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Collapsing supermassive stars (SMSs) with masses M ≳ 104–6M⊙ have long been speculated to be the
seeds that can grow and become supermassive black holes (SMBHs). We previously performed general
relativistic magnetohydrodynamic (GRMHD) simulations of marginally stable Γ ¼ 4=3 polytropes
uniformly rotating at the mass-shedding limit and endowed initially with a dynamically unimportant
dipole magnetic field to model the direct collapse of SMSs. These configurations are supported entirely by
thermal radiation pressure and reliably model SMSs with M ≳ 106M⊙. We found that around 90% of the
initial stellar mass forms a spinning black hole (BH) remnant surrounded by a massive, hot, magnetized
torus, which eventually launches a magnetically-driven jet. SMSs could be therefore sources of ultra-long
gamma-ray bursts (ULGRBs). Here we perform GRMHD simulations of Γ≳ 4=3, polytropes to account
for the perturbative role of gas pressure in SMSs withM ≲ 106M⊙. We also consider different initial stellar
rotation profiles. The stars are initially seeded with a dynamically weak dipole magnetic field that is either
confined to the stellar interior or extended from its interior into the stellar exterior. We calculate the
gravitational wave burst signal for the different cases. We find that the mass of the black hole remnant is
90%–99% of the initial stellar mass, depending sharply on Γ − 4=3 as well as on the initial stellar rotation
profile. After t ∼ 250–550M ≈ 1 − 2 × 103ðM=106M⊙Þ s following the appearance of the BH horizon, an
incipient jet is launched and it lasts for ∼104–105ðM=106M⊙Þ s, consistent with the duration of long
gamma-ray bursts. Our numerical results suggest that the Blandford-Znajek mechanism powers the
incipient jet. They are also in rough agreement with our recently proposed universal model that estimates
accretion rates and electromagnetic (Poynting) luminosities that characterize magnetized BH-disk remnant
systems that launch a jet. This model helps explain why the outgoing electromagnetic luminosities
computed for vastly different BH-disk formation scenarios all reside within a narrow range
(∼1052�1 erg s−1), roughly independent of M.

DOI: 10.1103/PhysRevD.98.103008

I. INTRODUCTION

The discovery of quasars at high cosmological redshifts,
e.g., J1342þ 0928 at redshift z ¼ 7.54 [1], J1120þ 0641

at redshift z ¼ 7.09 [2], and SDSS J0100þ 2802 at redshift
z ¼ 6.33 [3], strongly supports the idea that supermassive
black holes (SMBHs) with massesM ≳ 109M⊙ exist in the
early universe. At the same time, these observations raise
questions about how SMBHs could be formed in less than a
billion years after the big bang, as well as about their growth
processes (see [4] for a recent review). A possible scenario to
explain the origin of SMBHs is provided by the collapse of
supermassive stars (SMSs) with masses ≳104M⊙ to black
holes (BHs) following their quasistationary cooling and
contraction evolution epochs. These seed BHs, at large
redshifts (z ∼ 10–15), could grow through accretion and
mergers to become SMBHs [5–7]. An alternative scenario
is the collapse of Population III (Pop III) stars with

M ∼ 100–500M⊙ at z ∼ 20 (e.g., [5,8–11]). For lessmassive
Pop III stars (140M⊙ ≲M ≲ 260M⊙), the electron-positron
pair instability would cause rapid stellar contraction and
oxygen and silicon burningwould produce sufficient energy
to reverse the collapse and form pair-instability supernovae
[12,13]. However, it is believed that with M > 260M⊙,
nuclear burning is not powerful enough to overcome the
implosion by the pair instability and the star would collapse
to aBH (e.g., [12–15]). As pointed out in e.g., [16], a 100M⊙
seed BH that accretes at the Eddington limit with ∼10%
radiative efficiency can grow toMBH ≳ 109M⊙ by z ¼ 6.4,
but only if the onset of accretion is at z > 20.
Idealized SMSs are objects supported dominantly by

radiation pressure Pr, which can be well described by a
Γ ¼ 4=3 adiabatic index, or an n ¼ 3 polytropic equation
of state [17–19]. SMSs are likely to be highly spinning and
turbulent viscosity induced by magnetic fields would keep
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them in uniform rotation [20–23]. The critical configura-
tion of a SMS at the mass-shedding limit along a quasista-
tionary evolution sequence is set by the onset of a
relativistic radial instability. It has been pointed out that
the ratio of rotational kinetic energy and gravitational
potential energy T=jWj, the compaction parameters
Rp=M, where Rp is the polar radius, and the dimensionless
spin J=M2 for this critical configuration are all independent
of the initial mass [18]. Such universality also applies to the
BH-disk parameters after collapse, as shown by analytic
models and full general relativistic (GR) hydrodynamic
simulations of marginally unstable, uniformly rotating
SMSs spinning at the mass-shedding limit [24–27].
These have shown that the SMS remnant is a black hole
surrounded by a massive, hot accretion torus. The remnant
black hole has a mass MBH of about ∼90% of the initial
stellar mass M and spin aBH=MBH ∼ 0.70–0.75. GRMHD
simulations in which the SMS is threaded initially by a
dynamically weak dipole magnetic field, either confined or
not to the stellar interior, have shown that the above
parameters remain basically unchanged. In the magnetized
case, however, following the gravitational wave (GW) burst
at collapse, the BH–accretion disk remnant gives rise to a
magnetically confined jet with an outgoing electromagnetic
(Poynting) luminosity LEM ∼ 1052�1 erg=s, consistent with
typical GRB luminosities [26,27]. This feature may explain
the recent detection of high redshift (z ∼ 5.3–8.0) GRBs
reported from the Burst Alert Telescope (BAT) on Swift. It
may indicate that some metal–free Pop III stars could also
be the engines that power long GRBs (see e.g., [28,29]), as
they are at the epoch when Pop III stars reached formation
peak (see e.g., [30,31]). The jets also exhibit universal
characteristics independent of mass. We explained this
universality [32] by an analytic model that estimates several
key global parameters characterizing a BH–accretion disk
remnant that launches a magnetically driven jet consistent
with the Blandford-Znajek (BZ) mechanism [33]. The same
universal model accounts for BH–disk systems formed
either through compact binary mergers (i.e., neutron star or
black hole–neutron star binary mergers, such as in [34,35],
or massive star collapse as in [26,27].)
Some numerical simulations have shown that the gravi-

tational collapse could be overcome by thermonuclear
energy if the SMSs have non-zero metallicity. In [36] a
series of nonrotating SMSs with different metallicity Z
were studied analytically and numerically, and microphys-
ical processes including electron-positron pairs, rapid
proton capture and neutrinos loss were considered. They
found that hydrogen burning by the CNO cycle would
trigger the explosion with a metallicity as low as Z ¼
5 × 10−3 and release 2 × 1056–1057 erg of energy for stellar
masses of 105–106M⊙. It is also been found that the critical
metallicity triggering the explosion increases with stellar
masses. A similar result was found by [37], in which a
nonrotating SMS with mass of ∼5 × 105M⊙ would explode

if the metallicity is greater than 7 × 10−3. Additionally,
they discovered that the metallicity threshold is lowered to
∼1 × 10−3 if the stars are uniformly rotating. However,
whether the massive stars could contain the threshold
metallicity is questionable, especially for the first gener-
ation of stars born in metal-free regions. Although an 1D
simulation of the evolution of Pop III SMSs by [11] has
shown that a 5 × 104M⊙ star could explode as a thermo-
nuclear supernova powered by helium burning, various
approximations assumed and grid limitations may have
hindered the accuracy of the simulations.
Although numerical calculations obtained from strictly

