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We consider the flavor transformation of neutrinos through oscillatory matter profiles. We show that the
neutrino oscillation Hamiltonian in this case describes a Rabi system with an infinite number of Rabi
modes. We further show that, in a given physics problem, the majority of the Rabi modes have too small
amplitudes to be relevant. We also go beyond the rotating wave approximation and derive the relative
detuning of the Rabi resonance when multiple Rabi modes with small amplitudes are present. We provide
an explicit criterion of whether an off-resonance Rabi mode can affect the parametric flavor transformation
of the neutrino.
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I. INTRODUCTION

Neutrinos are constantly produced by stars, and they are
also emitted much more intensively during the violent
deaths of massive stars through core-collapse supernovae
albeit for only a brief moment. The neutrinos from stellar
objects and other astronomical sources provide a unique
probe to observe these objects and to study the properties of
the neutrinos themselves (see, e.g., Refs. [1,2] for reviews
on solar neutrinos and supernova neutrinos). The inter-
pretation of the neutrino signals from astronomical sources
depends on the understanding of the flavor transformation
or oscillations of the neutrinos. A well-known mechanism
for a neutrino to experience flavor transformation is the
Mikheyev-Smirnov-Wolfenstein (MSW) effect when the
neutrino propagates through a region where the matter
density varies smoothly across a critical value [3,4]. Inside
the stars and supernovae the matter densities may have
rapid changes and fluctuations which can also leave
important imprints on the passing-through neutrinos
[5–13]. In an extreme case supernova neutrinos can become
completely flavor depolarized as they traverse the turbulent
region behind the supernova shock [10].
A matter profile with density fluctuations can cause

neutrino flavor conversion through parametric resonances
even when the matter density never crosses the critical

value (see, e.g., Ref. [14] for a review). For example, a
neutrino can achieve a maximum flavor conversion if the
matter density varies sinusoidally on a length scale which
matches that of the neutrino oscillation in matter with the
mean density [15]. Using the Jacobi-Anger expansion and
the rotating wave approximation Kneller et al. have shown
that a parametric resonance can also occur when the
neutrino oscillation frequency with the mean matter density
matches a harmonic of the spatial frequency of the
sinusoidal matter fluctuation [16]. This result has been
generalized to the scenarios with matter fluctuations of
multiple Fourier modes [17], slowly varying base profiles
[18] and three-flavor neutrino mixing [19].
The existence of harmonic parametric resonances is

an intriguing phenomenon, but its physical origin is some-
what buried in the mathematical procedure employed in
Ref. [16]. It is not entirely clear why the flavor trans-
formation of the neutrino can be described by only a
handful of parametric resonances although there can exist
many more such resonances [18]. There also lacks a
criterion of when the rotating wave approximation fails.
We intend to address these issues in this short paper. We do
not consider the collective flavor transformation of the
neutrinos due to the neutrino self-refraction (see, e.g.,
Refs. [20,21] for reviews on this interesting subject).
The rest of the paper is organized as follows. In Sec. II

we show that the neutrino oscillation Hamiltonian with an
oscillatory matter profile has an infinite number of Rabi
modes which produce the harmonic parametric resonances.
In Sec. III we demonstrate that only a finite number,
usually a small portion, of the Rabi modes are relevant in a
physical situation. We also derive a quantitative criterion of
when an off-resonance Rabi mode may significantly affect
the parametric resonance. In Sec. IV we summarize and
conclude our work.
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II. RABI RESONANCES IN OSCILLATORY
MATTER PROFILES

