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We use the frequency comparisons of two kinds of clocks to reanalyze the test of special relativity in the
Robertson-Mansouri-Sexl kinematical framework, which involves the Michelson-Morley experiment and
the optical atomic clock-comparison experiment. The light clock involved in the Michelson-Morley
experiment is composed of two mirrors and a photon propagating back and forth between them, which can
be regarded as a kind of structure different from the point-particle clock. Similarly, the inner structure of the
atom in optical atomic clock-frequency comparisons should also be considered, which has not been
mentioned before. Because of the structure effect, our result shows that the measurable parameter in the
optical atomic clock-comparison experiment should be α − ðβ þ 2δÞ=3 instead of the widely recognized α,
where β and δ are defined in the text.
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I. INTRODUCTION

Special relativity (SR) was proposed more than a
hundred years ago and has been one of the cornerstones
of modern physics. It is derived from two fundamental
postulates: the principle of relativity and the constancy of
the speed of light [1]. As the principle of relativity means
the laws of physics are invariant under the Lorentz trans-
formation, it is usually termed as Lorentz invariance (LI).
Since gravity still has not been merged with quantum
mechanics, a more fundamental theory is needed to provide
a unified description of all interactions, and most of the
unified theories [2–5] imply tiny violations of SR.
Searching for the LI violation is motivated by uncovering
a possible violation of SR and exploring the unification
theories, which can help us to understand the Universe
surrounding us and find new physics.
There are various theoretical frameworks to study the

possibility of LI violation [2,6–12]; herewe only discuss two
of them: the kinematical framework developed by
Robertson, Mansouri, and Sexl (RMS framework), and
the Lorentz violating extension of the standard model
developed by Kostelecky and coworkers over the last two
decades (SME framework). In the former frameworks, three
parameters are related to describe the deviation from SR, and
the corresponding experimental tests of LI are mainly
Michelson-Morley (MM) [13–15], Kennedy-Thorndike
(KT) [14,16,17], Ives-Stilwell (IS) [18–20] experiments
and the comparisons of two same optical clocks in
different locations [21]. These experiments restrict the three

parameters by probing the experimental dependence on
orientation of the speed of light, or getting the time dilation
via the precise measurement of the Doppler effect. In the
SME framework, the parameter space describingLI violation
is vast, and the associated experimental tests arevarious, such
as the gravitational experiments in a short range [22–24], the
clock-comparison experiments [25–33], and so on. All of
them probe the dependence of the observable on the
orientation and boost of the laboratory reference frame,
and finally limit the combinations of SME violating
parameters.
In this paper, we reanalyze the light-clock comparison

(MM experiment) and the optical atomic clock-comparison
experiments in the RMS framework. The light clock
consists of two mirrors at a distance L0 and a photon
propagating back and forth between the two mirrors
[34,35], and the flight time of the photon from one mirror
to the other reflects the clock’s frequency. While the optical
atomic clock is based on trapped single ion or many neutral
atoms, the frequency is presented by the ions or atoms
jumping between two energy levels. For the light clock, the
distance between two mirrors and the propagating direction
of the light in the laboratory reference frame can be
regarded as the structure of the light clock, which
influences the clocks’ frequency due to the anisotropy of
the speed of light implied by the LI violation. Similarly, the
inner structure of optical atomic clocks (that is, the inner
structure of the atoms) should also be taken into account.
Here, we review the test of SR by the light-clock com-
parison (MM experiment), and develop a method to
calculate the influence of the structure of the light clock.
With a similar method, the change of the atomic clock’s*cgshao@mail.hust.edu.cn
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frequency depending on the atomic structure has been first
analyzed in the RMS framework. For the experiment of
frequency comparison between two optical atomic clocks
linked by a fiber network [21], our result shows that the
measurable parameter should be α − 2ðβ þ 2δÞ=3 instead
of α, where β and δ are defined in Eq. (2) below.
The paper is organized as follows. In Sec. II, we review

the RMS kinematical framework, in which the LI violation
is embodied by three parameters, and also introduce the
current stringent limits on these parameters. In Sec. III, we
develop a method to reanalyze the influence of structure
effect on light-clock comparison (MM experiment) and the
optical atomic clock comparison. Finally, the paper is
concluded in Sec. IV.