radiation-dominated n ¼ 3 SMS models provide promising
observational suggestions, the approximation and simpli-
fication of the model may neither accurately describe a
realistic progenitor, nor sufficiently display some important
physical characteristics during the evolution. For example,
SMSs also contain gas pressure Pg ≪ Pr, which becomes
increasingly important as the mass of the star decreases.
This importance is reflected in the adiabatic index and
polytropic index of the star. For a SMS with M ∼ 105M⊙
the effective adiabatic index is Γ ¼ 1.339 or n ¼ 2.95
while for M ∼ 104M⊙ these parameters are Γ ¼ 1.345 or
n ¼ 2.9. Both the critical configuration at the onset of
collapse and the final BH-disk system following collapse
are extremely sensitive functions of Γ − 4=3 or n − 3, as we
showed in [38]. Hence to reliably track the onset of
instability and the fate of an unstable SMS with mass
≲106M⊙ it is necessary to simulate collapse from the
critical configuration found for Γ > 4=3. We also note that
recent GR semianalytic calculations and hydrodynamic
simulations [39–41] suggest that the SMS in the nuclear
burning phase may be better described by a polytropic EOS
in the range 2.95≲ n≲ 3.
As a uniformly rotating SMS contracts during its

quasistationary cooling phase, its angular velocity increases
until reaching the maximally rotating (mass-shedding)
limit. It will continue evolving along a mass-shedding
sequence [18,41–43], as turbulent viscosity arising from
magnetic field instabilities likely maintain uniform rotation.
Nevertheless, two alternative situations might arise in
principle. First, if the initial gaseous angular momentum
is not sufficient prior to contraction, then it is possible that
SMSs do not spin-up sufficiently to reach the mass-
shedding limit when the radial-instability is triggered.
Second, if magnetic effects are greatly suppressed, then
uniform rotation would not be sustained by turbulent
processes during the contraction phase and instead angular
momentum would be conserved on each concentric cylin-
drical shell [44,45]. As a result, the SMSs would become
differentially rotating, even if uniformly rotating initially
[42]. Thus, simulating SMS collapse with the star rotating
differentially is also of interest. GR hydrodynamic simu-
lations of collapsing differentially rotating, radially unsta-
ble SMS models were performed first by [46], who found
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the collapse to be similar to that of a uniformly rotating star.
A differentially rotating, n ¼ 3 polytrope with a toroidal
shape was studied in [47]. It was found that such an object
is unstable to nonaxisymmetric modes and fragmentation
occurs. Recently, the evolution has been extended to
Γ≳ 4=3, n≲ 3 SMS models where an initial m ¼ 2–
sinusoidal density perturbation triggered fragmentation that
eventually formed a binary BH surrounded by a cloud of
gas [48]. However, this simulation did not begin from an
initially quasiequilibrium state. GRMHD simulations that
incorporate magnetic fields have yet to be performed for
this fragmentation scenario.
The aim of the paper is twofold. First, we extend our

previous GRMHD calculations [27] of collapsing SMSs
described by Γ ¼ 4=3, n ¼ 3 polytropes to Γ≳ 4=3, n≲ 3
polytropes to treat lower mass models with gas pressure
perturbations. We also consider the evolution of SMS
models with different initial stellar rotation profiles. Our
simulations might be useful for interpreting future coinci-
dent detections of GW bursts with electromagnetic (EM)
counterpart radiation (multimessenger observations).
Multimessenger signatures from the direct collapse of a
SMS and the subsequent accretion epoch have not been
explored to a great extent. The future detection of GW
signals by detectors such as LISA [49,50], in coincident
with GRBs at very high redshift, would provide evidence
for the direct–collapse massive-star model for the seeds
SMBHs. We also would like to verify the viability of the
unified model presented in [32], which derives a direct
relation between the EM signal strength and the BH-
accretion disk parameters.
We find that the mass of the black hole remnant is

between 90% and 99% of the initial mass of the SMS,
depending sharply on Γ − 4=3 or n − 3 as well as on the
initial rotation profile. The latter can affect the ram
pressure produced by fall-back debris and the ultimate
emergence of the jet. After t ∼ 250–550M ≈ 1 − 2 ×
103ðM=106M⊙Þ s following the appearance of the black
hole horizon, an incipient jet is launched in the magnet-
ized cases considered, and it is expected to last for
∼104 − 105ðM=106M⊙Þ s, consistent with the duration
of long gamma-ray bursts [51,52]. The outgoing electro-
magnetic Poynting luminosity driven by the jet is
LEM ∼ 1051−53 erg=s. As we pointed out in [27], if 1%–
10% of this power is converted into gamma rays, they can
be detected potentially by Swift and Fermi [53]. Our results
also suggest that the BZ mechanism powers the incipient
jet. We find that the estimates provided by our unified
model in [32] are consistent with our numerical results
within an order of magnitude. Finally, we also diagnose the
possibility of the quasi-periodic GW signature in the
BH-disk system arising from the Papaloizou–Pringle
Instability (PPI) [54] as suggested in [55]. However, we
find that only the initial GWburst is appreciable and that no
prominent signature of a PPI is found.

The paper is organized as follows. In Sec. II, we
summarize analytic calculations which model SMSs with
different characteristic masses and rotation profiles. In
Sec. III, we discuss how the initial SMS models are
implemented numerically. We also describe the numerical
methods used, as well as a number of diagnostic quantities
that we use to verify the reliability of our calculations. In
Sec. IV we discuss our results and compare them with our
analytic model in [32]. Finally, we summarize our con-
clusion and propose future work in Sec. V. Throughout the
paper, we use geometrized units c ¼ G ¼ 1 unless other-
wise specified.

II. ANALYTIC MODEL

In this section we review key features of analytic SMS
models described by polytropes with different polytropic
indices and rotation profiles. In Sec. II A, we show how the
effective adiabatic (or polytropic) index of a SMS scales
with mass when gas pressure perturbations are included
along with the dominant radiative pressure. In Sec. II B, we
describe the relation between angular velocity and the
equatorial radius for uniformly rotating stars, and we give
the differential rotation profile used in one of our numerical
models.

A. Characteristic masses

Containing both radiation and gas pressure, a highly
convective core maintains constant entropy of the stellar
interior [12,39]. Therefore, from the first law of thermo-
dynamics, a SMS can be modeled approximately by a
polytrope with P ∝ ρ0ÞΓ, where P is the pressure, and ρ0 is
the rest-mass density,

Γ ¼ 4

3
þ βð4þ βÞ
3ð1þ βÞð8þ βÞ ¼

4

3
þ β

6
þOðβ2Þ; ð1Þ

and β≡ Pg=Pr is the ratio between the gas and the
radiation pressure (see, e.g., [12,39,41,56,57], also see
Problem 17.3 in [58] and Problem 2.26 in [59]). For
radiation-dominated stars, β ≪ 1 is directly related to the
radiation entropy sr and to the mass of a SMS. To lowest
order, and assuming stars consist of hydrogen only, we
have

β ¼ 8kB
sr

¼ 8.485

�
M
M⊙

�
−1=2

; ð2Þ

where kB is Boltzmann’s constant. The relation between
adiabatic index Γ and M to first order in β is

Γ −
4

3
≈ 1.414

�
M
M⊙

�
−1=2

; ð3Þ

or, in terms of polytropic index n≡ 1=ðΓ − 1Þ
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n ≈
3

1þ 4.242ð M
M⊙

Þ−1=2 : ð4Þ

Figure 1 displays β and the mass of a SMS as a function of
polytropic index n for 0 < β < 0.1. As n decreases by a
small amount, the resulting SMS mass drops by orders of
magnitude. A more detailed analysis of Γ versus M
considering different components of the plasma inside
the star is proposed in [39], which is consistent with the
analysis above.

