of
Eq. (37) (see e.g., [31]).

A. Infinite homogeneous slab: Testing
thermodynamic equilibrium

In an optically thick region the radiation field is in
thermodynamic equilibrium with the matter. We set up a
large slab of matter in a Minkowski spacetime represen-
tative of the fluid thermodynamic state at a radius of 50 km
in the test presented in Sec. III E—a massive collapsed
star following core bounce—where ϱ ¼ 1011 g cm−3,
T ¼ 3.7 MeV, and Ye ¼ 0.12. For comparison with that
test we use the LS180 equation of state [56,57] in which
the equilibrium νe neutrino chemical potential is ηνe ¼
−0.1555 (with ην̄e ¼ −ηνe and ηνx ¼ 0).
The opacity table is computed using NULIB, an open-

source neutrino interaction library, and is identical to the
LS180 opacity table used in the paper introducing that tool
[15]. The scattering opacity is computed taking into
account elastic scattering on nucleons, alpha particles,
and heavy nuclei. The absorption opacities consist of
electron neutrino absorption on neutrons and heavy nuclei
as well as electron antineutrino absorption on protons.
We use Kirchhoff’s law to compute emissivities based on
these absorption opacities. For heavy-lepton neutrinos we
consider thermal emission processes including electron-
positron annihilation and nucleon-nucleon bremsstrahlung.
The table is stored on a grid covering energy, density,

temperature, and composition ranges spanning εi∈
½1;280.5�MeV logarithmically, ϱ∈ ½106;6.3×1015� gcm−3

logarithmically, T ∈ ½0.05; 200� MeV logarithmically, and
Ye ∈ ½0.035; 0.55� linearly, with grid extents f18; 82;
65; 51g respectively. Interpolation is performed linearly.
We use the equilibrium distribution functions to define

background fields for the scat case: in the spectralmethodwe
useJðεÞ ¼ ε3feqðην; T; εÞ=ð2π2Þ, and in the graymethodwe
use J ¼ CT4F 3ðηνÞ=ð2π2Þ and G ¼ CT3F 2ðηνÞ=ð2π2Þ,
using the Fermi integrals defined in Eq. (B21), and with
C the conversion constant from energy3 to length−3.
Figure 2 presents the neutrino mean free paths at this

thermodynamic point over two energy decades. For this
test we choose a slab large enough for neutrinos of all
energies to be trapped. We sample the distribution
function with ray tracing over a uniform grid of 40 points
in energy ε ∈ ð0; 100Þ MeV. The domain extends to
τtermLmfp;max ≈ 107 km, since our ray tracing algorithm
integrates rays to terminal optical depths of τterm ≥ 14.
Figure 3 displays the cumulative distribution function

integrated along the ray, for each of the three species and
using both methods, noscat and scat, at the single energy
ε ¼ 11.25 MeV. We display Eqs. (37) and (38) in their
integral form:

fðtÞ ¼ −
Z

t

0

dt0

ε
e−τð0;t0ÞKðt0Þfeqðt0Þ; ð40Þ

FIG. 2. Mean free paths representative of the postbounce
collapse profile (presented in Sec. III E) at 50 km, where
ϱ ¼ 1011 g cm−3, T ¼ 3.7 MeV, and Ye ¼ 0.12; this thermody-
namic state is used in the tests with homogeneous matter
distributions (presented in Secs. III A–III C). In the fluid rest
frame the mean free paths are given by the inverses of the
opacities χ�a ¼ KAE=ε for absorption and χs ¼ KSE=ε for elastic
scattering interactions (see Appendix B for definitions). Note that
elastic scattering opacities are identical across species below
energies at which weak magnetism plays a role [58]. In these data
they are exactly identical because we have turned off weak
magnetism in our opacity calculations in order to compare our
results with the historical literature. Computed using NULIB.
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and the integration proceeds backwards in time, from t ¼ 0
to some terminal t < 0. The figure shows this backwards-
in-time integration proceeding left to right.
In Fig. 3 we see some expected features. The final

distribution functions asymptote to their equilibrium
Fermi-Dirac levels at this energy feqfνe;ν̄e;νxg ¼ f0.039;
0.053; 0.046g within a few mean free paths; in the scat
cases it is the sums fAE þ fSE that achieve these values.
And the lengths of the rays are proportional to the mean
free paths L, which obey the hierarchy Lνx > Lν̄e > Lνe ; in
the scat cases these lengths are less than in the noscat cases,
since the total mean free paths are less than the absorption
mean free paths (significantly so for νx, negligibly so for νe).
As Fig. 2 reveals, integrating the distribution functions

over the energies ε ∈ ð0; 100Þ MeV probes the numerical
solution over length scales from 0.1 to 105 km. Figure 4
shows the error in our results for the noscat case. In this
simple case, the dominant source of error is the neglected
boundary term with a relative scale of e−τterm ≈ 10−6. In the
following inhomogeneous configurations, errors from the
integration dominate over the boundary term. In this test
and only this test, we used a higher-order integrator, a fifth-
order Dormand-Prince algorithm [59]. This is because our
default third-order Runge-Kutta algorithm estimates a
vanishing error in this configuration.

B. Infinite homogeneous moving slab:
Testing Doppler shift

We reproduce the test above, again in Minkowski
spacetime, but with the matter and observer in relative
motion. We use a stationary observer and fluid moving
in the positive z direction: with uα → Wð1; 0; 0; vÞ and

W ¼ ð1 − v2Þ−1=2, where W is the relativistic Lorentz
factor. All other thermodynamic variables and background
fields are unchanged since our ray integration uses these
quantities in the fluid frame.
A stationary observer measures an energy of ε̃ for a

neutrino with momentum pα → ε̃ð−1;ΩiÞ and direction
Ωi → ðsinA; 0; cosAÞ. In the fluid frame this neutrino has
energy ε ¼ −uαpα; therefore the average energy varies
with observing angle like

hε̃iðcosAÞ ¼ hεieq 1

Wð1 − v cosAÞ ; ð41Þ

where the symbol hε̃iðcosAÞ emphasizes the functional
dependence on cosA. The equilibrium average energy hεieq
is given by TF 3ðηνÞ=F 2ðηνÞ ≈ 3T, with the Fermi integrals
given in Eq. (B21). Equation (41) describes the well-known
Doppler effect.
We sample the distribution function fðε̃; cosA; BÞ with

ray tracing over a uniform grid of 40 points in energy ε̃ ∈
ð0; 100Þ and 30 points in angle cosA ∈ ð−1; 1Þ, holding
fixed B ¼ π. Results are shown in Fig. 5 for the velocities
v ¼ f0; 0.1; 0.8g. The ray tracing results are computed
from total densities in each angular bin, that is

hε̃iðcosAÞ ¼ J̃ðcosAÞ
G̃ðcosAÞ ; ð42Þ

with the Eulerian densities per angular bin given by sums
over the samples

G̃ðcosAÞ ¼ Δ
ð2πÞ3

XN ε̃−1

m¼0

ε̃2mfmðcosAÞ; ð43Þ

J̃ðcosAÞ ¼ Δ
ð2πÞ3

XN ε̃−1

m¼0

ε̃3mfmðcosAÞ; ð44Þ

FIG. 3. Cumulative distribution functions at ε ¼ 11.25 MeV in
the homogeneous infinite slab test (presented in Sec. III A). The
integration proceeds from left to right, or backwards in time t.
Each ray terminates when it achieves a total optical depth greater
than τterm ¼ 14. The points plotted correspond to the time steps
chosen by the adaptive time-stepping algorithm described in
Sec. II E.

FIG. 4. Relative error in integrated equilibrium distribution
functions in the infinite homogeneous slab (presented in Sec. III A).
Plotted here are the relative differences between the final fAE in the
noscat case (see Fig. 3) and the equilibrium distribution functions
given by Eq. (15). The source of this error is the discarded boundary
term fbdry ∼ 10−6 described in Sec. II E.
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with Δ≡ 2πΔε̃, N ε̃ the number of energy samples,
fmðcosAÞ≡ fðε̃m; cosA;BÞ, and m labeling each energy
bin. Results are identical for all scat and noscat methods.
In Fig. 5 we see the common features of a redshifted
spectrum for receding fluid (cosA ∼ −1), a blueshifted
spectrum for approaching fluid (cosA ∼ 1), and a slightly
redshifted spectrum for fluid moving transverse to the
observer (cosA ¼ 0).

C. Idealized star: Testing the decoupling regime

The homogeneous configurations of the previous sections
may be extended to probe the solution outside the optically
thick regime by setting up an idealized homogeneous star,
with the thermodynamic variables constant inside radius R
and vanishing outside. We choose R ¼ 50 km and place the
observer at r ¼ 75 km, at which position there is a radiation
cone of half-opening angle cosAmax ≈ 0.75.
The formal solutions of Eqs. (25) and (26) may be

directly integrated in this scenario. Assuming Minkowski
spacetime and stationary fluid we have

fAE ¼ χ�a
χ
feqð1 − e−χsÞ; ð45Þ

fSE ¼ χs
χ
Φð1 − e−χsÞ; ð46Þ

where s is the path length traversed by the ray through the
star,

s ¼ 2R

�
1 −

r2

R2
ð1 − cos2AÞ

�
1=2

: ð47Þ

The total opacity is χ ¼ χ�a þ χs, and the stimulated
absorption opacity χ�a and elastic scattering opacity χs
are defined in Appendix B.

