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In (1þ 1)-d CFTs, the 4-point function on the plane can be mapped to the pillow geometry and thereby
crossing symmetry gets translated into a modular property. This feature arises from the Virasoro blocks in
the elliptic representation. We use these modular features to derive a universal asymptotic formula for
OPE coefficients in which one of the operators is averaged over heavy primaries. As an application,
we demonstrate that the coarse-grained heavy channel then reproduces features of the holographic 2 → 2

S-matrix which has black holes as their intermediate states.
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I. INTRODUCTION

Conformal field theory (CFT) pervades several areas of
theoretical physics today. Amongst its varied uses, it appears
in systems nearing phase transitions [1], describes quantum
impurities [2], portrays string worldsheets and serves as the
holographic equivalent to quantum gravity in anti–de Sitter
space [3]. ACFT is uniquely characterized by its spectrum of
primaries and operator product expansion (OPE) coeffi-
cients. In two dimensions, there is an infinite-dimensional
enhancement of conformal symmetry. Furthermore, when
placed on a torus, modular invariance of CFTs leads to
additional constraints [4–8]. These constraints have led to
universal properties of the spectrum [9] and more recently to
heavy-heavy-light OPE coefficients [10,11]. For holographic
CFTs, the high-energy asymptotics (combined with a coarse
graining of the heavy microstates) reproduce features of
black holes in AdS. One of the well-known examples is that
of Cardy’s formula [9] which gives the Bekenstein-Hawking
entropy of the Banados-Teitelbohm-Zanelli (BTZ) black
hole [12,13] (which, in turn, retains its validity in an
extended energy regime [14]).
The conformal bootstrap program is aimed at utilizing the

crossing symmetry of correlators to pin down the CFT data
[15]. This has beenmetwith great successes over the last few
years [16,17]. In a recent development [18], a novel method

has been prescribed to translate the crossing symmetry of
CFT2 4-point functions to a modular property using the
structure of the Virasoro blocks [19]. This feature had also
been pointed out earlier in the context of the Ashkin-Teller
model [20]. In this work, we utilize this modular property to
extract the mean-squared OPE coefficient, in which one
index is averaged over heavy primaries. This information is
then used to evaluate the contribution of the coarse-grained
heavy channel to the 4-point function of primaries. ForCFTs
fulfilling the criteria to admit a gravity dual, this coarse-
grained rendition of heavy microstates holographically
corresponds to a black hole. We shall demonstrate that
our CFT analysis provides a precise derivation of the
holographic 2 → 2 S-matrix which has black holes as their
intermediate states. It agrees with previous results and
expectations in the literature [21–26]; i.e., this amplitude
is entropically suppressed as expð−SBH=2Þ, whereSBH is the
Bekenstein-Hawking entropy.
A direct and full-fledged analysis of a scattering process

with black hole resonances is a formidable problem in
quantum gravity. Amongst its many subtleties, we need to
work with a specific UV completion; find proper ways to
regulate divergences; tackle the resummation of loop
diagrams; and, most importantly, be wary about issues
regarding unitarity and information loss (associated with
the process of creation and evaporation of black holes)
[27–29]. However, if holographically mapped, the CFT2

version of the problem is tractable nonperturbatively and
stands robust against unitarity concerns [30–32]. This CFT
analysis may also offer clues for studying the process in
AdS3 gravity. Although this is a rather simple setting in
which to address these questions, we hope that it sheds light
on analogues of the problem in higher dimensions, as it
already captures some of the most important characteristics
of the S-matrix which are expected.
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Apart from these holographic implications, our findings
sharpen the notions of OPE convergence within the very
structure of CFTs [23,24,33]. As is well known, modular
invariance requires an infinite number of primaries for
CFTs with Virasoro symmetry and having central charge
greater than 1 [9]. It is therefore of pivotal importance to
verify the convergence of OPEs and it is reassuring to see
that this expectation is indeed true.