B. Rotation profiles

Full discussion of an uniformly rotating, pressure domi-
nated SMS is contained in [60] and [38] in the Newtonian,
Roche approximation. There it is shown that the angular
frequency at the mass-shedding limit, where matter at the
equator has no outward support from pressure but is instead
supported exclusively by centrifugal forces and therefore
follows a circular geodesic, satisfies

Ωshedd ¼
�
M
R3
eq

�
1=2

; ð5Þ

where Req is the equatorial radius. Integrating the hydro-
static equilibrium equation for a spherical stellar model in
the Newtonian limit, we obtain (see Eq. (4) in [38])

ðnþ 1ÞP
ρ
−
M
r
−
1

2
Ω2r2sin2θ ¼ H: ð6Þ

Here H is a constant of integration. The angular velocity of
an uniformly rotating star less than the mass-shedding limit
can be described by Ω ¼ αΩshedd, where α is a spin-down
factor that measures the deviation from the mass-shedding

limit. Equating the values of Eq. (6) calculated at the pole
and the equator, and assume that Rpol of an uniformly
rotating star is the same as the nonrotating case,1 we find
that the ratio between equatorial and polar radius of
uniformly rotating Newtonian polytropes satisfies

α2

2

�
2

3

�
3
�
Req

Rpol

�
3

−
�
Req

Rpol

�
þ 1 ¼ 0: ð7Þ

We treated the collapse of a uniformly rotating, margin-
ally unstable SMS with n ¼ 3 at mass-shedding in [27]. For
this case α ¼ 1, for which Rpol ¼ 2Req=3. Here we consider
the collapse of uniformly rotating, marginally unstable
configurations with n ¼ 2.9 and n ¼ 2.95 at the mass-
shedding limit α ¼ 1. We also treat a n ¼ 2.9 configuration
at a smaller spin α ¼ 0.75. We choose the smaller n in part
to explore the effects of gas-pressure perturbations and in
part to evolve a configuration of smaller compaction and
hence shorter dynamical and integration timescale. We use
the approximate Newtonian model described above to
provide input parameters for Rpol=Req for insertion in
our relativistic equilibrium code [62–64] to build a stable,
uniformly rotating star. Our numerical solution is more
accurate than the approximate Newtonian Roche model
described by Eq. (7), although the discrepancy is not large
even in the most compact case. For example, for n ¼ 2.9
and Rpol=Req ¼ 0.89, the numerically accurate GR value
for α is 0.75, while Eq. (7) gives 0.77.
We also consider a differentially rotating configuration at

the onset of instability. It is defined by [46,48,65,66]

utuϕ ¼ R2
eq

9
ðΩc −ΩÞ; ð8Þ

in the relativistic regime, where Ω ¼ ΩðϖÞ is the angular
velocity of the fluid, Ωc is the angular velocity at the stellar
center, and the ui are 4-velocity components. In the
Newtonian limit, Eq. (8) reduces to:

Ω ¼ Ωc

1þ 9ϖ2

R2
eq

ð9Þ

where ϖ2 ¼ x2 þ y2 is the distance from the rotation axis,
with the center of mass at the origin.

III. METHODS

In this section we begin with a summary of the numerical
approach and code we employ for solving GRMHD equa-
tions. A detailed description can be found in [67,68]. In
Sec. III B we describe our initial data. In particular, we
discuss how we build our initial SMS models, including the

FIG. 1. Gas-to-radiation pressure ratio β (upper panel) and
SMS mass (lower panel) as a function of polytropic index n using
Eqs. (1) and (4). For n within the range where 0 < β < 0.1, gas
pressure is a small perturbation, yet the mass varies by orders of
magnitude.

1This assumption was shown numerically to be very accurate,
see e.g., [61].
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initial rotation profile and the magnetic field configuration
seeded in the SMS. In Sec. III Cwe review the resolution and
grid structure used during the different epochs of the stellar
evolution. Finally, in Sec. III D we describe our standard
tools to diagnose the numerical simulations.

A. Numerical setup

We use the moving-grid mesh refinement Illinois
GRMHD code embedded in the CACTUS

2/CARPET
3 infra-

structure. The code has been extensively tested and used to
study various scenarios, including magnetized compact
object mergers and stellar collapse, leading to magnetized
accretion disks and in some cases the formation of jets (see
e.g., [27,68–70] and references therein).
The Illinois GRMHD code evolves the spacetime metric

by solving Baumgarte–Shapiro–Shibata–Nakamura (BSSN)
formulation of the Einstein’s equations [71,72], coupled to
moving puncture gauge conditions [73,74] with the equation
for the shift vector in first-order form (see e.g., [75,76]).
Depending on the grid structure and system properties for the
different cases, the shift parameter η is set between 3.26=M
and 3.89=M, whereM is the ADM mass of the system. The
code solves the equations in a flux conservative formulation
[see Eqs. (27)–(29) in [67]] via a high-resolution shock
capturing method [77]. To guarantee that the magnetic
field remains divergenceless, the code solves the magnetic
induction equation by introducing a vector potential [see
Eqs. (8)–(9) in [68]].We adopt the generalized Lorenz gauge
[68,78] to close Maxwell’s equations. This gauge is chosen

so that the development of spuriousmagnetic fields that arise
due to interpolations across AMR levels can be avoided;
for details see [68]. The GRMHD evolution equations are
evolved by employing a Γ-law EOS,P ¼ ðΓ − 1Þϵρ0, where
Γ≳ 4=3, and ϵ and ρ0 are the specific internal energy and the
rest-mass density, respectively.

B. Initial data

It is believed that SMSs form when colliding gas residing
in metal–, dust–, and H2–poor halos build up sufficient
radiation pressure to inhibit fragmentation and the forma-
tion of small stars [79–82]. As thermal emission and
turbulence driven by magnetic viscosity take place, the
star shrinks and spins up to the mass-shedding limit
[20,22,83]. It then evolves in a quasistationary manner
until reaching the onset of relativistic radial instability and
eventually collapses to form a seed of a SMBH [18]. It also
has been argued, that massive stars with M ≳ 102M⊙ and
sufficiently low metallicity (Pop III stars) may be the
progenitors of SMBHs, if mass–loss mechanisms such
as nuclear–powered radial pulsations and the electron-
positron pair instability on the main sequence are sup-
pressed [84,85]. Here, we consider SMSs described by a
marginally unstable polytrope spinning at the mass-
shedding limit characterized by a polytopic index n ¼
2.95 and n ¼ 2.9 (Table I). Compared to n ¼ 3 polytropes
which better characterize SMSs with M ≳ 106M⊙, they
correspond to SMSs with smaller characteristic mass of
105M⊙ and 104M⊙, respectively, according to Eq. (4) and
Fig. 1. In order to study the effects of the initial rotation
profile, we model the uniformly rotating SMSs initial
configuration at mass-shedding and with 0.75 of the

TABLE I. Summary of initial star parameters. Nondimensional quantities which have been rescaled with the polytropic gas constant
K, are denoted with a bar. In all the magnetized stars the magnetic-to-rotational-kinetic-energy ratio is 0.1. Columns show the polytropic
index n ¼ 1=ð1 − ΓÞ, the characteristic mass M⋆ for which this index is most appropriate, the central rest-mass density ρ̄0;c, the ADM
mass M̄ADM, the polar-to-equatorial radius ratio Rp=Req, the equatorial radius Req, the dimensionless angular momentum J=M2

ADM, the

initial magnetic field configuration, the averaged magnetic field strength hBi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πM=Vs

p
, whereM is the total magnetic energy and

Vs ¼
R ffiffiffi

γ
p

d3x is the initial proper volume of the star.

Case n M⋆=M⊙ ρ̄0;c
a M̄ADM

b Rp=Req Req=MADM J=M2
ADM B-field hBi × ðM=106M⊙Þ

n3-HYDc 3 ≳106 7.7 × 10−9 4.57 0.67 625 0.96 None 0
n3-INTc 3 ≳106 7.7 × 10−9 4.57 0.67 625 0.96 Int. 6.5 × 106 G
n3-EXTINTc 3 ≳106 7.7 × 10−9 4.57 0.67 625 0.96 Int. 6.5 × 106 G
n295-EXTINTc 2.95 ∼105 1.04 × 10−7 3.84 0.67 286 0.68 Int.þ Ext. 1.5 × 107 G
n29-HYDc 2.9 ∼104 5.66 × 10−7 3.30 0.67 175 0.56 None 0
n29-INTc 2.9 ∼104 5.66 × 10−7 3.30 0.67 175 0.56 Int. 4.7 × 107 G
n29-EXTINTc 2.9 ∼104 5.66 × 10−7 3.30 0.67 175 0.56 Int.þ Ext. 4.7 × 107 G
n29-EXTINT-0.75SPINd 2.9 ∼104 2.6 × 10−7 3.26 0.89 174 0.45 Int.þ Ext. 2.7 × 107 G
n29-EXTINT-DIFFe 2.9 ∼104 1.77 × 10−7 3.88 0.67 170 1.48 Int.þ Ext. 1.6 × 108 G

aρ̄0;c ¼ ρ0;cKn, where K ¼ P=ρΓ0 , Γ ¼ 1þ 1
n (for K in cgs units, see [58], Eq. 17.2.6).

bM̄ADM ¼ MADMK−n=2.
cUniformly rotating star spinning at the mass-shedding limit.
dUniformly rotating star spinning at 75% of the mass-shedding limit.
eDifferentially rotating star with the initial rotation profile given by Eq. (8).