Since no analytic form is known for the background field
Φ interior to the star, we examine only the noscat case, with
χs ¼ 0 and χ ¼ χ�a. This scenario has been widely used in
the literature as a test for radiation codes [7,9,60]. We
sample the distribution function over a uniform grid of 30
points in angle cosA ∈ ð0.734; 1Þ (holding fixed B ¼ π)
and 40 points in energy ε̃ ∈ ð0; 100Þ MeV. Because of the
discontinuity in fluid variables at radius R, we limit the time
step size to a maximum of tmax ¼ 1.25 km, so that as the
ray approaches the discontinuity in the homogeneous
environment outside the star, the adaptive time stepper
avoids increasing the step size beyond the relevant fluid
scales.
In Fig. 6 we display the samples at ε ¼ 11.25 MeV,

along with the analytic functions specific to each species’
equilibrium distribution function and opacity. As expected
only νe saturates at feq, remaining almost constant across
cosA until we get to rays that pass through a length of the
star comparable to or less than the mean free path at this
energy, 16 km.We also see that ν̄e comes close to saturating
with a mean free path just over 100 km, and νx is well into
the optically thin regime.
We can explain these features quantitatively by examin-

ing the limits of Eq. (45), expanding the exponential
function in powers of χs; the distribution function takes
the limiting values

fAEðcosAÞ ¼ feq
�
χsðcosAÞ s ≪ χ−1ðthinÞ
1 s ≫ χ−1ðthickÞ: ð48Þ

These limits are represented in Fig. 6: with νx in the
optically thin limit at all viewing angles, and νe in the
optically thick limit at viewing angles cosA≳ 0.8.

FIG. 5. Average energy of ν̄e neutrino fields measured by a
stationary observer, hε̃iðcosAÞ, in the moving slab test (presented
in Sec. III B). The observer sees neutrinos with cosA > 0 to be
moving primarily with the fluid. The points are computed from
ray tracing spectra; the lines are the analytic formula Eq. (41).

FIG. 6. Distribution functions outside an idealized homo-
geneous star with radius R ¼ 50 km, and observer at r ¼
75 km (presented in Sec. III C). A is the angle between the
neutrino momentum and the r̂ direction. In this plot we display
only the samples at energy ε ¼ 11.25 MeV. The points are
computed from ray tracing; the lines from the analytic solution,
Eq. (45).
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D. Idealized compact star: Testing gravitational
redshift and geodesic curvature

To test the general relativistic terms in our formulation,
which account for the gravitational redshift and geodesic
curvature of the neutrinos, we sample distribution functions
outside an idealized hot compact star, and compute a
neutrino-antineutrino interaction integral describing the
energy deposited per time per volume due to the process
νν̄ → e−eþ. We describe this code test in detail in [61]
Sec. IV. 3, and here give a brief summary.
The νν̄-annihilation integral outside a compact star was

computed semianalytically in [29]. Since then many studies
of νν̄ annihilation in more realistic configurations have
used the compact star as a standard code test [30–32]. We
compute the power density (energy per time per volume)
due to νν̄ annihilation measured by a stationary observer
above the star using

qνν̄ ¼ A
Z

d3pνd3pν̄fνðpνjÞfν̄ðpν̄kÞ
pνt þ pν̄t

pt
νpt

ν̄
ðpναpα

ν̄Þ2;

ð49Þ

whereas in [29] we account for the energy redshift to infinite
separation by the energy weightingpνt þ pν̄t,A ¼ 2c3KG2

F,
the Fermi constant is GF ¼ 5.29 × 10−44 cm2 MeV−2,

K

�
e
μ
τ

�
¼ 1

6π

�
1

�þ
−

�
4sin2θw þ 8sin4θw

�
; ð50Þ

and the weak mixing angle is sin2 θw ¼ 0.23.
Because Eq. (49) has such high dimension, a simple

unigrid integral solution—sampling fν and fν̄ over fixed
step sizes in momentum space—is impractical. We com-
pute the integral using the adaptive Monte Carlo Vegas
technique [59], which iteratively samples those regions
of momentum space that contribute most to the integral.
At each iterative stage the algorithm estimates the error,
and terminates when some error threshold is achieved.
In order to stress test the gravity dependence of the

code, we choose an unphysically compact star configu-
ration with radius R ¼ 4.43 km, in a Schwarzschild metric
with gravitational radius Rg ¼ 2.95 km. To compare to the
calculation in [29], instead of integrating the formal
solution for fν and fν̄ using Eqs. (25) and (26), we
compute only the boundary term using Eq. (24), and
neglect the attenuation due to the optical depth, This
method is equivalent to transporting the neutrino distri-
bution function in a state of radiative equilibrium with the
matter in the star up to the observer assuming no
interactions along the trajectory. To define the neutrino
distribution function in the star, we make the star
homogeneous, with temperature T ¼ 5 MeV and chemi-
cal potentials ηνe ¼ −ην̄e ¼ 0.1, and we assume station-
ary fluid.

The power density deposited by this interaction at a
coordinate radius r ¼ 7.38 km is computed from formulas
in [29] as

qνν̄ ¼ 6.89 × 1027 erg cm3 s−1: ð51Þ

We computed the integral 12 times at an error threshold of
1% and measured a mean of

qνν̄ ¼ 6.87� 0.07 × 1027 erg cm3 s−1; ð52Þ

with the error bars expressing the standard deviation
between the 12 calculations. Each run computed the
integral using N samples of the integrand (requiring 2N
rays, one for each sample of fν and fν̄), with N ranging
from 56,000 to 72,000.
The success of this test gives us confidence in the code’s

ability to handle a general spacetime metric, since errors in
gravitational redshift would have affected samples of f in
the integrand (e.g., sampling the distribution function at
the wrong local energy), and errors in geodesic integration
would have affected the angular size of the star (e.g.,
causing the star to look larger or smaller).

E. Postbounce collapse profile: Testing scattering

To test our scattering treatments we calculate neutrino
fields outside a collapsed 15 M⊙ star, 100 ms after core
bounce, comparing ray tracing fields to those from a
Monte Carlo transport calculation. Elastic scattering
interior to the shock at r ≈ 150 km significantly modifies
the neutrinos’ spectra, and the extended envelope outside
the shock becomes a source of higher-than-average-
energy neutrinos.
The 1D matter profile and M1 transport evolution are

computed using the open source supernova evolution code
GR1D [15,57,62], using a progenitor profile from [63]. The
matter is described by the LS180 equation of state [56], and
the opacities are computed and stored in a table as
described in Sec. III A. This standard test is also presented
for example in [7,9,15].
The matter profile and background field are stored on a

spherical pseudospectral grid composed of 11 spherical-
shell subdomains [64,65] comprising a total of 62 radial
grid points spaced approximately logarithmically across
r ∈ ð0; 740Þ km. The background scattering field ΦðεÞ is
supplied by GR1D in the form of Jðε̃iÞ, with εi representing
18 energy groups identical to those in the NULIB table
described in Sec. III A. For the spectral method we use
Jðε̃iÞ directly, using zeroth-order interpolation between
energy groups; for the gray method we use J ¼P

Jðε̃iÞΔε̃i, and G ¼ P
Jðε̃iÞΔε̃i=ε̃i instead, with Δε̃i

the bin width of the ith energy group.
For fiducial neutrino distributions we use the matter

profile as input into a Monte Carlo radiation transport
calculation using open source neutrino transport code
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SEDONU [8,66]. To homogenize the physics modeled across
these three treatments (M1 transport to provide the back-
ground fields, ray tracing to compute neutrino distributions,
and Monte Carlo transport for a fiducial comparison) we
turn off inelastic scattering where it is included (in the
Monte Carlo code), and we turn off general relativistic
effects where they are included (in the ray tracing and
M1 codes).
We place a stationary observer at r ¼ 500 km. Taking

advantage of the spherical symmetry, we sample the
distribution function fðε̃; cosA;BÞ with ray tracing over
a uniform grid of 40 points in energy ε̃ ∈ ð0; 100Þ and 80
points in angle cosA ∈ ð0.9; 1Þ, holding fixed B ¼ π. With
these samples we compute energy luminosity from the
radial momentum density H̃r, using the midpoint rule to
convert the integral in Eq. (29) to a sum:

L ¼ C
Δ

ð2πÞ3
XN−1

m¼0

ε3m cosAmfm; ð53Þ

with C ¼ 4πr2, Δ≡ 2πΔε̃ΔðcosAÞ, N ≡ NAN ε̃, NA and
N ε̃ the number of samples in angle and energy, and m
labeling each ray. We also compute average energy
as a function of incoming angle hε̃iðcosAÞ using
Eqs. (42)–(44), and the average energy of all neutrinos
measured by our observer using

hε̃i ¼ 1

NA

XNA−1

m¼0

hε̃iðcosAmÞ: ð54Þ

Figure 7 shows the distribution of average νx energies
across incoming angles to this observer. We show νx

because they present the largest scattering effects: they
scatter through a thicker atmosphere outside their deep
emission surface, and their hotter spectrum experiences
stronger modification due to the ε2 dependence of the
scattering cross section. Against the fiducial Monte Carlo
distribution, we show the noscat treatment, and the scat
treatment using both the spectral method and the gray
method.
As expected the average energies from both the scatter-

ing envelope (cosA≲ 0.95) and the bright core
(cosA≳ 0.995) are well characterized by the scat treat-
ments and badly characterized by the noscat treatment.
In this case for νx the major effect of elastic scattering is to
decrease the average energy of neutrinos coming from the
core and increase the average energy of neutrinos coming
from the envelope.
Although not shown here, the angular distribution con-

tributing to the total number density is also strongly affected
by elastic scattering. Without elastic scattering, the central
regions emitting 60% of the neutrinos for the species
fνe; ν̄e; νxg have length scales rν ≈ f40; 35; 20g km; with
elastic scattering the scales are rν ≈ f50; 45; 35g km.
The total luminosities and average energies measured

by the different treatments are presented in Table II. As
expected, νe is least affected by scattering, and νx most. In
fact, without scattering, νx luminosities are overestimated
by more than 2 orders of magnitude, due to the steep
increase in temperature with depth in the inner core.
Though contributing only a fraction of the total luminosity,
the average energy of neutrinos scattered to the observer
from the envelope outside the shock, hεisc, is poorly
characterized by the noscat treatment for all species.

FIG. 7. Angular distribution of νx average energies hε̃iðcosAÞ
in the collapse profile test (described in Sec. III E). The observer
is at 500 km, and the shock at 150 km, so that the half-opening
angle of the shock is cosA ≈ 0.954. The four methods depicted
are (1) a fiducial Monte Carlo calculation, ray tracing using the
(2) spectral and (3) gray methods to estimate background fields
for scattering, and (4) ray tracing neglecting scattering.

TABLE II. From the postbounce collapse profile test (Sec. III E),
a comparison of total luminosities and average energies between
the following methods: ray tracing ignoring elastic scattering
“noscat,” ray tracing with the gray scattering treatment “scat gray,”
ray tracingwith the spectral scattering treatment “scat spectral,” and
a fiducial Monte Carlo transport evolution “MC.” We also show
average energies of the scattering envelope hε̃isc, which are
estimated by eye from plots like Fig. 7 at cosA < 0.95. Luminos-
ities have units 1052 erg s−1 and average energies have units MeV.
The νx luminosities are per species: multiply by 4 to get the total
heavy-lepton neutrino luminosities.

noscat scat gray scat spectral MC

Lνe 3.53 3.14 3.04 3.48
Lν̄e 5.19 3.05 3.03 3.01
Lνx 222.0 1.88 1.76 1.70
hε̃νei 10.6 10.6 10.9 11.0
hε̃ν̄ei 14.2 13.0 13.8 13.7
hε̃νxi 47.8 16.0 17.3 16.2
hε̃νeisc 4 14 17 16
hε̃ν̄eisc 4 24 20 18
hε̃νxisc 2 28 31 27
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By contrast, both the gray and spectral scat treatments
faithfully describe the high scattered energies from the
envelope.
We can make some quantitative sense of the scattered

energies in Fig. 7 and Table II using the solutions explored
in the simple configurations above. In particular, the
average energy in the scattering envelope (cosA≲ 0.95)
is related to the spectrum in the direction of the interior
(cosA ∼ 1). The relation may be derived by simplifying
our realistic model to that of a homogeneous matter profile
and background scattering field.
By expanding the exponential of Eqs. (46) and (45) as

we did for Eq. (48), and furthermore factoring out the
dominant energy dependence from the cross sections (i.e.,
χ ≡ ε2ζ with ζ approximately constant), we have

fAEðεÞ ¼ ε2ζafeqðεÞs; ð55Þ

fSEðεÞ ¼ ε2ζsΦðεÞs; ð56Þ

where s is the length of the scattering envelope passed
through by the ray. In the envelope the local temperature is
low so feq=Φ ≪ 1, and also ζa=ζs ≪ 1, so fSE strongly
dominates over fAE. The average energy of the scattered
field measured by our observer is therefore

hε̃isc ¼
R
dεε3fR
dεε2f

≈
R
dεε5ΦR
dεε4Φ

: ð57Þ

Note that we have taken the liberty here of identifying the
fluid-frame energy ε with the Eulerian energy ε̃, since infall
velocities in the envelope are ∼0.1c, and as Fig. 5 indicates,
the Doppler shift will therefore introduce an error into our
analysis of ∼10%.
The spectrum of the background field ΦðεÞ is well

approximated as the scat solution for cosA ∼ 1, since that is
the dominant source direction for neutrinos. And because
the scattering envelope is optically thin at all energies, we
can assume the neutrino spectrum is essentially unchanged
in its passage through the envelope.
In order to estimate hε̃isc analytically, we must write the

background field ΦðεÞ analytically. Direct Fermi-Dirac fits
using a temperature and chemical potential representative
of a physical neutrino surface fair poorly since neutrinos of
different energies decouple from the matter at different
radii, over which the thermodynamic state varies substan-
tially. Phenomenological Fermi-Dirac fits work well, but so
do pinched spectral fits which are much simpler [67,68]:

ΦpiðεÞ ∝ εa−2 exp

�
−ðaþ 1Þ ε

hεi
�

ð58Þ

(where our definition differs from that of [67] by a factor of
ε2, since we define our distribution function to be dimen-
sionless in natural units fℏ; cg ¼ 1).

Pinching parameters (calculated by eye from the spectral
scat method) for the species fνe; ν̄e; νxg are a ≈
f3.6; 5.1; 2.3g. Energy moments of pinched spectra like
those in Eq. (57) have a simple analytic form so that
Eq. (57) becomes

hε̃isc ≈ aþ 3

aþ 1
hεi; ð59Þ

≈f16; 18; 28g MeV; ð60Þ

again for fνe; ν̄e; νxg respectively. These analytic predic-
tions agree with the average energies of the scattering
envelope to approximately 10% of all of the treatments
including elastic scattering presented in Table II, except for
ν̄e in the gray scat treatment, which deviates from our
prediction by 30%. This agreement is excellent despite the
drastic simplifications used in our model.
The hε̃ν̄eisc prediction in the gray scat treatment is

approximately 30% larger than the fiducial Monte Carlo
estimate. This is due to the large negative local chemical
potential ην̄e ∼ −10 in the scattering envelope. As described
in Appendix B 2, we use ην in the gray treatment to
construct our synthetic spectrum from total neutrino den-
sities J and G. This error and our successful analysis using
pinched spectra above points the way to future improve-
ments to the graymethod: making better assumptions about
the spectra which are less sensitive to local fluid quantities.

IV. APPLICATIONS

In this section we use the ray tracing code to first
calculate global measures of the neutrino fields outside of
the hypermassive neutron star and disk formed in a binary
neutron-star merger simulated by [10,18], and compare ray
tracing results to those from the M1 transport simulation.
Second, we examine neutrino oscillations in this environ-
ment, using results from ray tracing to include the effect of
neutrino-neutrino interactions on flavor evolution.

A. Neutrinos from a hypermassive
neutron-star remnant

The merger of two neutron stars by gravitational wave
emission produces a postmerger configuration composed of
a single neutron star surrounded by a disk. Because of
strong differential rotation and shock heating, the remnant
may temporarily avoid collapse to a black hole, even if its
mass exceeds the threshold of dynamical instability for a
rigidly rotating neutron star [69]. These objects called
hypermassive neutron stars may avoid collapse for thou-
sands of seconds depending upon a number of physical
factors including thermal pressure, magnetic fields, and the
microphysics of the fluid [70,71].
Such a configuration was modeled in [10] by evolving

fluid and spacetime through the final inspiral and merger
of two identical neutron stars of isolated gravitational
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mass 1.2 M⊙. The configuration was simulated using a
gray M1 transport scheme for the neutrinos, evolving the
energy density, number density, and energy flux in addition
to the standard fluid and metric variables to ∼11 ms
following merger [18]. The fluid was modeled using the
LS220 equation of state [56].
We use a single time snapshot from that configuration at

t ¼ 11 ms after merger. In this way we approximate the
system as stationary over a light-crossing time of around
1 ms, which is far below the thermal timescale of the
remnant. Figures 8–11 show slices of density and temper-
ature from the finite-difference fluid and M1 radiation data.
These data were evolved on a rectilinear grid spanning
approximately 400 km in both the x and y directions, and
150 km in the z direction in our evolution coordinates.