II. ROBERTSON-MANSOURI-SEXL FRAMEWORK

The RMS framework, embodying the LI violation with a
simpler form, has been pioneered by Robertson [6] and
further refined by Mansouri and Sexl [7] and others. In this
framework, it is postulated that there are two reference
frames: a preferred frame ΣðT; X; Y; ZÞ and a moving frame
Sðt; x; y; zÞ. The X and x axes for the two frames are
parallel. The Σ frame is usually considered as the cosmic
microwave background (CMB) frame [16,36], in which
there is no distinguished direction and the speed of light is
constant. The S frame, usually considered as the laboratory
reference frame, has a relative constant speed to the Σ frame
along the x-axis direction.
In SR, the speed of light is assumed to be isotropic, and

two inertial coordinate frames are linked by Lorentz
transformation. Robertson assumed that the two-way speed
of light is anisotropic, and found a transformation
(Robertson transformation) deviating from the Lorentz
transformation, which describes the LI violation with three
parameters. Then, Mansouri and Sexl further postulated
that the one-way speeds of light are unequal, which is
dependent on the synchronization transport, and finally
gave a more general form of the transformation between the
S and Σ frame (MS transformation). This transformation is
in fact equal to the Robertson transformation, since the one-
way speed of light is physically unobservable. Similarly,
Edwards transformation can return to Lorentz transforma-
tion, if one changes the arbitrary synchronization conven-
tion to the Einstein synchronization convention. The
relations of the four transformations mentioned above
are shown in Fig. 1 [37].
In RMS framework, assuming the S frame has a relative

velocity v to the Σ frame along the positive direction of the
x axis, the MS transformation between the two frames can
be expressed as [7]

t ¼ aT þ ε⃗ · x⃗; x ¼ bðX − vTÞ;
y ¼ dY; z ¼ dZ: ð1Þ

Here, ε⃗ reflects the transport synchronization of clocks. As
the one-way speed of light is unobservable, all of the
synchronization conventions are physically equivalent. For
simplification, the Einstein synchronization convention of
ε ¼ −vaðvÞ=½ð1 − v2ÞbðvÞ� [7] can be adopted, resulting in
the Robertson transformation. The parameters a, b, d in
Eq. (1), respectively describing the LI violation along the
time and space axes of the laboratory reference frame, can
be expanded with v2=c2 to the first order as [38,39]

aðvÞ ¼ 1þ
�
α −

1

2

�
v2

c2
;

bðvÞ ¼ 1þ
�
β þ 1

2

�
v2

c2
;

dðvÞ ¼ 1þ δ
v2

c2
; ð2Þ

where c is the velocity of light in vacuum of the CMB
reference frame. If α ¼ β ¼ δ ¼ 0, Eq. (1) reduces to the
Lorentz transformation. According to Eqs. (1) and (2), the
light cone X⃗2 − c2T2 ¼ 0 in Σ frame can be rewritten in S
frame as x⃗2 − c2ðθÞt2 ¼ 0 with the velocity of light in
laboratory reference frame [7]

cðθÞ ¼ c ·
�
1þ ðδ − βÞ v

2

c2
sin2θ þ ðβ − αÞ v

2

c2

�
; ð3Þ

where θ is the angle between the directions of the light ray
propagation and the velocity v.
Currently, the tests of SR in RMS framework can be

classified as the MM, KT, IS experiments and the recent
comparison of two same optical clocks in different loca-
tions linked by a fiber network. With the orthogonal
standing-wave optical cavities interrogated by a laser,
MM experiment can be used to probe the LI violation
due to anisotropy of the resonance frequencies of electro-
magnetic cavities, and gives the best constrain on
δ − β ¼ ð−1.6� 6.0� 1.2Þ × 10−12 [15]. By comparing

FIG. 1. Schematic diagram of the relations among the four
transformations [37]: Lorentz, Edwards, Robertson and Man-
souri-Sexl transformations.
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a cryogenic sapphire oscillator and a hydrogen maser, the
KT experiment showed no violating signal and limited β −
α ¼ ð−1.7� 4.0Þ × 10−8 [16]. For the violating parameter
α, the best results for IS experiment and the frequency
comparison between two optical atomic clocks are jαj ≤
2.0 × 10−8 [20] and jαj ≤ 1.1 × 10−8 [21], respectively.
Table I gives the present limits on the three violating
parameters for the above four experiments.