2http:// www.cactuscode.org.
3http://www.carpetcode.org.
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corresponding mass-shedding angular velocity. For the
latter we set α ¼ 0.75, which gives Rpol=Req ≈ 0.89.
Finally we also consider differentially rotating stars with
an initial rotation profile given by Eq. (8).
To determine the central density ρc of the marginally

unstable stellar models spinning at the mass-shedding limit
for a given polytropic index n, we solve Eqs. (17) and (18)
along with the constraint in Eq. (19) in [38]. Note that the
configurations described by such a soft EOS (n ≈ 3) are
low compaction stars. Given the central density ρc and the
above polar-to-equatorial radius ratio, we build the above
rotating stellar configurations with the relativistic rotating
star code described in [62–64].
To consider magnetized initial configurations as in [27],

the stellar models are endowed with a dynamically unim-
portant magnetic field as follows:

(i) Interior magnetic field case: The star is seeded with a
dipole-like magnetic field generated by the vector
potential [86]

Aint
ϕ ¼ Abϖ

2maxðP − Pcut; 0Þnb ; ð10Þ

where Ab, Pcut, and nb are free parameters that
determine the initial magnetic field strength, its
confinement and its degree of central condensation.
Following [27], we set Pcut ¼ 10−4Pmaxð0Þ, where
Pmaxð0Þ is the initial maximum value of the pressure,
andnb ¼ 1=8. In ourmodels, we choose a value ofAb
such as the magnetic-to-rotational-kinetic-energy ra-
tio M=T ¼ 0.1 (see Table I). As in standard hydro-
dynamic and MHD simulations, we add a tenuous
constant–density atmosphere with small rest mass
density ρ0;atm ¼ 10−10ρ0;maxð0Þ, where ρ0;maxð0Þ is
the maximum value of the rest mass density of the
SMS, to cover the computational grid outside the star.

(ii) Interior-exterior magnetic field case: The star is
seeded with an interior and exterior dipole-like
magnetic field generated by the vector potential [27]

Aϕ ¼ e−ðr=r1Þ2pAint
ϕ þ ð1 − e−ðr=r1Þ2pÞAext

ϕ ; ð11Þ

with

FIG. 2. 3D volume rendering of the rest-mass density normalized to its initial maximum value ρ0;max ¼ 1.66ðM=106M⊙Þ−2 g cm−3

at select times for the n29-EXTINT-DIFF case (see Table I). Solid lines indicate the magnetic field lines and arrows show plasma
velocities with length proportional to their magnitude. The bottom left panel displays the collimated, helical magnetic field and
outgoing plasma, whose zoomed-in view near the horizon is shown in the bottom right panel. Here M ¼ 4.9ðM=106M⊙Þ s ¼
1.47 × 106ðM=106M⊙Þ km.
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Aext
ϕ ¼ πϖ2I0r20

ðr20 þ r2Þ3=2
�
1þ 15r20ðr20 þϖ2Þ

8ðr20 þ r2Þ2
�
; ð12Þ

that corresponds to that generated by an interior
current loop with radius r0 and current I0 [69,87].
Here, r2 ¼ ϖ2 þ z2 and the constant r0 is the radius
of the current loop that generates the magnetic field
in the stellar exterior. On the other hand, the free
constant r1 controls the thickness of the transition
region between the interior and exterior potentials.
These parameters, along with the current loop I0 and
the free parameter p, determine the strength of
the magnetic field. Following [27], in all models
listed in Table I we choose Pcut ¼ 10−4Pmax and
I0 ¼ 7.35 × 10−3. In the n ¼ 3.0 SMSmodel, we set
r0 ≈ 2.2M, and r1 ≈ 240M. In the n ¼ 2.95 model,
we set r0 ≈ 0.6M, and r1 ≈ 120M, and, finally, in the
n ¼ 2.9 model, we set r0 ≈ 0.6M, and r1 ≈ 120M.
In all cases we set p ¼ 2. The above choices yield a
magnetic field in the bulk of the star similar to that in
the interior case [27]. Finally, we set an initial low
and variable density atmosphere in the stellar
exterior such that the gas-to-magnetic-pressure ratio
is 0.01 which allows us to evolve reliably the
magnetic field outside the star and mimic a force-
free external environment [34,35]. The left top panel
in Fig. 2 and the left column in Fig. 3 display the
initial magnetic field configurations of the models
listed (see Table I).

Since we are interested in the stellar collapse epoch and the
subsequent evolution, we initially deplete the pressure
by 1% as in [26,27] to trigger stellar collapse. Table I
summarizes the key initial parameters of these models.
Unless otherwise noted, the initial configuration corre-
sponds to a uniformly rotating SMS spinning at the mass-
shedding limit, close to the onset of general relativistic
radial instability. So, for example, the model denoted as
n29-EXTINT-DIFF corresponds to an n ¼ 2.9 differen-
tially rotating star endowed with a magnetic field that
extends from the stellar interior to the exterior, while the
model denoted as n29-HYD corresponds to the n ¼ 2.9
uniform rotating star spinning at the mass-shedding limit
without any magnetic field.

C. Grid structure

During the collapse, the size of the star changes in many
orders of magnitude from some hundreds of M to a few M
(see Table I). Hence, to reliably evolve the SMS, high-
resolution refinement levels need to be added on the base
levels as the star size shrinks. Following [24,26,27], we
begin the numerical evolution of the models listed in Table I
with one set of five nested refinement levels centered at the
star and differing in size and resolution by factors of two.
Reflection symmetry across the equatorial plane is imposed
to save computational resources. The resulting number of

grid points per level is N ¼ Nx × Ny × Nz ≥ 1202 × 60,
where Ni is the number of grids points along the
i–direction. During the evolution, a new refinement level
is added each time the central density increases by roughly
a factor of three. The new level has half the grid spacing of
the previous innermost level with same number of grid
points. Such a procedure is repeated five and six times for
the n ¼ 3 purely hydrodynamic and GRMHD evolutions,
respectively, and four times for the other cases (see
Table II). The highest resolution on our grids is similar
to that used in [26,27]. Note that the main purpose of
applying higher resolution is to accurately evolve the low-
density, force-free environments that emerge above the
black hole poles.

D. Diagnostics

During the evolution, we monitor the normalized
Hamiltonian and momentum constraints calculated by
Eqs. (40)–(43) in [88]. In all cases displayed in Table I,
the constraint violations remain below ∼0.01 throughout
the whole evolution. We use a modified version of the
PSIKADELIA thorn to extract GWs using the Weyl scalar Ψ4

and computed the total energy radiated by gravitational
waves; this routine uses a s ¼ −2 spin-weighted spherical
harmonics decomposition (for details see [89]). To further
validate our numerical results, we verify the conservation of
the total mass Mint and the total angular momentum Jint
computed through Eqs. (9)–(10) in [90], which coincides
with the ADM mass only at spatial infinity. In all cases we
find that both the interior mass and the interior angular
momentum calculate at large but finite radius deviate from
their initial values by ≲1%, which is manly due to
numerical dissipation. Notice that in the above calculation
we take into account the energy and angular momentum
carried away by gravitational radiation, which is ≲10−4%,
the mass and angular momentum loss through EM
radiation, computed via Eq. (7) in [27], as well as the
escaping matter, which computed as Mesc ¼

R
−u0>1 ρ�d

3x
with ρ� ¼ −nμρ0uμ, where ρ0, uμ and nμ are the rest-mass
density, 4-velocity, and the future-directed unit normal to
the time slice. respectively.
Finally, we use the AHFINDERDIRECT thorn [91] to

locate the apparent horizon, as well as the isolated horizon
formalism to estimate the spin and mass of the black hole
via Eqs. (25) and (27) in [92].