We extrapolate the fluid and M1 radiation data from the
domain shown in Figs. 8–11 to a larger ray tracing domain
by setting all fluid and M1 radiation variables to their floor
values outside the smaller domain. This simple extrapola-
tion is adequate for ray tracing since the neutrinos are
almost entirely free streaming outside the smaller domain.
Since the metric data were evolved on this larger domain no
extrapolation is needed for them. The larger domain is
represented as a pseudospectral grid composed of a sphere
with concentric shells extending to r ≈ 1400 km. Radial
grid spacings are Δr ≈ 0.15 km in the star and Δr ≈
2.5 km in the disk, with 12 cells spanning polar angles
θ ∈ ½0; π� and 24 cells spanning azimuthal angles
ϕ ∈ ½0; 2πÞ. Though a pseudospectral representation of
nonsmooth hydrodynamic data introduces some Gibbs-like
oscillations in the variables, we choose to use this repre-
sentation instead of the mesh-refined finite-difference grid

FIG. 8. A meridional slice of density in the hypermassive
neutron-star and disk configuration (Sec. IVA). The distorted
rectangular boundaries are the boundaries of the grid used in the
numerical simulation, which employs a coordinate mapping to
concentrate points near the central object.

FIG. 9. An equatorial slice of density in the hypermassive
neutron-star and disk configuration (Sec. IVA).

FIG. 10. A meridional slice of temperature in the hypermassive
neutron-star and disk configuration (Sec. IVA).

FIG. 11. An equatorial slice of temperature in the hypermassive
neutron-star and disk configuration (Sec. IVA).
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of the evolution because the pseudospectral representation
uses much less memory: 95 MB in pseuspectral vs 3 GB in
finite-difference representation. Obviously, memory loads
of this order are not insurmountable, but they would require
some modifications to our volume data interpolation infra-
structure. For the purposes of this analysis the pseudo-
spectral representation is adequate.
Opacities are computed from the LS220 equation of state

using NULIB and are stored as a table covering energy,
density, temperature, and composition ranges spanning ε ∈
½1; 280.5� MeV logarithmically, ϱ∈½106;3.2×1015�gcm−3

logarithmically, T ∈ ½0.05; 150� MeV logarithmically, and
Ye ∈ ½0.035; 0.55� linearly, with grid extents f18; 82;
65; 51g respectively.
We place stationary (i.e., Eulerian) observers at fixed

coordinate radius r ¼ 250 km in the y-z plane along an arc
at Nθ positions distributed linearly in cos θ over the
northern hemisphere using θi ¼ cos−1 ð1 − i=ðNθ − 1ÞÞ for
i ¼ 0; 1; 2;…Nθ − 1. We choose Nθ ¼ 30.
Though the ray tracing sampling of f is done in full

general relativity, in our calculation of moments at the
observer positions, we make the simplifying assumption of
Minkowski spacetime. The errors in our moments intro-
duced by this assumption may be estimated to be of order
GM=r ¼ 4 km=250 km (with G the gravitational constant
and M the central mass), or ∼1%.
Each observer samples the distribution function over a

uniform grid in energy, cosine of polar angle, and azimuthal
angle with extents fN ε̃; NA; NBg spanning the ranges
ε̃∈ð0;100ÞMeV, cosA∈ððcosAÞmin;1Þ, and B∈ ½0;2πÞ.
The integrals for fluxes of number and energy
[Eqs. (29), (32), and (33)] become sums over all rays.
Taking these fluxes in the radial direction, and using the
midpoint rule to convert the integral to a sum, we have

K̃rðθÞ ¼ Δ
ð2πÞ3

XN−1

m¼0

ε̃2m cosAmfmðθÞ; ð61Þ

H̃rðθÞ ¼ Δ
ð2πÞ3

XN−1

m¼0

ε̃3m cosAmfmðθÞ; ð62Þ

with fmðθÞ≡ fðθ; ε̃m; cosAm; BmÞ, Δ≡ Δε̃ΔðcosAÞΔB,
N ≡ N ε̃NANB, and m the index labeling each ray.
Average energies in the coordinate frame are given by
hε̃iðθÞ ¼ H̃rðθÞ=K̃rðθÞ. We choose N ε̃ ¼ 30, NA ¼ 150,
and NB ¼ 20. To maintain high angular resolution, we only
sample rays that pass within approximately 120 km of the
star’s center by setting ðcosAÞmin ¼ 0.88.
We also combine measurements from all observers to

estimate total luminosities and averages over the sky. Since
we have chosen an arc of observers isolated to the northern
hemisphere and the y-z plane, we may extend these data to
the full sky by assuming that emission is azimuthally
symmetric and reflection symmetric across the equatorial

plane. Figures 8–11 indicate the approximate validity of
these assumptions at 11 ms after merger. Total luminosities
are then computed as integrals of the radial fluxes over
cos θ. Using the trapezoid rule, the number and energy
luminosities become sums:

R ¼ C

�
1

2
ðK̃r

0 þ K̃r
Nθ−1Þ þ

XNθ−2

n¼1

K̃r
n

�
; ð63Þ

L ¼ C

�
1

2
ðH̃r

0 þ H̃r
Nθ−1Þ þ

XNθ−2

n¼1

H̃r
n

�
; ð64Þ

with C≡ 2πr2Δðcos θÞ, K̃r
n ≡ K̃rðθnÞ, H̃r

n ≡ H̃rðθnÞ, and
n labeling each observer’s position. Average energies over
the whole sky are then hε̃i ¼ L=R. Note, for simplicity we
use the coordinate radius r in this expression even though
the earlier merger evolution did not necessarily produce
areal coordinates. The effect of this choice is to artificially
scale the ray tracing luminosities by some factor we believe
to be very close to 1. In future work we can correct this
error by computing the proper area over coordinate spheres
at the observers’ locations.
Table III compares the all-sky luminosities and average

energies from ray tracing and from the M1 transport
simulation, which serves for qualitative comparison.
Even if M1 and ray tracing methods both provide faithful
measurements of all-sky luminosities, we expect some
disagreement since the two treatments differ fundamentally.
In addition to differences in transport methodologies, the
M1 fluxes are integrated over the outer boundary of the
finite-difference grid at radii ranging from 75 to 200 km,
whereas the ray tracing fluxes are integrated over a sphere
at radius 250 km, introducing a time lag between some of

TABLE III. Comparison of total luminosities and average
energies of the hypermassive neutron-star configuration (pre-
sented in Sec. IVA). The methods are ray tracing using the noscat
method “noscat,” ray tracing using the gray scat method “scat,”
and the M1 transport simulation “M1.” The ray tracing totals
were computed from sums over observers placed in the y-z plane.
M1 values are taken from [18], Figs. 7, 9, and 10. Energy
luminosities have units 1052 erg s−1, number luminosities
1057 s−1, and average energies MeV. The νx luminosities are
per species: multiply by 4 to get the total heavy-lepton neutrino
luminosities.

noscat scat M1

Lνe 5.87 5.40 5
Lν̄e 9.70 10.7 12
Lνx 23.6 12.5 12
Rνe − Rν̄e −0.91 −1.68 −2
hενei 12.7 12.0 12
hεν̄ei 16.0 14.8 15
hενxi 34.2 23.3 26
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the fluxes used in the measurements of order 1 ms.
Additionally, uncertainties for the M1 simulation may be
estimated from comparisons between M1 methods to be
around 15% for energy luminosities and 10% for average
energies ([18], Sec A. 6).
Because the model was evolved with a gray M1 transport

scheme, the only scat method we can use in our ray tracing
is the gray method. As in the postbounce configuration in
Sec. III E, the scat treatment is more faithful than the noscat
treatment, significantly so for the heavy-lepton neutrinos.
For example, with scattering turned off the ray tracing and
M1 measurements of Lνx disagree by 100%, but with
scattering turned on agreement is within 10%. As the ray
tracing and M1 measurements both show, Rν̄e dominates
over Rνe significantly, because the disrupted neutron star
material is releptonizing.
The distributions of radial fluxes over observer position

are shown in Figs. 12 and 13. With the noscat treatment the

νx luminosities are relatively constant in θ, because the disk
is optically thin to νx, and most of the heavy-lepton
neutrinos come from the hypermassive neutron star, which
is roughly spherical. The slight upward trend in νx
luminosities with θ may be due to asymmetries in the
fluid configuration, inhomogeneous coordinate maps used
in the hydrodynamics evolution, or the fact that equatorial
observers are closer to the disk’s hot spiral arms than are
polar observers. It is not due to the Doppler shift or
relativistic beaming from the rapid rotation of the star, a
hypothesis we tested by setting ui ¼ 0 and W ¼ 1 in the
ray tracing equations. Because of their larger absorption
cross section, the disk is not optically thin to νe and ν̄e, and
observers at small angles within view of the hot hyper-
massive neutron-star measure the largest radial fluxes of
these species. When we turn on scattering, the disk is no
longer transparent to νx, and νx luminosities present the
same qualitative θ dependence as that of the other species.
From Figs. 12 and 13 we also see that for observers near

the poles (θ ∼ 0°) scattering generally increases fluxes of ν̄e
and νx and decreases fluxes of νe. When scattering is turned
on, all three fluxes experience a similar loss of neutrinos
from the central star. But the ν̄e and νx fluxes experience a
more dominant gain of high-energy neutrinos scattered by
the disk back to the observer. The νe fluxes, however,
experience only a minor gain of neutrinos from the disk,
since νe presents a lower average energy, and the scattering
cross section depends strongly on energy. For observers in
the equatorial plane (θ ∼ 90°) the effect of scattering is a
decrease in energy fluxes for all species. This is because
more matter pollutes the equatorial regions than the polar
regions, causing the losses from the star to dominate over
the gains from the disk for all three species.
Figure 14 shows the distribution of average energies of

radial fluxes over observer positions. With and without
scattering, the average energies are highest for observers
near the polar axis, since polar observers get a direct view

FIG. 12. Radial number fluxes, K̃rðθÞ, as defined in Eq. (61), in
the hypermassive neutron-star configuration (presented in Sec. IV
A). Sampled for observers at fixed coordinate distances from the
center of the star, with r ¼ 250 km.