III. INFLUENCE OF THE CLOCKS’ STRUCTURES
ON THE CLOCK COMPARISONS

The basic idea of testing the LI violation with the clock
comparison is exploring the dependence of a clock’s
frequency on its orientation, since the LI violation implies
the anisotropy of the spacetime. For the clock-comparison
experiment, it can be described as a two-way frequency
transfer between two observers I and II [21,40–43]. the
observer I emits an electromagnetic signal with the proper
frequency ν1, and this signal is received by the observer II
with the frequency ν2. As the first order of the Doppler
effect is rather large in the direct comparison ðν2 − ν1Þ=ν1,
the two-way frequency transfer is usually adopted to
eliminate it, in which the signal is again back to I, and
observed with the frequency ν3. Finally, the relative differ-
ential signal of the clock comparison can be written as

Δ≡ ν2 − ν1
ν1

−
ν3 − ν1
2ν1

; ð4Þ

where the orientation-dependence LI violation is included
in ðν2 − ν1Þ=ν1. The second term in Eq. (4) is unnecessary
when the two clocks approximately locate on the same
places.
This signal includes the general relativistic effect, the

special relativistic effect, and also the deviations from them.
Since we only focus on the violation of the SR here, Eq. (4)
can be further split into four parts,

Δ ¼ Δgr þ ΔSR þ Δα þ Δξ: ð5Þ

Here, Δgr stands for the gravitational redshift effect, ΔSR
represents the SR effect (the second order of the Doppler
effect), and the other two terms are contributed by the
deviations of SR, in which Δα and Δξ are respectively the

deviations from the Lorentz transformation in the time and
space axes. For Δα, it has been studied extensively, and
obtained as [21]

Δα ¼ αc−2½2w⃗ · ðv⃗I − v⃗IIÞ þ ðv⃗2I − v⃗2IIÞ� þ oðc−3Þ; ð6Þ

where w⃗ is the velocity of the Earth with respect to the
CMB frame; v⃗I and v⃗II are the velocities of clocks I and II
in the nonrotating geocentric celestial reference system,
respectively. For Δξ, it can be regarded as a kind of
structure effect, since it depends on the clock’s orientation.
This effect has not been analyzed before, which is focused
on by this paper. As the structure effects in the light-clock
comparison and the optical atomic clock comparison are
different, we calculate both of them below.

A. Structure effect in the light-clock
comparison (MM experiment)

The apparatus of the MM experiment is similar to a
Michelson interferometer, which contains two interferom-
eter arms [see Fig. 2(a)]. Through the half-silvered mirror
A, the transmitted ray is reflected by the mirror B and then
A, and finally reaches the detector D, forming the inter-
ference arm I. Similarly, the reflected ray propagates to D
and forms the interference arm II. In the MM experiment,
the difference between the flight time of photons propa-
gating along the two interference arms is measured by
interferometry. Then, the apparatus is rotated to produce the
modulated signal. As the period reflects the frequency, each
interference arm in the MM experiment can be considered
as a light clock [see Fig. 2(b)] [34,35]. Therefore, the MM
experiment equivalently makes a frequency comparison
between two light clocks to test SR (testing the dependence
of the speed of light on the interference-arm orientation). In
the following, we analyze the influence of the clocks’
structure on this comparison.
Let us consider the light clock I at rest in the S frame,

shown in Fig. 3(a). It consists of two mirrors with a distance
L0 and a photon propagating back and forth between them.
Any observer at rest in the S frame can measure the proper
length L0 between the two mirrors A and B. Since the S
frame moves with a constant velocity relative to the Σ
frame, the length measured by an observer at rest in Σ frame
is not L0, and should introduce the additional contraction,

TABLE I. Present limits for the violating parameters in the RMS framework.