IV. RESULTS

A. Overview

Following the initial pressure depletion, the bulk of our
SMSmodels begin to undergo nearly homologous collapse.
Regardless of the different characteristic masses (or poly-
tropic index n), the magnetic field configuration, or the
stellar rotation law, the gas falls inward, forming a dense
core that eventually collapses to a black hole. Following the
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FIG. 3. 3D volume rendering of the rest mass density normalized to the corresponding initial maximum value ρ0;max in log
scale (for details see Table I) for cases n3-EXTINT, n295-EXTINT, n29-EXTINT, and n29-EXTINT-0.75SPIN, shown from
top to the bottom, respectively. The initial and final configurations for these cases are shown in left and right panels, respectively.
See Table III for a summary of global parameters describing the final outcome of these cases. Solid lines indicate the magnetic field
lines while arrows display plasma velocities with length proportional to their magnitude. Here M ¼ 4.9ðM=106M⊙Þ s ¼
1.47 × 106ðM=106M⊙Þ km.
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catastrophic collapse, the black hole captures in all the low-
angular momentum gas from the inner layers of the SMS.
The high-angular momentum gas in the outer layers spirals
around the black hole as it falls inward and is ultimately
held back by a centrifugal barrier. Eventually, a reverse
shock is formed which induces an outflow (see e.g.,
[26,27]). During this epoch, the frozen-in magnetic field
winds up (see right top and middle panels of Fig. 2), and the
magnetic pressure grows. The magnetorotational-instability
(MRI) develops in the disk. We resolve the MRI according
to λ=Δ ≈ 10–20 [93]. Here λ is the wavelength of the
fastest-growing MRI mode and Δ is the grid spacing. Once
the magnetic pressure above the black hole poles is
sufficiently large (i.e., B2=8πρ0 ≳ 1), a collimated outflow
is driven along the polar axis of black hole, and an incipient
jet is launched [27] (see bottom panels of Fig. 2 and right
column of Fig. 3).

B. Effects of different mass scale

Semianalytic calculations of marginally unstable, uni-
formly rotating and axisymmetric SMS spinning at the
mass-shedding limit in [38], and numerical calculations
(see e.g., [18,26,27,40]) of SMSs supported by thermal
radiation pressure with Γ ≈ 4=3 suggested that the final
parameters that characterize the BH-accretion disk remnant
depend strongly on Γ − 4=3 ≪ 1, or n − 3 ≪ 1. We con-
sider the evolution of marginally unstable SMSs spinning at
the mass-shedding limit described by a polytropic EOS
with n ∈ f3.0; 2.95; 2.90g (see Table I), which characterize

masses of M⋆ ∈ f≳106; 105; 104gM⊙ respectively, sup-
ported by radiation plus gas pressure. Although the differ-
ent n characterize different mass scales, we nevertheless
scale our numerical results in units of 106M⊙ for conven-
ient comparisons.
The stiffer the EOS (the smaller the characteristic mass

M⋆), themore compact the critical configuration and, hence,
the shorter the black formation time. We observe that in the
most massive SMS models with n ¼ 3, an apparent horizon
(AH) forms by t ≈ 3.0 × 104M ∼ 1.5 × 105ðM=106M⊙Þ s
[27]. For the n ¼ 2.95 SMS, the AH forms by
t ≈ 9.08 × 103M ∼ 4.48 × 105ðM=106M⊙Þ s, while for
the models with n ¼ 2.9, the horizon appears about
t ≈ 4.2 × 103M ∼ 2.1 × 104ðM=106M⊙Þ s. Regardless of
EOS, in all cases listed in Table I, we observe that following
the high accretion episode, both the mass and the spin of the
black hole rapidly grow for about t − tBH ≈ 400M ∼ 1.8 ×
103ðM=106M⊙Þ s until reaching quasistationary state val-
ues. Figure 4 shows the dependence of these quantities on
the polytropic index n (see Table III for details). For models
with the smallest masses (stiffer EOS, n → 2.9), essentially
all themass and the angular momentumof the progenitor are
swallowed by the black hole during the high accretion
episode, leaving only a tenuous cloud of gas to form the
accretion disk. We find that only ∼1% of the SMS rest
mass ends up in the disk, and the final spin of the black
hole remnant is a=MBH ≈ 0.53 which is approximately
the initial angular momentum of the SMS. On the other
hand, as the characteristic mass becomes greater (softer
EOS, n → 3), the initial SMS configuration becomes less
compact (see Table I), allowing more gas to be suffi-
ciently far from the final BH innermost stable circular
orbit (ISCO) allowing for a higher mass of the disk. For
n ¼ 2.95, we find that around ∼3% of the SMS exists in
the disk, but for n ¼ 3.0 it can be as much as ∼9% of the
SMS rest mass [27]. The spin of the black hole for these
cases is a=MBH ≈ 0.58, and a=MBH ≈ 0.7, respectively.
Although the softer EOS produces larger MBH and
aBH=MBH, only the mass of the black hole seems to
be sharply dependent on the polytropic index n. Note that
the above results are consistent with the previous sim-
ulations of the collapse of n ≈ 2.98 SMS models reported
in [94] that account for nuclear burning, for which the
mass of the disk is ≲5%, a value that lies between our
n ¼ 3 and n ¼ 2.95 SMS models, as expected.
Finally, we compare our numerical results with the

semianalytic predictions for the collapse of critical con-
figurations uniformly rotating at mass-shedding in
[18,38,63] and previous GR hydrodynamic simulations
in [24] and GRMHD simulations in [26]. As it can be seen
in Table IV, the previous theoretical predictions and
numerical calculations are consistent with the results of
our simulations for the mass of BH, the dimensionless spin
of BH, and the disk mass for all three polytropic indices
(characteristic mass scales).

TABLE II. Grid structure for all cases listed in Table I. The
computational mesh consists of one set of j-nested AMR grids
centered at the start, in which equatorial symmetry is imposed.
Here j ¼ 5;…; levelmax denotes the number of AMR grids during
a given evolution epoch, and levelmax is the maximum number of
AMR grids at the end of the simulations. Each case begins with a
set of j ¼ 5-AMR grids, and we add a new refinement level every
time the maximum value of the rest-mass density increases by a
factor of three. The finest level for a given set of j-nested grids is
denoted by Δxmin. The grid spacing of all other levels is
2l−1Δxmin, where l ¼ 1;…; j, is the level number such that
l ¼ 1 corresponds to the coarsest level. The half-side length of the
outermost AMR boundary is given by the first number in the grid
hierarchy.

Case Δxmin levelmax Grid hierarchy

n3-HYD 1.36M=2j−5 10 1312M=2l−1

n3-INT 1.36M=2j−5 11 1312M=2l−1

n3-EXTINT 1.36M=2j−5 11 1312M=2l−1

n295-EXTINT 0.4M=2j−5 9 728M=2l−1

n29-HYD 0.48M=2j−5 9 454M=2l−1

n29-INT 0.48M=2j−5 9 454M=2l−1

n29-EXTINT 0.48M=2j−5 9 454M=2l−1

n29-EXTINT-0.75SPIN 0.48M=2j−5 9 458M=2l−1

n29-EXTINT-DIFF 0.40M=2j−5 9 515M=2l−1
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C. Effects of different rotation law

If the turbulent viscosity is low, uniform rotation may not
be enforced during stellar evolution, and hence the star may

be differentially rotating when it collapses to a black hole
(see e.g., [42]). Since the angular momentum of the outer
layers of the collapsing star will be conserved, the fate of

TABLE III. Summary of key results. Here tBH denotes the black hole formation time,MBH and aBH=MBH denote the mass of the black
hole and the dimensionless spin once the system has settled down, respectively, Rdisk and Mdisk are the outer edge and the mass of the
accretion disk, _M is the accretion rate roughly after t − tBH ∼ 1.8 × 103M ∼ 8.8 × 103ðM=106M⊙Þ s, tjet is the launching jet time after

black hole formation, τdisk ≡Mdisk= _M is disk lifetime, ðb2=2ρ0Þj pole and LEM are the force-free parameter above the black hole pole and
the Poynting electromagnetic luminosity driven by the incipient jet, respectively, which are time-averaged over t ≈ 200M ∼
103ðM=106M⊙Þ s after jet launching. The quantities tBH, tjet, and τdisk are normalized by ðM=106M⊙Þ.