FIG. 13. Same as Fig. 12 but radial energy fluxes H̃rðθÞ as
defined in Eq. (62).

FIG. 14. Same as Fig. 12 but average energies of radial fluxes
hε̃iðθÞ ¼ H̃rðθÞ=K̃rðθÞ, as defined in Eqs. (61) and (62).
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of the hot hypermassive neutron star. (This trend is
unexpectedly reversed for νx, and may be due to asymme-
tries in the disk, as discussed above.) Scattering decreases
average energies across all observer positions, as it did in
the postbounce configuration, or any configuration of a hot
interior surrounded by a scattering envelope. The strength
of the effect of scattering on the average energies of the
different species is seen to follow the ranking νx > ν̄e > νe
due to two factors: the average energies of the spectra obey
the same ranking, and the thicknesses of the different
species’ scattering envelopes also obey the same ranking.
As we showed in the models with a homogeneous back-
ground scattering field, the scattering contribution fSE is
proportional to energy ε2 and path length s [Eq. (56)].
In Figs. 15 and 16, we show the distributions of neutrino

number density over incoming polar angle cosA for the

observer on the polar axis θ ¼ 0°, and in the equatorial
plane θ ¼ 90°. This number density is defined

G̃ðcosAÞ ¼ Δ
ð2πÞ3

XN−1

m¼0

ε̃2mfmðcosAÞ; ð65Þ

with Δ≡ Δε̃ΔB, N ≡ N ε̃NB, fmðcosAÞ≡ fðε̃m; cosA;
BmÞ, and m the index labeling each ray at polar angle
cosA. The integral of this quantity over d cosA gives the
total number density G̃, according to Eq. (31). As in the
case of the collapse profile in Sec. III E, the dominant effect
of elastic scattering on G̃ðcosAÞ is to spread the distribution
out to larger angles by generally decreasing the number of
neutrinos coming from the core while increasing the
number of neutrinos coming from the disk.
For the observer in the equatorial plane, Fig. 16, the

disk is so optically thick to νe that there is very little
difference between scat and noscat treatments for incom-
ing angles cosA≳ 0.95 corresponding to the volume
inside of r≲ 80 km. Also the stepped temperature gra-
dient in the disk’s spiral arms visible in Figs. 10 and 11
presents as a stepped heavy-lepton neutrino number
density distribution in Fig. 16 in the noscat treatment,
since the energy emission due to e−eþ annihilation,
producing νx, is especially sensitive to temperature, going
as T9 ([51], Sec. VII) neutrino opacities. This stepped
distribution is not visible in νe and ν̄e emission, since we
ignore pair processes for these species due to the domi-
nance of absorption and emission processes, obeying a
shallower temperature dependence; nor is it visible in the
scat treatment of νx, since scattering tends to smear the
incoming angle of the emission; nor is it visible for any
species or treatment in Fig. 15, since the integration over
the azimuthal angle B averages out any spiral structure for
the observer on the polar axis.

B. Neutrino oscillations at high neutrino densities

Here we examine the importance of elastic scattering in
neutrino flavor oscillation above the hypermassive neutron-
star–disk configuration presented in Sec. IVA.Our treatment
of the flavor evolution equation assumes flat space and small
fluid velocities. In consequence we treat some of the gauge-
dependent quantities inconsistently, and we ignore poten-
tially important features of relativistic flavor evolution near
compact objects [72]. We believe our treatment is sufficient,
however, for the following qualitative exploration.
The Boltzmann equation [Eq. (8)] is one limiting form

of the quantum kinetic equations for neutrinos [73], the
limit where collisional mean free paths are much shorter
than oscillation lengths, i.e., ε=K ≪ jHj−1 with H the
Hamiltonian matrix describing coherent forward scattering
interactions. In this limit the neutrino density matrix takes
the form

ρ0ðε;lμÞ ¼
X
α

fναðε;lμÞjναihναj; ð66Þ

FIG. 15. Distribution of number density G̃ðcosAÞ over incom-
ing angle defined in Eq. (65). The integral of this quantity over
d cosA gives the total number density measured by this observer
on the rotation axis. Volume data from the hypermassive neutron-
star configuration (presented in Sec. IVA).

FIG. 16. Distribution of number density G̃ðcosAÞ over incom-
ing angle, as in Fig. 15, but with the observer in the equatorial
plane.
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with jναi the neutrino flavor eigenstates. The neutrino state
remains pure, or diagonal in the flavor basis.
But at the opposite limit, in the free-streaming regime,

coherence effects become important, and the quantum
kinetic equations take a Schrödinger-like form:

i
d
ds

S ¼ HS; ð67Þ

where ds is an interval of proper length traversed by the
neutrino as measured by our observer, and S is the neutrino
flavor evolution matrix describing a mixed state

ρ ¼ Sρ0S†: ð68Þ

In this limit, we may decompose the Hamiltonian matrix
into vacuum, matter, and neutrino contributions:

H ¼ HV þHe þHνν: ð69Þ

Explicit formulas for these matrices may be found in the
oscillation literature, e.g., [74], but for clarity we only give
their order-of-magnitude scales here:

jHVj ∼
Δm2

ε
; ð70Þ

jHej ∼GFjne− − neþj; ð71Þ

jHννj ∼GFjGνe − Gν̄e j; ð72Þ

where Δm2 is the mass-squared differences between
neutrino mass eigenstates, GF is the Fermi coupling
constant, ne− and neþ are the electron and positron number
densities, and Gνe and Gν̄e the electron neutrino and
antineutrino number densities defined in Eq. (31). In this
statement of scale for Hνν we only include the isotropic
components of the neutrino fields; for our calculations
below, however, we include the full angular distributions
found via ray tracing.
In regimes in which jHννj ≪ jHV; Hej, the flavor evo-

lution is locally soluble in a ray-by-ray method, and reveals
a rich and physically important phenomenology including
vacuum, solar, atmospheric, and terrestrial oscillations, as
well as oscillations in supernova envelopes. Where neutrino
densities are relatively high, however, as in neutron-star
mergers, the problem must be solved globally. To date, no
method has been devised to handle this problem in systems
lacking spherical symmetry.
However, we can solve a similar but tractable problem

along a single ray. We assume that all the neutrino rays
intersecting an event along a given test ray have undergone
the same flavor evolution history as that of the test ray:
i.e., the evolution matrix S is the same for all rays sharing
that event. This is the so-called single-angle approximation,
which is widely used in the supernova oscillation literature

and has been shown to be qualitatively faithful in those
environments. We note, however, that recent studies have
discovered (1) spherically symmetric configurations for
which a single-angle calculation produces qualitatively
different flavor evolution behavior than a full multiangle
calculation [43], and (2) azimuthally symmetric configu-
rations for which the single-angle approximation masks
certain instabilities in the flavor evolution [75].
The formalism of the single-angle approximation

requires knowledge of the unoscillated neutrino contribu-
tion to the Hamiltonian matrix along a given test trajectory.
This is a function of the unoscillated neutrino self-
interaction potential, which for the αth flavor is

Vνα;0ðε;lμÞ ¼
ffiffiffi
2

p
GF

ð2πÞ3 ε
2

I
dΩ0ð1 − ω0Þfναðε;l0

γÞ; ð73Þ

with the test ray propagating in direction lμ, ambient rays
propagating in directions l0

γ , and the cosine of the angle
between these given by ω0 ¼ ψμγlμl0

γ. As in the moment
equations [Eqs. (28)–(32)], the integral is taken over all
directions l0

γ .
Implementing the single-angle approximation, we first

use ray tracing to compute the unoscillated neutrino self-
interaction potentials Vνα;0 at several points along a test
neutrino trajectory. We then integrate the flavor evolution
matrix S along this test trajectory, interpolating Vνα;0 to all
points sampled by the integration. And at each integration
step we rescale Vνα;0 according to the mixing specified
by S.
If conditions are right, a resonant flavor transition

introducing significant mixing may occur very near the
point where neutrinos begin free streaming. The matter-
neutrino resonance [21–23] can occur where the matter
potential and neutrino self-interaction potentials cancel, or
where Ve þ Vνν;0 ¼ 0, with