A. Equation of motion

As in Ref. [17] we consider the mixing between two
(effective) neutrino flavors νe and νx. The flavor wave
function of the neutrino in flavor basis isΨðfÞ ¼ ½ψνe ;ψνx �T ,
where ψνα ¼ hναjψi (α ¼ e, x) is the amplitude for
the neutrino in state jψi to be found in jναi, and
jψνe j2 þ jψνx j2 ¼ 1. The flavor evolution of the neutrino
in matter is described by the Schrödinger equation

i
d
dr

ΨðfÞðrÞ ¼ HðfÞΨðfÞðrÞ; ð1Þ

where the neutrino oscillation Hamiltonian is

HðfÞ ¼ ½−ωv cosð2θvÞ þ λðrÞ� σ3
2
þ ωv sinð2θvÞ

σ1
2
: ð2Þ

In the above equation, ωv and θv are the oscillation
frequency and the mixing angle of the neutrino in vacuum,
respectively, σi (i ¼ 1, 2, 3) are the Pauli matrices, and
λðrÞ ¼ ffiffiffi

2
p

GFneðrÞ is the matter potential at a distance r
along the neutrino propagation trajectory, where GF is the
Fermi coupling constant, and ne the net electron number
density. In Eq. (1) we have ignored the trace term of the
Hamiltonian which does not affect neutrino oscillations.
Throughout the paper we adopt the natural units with
ℏ ¼ c ¼ 1.
In this work we assume a stationary matter profile of the

form

λðrÞ ¼ λ0 þ δλðrÞ; ð3Þ

where δλðrÞ is a small perturbation to the uniform back-
ground matter potential λ0. As in Refs. [16,17] we define
the background matter basis

jνðmÞ
1 i ¼ cos θmjνei − sin θmjνxi; ð4aÞ

jνðmÞ
2 i ¼ sin θmjνei þ cos θmjνxi; ð4bÞ

where

θm ¼ 1

2
arctan

�
ωv sinð2θvÞ

ωv cosð2θvÞ − λ0

�
: ð5Þ

The Hamiltonian in the background matter basis is

HðmÞ ¼ −½ωm − cosð2θmÞδλ�
σ3
2
þ sinð2θmÞδλ

σ1
2
; ð6Þ

where

ωm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ωv cosð2θvÞ − λ0�2 þ ½ωv sinð2θvÞ�2

q
ð7Þ

is the neutrino oscillation frequency in matter when δλ ¼ 0.
For definiteness we use sin2ð2θvÞ ¼ 0.093 in all the

numerical examples shown later in the paper. We also
assume that the background matter density is a quarter of
the value of the MSW resonance, i.e., λ0 ¼ 1

4
ωv cosð2θvÞ.

These values and the amplitudes of the matter fluctuations
are chosen to illustrate the general principles to be
discussed in this paper and do not necessarily reflect the
actual conditions in real physical problems.

B. Rabi resonance

We first consider a sinusoidal matter perturbation of
amplitude λ0 ≪ ωm and wave number k,

δλðrÞ ¼ λ0 cosðkrÞ: ð8Þ

Because the fluctuation amplitude is small, we drop the
perturbation in the diagonal terms in Eq. (6) as a first order
approximation so that

HðmÞ ≈
1

2

2
64

−ωm
P

n¼�1

AneiKnr

P
n¼�1

Ane−iKnr ωm

3
75; ð9Þ

where

K�1 ¼ �k ð10aÞ

and

A1 ¼ A−1 ¼
sinð2θmÞλ0

2
: ð10bÞ

Equation (9) has the same form as the equation of motion
of a magnetic dipole in the presence of a magnetic field
with two components, a constant component in the vertical
direction and an oscillating component in the horizontal
direction. The transition amplitude between the up and
down states of the dipole can reach 100% at the Rabi
resonance where k ¼ ωm (see, e.g., Ref. [22]).
It turns out that the neutrino flavor transformation

Hamiltonian with an oscillatory density profile can always
be cast into the form in Eq. (9). We call each term in the
sum of the off-diagonal element in Eq. (9) a Rabi mode
with An and Kn being the amplitude and wave number of
the corresponding Rabi mode. When the Rabi resonance
condition