Reference δ − β β − α α

P. Wolf et al. (2003) [14] ð1.2� 2.2Þ × 10−9 ð1.6� 3.0Þ × 10−7 � � �
S. Reinhardt et al. (2007) [19] � � � � � � ≤8.4 × 10−8

C. Eisele et al. (2009) [15] ð−1.6� 6.0� 1.2Þ × 10−12 � � � � � �
M. E. Tobar et al. (2010) [16] � � � ð−1.7� 4.0Þ × 10−8 � � �
B. Botermann et al. (2014) [20] � � � � � � ≤2.0 × 10−8

P. Delva et al. (2017) [21] � � � � � � ≤1.1 × 10−8
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which can be calculated based on the MS transformation.
To make the analysis simpler, an imaginary inertial frame
Σ̃ðT̃; X̃; Ỹ; Z̃Þ can be introduced to link the reference frame
Σ and the laboratory reference frame S, which is equivalent
to decomposing MS transformation to a Lorentz trans-
formation and a scalar modification [see Fig. 3(b)]. The
laws of physics are invariant for the Σ and Σ̃ frames with
respect to Lorentz transformation,

T̃ ¼ T − vX=c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p ; X̃ ¼ X − vTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p ;

Ỹ ¼ Y; Z̃ ¼ Z: ð7Þ

The four coordinates of Σ̃ðT̃; X̃; Ỹ; Z̃Þ are physically
insignificant and cannot be measured directly. The scalar
modification between the Σ̃ and S frames represents the
deviation from SR. Combining Eqs. (1) and (7), we can
obtain the scalar modification as

T̃ ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p
a

; X̃ ¼ x

ðb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p
Þ
;

Ỹ ¼ y
d
; Z̃ ¼ z

d
: ð8Þ

From Eqs. (4) and (5), the Σ̃ frame is the bridge to connect
the Σ and S frames.
According to Eq. (8), the X̃ and Ỹ components of the

contracted length for the separation between mirrors A and
B can be obtained as L̃X̃ ¼ L0 cos θ=ðb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p
Þ and

L̃Ỹ ¼ L0 sin θ=d. Therefore, the contracted length in the Σ̃
frame can be derived as

L̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L̃2
X̃
þ L̃2

Ỹ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� L0 cos θ

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p �
2 þ

�L0 sin θ
d

�
2

s
: ð9Þ

As the speed of light in Σ̃ frame, associated with the Σ
frame by the Lorentz transformation, is the constant c, the
travel time for the photon propagating from A to B, and
then back to A, can be denoted by

ΔT̃AB ¼ 2L̃
c
: ð10Þ

If the flight time is ΔTAB for an observer at rest in Σ frame,
we can get

(a)

(b)

A

FIG. 2. (a) Schematic diagram of the MM experiment.
(b) Equivalent counterpart of the MM experiment—frequency
comparison between the two light clocks.

(a)

(b)

FIG. 3. (a) Schematic diagram of the Σ and S frame. The S
frame has the velocity v in the positive direction of X axis of the
frame Σ. (b) Relations among the three frames: Σ, Σ̃, and S
frames.
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ΔTAB ≡ 2L
c

¼ ΔT̃ABffiffiffiffiffiffiffiffiffiffiffi
1 − v2

c2

q
¼ 2L0

c
·

�
1 −

�
β −

1

2

�
v2

c2
− ðδ − βÞsin2θ v

2

c2

�
ð11Þ

based on the time dilation in SR, which has been kept to the
first order of ðv=cÞ2. Here, L is the measured result of the
distance between mirrors A and B for an observer at rest in
Σ frame. In the S frame, the travel time can be expressed as

ΔtAB ¼ aΔTAB ≃
2L0

cðθÞ ; ð12Þ

where the first equality arises from the MS transformation
and the second one is the most general definition of time
with cðθÞ embodying the anisotropy of the speed of light.
Combining Eqs. (11) and (12), one can derive the same
result for cðθÞ with Eq. (3).
Now we analyze the MM experiment, which can be

equivalently regarded as the frequency comparison of two
light clocks (clocks I and II). We determine the clock I
frequency ν1,