Ve ¼
ffiffiffi
2

p
GF

ϱ

mN
Ye; ð74Þ

Vνν;0 ¼
Z

dεðVνe;0ðεÞ − V ν̄e;0ðεÞÞ; ð75Þ

with ϱ the rest density and mN the nucleon mass. The
matter potential Ve is always positive, and far outside the
accretion disks formed in neutron-star mergers, in which
the disrupted neutron-star matter is rapidly releptonizing,
the total unoscillated neutrino self-interaction potential
Vνν;0 is large and negative.
We examine this effect in the postmerger configuration

already analyzed in Sec. IVA. We calculate the self-
interaction potential along a radial coordinate trajectory
making an angle θ ¼ 25° with the rotation axis, at Nr ¼ 7
positions r ∈ f30; 50; 82; 135; 223; 368; 608g km. We
sample distribution functions at each of these positions
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over a grid with extents Nε ¼ 30, NA ¼ 200, NB ¼ 30;
energies range over ε ∈ ð0; 100Þ MeV; polar angles range
over cosA ∈ ððcosAÞmin; 1Þ, with ðcosAÞmin ∈ f−1;−1;
−1; 0.488; 0.849; 0.947; 0.981g for each of the Nr posi-
tions, and azimuthal angles range over the whole sky
B ∈ ½0; 2πÞ. We interpolate the logarithm of the self-
interaction potentials [Eq. (73)] in path length log r along
the ray, by fitting a third-order spline with continuous
derivative, across the Nr observation points. For r >
608 km we extrapolate the self-interaction potentials using
the geometric falloff of r−4 applicable to the far-field limit
of the self-interaction potential [23].
The matter potential along this test ray is from an

analytic wind model qualitatively consistent with the
densities in the simulated volume (i.e., inside r ∼ 70 km)
and asymptoting to the r−2 density field of a spherical
steady-state wind with a constant asymptotic velocity. The
density and velocity fields of a spherical steady-state wind
obey the continuity equation ρðrÞvðrÞr2 ¼ ρ1v1r21, with ρ1
and v1 the density and velocity measured at some fiducial
radius r1. For velocity field we choose a phenomenological
wind model used in the oscillation literature [76]

vðrÞ ¼ v1

�
1 −

R
r1

�
−β
�
1 −

R
r

�
β

; ð76Þ

with R the wind launch radius and β an acceleration
parameter. This yields the following density field

ρðrÞ ¼ ρ1C

�
r1
R

��
1 −

R
r

�
−β
�
R
r

�
2

; ð77Þ

with C½a� ¼ a2−βða − 1Þβ. We use the parameters
R ¼ 10 km, r1 ¼ 50 km, β ¼ 2, and ρ1 ¼ 107 g cm−3.
Additionally we impose a density cap of ρmax ¼
1014 g cm−3 inside the radius r0 ¼ 5 km, and smoothly
interpolate densities between r0 and r1 with a cubic
polynomial, enforcing C0 and C1 continuity at the tran-
sitions. The rest density from this model is plotted in
Fig. 17. To translate this density field to a matter potential,
we assume a constant electron fraction of Ye ¼ 0.5,
roughly consistent with the composition of the matter in
the disk’s funnel ([18], Fig. 8).
In fact, a spherical steady-state wind model, though

providing an adequate backdrop for the qualitative study
presented in this section, is less than ideal for this
postmerger configuration, most obviously because in the
10 ms since merger, ejecta with the greatest velocities
around 0.3c will have reached no further than
rmax ∼ 108 cm. Additionally, the true radial profile of the
ejecta from this merger (which our computational model
does not follow) will have many more features inside this
radius, including shock jumps. However, this model den-
sity profile is adequate as a backdrop to our study here since
we expect the remnant to present similar neutrino emission

over a thermal timescale of a few tens of milliseconds while
the matter field propagates out to larger radii.
In Figs. 18 and 19 we show the total unoscillated self-

interaction potential and its contributions from νe and ν̄e for
a test neutrino moving out along the radial coordinate
trajectory described above. Figure 18 shows these terms for
the noscat treatment, and Fig. 19 for the scat treatment.

FIG. 17. Assumed matter density along the neutrino test
trajectory used to calculate the matter potential Ve.

FIG. 18. Neutrino oscillation potentials for the noscat case
along a test trajectory originating at the surface of the hyper-
massive neutron star, and proceeding outward along a radial
coordinate ray with angle θ ¼ 25° with respect to the polar axis.
The trajectory is parametrized by the coordinate radius r. We plot
the vacuum potential due to mass-squared differences (gray
bands), the matter potential Ve due to forward scattering on
e− and eþ (dark green), and the self-interaction potential Vνν;0

due to forward scattering on ambient neutrinos (light green, solid
where positive, dashed where negative); additionally we plot the
νe and ν̄e components composing the self-interaction potential
(light blue and dark blue respectively). The two gray bands at
V ∼ 10−22 erg and V ∼ 10−24 erg indicating the two vacuum
energy scales for 10–30 MeV neutrinos, set the positions of
possible Mikheyev-Smirnov-Wolfenstein or nutation resonances
[21]. Inside the symmetric point at r ∼ 100 km the total un-
oscillated self-interaction potential Vνν;0 is positive, i.e., νe
dominated.
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Obviously, including the effects of elastic scattering tends
to increase the ν̄e contribution relative to the νe contribu-
tion, in this case causing the self-interaction potential to be
negative along the entire trajectory. This effect may be
predicted from Fig. 15, which is calculated for a qualita-
tively similar observer, in the vacated polar funnel of the
disk: in the scat treatment Gν̄e dominates over Gνe at all
angles cosA≲ 0.998, whereas in the noscat treatment Gν̄e
only dominates over Gνe over a range of forward-peaked
angles cosA ∈ ð0.965; 0.998Þ. An additional factor sup-
porting this trend is that neutrinos from the most forward-
peaked angles cosA ∼ 1 have a suppressed effect on the
self-interaction potential due to the ð1 − cosAÞ term arising
in the integral of Eq. (73).
We also solve for the flavor evolution of this system,

integrating S according to Eq. (67), as described in [24]. We
show the survival probabilities for νe and ν̄e in Figs. 20 and
21, comparing the noscat and scat treatments. In these
figures we also show the evolved self-interaction potential
Vosc,

Vosc ≡ ðHννÞee − TrðHννÞ=3; ð78Þ

to show how the neutrino interactions driving the oscil-
lation evolve with flavor. Note that Vosc is identical to Vνν;0

if no flavor evolution takes place. The survival probability
is the probability that a neutrino, if measured, will be found
to be in its original flavor state. The survival probabilities
are computed at each point along the trajectory from the
absolute square of the diagonal terms of the flavor
evolution matrix, Pνα→να ¼ jSααj2. When Pνe→νe decreases,
as can be seen for example in Fig. 21 for r > 400 km, some
of the e neutrinos have oscillated into μ or τ neutrinos.
Figure 20 shows the survival probabilities from the

calculation with elastic scattering turned off. Using neu-
trino mixing angle θ12 and the inverted hierarchy (the

normal hierarchy gives qualitatively similar results) elec-
tron neutrinos and antineutrinos start to oscillate around
700 km in the form of a collective neutrino oscillation,
causing both νe and ν̄e to convert to heavy-lepton neutrinos
and antineutrinos respectively. A similar effect was seen in
[77,78]. Figure 21 shows the survival probabilities of an
otherwise identical calculation, but with elastic scattering
turned on. In this case, electron neutrinos and antineutrinos
start to oscillate around 400 km in the form of a standard
matter-neutrino resonance: at first both νe and ν̄e convert to

FIG. 19. Same as Fig. 18, but for the scat case. Unlike the
case with scattering turned off, here the total unoscillated
self-interaction potential Vνν;0 is everywhere negative, i.e., ν̄e
dominated.

FIG. 20. Neutrino survival probabilities for the noscat case. In
the lower panel we show the matter potential Ve from Fig. 18, and
the evolved self-interaction potential Vosc from Eq. (78). In this
case, the neutrinos undergo collective neutrino oscillation begin-
ning around r ∼ 700 km, with both the electron neutrinos and
antineutrinos converting to heavy-lepton neutrinos and antineu-
trinos almost completely.

FIG. 21. Same as Fig. 20, but for the scat case. In this case the
neutrinos undergo a standard matter neutrino resonance transition
beginning around r ∼ 400 km, with the electron neutrinos con-
verting to heavy-lepton neutrinos almost completely, and the
electron antineutrinos oscillating back to their original flavor after
partially converting to heavy-lepton antineutrinos.
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heavy-lepton neutrinos, but as the transformation pro-
gresses, the ν̄e partially return to their original flavor.
Note that during the latter part of the matter-neutrino

resonance depicted in Fig. 21, where the self-interaction
potential approaches the vacuum scale, the survival prob-
abilities show some small-scale oscillations different than
the standard matter-neutrino resonance introduced in [22].
This occurs because the self-interaction potential and
matter potential fall close to the vacuum potential scale.
The collective neutrino oscillation occurring in the

noscat case (Fig. 20) not only produces a very different
flavor mixture, the transformation also starts further from
the remnant, and it extends much further before it com-
pletes. For these potentials along this test trajectory, we see
that a matter-neutrino resonance only occurs in the scat
case, though with a slightly higher matter potential it could
occur in both cases, closer to the disk in the noscat case
than the scat case. For this particular test trajectory we only
see a standard and not a symmetric matter-neutrino
resonance [23,25]. As we can see from these calculations,
the final outcome of the flavor transformation is quite
different in the two scenarios.