Kn ¼ ωm ð11Þ

is approximately satisfied, the transition probability of the

neutrino between jνðmÞ
1 i and jνðmÞ

2 i takes the form
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P ≈
sin2ðΩr=2Þ
1þD2

n
; ð12Þ

where

Dn ¼
����Kn − ωm

An

���� ð13Þ

is the relative detuning of the Rabi mode, and

Ω ¼ An

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þD2

n

q
ð14Þ

is the Rabi frequency.
The relative detuning Dn is a measure of how much the

corresponding Rabi mode is away from its resonance. The
Rabi mode n is on resonance ifDn ≲ 1 and is off resonance
if Dn ≫ 1. Because D−1 > ωm=λ0 ≫ 1, the n ¼ −1 mode
is always off resonance and is ignored by the rotating wave
approximation.
In Fig. 1 we compare the numerical solutions to the

Schrödinger equation and the results obtained by applying
the Rabi formula in Eq. (12) (with n ¼ 1) for three matter
profiles with sinusoidal fluctuations of various wave
numbers. The good agreement between the two sets of
solutions justifies the approximations that we have made.

C. Jacobi-Anger expansion

The neutrino oscillation Hamiltonian in Eq. (6) actually
contains an infinite number of Rabi modes even for a matter
profile with a single Fourier mode. To see this we define a
rotated matter basis,

jν̃1i ¼ eiηðrÞjνðmÞ
1 i; jν̃2i ¼ e−iηðrÞjνðmÞ

2 i; ð15Þ

where

ηðrÞ − ηð0Þ ¼ cosð2θmÞ
2

Z
r

0

δλðr0Þdr0: ð16Þ

We note that the transition probability between jν̃1i
and jν̃2i is the same as that between jνðmÞ

1 i and jνðmÞ
2 i.

The Hamiltonian in the rotated matter basis is

H̃ ¼ 1

2

�
−ωm sinð2θmÞδλe2iη

sinð2θmÞδλe−2iη ωm

�
: ð17Þ

For the sinusoidal matter perturbation δλ ¼ λ0 cosðkrÞ
we take ηðrÞ ¼ cosð2θmÞλ0 sinðkrÞ=2k and apply the
Jacobi-Anger expansion as in Ref. [16],

eiz sin ξ ¼
X∞
n¼−∞

JnðzÞeinξ; ð18Þ

where JnðzÞ is the nth Bessel function of the first kind.
Utilizing the identity

Jn−1ðzÞ þ Jnþ1ðzÞ ¼
2n
z
JnðzÞ ð19Þ

we obtain

λ0 cosðkrÞe2iη ¼ λ0

2
ðeikr þ e−ikrÞ

X∞
n¼−∞

JnðuÞeinkr

¼ 1

cosð2θmÞ
X∞
n¼−∞

nkJnðuÞeinkr; ð20Þ

where u ¼ cosð2θmÞλ0=k. Therefore, the Hamiltonian in the
rotated matter basis indeed has a form similar to Eq. (9) but
with an infinite number of Rabi modes,

H̃ ¼ 1

2

2
64

−ωm
P
n
AneiKnr

P
n
Ane−iKnr ωm

3
75; ð21Þ

where n ¼ 0;�1;�2;…,

Kn ¼ nk; ð22aÞ

and

An ¼ tanð2θmÞKnJnðuÞ: ð22bÞ

Equations (11) and (12) show that a parametric reso-
nance occurs when ωm matches a harmonic of the spatial
frequency of the sinusoidal matter fluctuation.

FIG. 1. The transition probabilities P between the two back-

ground matter states jνðmÞ
1 i and jνðmÞ

2 i of the neutrino as functions
of distance r for three matter profiles all of the form λðrÞ ¼
λ0 þ λ0 cosðkrÞ. The different symbols represent the numerical
solutions to the Schrödinger equation with various values of k as
labeled. The continuous curves are obtained by using the Rabi
formula in Eq. (12) and ignoring the off-resonance Rabi mode. In
all three cases λ0=ωm ¼ 10−4.
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When the n ¼ 1 mode is approximately on resonance,

A1⟶
k≈ωm≫λ0 sinð2θmÞλ0

2
;

which reduces to Eq. (10b). Here we have used the
asymptotic form of the Bessel function

JnðzÞ⟶z≪
ffiffiffiffiffiffiffi
nþ1

p ðz=2Þn
n!

if n > 0: ð23Þ

In applying the Rabi formula in Eq. (12) one has assumed
the rotating wave approximation and ignored all the off-
resonance Rabi modes.