ν1
ν0

¼ 2L0=c
ΔTAB

¼ aþ ξðθÞ: ð13Þ

Here, ν0 ≡ c=2L0, and the parameter a stands for the time
dilation for a moving clock. ξðθÞ reflects the correction
related to the structure of the light clock, which can be
written as

ξðθÞ ¼ cðθÞ
c

− 1 ¼ ðβ − αÞ v
2

c2
þ ðδ − βÞsin2θ v

2

c2
: ð14Þ

Finally, the relative frequency difference of clocks II and I
in MM experiment can be derived as

Δ≡ ν2 − ν1
ν0

¼ ξ

�
θ þ π

2

�
− ξðθÞ≡ Δξ: ð15Þ

As the locations and velocities of the two light clocks I and
II are approximately the same, the gravitational redshift
effect, SR effect, and Δα can be neglected, and only Δξ

remains. Based on Eq. (15), the influence of the structure
effect on testing SR with the light-clock comparison can be
calculated. However, the tests involving the optical atomic
clocks (such as KT, IS, and the optical atomic clock-
comparison experiments) have not considered the influence
of the atomic inner structure on the experimental results.
We take the optical atomic clock-comparison experiment as
an example to calculate this effect in the next section.

B. Structure effect in the optical
atomic clock comparison

The atomic clocks, based on the atoms emitting or
absorbing the photons, have very high stability and
accuracy, which can offer some of the most powerful tests
of Lorentz violations. Analogous to the calculation of the
structure effect in the light clock-comparison experiment,
this similar effect in the optical atomic clock comparison is
analyzed with an imaginary frame Σ̃ in the following.
In discussing the light clock-comparison experiment,

there involves three coordinate frames: the preferred frame
Σ, the imaginary inertial frame Σ̃, and the laboratory frame
S. The speed of light in them is respectively c, c, and
cðθÞ. The observed lengths of a light clock at rest in the S
frame are respectively L, L̃, and L0 from the view of
three observers staying statically in these three frames.
According to Eqs. (1), (7), and (8), L and L̃ are linked by
the Lorentz contracted factor, L̃ and L0 are connected by a
scalar modification, and the relationship between L and L0

is related by the MS transformation. In the atomic clock-
comparison experiment, here we take a hydrogenlike atom
for an example to analyze, in which the electrons form a
closed shell. From the perspective of three observers at rest
in three frames, the measured frequencies of an atomic
clock at rest in the S frame are different, which can be
regarded as the difference of the observed radial distances
between nucleus and electron. Similar to the lengths of
the light clock, the three distances respectively denoted
with R, R̃, and r satisfy the same contracted relation. The
above description has been simply shown in Fig. 4. We
focus on calculating the change of the atomic energy level
due to the LI violation in this paper, in which the imaginary
frame Σ̃ is adopted to make solving of the Dirac equation
simpler.
Make the convention: the wave functions, momenta,

electromagnetic four-dimension potential, and radial distan-
ces of the atoms in the three frames Σ, Σ̃, and S are respec-
tively ðψ ; ψ̃ ;ϕÞ, ðPi¼−iℏ∇Xi ;P̃i¼−iℏ∇X̃i ;pi¼−iℏ∇xiÞ,
ðAμ ¼ fA0;Aig; Ãμ ¼ fÃ0; Ãig; Aμ ¼ fA0; AigÞ, and

ðR¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2þY2þZ2

p
;R̃¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X̃2þỸ2þZ̃2

p
;r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p
Þ,

where the spacetime coordinates 0, 1, 2, 3 are denoted by
greek indices μ and the space coordinates 1, 2, 3 are denoted
by latin indices i. The free Dirac equation (without potentials)
in the Σ frame [44] is

iℏ
∂ψ
∂T ¼ ðcγ0γiPi þ γ0mec2Þψ ; ð16Þ

with Hf ¼ cγ0γiPi þ γ0mec2 being the relativistic
Hamiltonian of the Dirac particle,