Case tBH (s) MBH=M aBH=MBH Rdisk=M Mdisk=M _MðM⊙=sÞ tjet (s) τdisk (s) ðb2=2ρ0Þjpole
LEM

ðerg=sÞ
n3-HYD 1.40×105 0.91 0.75 95 9.0% 1.0 ��� 9.0×104 ��� ���
n3-INT 1.48×105 0.92 0.74 90 6.0% 1.2 2.7×103 5.0×104 25 1050.6

n3-EXTINT 1.53×105 0.92 0.68 95 7.0% 1.1 2.2×103 7.2×104 300 1052.5

n295-EXTINT 4.48×104 0.96 0.58 75 3.0% 1.2 1.5×103 2.4×104 100 1052.3

n29-HYD 2.06×104 0.99 0.53 60 1.1% 1.0 ��� 1.0×104 ��� ���
n29-INT 2.13×104 0.99 0.53 55 1.1% 0.4 ��� 1.0×104 <10−4 ���
n29-EXTINT 2.12×104 0.99 0.52 55 1.5% 0.8 1.2×103 1.8×104 100 1052.1

n29-EXTINT-0.75SPIN 3.25×104 0.99 0.45 55 0.3% 1.5 1.7×103 1.0×104 60 1051.5

n29-EXTINT-DIFF 1.26×105 0.82 0.54 60 18.0% 2.0 1.4×103 9.0×104 300 1053.5

FIG. 4. Dependence of the black hole mass (top panel), black hole dimensionless spin parameter (middle panel), and the accretion
mass disk (bottom panel) on different EOSs, magnetic field configurations, and rotation profiles for models in Table I. The mass of the
black hole remnant, and hence the mass of the disk, is sharply sensitive to changes in the EOS as well as the initial rotation profile of
the SMS.
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the remnant black hole-disk will depend on the initial
rotation law profile of the SMS [42,44,45,95]. Figure 4
displays the evolution of the mass and the spin of the black
hole remnant, as well as the rest mass fraction M0 outside
the AH computed as M0 ¼

R
ρ�d3x for models listed in

Table I. Here we focus on the three different n ¼ 2.9 SMS
models that: (a) uniformly rotate at the mass-shedding
limit, (b) uniformly rotate at 75% of the mass-shedding
limit, and (c) differentially rotate with an initial rotation
profile given by Eq. (8).
Following the initial pressure depletion, the SMS

models contract and form a central dense core that
undergoes collapse. Unlike the uniform rotation models,
in which an AH forms approximately at t≲ 6600M ∼ 3.2×
104ðM=106M⊙Þ s, the differential rotation profile provides
centrifugal support against collapse. However, over a
secular time t≲ 2 × 104M ∼ 105ðM=106M⊙Þ s, turbulent
viscosity (in our case magnetic viscosity) transports the
angular momentum outward pushing out the external layers
of the star and driving the inner core toward uniform
rotation. As the total rest mass of the core exceeds the
maximum value allowed by uniform rotation, it eventually
collapses. The black hole horizon appears by around
t ≈ 2.6 × 103M ∼ 1.3 × 105ðM=106M⊙Þ s, which is similar
to that in the case of a less centrally condensed n ¼ 3 SMS
(see Table III). The bottom panel of Fig. 4 shows the fraction
of the rest mass that wraps around the black hole to form the
accretion disk. Notice that in the differentially rotating case
about∼18% of the initial rest mass of the star forms the disk,
while only ∼1% and ∼0.3% of the rest mass contributes to
the disk in the uniformly rotatingmass-shedding case, and in
the α ¼ 0.75–uniformly rotating case, respectively.

D. Effects of the magnetic field: Jets

During stellar contraction and black hole formation, the
magnetic field winds up, causing the magnetic pressure to
grow. A reverse shock pushes away material that is tied to
the disk via the frozen-in magnetic field lines, producing a
strong poloidal magnetic field, as shown in the right-middle
panel of Fig. 2. As pointed out in [27,34], the conversion of
poloidal to toroidal flux via magnetic winding produces
large magnetic pressure gradients above the BH that
eventually launches a strong outflow sustained by helical
magnetic fields (see the bottom panel of Fig. 2). In the
following we summarize additional differences in the
evolution of the models listed in table I.

1. Models spinning at the mass-shedding limit

Except for n29-INT, in which we do not observe any
indication of jet formation, the early evolution and outcome
of the uniform rotating SMSs spinning at the mass-shedding
limit is similar (see the first three panels of Fig. 3); at about
t − tBH ≈ 250 − 550M ∼ 1.2 − 2.7 × 103ðM=106M⊙Þ s an
incipient jet is launched following the growth of magnetic of
pressure gradients above the black hole poles (for details
see Table III). As is shown in Fig. 5, the accretion rate
in all these cases settles to roughly ∼1M⊙=s by about
t− tBH∼1.8×103M∼8.8×103ðM=106M⊙Þ s, at which the
mass of the disk is Mdisk∼1.5−7.0×104ðM=106M⊙ÞM⊙.
Hence, the duration of the jet is Δt ¼ Mdisk= _M ∼
1.8 − 7.2 × 104ðM=106M⊙Þ s, consistent with estimates
of ultra-long gamma-ray bursts (ULGRBs) duration in
[96,97]. To verify that the BZ mechanism is operating in
our systems, we compare the Poynting luminosity LEM

TABLE IV. Comparison of black hole and disk parameters from cases in Table III (bold) with the semianalytic and numeric results in
previous studies for critical collapse at mass-shedding different EOS (characteristic mass) and magnetic fields. Here “H”, “I”, and
“Eþ I” represent no magnetic field, interior magnetic field, and exterior plus interior magnetic field, respectively.

MBH=M aBH=MBH Mdisk=M

n ðM⋆Þ H I Eþ I H I Eþ I H I Eþ I

3.00 0.89a 0.95b 0.94 0.60 0.70 0.68 11.0% 6.0% 7.0%
(≳106M⊙) 0.87c 0.95d 0.71 0.68 13.0% 6.0%

0.90e 0.92 0.75 0.64 10.0% 6.0%
0.90f 0.70 7.0%
0.91 0.75 9.0%

2.95 0.97a 0.96 0.52 0.58 2.9% 3.0%
ð∼105M⊙Þ
2.90 0.99a 0.99 0.99 0.45 0.53 0.52 1.1% 1.1% 1.5%
ð∼104M⊙Þ 0.99g 0.53 1.4%

0.99 0.53 1.4%
aTable 2 in [38], fully analytic.
bGRMHD simulation by [26] (model S1).
cTable 2 in [38], analytic, using critical configuration in [18].
dGRMHD simulation by [26] (model S2).
eGR hydrodynamic simulation by [24].
fGR hydrodynamic simulation by [26] (model S0).
gTable 2 in [63] by setting Rp=Re ≈ 2=3.
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computed through Eq. (7) in [27] with the expected EM
power generated by BZ [33],