D. Multiple Fourier modes

Now we consider the scenario where the matter fluc-
tuation has multiple Fourier modes,

δλðrÞ ¼
X
a

λa cosðkarþ ϕaÞ; ð24Þ

where λa, ka and ϕa are the amplitude, wave number and
initial phase of the ath Fourier mode, respectively. Using
the same technique as that in Sec. II C one can show that

H̃ ¼ 1

2

2
64

−ωm
P
N
AN eiðKN rþΦN Þ

P
N
AN e−iðKN rþΦN Þ ωm

3
75; ð25Þ

where the sum is over all possible choices of N ¼
f� � � ; na; � � �g with na being an arbitrary integer associated
with the ath Fourier mode, and

KN ¼
X
a

naka; ð26aÞ

ΦN ¼
X
a

naϕa; ð26bÞ

and

AN ¼ tanð2θmÞKN

Y
a

JnaðuaÞ ð26cÞ

are the wave number, initial phase and amplitude of the
Rabi mode N with

ua ¼
cosð2θmÞλa

ka
: ð27Þ

Therefore, one expects that the flavor transformation of the
neutrino is enhanced when the Rabi resonance condition

KN ¼ ωm ð28Þ

is approximately met. We note that the resonance condition
is independent of the initial phases of the Rabi modes.

III. FURTHER DISCUSSION
ON RABI RESONANCES

A. Amplitudes of the Rabi modes

The physics prescription presented in Sec. II D seems
simple and appealing, but there remain a few questions that
need to be answered. First and foremost, there can exist
many Fourier modes in a realistic matter profile. If λ0ðrÞ is a
slowly varying function of distance r (as in most realistic
cases), at any given point one can almost always find some
or even many choices of N with which the resonance
condition in Eq. (28) is approximately satisfied. And yet
Patton et al. found that only a few resonances were needed
to account for the neutrino flavor transformation through
(at least some of) the matter profiles in supernovae [18].
They proposed that a parametric resonance is applicable
only when the density scale height

hðrÞ ¼ λ0

���� dλ0dr

����−1 ð29Þ

is longer than the length scale of the Rabi transition, or

Ωh≳ 1: ð30Þ
This criterion makes physical sense because we have
assumed λ0 to be constant in Sec. II D, which is approx-
imately true on the length scale of h.
Here we point out that, even if many harmonic para-

metric resonances may exist for a given oscillatory matter
profile, only a finite number, probably just a few, of them
are relevant in a physical problem. The reason is the
following. The Rabi oscillation frequency is determined
by the Rabi mode R that is (approximately) on resonance,
i.e., Ω ≈ AR. Using Eqs. (23) and (26c) and identity
J−nðzÞ ¼ ð−1ÞnJnðzÞ we obtain

AR ∼ ωm tanð2θmÞ
Y

a

0
�
λa
ka

�jnajY
b

00JnbðubÞ; ð31Þ

where
Q0 includes all the “regular” Fourier modes with

λa=ka ≪ 1, and
Q00 includes the rest of the Fourier modes.

One expects that most of the Fourier modes are regular if
the fluctuation amplitude of the matter profile is small. We
call jnaj the “order of contribution” to the Rabi mode R by
the ath Fourier mode. A Fourier mode is “standby” if
na ¼ 0 and “participating” otherwise.1 From Eq. (31) one
sees that there can be only a few participating, regular
Fourier modes and the order of contribution of each of these

1It was pointed out by Patton et al. that a standby Fourier mode
b can kill the parametric resonance if ub happens to be a root of
J0ðzÞ [17]. This can happen only if the standby Fourier mode is
not a regular mode.