γ0 ¼
�
1 0

0 −1

�
and γi ¼

�
0 σi

−σi 0

�
;
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the 4 × 4 gamma matrices in the Dirac representation. When
the Dirac particle moves in an electromagnetic field, the
relativistic Hamiltonian can be further expressed as

H ¼ cγ0γi
�
Pi −

e
c
Ai

�
þ γ0mec2 þ eVΣ; ð17Þ

with VΣ being the value of A0 in the Σ frame. As the Σ and Σ̃
frames are linked by Lorentz transformation, one can obtain
the relativistic Hamiltonian in the Σ̃ frame as

H̃ ¼ cγ0γi
�
P̃i −

e
c
Ãi

�
þ γ0mec2 þ eVΣ̃: ð18Þ

Because H̃ always contains parts coupling together the free
positive and negative energy solutions, the Foldy-
Wouthuysen (FW) transformation [45–47] provides the best
possibility of obtaining a meaningful classical limit of the
relativistic quantum mechanics. The relativistic Hamiltonian
in Eq. (18) can be simply written as H̃ ≡ γ0mec2 þ εþO
[46], where the odd operator O≡ cγ0γiðP̃i − e

c ÃiÞ and the
even operator ε≡ eVΣ̃ are off diagonal and diagonal,
respectively. Then, based on the FW transformation,
Eq. (18) can be further written as [47]

H̃FW ¼ γ0
�
mec2 þ

1

2me
ðP̃i −

e
c
ÃiÞ2 −

1

8m3
ec6

P̃i
4

�
þ eVΣ̃

−
1

2mec
γ0eℏðΞ · B̃Þ − ieℏ2c2

8m2
ec4

Ξ · ð∇̃ × ẼÞ

−
eℏ

4m2
ec4

Ξ · ðẼ × P̃iÞ −
eℏ2c2

8m2
ec4

∇̃ · Ẽ; ð19Þ

with the spin related matrix

Ξ ¼
�
σi 0

0 σi

�
:

Here, Eq. (19) has been kept up to the order of 1=m3
ec6. In the

nonrelativistic limit, the Dirac equation can be transformed
into the Schrodinger equation.
Based on Eq. (8), since the difference of the coordinates

between the Σ̃ and S frames is just the respective coordinate
scaling, the quantities VΣ̃, Ãi, B̃, Ẽ in the Σ̃ frame can be
contracted to VS, Ai, B, E in the S frame. Thus, the
evolution equation of the Dirac particle in the S frame can
be expressed as

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p iℏ
∂ϕ
∂t ¼

	
γ0mec2 þ

γ0

2me

�
−iℏðb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

q
∇x þ d∇y þ d∇zÞ −

e
c
Ai

�
2

−
γ0

8m3
ec6

P̃i
4 þ eVS

−
1

2mec
γ0eℏðΞ · BÞ − ieℏ2c2

8m2
ec4

Ξ · ð∇ × EÞ − eℏ
4m2

ec4
Ξ · ðE × P̃iÞ −

eℏ2c2

8m2
ec4

∇ · E



ϕ: ð20Þ

FIG. 4. The lengths of the light clock and the optical atomic clock in the Σ, Σ̃, and S frames.
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In Eq. (20), the left-hand side represents the time part of
Lorentz violation; for the right-hand side, the first three
terms in the brace describe the relativistic mass increase.
Especially, the second term describes the space part of
Lorentz violation, which is the atomic structure effect we
focus on. The following two terms describe the electrostatic
energy and magnetic dipole energy. The next two terms
stand for the spin-orbit interaction, and the last one is the
Darwin term. Here, the influence of the Lorentz-violation
perturbations on the relativistic terms is negligible.
It is worth noting that the Coulomb potential VS in

laboratory reference (S frame) should be given by the form
of −Ze2=r. To demonstrate it, we consider an analogy
between the MM experiment and optical atomic clock-
comparison experiment. For the MM experiment, the arm
between mirrors may be replaced by an infinite potential
well