V. CONCLUSIONS

We have introduced a new general relativistic ray
tracing method to compute neutrino distribution functions
around compact objects in dynamical configurations, and
which incorporates the effects of elastic scattering for the
first time within a ray tracing framework. Elastic scatter-
ing of neutrinos into and out of each ray is included in our
method by using estimates of the background neutrino
fields from an M1 transport simulation. To capture the
energy spectrum of the background field, we have
described a spectral method which uses neutrino energy
densities over multiple energy groups as input, and a gray
method which uses neutrino energy and number densities
averaged over all energies as input. We have also
successfully tested the ray tracing code with a compre-
hensive battery of tests.
In our tests (Sec. III) we have confirmed that elastic

scattering plays a significant role in redistributing neutrino
energy and angle distributions in common compact-object
configurations. The largest effects are seen in νx distribu-
tions and to a lesser extent ν̄e, with the dominant effect
being a decrease in average energies from the central body,
and an increase in average energies from the scattering
envelope. More specifically, in the disk configuration
formed by the merger of two neutron stars (Sec. IVA),
elastic scattering causes
(1) a decrease in average energies of neutrinos emerging

from the remnant at all angles and for all species,
(2) an increase in ν̄e and νx fluxes and a decrease in νe

fluxes viewed from along the rotation axis, and
(3) a decrease in all species’ fluxes viewed from the

equatorial plane.

Furthermore we have found good agreement in overall
number and energy luminosities and average energies in
comparisons with neutrino transport methods, e.g.,
Monte Carlo in Sec. III E and M1 transport in Sec. IVA.
We have also employed the ray tracing code to examine

neutrino flavor oscillations along one sample trajectory
exiting the neutrino-dense environment of the neutron-star
postmerger configuration (Sec. IV B). The trajectory starts
from 30 km, and moves out radially at 25° from the polar
axis. Along that trajectory, elastic scattering has the effect
of increasing the ratio of ν̄e relative to νe. This creates a
negative self-interaction potential which introduces a com-
plete standard matter-neutrino resonance transition (see
Fig. 21). At about 400 km from the merger core, both
electron neutrinos and electron antineutrinos begin to
transform. At about 1200 km e neutrinos have almost
completely converted to μ or τ neutrinos, while the e
antineutrinos have returned back to their original flavor. In
an otherwise identical calculation, ignoring elastic scatter-
ing causes the flavor transformation to be very different
(see Fig. 20).
This example demonstrates the importance of the

physics of elastic scattering in the phenomenon of
neutrino flavor oscillation. However, we have avoided
drawing general conclusions from this particular example,
since a single astrophysical configuration can present
dramatically different oscillation resonances along test
trajectories emerging at different angles [24], and since
the matter-neutrino resonance is extremely sensitive to a
host of parameters.
Finally, we have proposed the following improvements

to the ray tracing code to make it a more useful and robust
astrophysical simulation tool:
(1) Use the finite-difference hydrodynamics simulation

grid to represent background fluid and neutrino
variables instead of interpolating all input variables
to the pseudospectral spacetime simulation grid in
order to begin ray tracing. We have found that
though the interpolation of fluid and neutrino
variables to a lower-resolution pseudospectral grid
saves computational memory, it introduces more
costly problems, the foremost being Gibbs-like
oscillations at shocks and discontinuities present
in fluid fields.

(2) Replace explicit with implicit time stepping in the
integrations along each ray. We have found that the
stability of the time integration demands extremely
small step sizes of the adaptive time-stepping algo-
rithm, especially for higher-energy rays. Large errors
are possible if time-stepping thresholds are not fine-
tuned to each new configuration.

(3) Improve the spectral assumptions made in the gray
method. The test of both gray and spectral methods
against the fiducial Monte Carlo calculation pre-
sented in Sec. III E has indicated strong agreement
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for overall average energies for all species. However,
the average energy of ν̄e emerging from the envelope
(which contributed only a tiny fraction to the total
luminosity) differed between the gray treatment and
the Monte Carlo by 30%. Agreement could be
improved with better spectral assumptions, for
example employing pinched spectra.
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APPENDIX A: DEFINITIONS

We decompose the neutrino momentum into components
parallel and orthogonal to an observer’s velocity uβ:

pβ ¼ εðuβ þ lβÞ; ðA1Þ

with uαlα ¼ 0 and lαlα ¼ 1.
We use two possible fiducial observers to define the

momentum decomposition via Eq. (A1): the Eulerian, or
normal observer nμ ¼ −α∂μt, and the fluid, or comoving
observer uμ ¼ Wnμ þ vμE. Here t is coordinate time and α is
the lapse in the standard 3þ 1 decomposition of the metric

ψμγ →

�−α2 þ βiβi βi

βj gij

�
: ðA2Þ

We have also introduced the fluid Lorentz factor W ¼ αut,
its Eulerian velocity vμE ¼ gμλu

λ (distinct from its coordinate
velocity vμ ¼ uμ=ut), and the projection tensor orthogonal
to the normal observer gμλ ¼ ψμ

λ þ nμnλ.
We specify the neutrino direction in the observer’s frame

with two spherical polar angles (a,b) with respect to the
simulation cartesian coordinates

lα → qðs;ΩiÞ; ðA3Þ
Ωi → ðsin a cos b; sin a sin b; cos aÞ; ðA4Þ

or alternatively the two spherical polar angles (A,B) with
respect to rotated coordinates

Ωi0 → ðsinA cosB; sinA sinB; cosAÞ: ðA5Þ
The two coordinate systems are related by a standard Euler
rotation of first ϕ about the z axis, then θ about the rotated y
axis, with ϕ and θ the azimuthal and polar position of the
observer. Expressed algebraically:

Ωx ¼ Ωx0 cos θ cosϕ −Ωy0 sinϕþ Ωz0 sin θ cosϕ;

Ωy ¼ Ωx0 cos θ sinϕþ Ωy0 cosϕþ Ωz0 sin θ sinϕ;

Ωz ¼ Ωx0 sin θ þ Ωz0 cos θ: ðA6Þ
The scale factors q and s are functions of the neutrino

direction Ωi, the observer’s velocity uα, and the spacetime
metric. In the case of a fluid observer specified by an
arbitrary W and ui, q and s are given by

q ¼ Wαð2βiΩiW2ðβiΩi − 1Þ − 2ΩiujgijWαðβiΩi − 1Þ
þ α2ððΩiujgijÞ2 þΩiΩjgijW2ÞÞ−1=2; ðA7Þ

s ¼ βiΩi −Ωiujgij: ðA8Þ
In the case of a Eulerian observer, W ¼ 1 and ui ¼ 0, and
these expressions simplify considerably:

q̃ ¼ αð2βiΩiðβiΩi − 1Þ þ α2ΩiΩjgijÞ−1=2; ðA9Þ
s̃ ¼ βiΩi: ðA10Þ

In the even simpler case of Minkowski spacetime, these
expressions reduce to q ¼ W=ð1þ sÞ, s ¼ −Ωiui, q̃ ¼ 1,
s̃ ¼ 0.
In addition to the fluid velocity and Lorentz factor

described above, the other fluid state variables we use
from our hydrodynamic simulations are rest density
ϱ ¼ mbnb, temperature T, and electron fraction

Ye ¼
ne− − neþ

nb
; ðA11Þ

where ne− , neþ , and nb are the number densities of
electrons, positrons, and baryons, and mb is the average
baryon mass.
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APPENDIX B: SOURCE TERMS

Here we present the sources comprising the right-hand
side of the Boltzmann equation [Eq. (8)]. The sources for
the neutrino distribution function fðxα;pβÞ arise from
collision processes producing, removing, or scattering to/
from that point in phase space. The weak interaction rates
for each process involve integrals of the neutrino distribu-
tion function fðxα;p0

βÞ and that of the antineutrino

f̄ðxα;p0
βÞ over a momentum volume dP0 [Eq. (2)].

We follow [12] Sec. IV and [80] and by separating these
processes into four categories:

C½f�≡ CAE þ CSE þ CSI þ CPP ðB1Þ

representing charged-current absorption and emission,
elastic scattering, inelastic scattering, and the thermal
pair processes of annihilation and production. In this
work, however, we only treat absorption/emission and
elastic scattering. We seek to write each collision source
linear in f:

CAE ¼ EAE −KAEf; ðB2Þ

CSE ¼ ESE −KSEf: ðB3Þ

Each term is computed by summing the weak interaction
rates of the processes from the relevant category given in
Table I. We compute these rates in the rest frame of the
fluid, but because they are spacetime invariants they take
the same numerical value in any frame of reference and are
completely independent of our choice of fiducial observer
uα [see discussion around Eq. (9)].
We compute our rates using the open source neutrino

interaction library NULIB [15]. We compile a table of sources
defined over the four dimensions of density, temperature,
electron fraction, and neutrino energy, and interpolate
quadlinearly to the points sampled along each ray.
Each source term is unique to the neutrino or antineu-

trino species modeled, and consists of a sum over all of the
processes contributing to that category of interaction. For
example: Cνe

AE ¼ P
iC

νe
AE;i, where i labels the absorption/

emission processes involving νe in Table I. By contrast
Cνx
AE is formally equal to zero. However, in practice,

NULIB implements the thermal pair processes via an
effective emission/absorption term in order to avoid the
need to couple energy groups and species (see Sec. B 4).
This has been shown to work well for core-collapse
supernovae [15].