LBZ≈1051
�
a=MBH

0.75

�
2
�

MBH

106M⊙

�
2
�

Bpole
BH

1010G

�2

erg=s: ð13Þ

As in [27], the magnetic field Bpole
BH is computed as a space-

and time-averaged value of the field in a cubical region with
a side of length 2rBH, where rBH is the radius of the AH, just
above the black hole poles over the last t ≈ 200M ∼
1000ðM=106M⊙Þ s after the jet is well-developed. As it
is displayed in Fig. 6, the outgoing electromagnetic
Poynting luminosity passing through a sphere with coor-
dinate radius Rext ¼ 100M ∼ 1.4 × 108ðM=106M⊙Þ km is
LEM ≈ 1051 − 1052 erg=s, roughly consistent with the
expected BZ value.We also compute the ratio of the angular
frequency of the magnetic field lines to the black hole
angular frequency ΩF=ΩH in magnetically dominated
regions above the black hole poles (see Eq. (9) in [27]).
We find that in these cases the ratio is ΩF=ΩH ≈ 0.2 − 0.4.
Deviations from the expected split-monopole force-free
magnetic field configuration value ΩF=ΩH ¼ 0.5 [98] are
expected due to differences in the field topology and other
numerical artifacts (see e.g., [34,35]). The helical structure
of the polar B-field and the collimation of the outflow further
suggest that the BZ mechanism is operating in our
simulations.
The lack of an incipient jet in the n29-INT model might

be due to the fact that during the stellar collapse, the black
hole swallows almost the entire star, leaving only ∼1% of
the rest mass of the SMS as a disk. During that process, the
highly magnetized layers of the SMSs are captured, leaving
only the very outer layers, which are weakly magnetized,
to form the remnant disk. By contrast, the outer layer in
the remnant disk in the n29-EXTINT model is highly

magnetized. Following the collapse, we find that the
magnetic field strength above the black hole poles is
≲108ð106M⊙=MÞ G in the n29-INT model case, while in
the n29-EXTINT case it approaches ∼1010ð106M⊙=MÞ G.
As it has been pointed out in [27], the other significant
difference is that configurations in which the magnetic field
extends from the stellar interior to its exterior mimic a force-
free environment more accurately, and as a result it is easier
for the magnetic pressure to overcome the plasma ram
pressure because of less baryon loading. Following the
appearance of an apparent horizon, we trace the plasma
parameter b2=2ρ0 ¼ B2=ð8πρ0Þ (where B is the comoving
magnetic field strength) in a cubical region above the black
hole poles. This parameter measured the degree towhich the
region above the BH poles is force-free. Values larger than
∼1 − 10 are required to launch a jet. We observe that in the
n29-INT model, the plasma parameter rapidly settles down
to ∼10−5, while in the other cases it reaches values larger
than 25 (see Table III). As we have seen in [27], because of
the weakly magnetized outer layer, it takes twice as long for
the n3-INT cases to build up the jet than n3-EXTINT, which
might also be true for n ¼ 2.9 cases. However, the computa-
tional resources required for this is overly expensive.

2. Model spinning at half of the mass-shedding limit

The evolution and final outcome of the uniformly
rotating SMS spinning at half of the mass-shedding
limit is qualitatively the same as those at the mass-shedding
limit (see bottom panel of Fig. 3). Following pressure
depletion, the star shrinks and forms a central core that
undergoes collapse. A black hole horizon appears
about tBH¼6.5×103M∼3.25×104ðM=106M⊙Þ s, slightly

FIG. 5. Rest mass accretion rate _M vs time for cases listed in
Table I. Notice that the time has shifted to the black hole
formation time and it is normalized to ðM=106M⊙Þ.

FIG. 6. Evolution of the electromagnetic Poynting luminosity
LEM crossing a sphere at coordinate radius Rext ¼ 100M −
175M ∼ 1.4 − 2.4 × 108ðM=106M⊙Þ km for all SMS models
seeded with an external-interior magnetic field configuration
(see Table I). Horizontal dashed lines indicate the expected BZ
values computed via Eq. (13). Here tjet is the time at which the jet
front has reached ∼100M above the black hole pole.
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later than in the mass-shedding limit case, because this
SMS model is a less compact than the previous cases (see
Table I). Due to less centrifugal force, during the first
episode of high accretion the star is rapidly swallowed by
the black hole, leaving only a tiny cloud of magnetized gas
consisting of only ∼0.3% of the rest mass of the star (see
bottom panel of Fig. 4). Following the high accretion
episode, the remnant magnetic field lines wind up, and
around tBH ≈ 340 ∼ 1.2 × 103ðM=106M⊙Þ s the system
launches a jet. The accretion rate settles down to 1.5M⊙=s
and, therefore the disk is expected to last for an accretion time
t¼Mdisk= _M∼1×104ðM=106M⊙Þ s. These numbers once
again are consistent with observations of ULGRBs [96,97].
Once the jet is well–developed, the time–averaged Poynting
luminosity over the last 200M ∼ 103ðM=106M⊙Þ s cross-
ing a sphere at coordinate radius Rext¼100M∼1.4×
108ðM=106M⊙Þkm isLEM≈1051.5 erg=s, roughly consistent
with the expected BZ luminosity (see Fig. 6). At this time,
the force-free parameter has reached a value of
b2=ð2ρ0Þ ∼ 60. As it can be seen in Eq. (13), a lower
luminosity for this case is expected according to Eq. (13)
because of the lower spin.

3. Differentially rotating model

As already mentioned, differential rotation provides a
centrifugal barrier to collapse. However, redistribution of
angular momentum occurs due to magnetic winding,
followed by transport by turbulent viscosity arising from
MRI. Viscosity drives the external layers of the SMS
outward and the inner core toward uniform rotation
(see top right panel of Fig. 2) allowing the inner
core to collapse. At around tBH ¼ 2.5 × 104M ∼ 1.3 ×
105ðM=106M⊙Þ s a black hole forms surrounded by a
denser, highly spinning, magnetized cloud of gas (see
middle panels of Fig. 2). Unlike the previous n ¼ 2.9
models, differential rotation prevents not only the outer-
most layers of the star to be accreted onto the black hole,
but also some of the inner and more magnetized layers.
We find that the average magnetic field strength at the
pole is ∼1011ð106M⊙=MÞ G. The incipient jet is launched
at tBH ≈ 286.2M ∼ 1.4 × 103ðM=106M⊙Þ s, i.e., approxi-
mately at the same time as in the previous cases (see
bottom panels of Fig. 2). Following the black hole
formation, we observe that the plasma parameter grows
rapidly and reaches values of b2=2ρ0 ≳ 100. Note that, as it
has been previously discussed in [34,35], our numerical
approach may be not reliable for higher values of the
plasma parameter (≳200), but the growth of magnetization
in the funnel is robust, and thus is the magnetically
sustained outflow. Finally, the outgoing Poynting lumi-
nosity compute is LEM ≈ %1053.5 erg=s, consistent with
the BZ mechanism (see Fig. 6). At late times the accretion
rate settles down to ∼2.0M⊙=s. The jet duration is
thus t ∼ 9.0 × 104ðM=106M⊙Þ s (see Table III), again

consistent with ULGRBs observations, which may have
Pop III stars as progenitors [99,100].

E. Comparison with the unified analytic model

Spinning black holes immersed in magnetized accretion
disks that launch collimated jets confined by helical
magnetic fields from their poles were found via our
numerical simulations to be the outcomes of three different
scenarios: binary black hole-neutron star mergers [34],
binary neutron star mergers [35] and SMS collapse [27].
Surprisingly, while these all represent very different sce-
narios involving objects spanning a huge range of masses,
length and timescale, the final quasistationary Poynting
luminosities from the jets and the mass accretion rates onto
the black holes were all within a few magnitudes of each
other! This finding was recently explained by a simple
analysis [32] where we showed that all the results could be
understood in terms of the following universal relations:

LBZ ∼
1

10

�
Mdisk

MBH

��
MBH

Rdisk

�
3
�

a
MBH

�
2

½L0�

∼ 1052�1 erg s−1 ð14Þ

_MBH ∼
�
Mdisk

MBH

��
RBH

Rdisk

�
3

½ _M0�

∼ 0.1 − 10M⊙ s−1 ð15Þ

where L0≡c5=G¼ 3.6×1059 ergs−1 and _M0 ≡ c3=G ¼
2.0 × 105M⊙ s−1. Table V shows a comparison with these
model predictions. We find that in within one order of
magnitude, the model is consistent with the numerical
results reported in this paper. Therefore, it provides another
proof that the EM mechanism running in our cases is
mainly based on the BZ mechanism, on which the analysis
in [32] is based, and it indicates the universality of the EM
luminosity from these different scenarios. Additionally, the
EM signatures obtained from our models indicate consis-
tency with the spectroscopic measurements from a recent
survey of short and long GRBs [101].