LEI MA, SHASHANK SHALGAR, and HUAIYU DUAN PHYS. REV. D 98, 103011 (2018)

103011-4



Fourier modes must be small. Otherwise, the amplitude AR
of the Rabi mode will be too small to be relevant. If,
however, the amplitude of a Fourier mode b is so large or its
wavelength is so long (but is still shorter than h or the
physical size of the system) that λb=kb ≳ 1, then, according
to Eq. (23), it can contribute to the Rabi mode up to the
order of jnbj≲ ðλb=kbÞ2 or the amplitude of the Rabi mode
will be again too small to be relevant.
The above constraints on the contribution orders of the

Fourier modes put a stringent limit on the number of the on-
resonance Rabi modes that one needs to consider in a real
physical problem.

B. Interference between Rabi modes

The Rabi formula in Eq. (12) was derived assuming that
there exists only one Rabi mode. In Refs. [16–18] the
rotating wave approximation was employed, which is
equivalent to ignoring all the Rabi modes that are off

resonance. However, under certain conditions the rotating
wave approximation may fail, and off-resonance Rabi
modes can interfere with the on-resonance mode as we
show below.2

We first consider a Rabi system with an on-resonance
mode R and an off-resonance mode O. The Hamiltonian of
the system is the same as that in Eq. (25) except with
N ¼ R and O only. We define a new basis

� jν01i
jν02i

�
¼

�
cosΘ − sinΘ
sinΘ cosΘ

��
e−iðKOrþΦOÞ=2jν̃1i
eiðKOrþΦOÞ=2jν̃2i

�
; ð32Þ

where

Θ ¼ 1

2
arctan

�
AO

ωm − KO

�
: ð33Þ

The Hamiltonian in this new basis is

H0 ¼ 1

2

"
−ω0

m − AR cosðϒðrÞÞ sinð2ΘÞ ARðeiϒðrÞcos2Θ − e−iϒðrÞsin2ΘÞ
ARðe−iϒðrÞcos2Θ − eiϒðrÞsin2ΘÞ ω0

m þ AR cosðϒðrÞÞ sinð2ΘÞ

#
; ð34Þ

where

ω0
m ¼ sgnðωm − KOÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωm − KOÞ2 þ A2

O

q
ð35Þ

and

ϒðrÞ ¼ ðKR þ KOÞrþΦR þΦO: ð36Þ

Because AR is small, we keep only the off-diagonal
oscillatory terms in H0 that are approximately on resonance
so that

H0 ≈
1

2

�
−ω0

m AReiϒðrÞ

ARe−iϒðrÞ ω0
m

�
: ð37Þ

This is exactly the Hamiltonian for a single-mode Rabi
system. Therefore, a resonance occurs when

KR ¼ ω0
m ¼ ωm þ Δωm; ð38Þ

where

Δωm ¼ ω0
m − ðωm − KOÞ ≈

A2
O=2

ωm − KO
: ð39Þ

Comparing Eqs. (28) and (38) one sees that the resonance
frequency is shifted by Δωm because of the off-resonance
mode. This shift of the resonance frequency due to the off-
resonance Rabi modes is known as the ac Stark effect (see,
e.g., Ref. [23]).3 The new relative detuning of the Rabi
system is

D0
R ¼

����KR − ðωm þ ΔωmÞ
AR

����: ð40Þ

The off-resonance mode has a significant impact on the
resonance if the change of the relative detuning

ΔDR ¼ jD0
R −DRj ¼

����Δωm

AR

���� ð41Þ

is of order 1 or larger, or, equivalently,

jAOj≳
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jARðωm − KOÞj

p
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jARjωm

p
: ð42Þ

This explains why the off-resonance Rabi modes can
be ignored in the case with a single Fourier mode (see
Fig. 1). When the n ¼ 1 mode is almost on resonance, the
n ¼ −1 mode does not satisfy the criterion in Eq. (42)

3The resonance shift due to the n ¼ −1 mode of the Rabi
Hamiltonian in Eq. (9) is known as the Bloch-Siegert shift
[24,25]. The shifts due to the other Fourier/Rabi modes can be
considered as the generalized Bloch-Siegert shift [26].