VMMðxÞ ¼
	
0; 0 ≤ x ≤ L0

∞; x < 0; x > L0

: ð21Þ

The photon’s motion in the infinite potential well character-
izes time, which corresponds to the clock conception in the
RMS framework [Fig. 5(a)]. The infinite potential well has
a proper length L0 in space, which corresponds to “rod”
conception in the RMS framework. A similar analysis may
be implemented for the structure of the atom, which implies
that the electron-state transition and Coulomb potential also
correspond to clock and rod conceptions in the RMS
framework, respectively. Therefore, the Coulomb potential
VS should be −Ze2=r [Fig. 5(b)].
For the application in the atomic clock-comparison

experiment, only nonrelativistic terms are needed. The last
four terms of Eq. (20) can be neglected, since we do not

focus on the spin contributions and Darwin term.
Considering the atom is stationary relative to the S frame,
the magnetic field vanishes. Furthermore, as the antiparticle
part in the wave function is not needed, we just need to
calculate the particle-part contribution. Thus, Eq. (20) can
be rewritten as

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2=c2

p iℏ
∂ϕ
∂t

¼
	
mec2 þ

1

2me

h
−iℏðb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2=c2

q
∇x þ d∇y þ d∇zÞ

i
2

−
Ze2

r



ϕ; ð22Þ

where ϕ represents the particle’s wave function, and the
constant term mec2 can be neglected in the following.
For the Coulomb potential, it can be expanded as

−
Ze2

r
¼ −

Ze2

R̃
þ V̄; ð23Þ

with

V̄¼Ze2

R̃
·
βþ2δ

3
·
v2

c2
þZe2

R̃
·
β−δ

3
·
2x̃2− ỹ2− z̃2

R̃2
·
v2

c2
; ð24Þ

which can be regarded as a perturbation, and vanishes when
SR is not violated. Therefore, Eq. (22) can be further
expressed as

iℏ∂ T̃ϕ ¼
�

P̃2

2me
−
Ze2

R̃
þ V̄

�
ϕ: ð25Þ

In the following, we calculate the influence of LI violation
on the atomic energy level with the perturbation method.
In the laboratory reference frame S, the exact energy

eigenfunctions for the exact energy eigenvalues Eð0Þ
n can be

written as

ϕð ⃗R̃; T̃Þ ¼ h ⃗R̃jn; l; mi ¼ exp

�
−
i
ℏ
Ẽð0Þ
n T̃

�
ϕð ⃗R̃Þ; ð26Þ

with jn; l; mi being the exact energy eigenkets in frame S
and

Ẽð0Þ
n ¼

�
−
Ze2

R̃

�
nl
¼ −

meZ2e4

2n2ℏ2
ð27Þ

being the exact energy eigenvalue in the imaginary frame Σ̃.
According to Eq. (8), the eigenfunctions can be expressed
by the laboratory coordinates ðt; x; y; zÞ as

(a) (b)

(c)

FIG. 5. (a) The infinite potential well for the light clock with the
length L0. (b) The Coulomb potential −Ze2=r for the electron in
S frame. (c) The analogy between the light clock and optical
atomic clock.
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ϕðr⃗; tÞ ¼ hr⃗jn; l; mi

¼ exp

�
−
i
ℏ

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p Ẽð0Þ
n t

�
ϕðr⃗Þ: ð28Þ

Combining Eqs. (2) and (28), we can obtain the energy
eigenvalues in the S frame

Eð0Þ
n ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2=c2
p Ẽð0Þ

n ≃ ð1þ αv2=c2Þ · Ẽð0Þ
n : ð29Þ

When the Lorentz transformation violates as indicated by
Eq. (8), the energy level En of an atom in the frame S not

only has a contraction compared with its proper values Ẽð0Þ
n

in Σ̃ frame [show in Eq. (29), but also an increment ξn
arising from the structure effect, namely the perturbation
potential V̄. Simplified by the spherical harmonic
Y0
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
5=16π