II. MODULAR PROPERTIES OF
THE 4-POINT FUNCTION

Consider a two-dimensional CFT with central charge,
c > 1, which has Virasoro symmetry as its chiral algebra.
The basic object that we want to look at is the 4-point
function of identical scalar primaries of dimension ΔO,

F ðz; z̄Þ ¼ hOð0ÞOðz; z̄ÞOð1ÞOð∞Þi: ð1Þ

Here, ðz; z̄Þ is the cross ratio. The crossing symmetry,
which is the statement about the associativity of operator
product expansions, implies

F ðz; z̄Þ ¼ F ð1 − z; 1 − z̄Þ: ð2Þ

Inserting a complete set of states, F ðz; z̄Þ can be decom-
posed in terms of Virasoro conformal blocks VhðzÞ,

F ðz; z̄Þ ¼
X
h;h̄

F h;h̄ðz; z̄Þ≡
X
h;h̄

f2OOOh;h̄
VhðzÞV h̄ðz̄Þ: ð3Þ

Each term,F h;h̄ðz; z̄Þ, in the above sumcalculates the “partial
wave amplitude” of the exchange channel labeled by the
primary of the corresponding Virasoro block. The structure
of the Virasoro conformal blocks, VhðzÞ, are however quite
intricate [19], and it turns out that an alternate representation
of F ðz; z̄Þ is more useful. The function F ðz; z̄Þ is defined
over a Riemann sphere which is marked at the operator
locations i.e., at 0, z, 1 and ∞. This presentation can be
equivalently depicted as a Z2-quotient of the torus,
P1 ≡ T2=Z2, commonly referred to as the “pillow”geometry
(Fig. 1) [18]. The transformation from the sphere to the
pillow yields the elliptic representation of the 4-point
function. The nome q which appears in this representation
is given byq ¼ eiπτ, where themodular parameter τ is related
to the cross ratio by the relation τ ¼ iKð1 − zÞ=KðzÞ and
KðzÞ is an elliptic integral of the first kind. Note that crucially
this implies that taking z → 1 − z is equivalent to the
S-modular transformation, τ → −1=τ or q → q̃. The pillow
geometry makes these modular features manifest.
In the pillow frame, P1, the operators are located at the

four fixed points as indicated in Fig. 1. Taking into account
local rescalings from these insertion points as well as the
Weyl anomaly associated with the change of conformal
frame, we can express the original 4-point function as

F ðz; z̄Þ ¼ ΛðzÞΛðz̄Þgðq; q̄Þ: ð4Þ

Here ΛðzÞ≡ ϑ3ðqÞc2−8ΔOðzð1 − zÞÞ c
24
−ΔO and gðq; q̄Þ is the

regularized correlator on the pillow defined as

gðq; q̄Þ≡ hOð0ÞOðπÞOðπðτ þ 1ÞÞOðπτÞiP1

¼ hψ jqL0−c=24q̄L̄0−c=24jψi; ð5Þ

with jψi ¼ jOðπÞOð0ÞiP1 . Equation (4) together with (2)
and the fact that ϑ3ðq̃Þ ¼

ffiffiffiffiffiffiffi
−iτ

p
ϑ3ðqÞ imply that crossing

symmetry is now a modular property for the pillow
correlator [18],

gðτ; τ̄Þ ¼ ðττ̄Þc4−4ΔOgð−1=τ;−1=τ̄Þ: ð6Þ
This is the characteristic of a nonholomorphic modular
form of weightw ¼ c=4 − 4ΔO. Additionally, it can also be
seen from (5) that gðq; q̄Þ decomposes into modified

Virasoro blocks, gðq; q̄Þ ¼ P
h;h̄f

2
OOOh;h̄

ṼhðqÞ ¯̃V h̄ðq̄Þ. The
modified blocks Ṽh admit a q-expansion,

ṼhðqÞ ¼ Λ−1ðzÞVhðzÞ ¼ ð16Þh− c
24qh−

c−1
24 ηðqÞ−1

2Hðh; qÞ:
The functions Hðh; qÞ are determined using the
Zamolodchikov recursion relations [19]. The appearance
of the Dedekind-eta [ηðqÞ] above suggests defining a nor-
malized pillow correlator, which has a simpler q-expansion:

pðq; q̄Þ ¼ gðq; q̄Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηðqÞηðq̄Þ

p
¼

X
h;h̄

ph;h̄ðq; q̄Þ

¼
X
h;h̄

f2OOOh;h̄
16Δ−

c
12qh−

c−1
24 q̄h̄−

c−1
24 Hðh; qÞH̄ðh̄; q̄Þ:

ð7Þ

FIG. 1. The pillow geometry P1 as a quotient of torus (T 2=Z2).
The CFT is quantized on the A cycle (length 2π) and propagation
is along the B cycle (which is halved compared to that of the
original torus). The four dots are the fixed points of the orbifold at
which the primaries are located. Crossing symmetry implies
exchanging the A and B cycles.
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Here,Δ ¼ hþ h̄ is the conformal dimension of the primary
Oh;h̄. Using the modular property of ηðqÞ and (6), we have
the following modular crossing rule for our normalized
pillow correlator:

pðq; q̄Þ ¼ ðττ̄Þc−14 −4ΔOpðq̃; ¯̃qÞ: ð8Þ
This nonholomorphic modular form relates the low-energy
CFT data to high-energy asymptotics. This shall be the
central object for modular bootstrap in what follows.

III. EXTRACTING ASYMPTOTICS
OF OPE COEFFICIENTS

We will now use the q-expansion (7) and the modular
crossing property (8) of pðq; q̄Þ to extract the OPE
coefficient in the asymptotic limit of a large intermediate
conformal dimension Δð¼hþ h̄Þ with the dimension of
external operators ΔO fixed. The bootstrap equation (8) is
true for all values of the modular parameter, τ, lying on
the upper-half plane. We shall now choose τ ¼ iβ=ð2πÞ,
with β ∈ Rþ, without any loss of generality. β therefore has
a notion of an effective temperature parametrizing the
pillow.
At low temperatures, i.e., q ¼ e−β=2 → 0, the expansion

(7) is dominated by the vacuum channel h ¼ h̄ ¼ 0.
Furthermore, we have Hðq→0;hÞ≃1þOðqÞ, which leads
to pðβ → ∞Þ ≃ 16−

c
12eβ

c−1
24 . The modular property (8) also

implies the following equality, pðβÞ ¼ fβ=ð2πÞgc−1
2
−8ΔO×

pð4π2=βÞ, relating the high- and low-temperature expan-
sions. Using the low-temperature expansion for pð4π2=βÞ,
we thus obtain pðβÞ at high temperatures:

pðβ → 0Þ ≃ 16−
c
12

�
β

2π

�c−1
2
−8ΔO

e
π2

β
c−1
6 : ð9Þ

We now define the weighted spectral density, KOðΔÞ ¼P
αf

2
OOOhα ;h̄α

δðΔ − ΔαÞ. Here the sum is only over the

primaries of the CFT. The sum in Eq. (7) can then be
rewritten as an integral:Z

∞

0

dΔKOðΔÞ16Δ− c
12e−

β
2
ðΔ−c−1

12
ÞHðh; qÞH̄ðh̄; q̄Þ: ð10Þ

Another drastic simplification arises from the heavy limit of
the functions Hðh; qÞ. In the heavy limit,1 we have
Hðh → ∞; qÞ ≃ 1þ Oðh−1Þ. The large Δ asymptotics of
KO can now be expressed as an inverse Laplace transform
of (9):

KOðΔ→∞Þ≃ 1

4πið16ÞΔ
Z

ϵþi∞

ϵ−i∞
dβ

�
β

2π

�c−1
2
−8ΔO

× exp

�
π2

β

c− 1

6
þ β

2

�
Δ−

c− 1

12

��
: ð11Þ

The above integral can be evaluated exactly by utilizing the
integral representation of the modified Bessel functions of
the first kind,

IνðzÞ ¼
1

2πi

�
z
2

�
ν
Z

ϵþi∞

ϵ−i∞
dt

1

tνþ1
exp

�
tþ z2

4t

�
;

wherewe identifyν¼4ΔO−c−1
4
−1

2
and z¼2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c−1
12
ðΔ−c−1

12
Þ

q
.

Thereby, we obtain

KOðΔ → ∞Þ ≃ π

16Δ

�
Δ
C
− 1

�
ν

I2νð2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðΔ − CÞ

p
Þ; ð12Þ

where C ¼ ðc − 1Þ=12 and ν ¼ 4ΔO − 3C − 1=2. One
could have also proceeded to evaluate the inverse
Laplace transform by finding the saddle of the integrand
which is given by