1. Absorption and emission via charged current

At neutrino and thermal energies well below the masses
of the muon or tauon (mμ ∼ 100 MeV) only charged-
current processes involving νe and ν̄e are allowed. For
each of these processes i in Table I, we may write an

emission and absorption coefficient as a function of the
interaction cross section [e.g., [80] Eq. (A5)]:

CAE;i ¼ εjið1 − fÞ − εχa;if ðB4Þ

¼ εji − ðεji þ εχa;iÞf; ðB5Þ

where j is the emissivity and χa the absorption opacity.
Both j and χa have dimension length−1 and represent the
number of neutrinos emitted or absorbed per length traveled.
In radiation transport formulations using specific intensities
instead of distribution functions, an emissivity η having
dimension energy length−3 time−1 energy−1 steradian−1 is
more commonly used. The two are related by j ¼
ð2πÞ3η=ε3. Note that for brevity we have suppressed the
energy dependence of the terms j, χa, and the distribution
functions.
In the special case of radiative equilibrium we know

that the source term vanishes: an equal number of
neutrinos are emitted from and absorbed by the matter
for any length traversed. We also know in this case
that the neutrino distribution function must be feq,
the equilibrium Fermi-Dirac distribution function of
Eq. (15). With these facts we can rearrange Eq. (B4)
to give us Kirchoff’s law:

ji ¼
χa;i

1 − feq
feq; ðB6Þ

¼ χ�a;if
eq; ðB7Þ

where in Eq. (B7) we have introduced the opacity
corrected for stimulated absorption, χ�a;i.
Using these expressions and computing the sum over

stimulated opacities χ�a;i ¼
P

iχ
�
a;i, the invariant emissivity

and opacity for absorption/emission are

EAE ¼ εχ�afeq; ðB8Þ

KAE ¼ εχ�a: ðB9Þ

These expressions are equivalent to those in Eqs. (13)
and (14).
We use the above treatment for νe and ν̄e only; the μ and

τ neutrinos and antineutrinos do not participate in charged-
current absorption/emission interactions at these temper-
atures and energies. However we do use an effective
stimulated absorption opacity χ�a for the heavy-lepton
neutrinos computed by NULIB as described in [15] which
follows [51,80]. This is described in Appendix B 4.

2. Elastic scattering

Neutrino scattering on particles of mass much greater
than ε (i.e., nucleons and nuclei) is essentially isoenergetic.
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Following [12] Eq. (4.20) or [80] Eq. (A8) the collision
term for the ith process takes the form

CSE;iðlαÞ ¼
ε3

ð2πÞ3
I

dΩ0RSE;iðω0Þðfðl0
βÞ − fðlαÞÞ;

ðB10Þ

where RSE;iðω0Þ is the scattering kernel for the ith process
from direction l0

β to direction lα having dimension

energy−1, and the cosine of the scattering angle is
ω0 ≡ ψαβlαl0

β, with ψαβ the inverse of the spacetime
metric. Note that for brevity in Eq. (B10) we have
suppressed the energy dependence of all of the terms.
It is customary to approximate the scattering kernel to

linear order in ω [as in [12] Eq. (4.21)]:

RSE;iðε;ωÞ ≈ R0
SE;iðεÞ þ ωR1

SE;iðεÞ: ðB11Þ

Using this definition and the moments defined in Eqs. (28)
and (29), and writing ω0 ¼ lαl0α, we expand Eq. (B10)
into four terms. The term containing

H
dΩ0l0α vanishes by

construction, and the remaining three terms may be written
in the form

CSE;i ¼ εχ0iΦi − εχ0i f; ðB12Þ

where we have introduced the scattering opacity χ0i for
each of the elastic scattering processes i in Table I and
the background scattering field Φ:

χ0i ðεÞ ¼
4πε2

ð2πÞ3 R
0
SE;iðεÞ; ðB13Þ

Φiðε;lαÞ ¼
ð2πÞ3
ε3

1

4π

�
JðεÞ þ χ1i ðεÞ

χ0i ðεÞ
lαHαðεÞ

�
; ðB14Þ

and with χ1i defined

χ1i ðεÞ ¼
4πε2

ð2πÞ3 R
1
SE;iðεÞ: ðB15Þ

Note that χ1i =χ
0
i in Eq. (B14) is the degree of nonisotropy

in the scattering. This term is roughly −0.1 for scattering on
free neutrons, −0.2 on free protons, and 1 on heavy nuclei,
and at disk temperatures the composition is almost entirely
free nucleons. Therefore in our treatment, for simplicity, we
only retain the isotropic contribution to the background
field:

ΦðεÞ ¼ ð2πÞ3
ε3

1

4π
JðεÞ: ðB16Þ

Computing sums over the opacities χs ≡P
iχ

0
i and

χ1s ≡P
iχ

1
i , the invariant emissivity and opacity for elastic

scattering are

ESE ¼ εχsΦ; ðB17Þ

KSE ¼ εχs: ðB18Þ

We have made the energy dependence of the background
scattering field explicit in Eq. (B14). When we compute
ΦðεÞ using JðεÞ andHαðεÞ from a multigroup M1 transport
evolution, we call this the spectral method.
However moment evolutions with multiple energy

groups are still rare. Most simulations employ a gray
moment scheme evolving only the energy-integrated
moments, J and Hα and sometimes the number density
G. If such is the case we resort to the gray method by
reconstructing the energy-dependent source terms from
gray moments, assuming a diluted Fermi-Dirac spectrum.
We use the following procedure:
(1) Interpolate the fluid temperature, T, equilibrium

neutrino chemical potential, ην, and evolved neu-
trino energy and number densities in the fluid frame,
J and G, from the simulation grid.

(2) Compute the average neutrino energy in the fluid
frame

hεi≡ J=G: ðB19Þ

(3) Compute the neutrino spectral temperature, assum-
ing equilibrium with the fluid

Tν ¼ hεiF 2ðηνÞ
F 3ðηνÞ

; ðB20Þ

where F b is the Fermi integral

F bðηÞ ¼
Z

∞

0

dxxbð1þ ex−ηÞ−1: ðB21Þ

We implement the Fermi integrals using the ana-
lytical approximants from [81].

(4) Assume the background neutrino fields have the
same total density as the evolved moments

JðεÞ ¼ J
ε3

T4
νF 3ðηνÞ

ð1þ expðε=Tν − ηνÞÞ−1;

ðB22Þ

HμðεÞ ¼ Hμ ε3

T4
νF 3ðηνÞ

ð1þ expðε=Tν − ηνÞÞ−1:

ðB23Þ
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Note that to avoid floating point errors for very large
negative η, we employ the asymptotic form of Eq. (B21):
limη≪−1F bðηÞ ¼ b!eη. Thus, for η < −10, we use the
limiting forms of Eqs. (B20), (B22), and (B23):

Tν ¼
hεi
3

; ðB24Þ

JðεÞ ¼ J
ε3

6T4
ν
e−ε=Tν ; ðB25Þ

HμðεÞ ¼ Hμ ε3

6T4
ν
e−ε=Tν : ðB26Þ

When we use the moments from Eqs. (B22) and (B23) in
Eq. (B14), we call this the gray method.

3. Inelastic scattering

Neutrino scattering off of electrons is inelastic, changing
the magnitude and direction of the neutrino’s momentum
[80]. In a supernova environment we expect inelastic
scattering off of electrons and nucleons to shift the neutrino
spectra to lower energies, most noticeably for heavy-lepton

neutrinos [82]. A similar formalism to the above could be
used to derive source terms for inelastic scattering. We save
that for future work, pointing out here that inelastic
scattering treated this way is very sensitive to the energy
dependence of the background field. In this work we
take CSI ¼ 0.

4. Thermal pair annihilation and production

We do not include thermal pair processes within the
standard pair-process formalism; in other words we take
CPP ¼ 0. But as mentioned in Appendix B 1, we do include
these processes in an effective emission/absorption opacity
for μ and τ neutrinos and antineutrinos. This has been
shown to work well for core-collapse supernovae [15].
Within NULIB, we compute the energy-dependent emis-
sivity of the pair processes in Table I, ignoring final state
neutrino blocking. We then apply Kirchoff’s law, Eq. (B6),
to convert this to an effective absorption opacity. We only
use this effective opacity for heavy-lepton neutrinos
because the charged-current emission/absorption processes
for νe and ν̄e dominate in the environments we study: early
merger remnants and supernovae.
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