2The interference between Rabi modes discussed here is
different than the suppression of the parametric resonance by
certain long-wavelength Fourier modes that was discussed in
Ref. [17] (see also footnote 1) and the three-flavor effect
discussed in Ref. [19].
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because A−1 ¼ A1 ≪ ωm. The Rabi modes with jnj > 1
have even smaller amplitudes than the n ¼ −1 mode.
We note that the Rabi system with two Rabi modes

describes a magnetic dipole in the presence of three
magnetic fields: B0 in the z direction, which corresponds
to the diagonal elements of the Hamiltonian H, and BR and
BO, which rotate in the x-y plane with different angular
frequenciesKR and KO and which correspond the two Rabi
modes in the off-diagonal element of H. The essence of
Eqs. (32) and (34) is to transform the equation of motion
from the static frame to the reference frame that corotates
with BO. In this rotating frame one has only one rotating
field B0

R and one static field B0
0 þ B0

O, where the primes
indicate the quantities in the rotating frame. The static field
B0

0 þ B0
O is titled away from the z axis by an angle 2Θ.4

Because we consider the scenarios where all the rotating
fields have amplitudes much smaller than jB0j, Θ is
small and can be ignored. Therefore, the system in the
corotating frame corresponds to a Rabi system with only
one Rabi mode B0

R the properties of which are given by
Eqs. (12)–(14). The interference effect due to the off-
resonance Rabi modeBO is manifested in the change of the
magnitude of the static field jB0j → jB0

0 þ B0
Oj.

For a Rabi system with one on-resonance Rabi mode and
two off-resonance Rabi modes all of which have small
amplitudes, one can transform the equation of motion to the
reference frame that corotates with one of the off-resonance
mode. In this reference frame there are only two Rabi
modes and the energy gap ωm changes to ω0

m. One can then
apply the results of the two-mode Rabi system that we
discussed above. In general, for a Rabi system with N
small-amplitude Rabi modes, one can always go to the
reference frame that corotates with one of the off-resonance
Rabi modes. In this corotating frame the number of Rabi
modes is reduced by 1, and one can apply the results of
the Rabi system with N − 1 modes. Using the reduction
procedure we find that, for the scenario with one on-
resonance Rabi mode and many off-resonance modes,
Eq. (39) is generalized to

Δωm ≈
X
O

A2
O=2

ωm − KO
; ð43Þ

where the summation is carried over all the off-resonance
Rabi modes. In particular, if only a pair of off-resonance
Rabi modes O� have large enough amplitudes to affect the
resonance, and if AOþ ¼ AO−

and KOþ ¼ −KO−
, we have

Δωm ≈
A2
Oþωm

ω2
m − K2

Oþ

: ð44Þ

The relative detuning of the multimode Rabi system is still
given by Eq. (40).
As a concrete example we consider a matter profile of

two Fourier modes,

λðrÞ ¼ λ0 þ λ1 cosðk1rÞ þ λ2 sinðk2rÞ: ð45Þ

We choose k1 ¼ ωm so that the Rabi mode R ¼ f1; 0g is
exactly on resonance. We choose the second Fourier mode
to have a long wavelength (k2 ¼ 0.1ωm) and a relatively
large amplitude (λ2 ¼ 320λ1 ¼ 3.2 × 10−2ωm). We com-

pute the transition probability P between jνðmÞ
1 i and jνðmÞ

2 i
as a function of distance r by solving the Schrödinger
equation numerically, and the result is shown in Fig. 2. As
comparison we also show in the same figure the transition
probabilities predicted by the Rabi formula when only the
on-resonance Rabi mode R ¼ f1; 0g is included, both the
R mode and an off-resonance mode Oþ ¼ f0; 1g are
included, and the R mode and two off-resonance modes
Oþ and O− ¼ f0;−1g are included, respectively. One can
see that the numerical solution agrees very well with the
prediction based on the Rabi formula when three Rabi
modesR andO� are included. One can also see that the two
long-wavelength, off-resonance Rabi modes O� combine
to suppress the Rabi transition.
In Fig. 3 we demonstrate another case with the second