βs ¼
2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ=C − 1
p þ 2νþ 1

Δ − C
þ OðΔ−3=2Þ: ð13Þ

This is consistent with the high-temperature expansion (9);
i.e., the β saddle is peaked around zero forΔ=C ≫ 1. It can be
very easily checked that the asymptotic expansion of (12)
reproduces the result of the Laplace transform obtained via
this saddle. The overall factor ð16Þ−Δ in (12) is unimportant
as it gets eventually canceled when multiplied with the
Virasoro conformal blocks; see Eq. (7) or (10). The con-
formal block also contains a factor qΔ, whose suppression is
stronger than the growth ofweighted spectral density (12) for
heavy enough Δ. This implies that the OPE converges [24].
The next step in the analysis is to note that the definition

of KOðΔÞ can be used to naturally obtain an averaged
3-point coefficient squared,

KOðΔÞ ¼
X
α

f2OOOhα ;h̄α
δðΔ − ΔαÞ ¼ ρðΔÞf2OOΔ ð14Þ

where ρðΔÞ ¼ P
αδðΔ − ΔαÞ is the (unweighted) spectral

density. One can therefore estimate the average of the
OPE coefficient as the ratio between KOðΔÞ and ρðΔÞ. The
large Δ asymptotics of ρðΔÞ is given by the Cardy formula
[9,37]2

ρðΔ → ∞Þ ≃ 2πI0ð4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðΔ − CÞ

p
Þ: ð15Þ

As is well known, this expression is obtained by evaluating
an inverse Laplace transform. If the integral is done by the
saddle-point method and the leading fluctuations are
included, then one can once again check agreement with
the expansion of the Bessel function appearing in (15),

1The heavy limit can be derived from a monodromy analysis at
large c [34] such that hj log qj2 ≫ c. On the other hand, (13)
implies that hjβsj2 ∼ c; thus for our analysis to be valid, we need
an extended regime of validity of the heavy limit and this has
been shown to be true indeed in [35] or in cases when the
conformal blocks are known in closed form [36]. 2Note that this is the density of states of primaries alone.
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ρðΔ → ∞Þ ≃ 1ffiffiffiffiffiffi
2C

p
�
Δ
C
− 1

�
−1=4

e4π
ffiffiffiffiffiffiffiffiffiffiffi
CðΔ−CÞ

p
: ð16Þ

The statistical entropy, SðΔÞ, can be obtained as usual from
the logarithm of the density of states:

SðΔ→∞Þ≃Sð0ÞðΔÞþSð1ÞðΔÞþ �� �

¼ 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðΔ−CÞ

p
−
1

4
log ½CðΔ−CÞ�þ � � � : ð17Þ

Finally we arrive at the asymptotic expression for the
mean-squaredOPEcoefficient, from (14) using (12) and (15):

f2OOΔ ¼ KOðΔÞ
ρðΔÞ

≃
Δ→∞

16−Δ

2

�
Δ
C
− 1

�
ν I2νð2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðΔ − CÞp Þ

I0ð4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðΔ − CÞp Þ : ð18Þ

The leading dependence on Δ can be obtained from the
asymptotic form of the modified Bessel functions. This gives

f2OOΔ ≈
Δ→∞

16−Δffiffiffi
2

p ðΔ=C − 1Þν exp
�
−
Sð0ÞðΔÞ

2

�
; ð19Þ

where Sð0ÞðΔÞ ¼ 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðΔ − CÞp

is the leading term in the
entropy (17). The above result shows that the mean squared
coefficient has an entropic suppression.3 A potentially more
rigorous derivation of the above result can be performed by
using Tauberian theorems which would relate KOðΔÞ and
pðq; q̄Þ [38,39]. This behavior has been predicted earlier for
CFTs in arbitrary dimensions using phase space arguments
and holographic expectations in [23,24]. We shall explore
further consequences of this suppression in the next section.

IV. THE GRAVITATIONAL S-MATRIX
AND BLACK HOLES

We shall now specialize to holographic CFTs with large
central charge and having a sufficiently sparse spectrum of
light operators to allow a Hawking-Page transition between
thermal AdS3 and BTZ geometries [14,40–43]. We addi-
tionally require the light density of states to be sparse and
assume that the validity of the analysis of the previous
section can be extended to the regime where c → ∞ with
Δ=c ∼ Oð1Þ analogous to [14] for applicability to the black
hole regime. The average over heavy primaries leads to the
notion of a black hole in the holographic dual [10,44].
Holography, therefore, provides a natural framework for
applying the analysis of the previous section.
Let us return to the integral representation of the function