F. GW signals and PPI in the BH-disk system

To extract the gravitational wave, we project the Weyl
scalar Ψ4 onto different extraction spheres with radii from
Rext ∼ 100M to 400M, and describe its angular dependence
in terms of s ¼ −2 spin-weighted spherical harmonics (see
Eqs. (3.5) and (3.6) in [89]). Figure 7 shows the dominant
mode (l ¼ 2, m ¼ 0) of the expansion coefficient Ψ4ðt; rÞ
at an extraction radius Rext ∼ 100M for all cases with
interior and exterior B-fields. We find that the peak
amplitudes of Ψ4 for all the cases are between 0.5 − 0.8
times that of the n ¼ 3 cases, decreasing with decreasing n.
The reason is that critical configurations with smaller n
have larger compaction, hence they acquire a smaller infall
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speed at collapse. The oscillation period of this mode in all
cases resembles the n ¼ 3 waveform ðf ∼ 15ð106M⊙=MÞ=
ð1þ zÞ mHzÞ and both amplitude and frequency are
consistent with the results obtained from the axisymmetric
SMS collapse reported in [102]. Therefore, analogous to
the discussion of detectability for the Γ ¼ 4=3 cases in [27],
it is expected that GW detectors most sensitive to the
10−3 − 10−1 Hz band (e.g., LISA and DECIGO) are able
to observe the GW signals from such systems [103–105].
It was suggested by [55] that a detectable, quasiperiodic
post-collapse signal might arise from the BH-disk system
due to the growth of the m ¼ 1 nonaxisymmetric

Papaloizou-Pringle instability (PPI). However, we find that
compared to the ðl; mÞ ¼ ð2; 0Þmode, all nonaxisymmetric
modes are significantly smaller. This suggests that no
pronounced and sustained oscillatory waveform is pro-
duced in this system, in contrast to Fig. (3) in [55].
Therefore, PPI and its associated GW signal do not arise
in our simulations. The reason that the instability is absent
could be either that the BH-disk system is stable with
respect to PPI even in the absence of a magnetic field, or
that the instability is suppressed by the magnetic fields and
the development of MRI [106]. To address this question we
compute the specific angular momentum profile j ¼ utuϕ
versus r in the equatorial plane. If Ω ∼ r−q, then in the
Newtonian limit,

j ∼ Ωr2 ∼ r2−q; ð16Þ

in which case we know that the disk in the absence of
magnetic fields is unstablewheneverq>

ffiffiffi
3

p
or 2 − q < 0.27

[107]. We find that for nonmagnetized cases, our postcol-
lapse quasiequilibrium disks satisfy 2 − q ∼ 0.33 − 0.35,
which suggests that the disks are stable, even in the absence
of magnetic fields. Furthermore, disks formed by collapsing
magnetized models result in 2 − q ∼ 0.47 − 0.55, in which
case the disk stabilitywith respect to PPImaybe enhanced by
the magnetic field [106].

V. SUMMARY AND CONCLUSIONS

In this work, we extended our earlier calculations [27]
of the magnetorotational collapse of SMSs in which
radiation pressure alone is present(Γ ¼ 4=3, or n ¼ 3).
Such a model applies to SMSs with M ≳ 106M⊙. Hence
we have performed full GRMHD simulations of collapsing
of SMSs with masses ≳104 − 105M⊙ for which gas
pressure represents a significant perturbation [12,94,102].

TABLE V. Order of magnitude comparison of simulation results with the unified model of [32].

Case

ρM2
BH B2

pM2
BH

_MeqðM⊙=sÞ τdisk=MBH LEMðerg=sÞ

Model a Simulations Model a Simulations Model a Simulations Model a Simulations Model a
Model
BZ b Simulations

n3-HYD 10−7 10−7 � � � � � � 100 100 105 105 � � � � � � � � �
n3-INT 10−7 10−7 10−6 10−6 100 100 105 105 1052 1052 1051

n3-EXTINT 10−8 10−8 10−6 10−6 100 100 105 105 1052 1053 1053

n295-EXTINT 10−7 10−6 10−6 10−6 100 100 104 104 1052 1052 1052

n29-HYD 10−9 10−9 � � � � � � 100 100 105 103 � � � � � � � � �
n29-INT 10−8 10−6 10−6 10−7 100 10−1 104 105 1051 1051 1050

n29-EXTINT 10−8 10−7 10−6 10−7 100 100 104 104 1052 1052 1052

n29-EXTINT-
0.75SPIN

10−8 10−7 10−8 10−7 10−1 100 103 102 1051 1051 1052

n29-EXTINT-
DIFF

10−8 10−8 10−7 10−7 101 100 106 106 1053 1053 1054

aUse Eqs. (9–12) and (17) in [32].
bUse Eq. (13).

FIG. 7. Real part of the ðl; mÞ ¼ ð2; 0Þmode ofΨ4 as a function
of t − tBH for the cases with interior and exterior B-field at an
extraction radius Rext ∼ 100M. The cyan curve represents
the n3-EXTINT case displayed in [27]. Cases with other
B-field configurations share similarity with their counterparts
in the figure.
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We considered stellar models described by a polytropic
EOS with Γ≳ 4=3, or equivalently n≲ 3, which effectively
incorporates a gas pressure perturbation. Such a model
also crudely describes massive Pop III stars. We also
studied the impact of the initial stellar rotation profile and
the initial magnetic field configuration on the final outcome
of the SMS remnant. To be consistent with our previous
study [27], we set the initial magnetic-to-rotational-kinetic
energy to 0.1.
We focus on uniformly rotating configurations spinning at

mass-shedding and on the verge of collapse due to a
relativistic radial instability. For uniformly rotating cases,
the evolution process is similar to the n ¼ 3 cases presented
in [27] with the same initial magnetic field configuration.
For smaller characteristic masses (smaller n), the stars
collapse in a shorter period. The outcome in all cases is a
spinning black hole surrounded by an accretion disk. For
smaller initial n and thus smaller M, the BH has a greater
MBH=M and thus a smaller Mdisk=M, and a smaller
aBH=MBH. All the black hole parameters are consistent
with various previous semianalytic and numerical studies in
[18,24,26,38,63]. For SMSs with M ≳ 106M⊙, the ratios
MBH=M, aBH=MBH and Mdisk=M are universal numbers
independent of mass [25]:MBH=M ≈ 0.9, aBH=MBH ≈ 0.75
and Mdisk=M ≈ 0.1. Furthermore, for all magnetized cases,
the final _MBH is roughly the same (∼0.1 − 1M⊙=s) as is the
Poynting luminosity (LEM ∼ 1052�1 erg=s), independent of
M. These are consistent with the n ¼ 3 cases and with the
unified analytic model in [32].
For the cases with reduced spin Ω ¼ 0.75Ωshedd, we

found that almost all the matter falls into the black hole,
with only ∼0.3% of the total mass remaining to form the
disk. Correspondingly, LEM is approximately one order of
magnitude smaller than its uniformly rotating counterpart.
On the contrary, the collapse of a differentially rotating star
results in a massive disk with Mdisk=M ∼ 0.18 and the
highest luminosity LEM ∼ 1053.5 erg=s.
We find that all appreciably magnetized disks launch

incipient jets. We confirm the likelihood that the BZ
mechanism generates the Poynting luminosity in the jets.
The gravitational waveforms for n ≲ 3 show strong resem-
blance to their n ¼ 3 counterparts. It is thus expected that

GW detectors like LISA and DECIGO are capable of
observing the GW signals from such events [27]. The
specific angular momentum profiles in the post-BH disk
show that the disk is stable with respect to PPI even without
the magnetic field, and such stability is probably strength-
ened in presence of the magnetic field. Additionally, the
magnitude of the Poynting luminosity, which is insensitive
to the stellar mass M, suggests that detecting the EM
counterpart radiation from magnetized, massive, stellar
collapses by GRB detectors like Fermi and Swift is quite
feasible [108,109]. Therefore, the study of and search for
SMSs or massive Pop III stars could provide a promising
avenue for advancing multimessenger astronomy research.
An extensive survey of different rotation profiles is

clearly needed to strengthen our conclusion [e.g.,
Eq. (14)] regarding the EM luminosity in the case of
differentially rotating stars. However, the results reported
here, along with the simulations of supermassive black
holes surrounded by accretion disk in [110], the simulations
of black hole-neutron star mergers in [34], and those of
binary neutron star mergers [35] suggest that indeed there
maybe a narrow range of expected EM luminosity in accord
with Eq. (14) and the analysis in [32].
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