Fourier mode being a short-wavelength mode (k2 ¼ 10ωm
and λ2 ¼ 0.1ωm). In this case, although each of the two
off-resonance Rabi modes O� is capable of suppressing
the Rabi transition by a large amount, the shifts of the
resonance frequency due to these two modes are in opposite
directions [see Eq. (39)]. As a result, the suppression of the
Rabi transition is not significant in the actual system.

FIG. 2. Similar to Fig. 1 but for a matter profile of the form
λðrÞ ¼ λ0 þ λ1 cosðk1rÞ þ λ2 sinðk2rÞ, where λ1=ωm ¼ 10−4,
k1=ωm ¼ 1, λ2=ωm ¼ 3.2 × 10−2 and k2=ωm ¼ 0.1. The filled
circles represent the numerical solution to the Schrödinger
equation, and the continuous curves represent the predictions
by the Rabi formula when 1, 2 and 3 Rabi modes are included,
respectively.

4The transformation in Eq. (32) also rotates the system so that
the static field B0

0 þ B0
O is in the z direction.
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We note that, according to the discussion in Sec. III A,
for a given on-resonance Rabi mode (which is relevant to a
physical system), Eq. (31) implies that only a finite number
of off-resonance modes can satisfy the criterion in Eq. (42),
although an infinite number of Rabi modes exist in the
system due to the Jacobi-Anger expansion. For small
perturbations where the amplitudes of all Rabi modes
are much smaller than ωm, Eq. (42) demands that the
amplitude of a single off-resonant Rabi mode must be
significantly larger than that of the on-resonance mode to
affect the resonance. This can be true if the on-resonant
Rabi mode involves a few participating Fourier modes and,
therefore, has an amplitude much smaller than that of an
off-resonant Rabi mode with only one participating Fourier
mode. Even for an on-resonant Rabi mode with a single
participating Fourier mode, the ac Stark shifts of many off-
resonance, long-wavelength Rabi modes can add up and
change the resonant behavior according to Eq. (43).

IV. CONCLUSIONS

We have shown that the neutrino oscillation Hamiltonian
with an oscillatory matter profile can be treated as a Rabi
system with an infinite number of Rabi modes each with

contributions from various Fourier modes of the matter
profile. Neutrino flavor conversion can be greatly enhanced
if a Rabi mode is almost on resonance. Although the
existence of the harmonic parametric resonances has already
been shown in Refs. [16,17], our derivation adds more
intuitive understanding to this interesting phenomenon.
We have shown that the number of the Fourier modes

that participate in a Rabi mode and their contribution orders
cannot be too large or the amplitude of the Rabi mode
becomes too small to be relevant. As a result, only a finite
number of Rabi modes need to be considered for a real
physical problem. We have also gone beyond the rotating
wave approximation and studied the interference between
Rabi modes. This interference effect is different than the
suppression of the parametric resonance by certain long-
wavelength Fourier modes discussed in Ref. [17]. It is also
different than the three-flavor effect discussed in Ref. [19].
We have shown that an off-resonance Rabi mode can
significantly change the parametric resonance of neutrino
flavor conversion if the amplitude of the off-resonance
mode is sufficiently large. We have derived an explicit
criterion of whether an off-resonance Rabi mode can affect
the parametric resonance. A Fourier mode in the matter
fluctuation always results in (an infinite number of) pairs of
Rabi modes. Each pair of these Rabi modes has the same
amplitude but rotates in the opposite direction. We found
that the interference effects due to a pair of such Rabi
modes add up coherently if they have long wavelengths,
and they tend to cancel each other if the wavelengths of
the Rabi modes are short. As a result, the Fourier modes
with long wavelengths are much more likely to affect the
parametric resonance than the short-wavelength modes.
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