pðq; q̄Þ in (10). It is expected that the small β behavior (or
the high-temperature regime equivalent to q → 1 or z → 1)
will be governed by a saddle point of high conformal

dimension.4 Also due to the exponential growth in the
density of states with energy (16), in this regime the full
4-point correlator F ðz; z̄Þ is dominated by partial wave
amplitudes corresponding to heavy intermediary channels,
FΔðz; z̄Þ. Owing to the coarse-graining over heavy states,
this corresponds to a classical black hole in the intermediate
state of a 2 → 2 scattering process in the bulk. We shall use
our formula for the mean-squared OPE coefficient (18) to
arrive at a typical estimation of FΔðz → 1; z̄ → 1Þ, where
Δ represents the state averaged over all heavy primaries.
The averaged contribution from heavy pillow blocks, in

the decomposition (7), is [we can once again set the
recursion factors, Hðh; qÞ and H̄ðh̄; q̄Þ to 1]

pΔ→∞ðq; q̄ → 1Þ ≃ 16−C

25=6
ðΔ=C − 1Þνe−Sð0ÞðΔÞ

2 : ð20Þ
Finally the leading behaviors, in the limit z → 1 or q̃ → 0,
of ΛðzÞ and Dedekind-eta appearing in FΔðz; z̄Þ are
dictated by their S-modular transformation properties.
Combining these ingredients together gives the dominant
contribution (mediated by heavy exchanges) to the 4-point
function in the limit z → 1 [using the notation of (3)]:

FΔðz→1; z̄→ 1Þ

≃
����1π log 16

1−z

����6C−8ΔO j1−zjC−2ΔO

×
ðΔ=C−1Þ4ΔO−3C−1=2

24Cþ1
2

exp ½−2πC
ffiffiffiffiffiffiffiffiffiffiffi
Δ−C

p
�: ð21Þ

At large central charge, the suppression for high values ofΔ
in the above formula is precisely captured in terms of the
Bekenstein-Hawking (BH) entropy, SBH, of the BTZ black
hole (bh). Defining this suppression factor as YðΔÞ, using
C ≃ c=12 and ignoring logarithmic corrections inΔ, we have

YðΔÞ¼ exp

"
−2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
12

�
Δ−

c
12

�s #
¼ exp

�
−
SBH
2

�
: ð22Þ

This forms the key result of this paper. Quite remarkably, it
has been long expected that this heavy regime should be
dominated by black hole exchange in the gravity dual. In fact,
it has been shown that high-energy 2 → 2 scattering proc-
esses (with small impact parameter) containing black holes as
intermediate states have the following S-matrix [21,23]5:

S ∼ exp

�
−
SBH
2

�
: ð23Þ

The arguments for this behavior are on fairly general
grounds based on black hole thermodynamics. The size

3The factor of 16−Δ does not survive once the conformal block
is multiplied.

4Equivalently, if one considers the t-channel, the dominant
contribution is from the vacuum and light states. The two
descriptions are related by modular transformations of the pillow.

5Strictly speaking one would need to take the flat spacetime
limit to obtain a notion of in and out states leading to the
definition of an S-matrix. This affects the kinematic/cross-ratio
dependence but not the OPE coefficient.
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of the phase space of black hole microstates is given by
eSBH . Therefore, the cross section or the expected proba-
bility for production of a black hole microstate is e−SBH . The
probability of the inverse process, corresponding to
the black hole evaporating into two scalars, is given by
the same factor e−SBH, due to time reversal invariance.
Finally, in order to describe the black hole classically, we
multiply by all possible black hole states eSBH .6 This is

jSj2 ∼ e−SBH
bh forms

× e−SBH
bh decays

× eSBH
degeneracies

; ð24Þ

which leads to (23). As mentioned earlier, conformal field
theory furnishes a microscopic description of a black hole
by coarse-graining over a family of heavy primaries. Our
analysis therefore provides a microscopic derivation of this
feature (23) and, at the same time, goes beyond the
semiclassical approximation [Eq. (21) is nonperturbative
in the Newton’s constant GN ¼ 3

2c].
We should emphasize, however, that the exponentially

decaying feature of the averaged heavy channel is more
generally true for all CFTs having Virasoro symmetry with
c > 1, i.e., regardless of AdS/CFT or any specific restric-
tions on the spectrum. Moreover, this aspect implies
convergence of the conformal block expansion [23,24].

V. CONCLUSIONS

In this work we have derived a universal formula for the

mean-squared 3-point coefficient, f2OOΔ, wherein the aver-
aging for one of the operators is performed over heavy
primaries. This information was then used to determine the
contribution of heavy primaries to the 4-point function of
identical scalars. We found that these contributions are
entropically suppressed. Interpreted holographically, this

implies a behavior A ∼ e−π
ffiffiffi
Δc
3

p
∼ e−SBH=2 for the gravita-

tional 2 → 2 S-matrix which leads to black hole formation
and evaporation. Our analysis essentially utilized the
mapping of the sphere to the pillow geometry and modular
properties of the correlator therein [18].
In terms of the Mandelstam energy variable s, the

scattering amplitude behaves like A ∼ expð−s1=4Þ. In
the context of locality of quantum field theories our
result is well over the Cerulus-Martin lower bound A ≥
e−

ffiffi
s

p
log s [45], implying that the involved interactions

are local. It may also be interesting to think of this
amplitude arising from string scattering. It is known that
at the tree level the amplitudes behave extremely softly
∼e−s log s [46]7; however higher order corrections change this
behavior to e−

ffiffi
s

p
, restoring the Cerulus-Martin bound [48].

This result comes from a Borel resummation of string per-

turbation theory and is expected to be true in a high-energy
window, logð1=g2Þ<s< ðlogð1=g2ÞÞ3, where g is the string
coupling. It will therefore be interesting to obtain the
increased amplitude, A, from the regime s > ðlogð1=g2ÞÞ3.
Since no systematic classification exists for the space of

CFTs with c > 1, it is worthwhile to extract the similarities
and differences between these theories. The works [9] and
[10] along with the present one uncover the features of the
spectra and OPE coefficients which these theories have in
common. We hope that this work advances the program of
the conformal bootstrap for these theories by opening up
the avenue of bootstrapping via mapping to the pillow geo-
metry. It would be interesting to realize the potential of this
mapping further, with a view towards extracting statistics of
OPE coefficients in the light and intermediate regimes (in
the spirit of [14,49]). The results can be straightforwardly
generalized for off-diagonal mean-squared OPE coeffi-

cients of the kind f2O1O2Δ. Additional simplifications
may also arise in the semiclassical (large c) regime in
which the conformal block exponentiates [50–53].
Finally, it is intriguing to note that mean-squared statistics

of all three operators being heavy in f2abc has been derived
using the genus-2 modular bootstrap [54]. In a sense, this is
consistent with our result as each heavy index, a, contributes
via a factor of e−SðΔaÞ=2. It would be worthwhile to formulate
a more direct approach to get finer statistics of the OPE
coefficients from higher genus [54–56].
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APPENDIX: ELLIPTIC REPRESENTATION

The pillow frame P1 ≡ T 2=Z2 is constructed by
orbifolding a torus. Using the knowledge of the marked
points of the sphere in x, we can define a coordinate u on the
torus:

6We are very grateful to Per Kraus for explaining this to us.
7The violation of the Cerulus-Martin bound exhibits the

nonlocal nature of the string [47].
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du ¼ 1

ϑ3ðqÞ2
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xðz − xÞð1 − xÞp : ðA1Þ

The integralsalong thebranchcutsgive thecycle lengthsandare
the origin of the KðzÞ; Kð1 − zÞ functions in the definition of
the modular parameter. In the pillow frame, the CFT has a
natural interpretation of being quantized along one cycle, while
evolving along the other (see Fig. 1). The factor ϑ3ðqÞ−2
normalizes our quantization cycle (the A cycle) to 2π. The Z2

symmetry acts as u → −u, so the propagation on theB-cycle is

halved. This is reflected in the nome q ¼ eiπτ, as opposed to
q ¼ e2πiτ for the unorbifolded torus. The fourmarkedpoints on
the sphere get mapped to the four fixed points of the orbifold.
In Sec. IV we are interested in the z → 1 limit of the

s-channel. The modular parameter of the pillow in this
regime is

τðz → 1Þ ≃ iπ

�
log

16

1 − z

�
−1
: ðA2Þ

This implies that q̃ ¼ e−
πi
τ → 0.
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