p
· ð3z̃2 − R̃2Þ=R̃2, Eq. (24) can be written as

V̄ ¼ Ze2

R̃
·
v2

c2

�
β þ 2δ

3
þ

ffiffiffiffiffiffiffiffi
16π

5

r
·
β − δ

3
· Y0

2

�
: ð30Þ

Then, the shift of energy level can be obtained as

ξn¼hn;l;mjV̄jn;l;mi

¼−Ẽð0Þ
n

v2

c2

�
βþ2δ

3
þ

ffiffiffiffiffiffiffiffi
16π

5

r
β−δ

3
hl;mjY0

2jl;mi
�

ð31Þ

with the matrix element of operator Y0
2 between states hl; mj

and jl; mi given by [48]

hl; mjTð2Þ
0 jl; mi ¼

�
Clm
20lm

Cll
20ll

�
hl; ljTð0Þ

0 jl; li; ð32Þ

whereClm
20lm is the usual Clebsch-Gordan coefficient and the

ratio of the Clebsch-Gordan coefficients ðClm
20lmÞ=ðCll

20llÞ is
½3m2 − lðlþ 1Þ�=½3l2 − lðlþ 1Þ�. Since δ − β has been lim-
ited by the MM experiment with a high precision
ð−1.6� 6� 1.2Þ × 10−12 [15], here we only consider the
constraints of the atomic clock comparison on β þ 2δ. Thus,
the structure effect approximately shifts the energy level of
the atoms by

ξn ≃ −
β þ 2δ

3
·
v2

c2
· Ẽð0Þ

n : ð33Þ

Finally, based on Eqs. (29) and (33), the energy level of an
atom in the frame S is

En ≡ Eð0Þ
n þ ξn ¼

�
1þ

�
α −

β þ 2δ

3

�
v2

c2

�
· Ẽð0Þ

n : ð34Þ

For the atomic clock comparison [34], as the velocities of
clocks I and II are different due to the different locations,
both of the LI violations in the time and space axes exist.

Based on Eqs. (29) and (33), we can derive

Δα ≡
Eð0Þ
nðIÞ − Eð0Þ

nðIIÞ
Ẽð0Þ
n

¼ αc−2½2w⃗ðv⃗I − v⃗IIÞ þ ðv⃗2I − v⃗2IIÞ� þ oðc−3Þ ð35Þ

with Eð0Þ
nðIÞ and Eð0Þ

nðIIÞ, respectively, the energy eigenvalues

of clocks I and II, and

Δξ ≡ ξnðIÞ − ξnðIIÞ
Ẽð0Þ
n

¼ −
ðβþ 2δÞ

3
c−2½2w⃗ðv⃗I − v⃗IIÞ þ ðv⃗2I − v⃗2IIÞ� þ oðc−3Þ;

ð36Þ

which oscillates with a sidereal period. Therefore, the
deviating effect of SR in the atomic clock comparison
can be written as

Δ≡ Δα þ Δξ

¼
�
α −

β þ 2δ

3

�
c−2½2w⃗ðv⃗I − v⃗IIÞ þ ðv⃗2I − v⃗2IIÞ�

þ oðc−3Þ: ð37Þ

That is, for the test of SR with the frequency comparison
between two atomic clocks linked by a fiber network, the
modifying factor, introduced by the SR violation, of the
measurable parameter should be α − ðβ þ 2δÞ=3 instead of
the widely recognized α.

IV. SUMMARY

In this paper, we reviewed the Robertson-Mansouri-Sexl
framework, based on which the deviating effects of SR in
the light-clock comparison and the atomic clock compari-
son have been calculated. For simplification, an imaginary
inertial frame is introduced, which is connected with the
laboratory frame by a scalar modification, representing the
deviation from the LI.
The LI violation can be divided into the violations along

the time axis and space axis (structure effect). Adopting the
imaginary frame to analyze these violating effects, we find
the following: for the light-clock comparison (MM experi-
ment), as the locations of the two clocks are approximately
same, only the structure effect remains, and our calculated
result is the same as the previous work; for the atomic clock
comparison, we give a more complete expression for the
violating effect, which shows that the modifying factor of
the measurable parameter should be α − ðβ þ 2δÞ=3 instead
of the widely recognized α.
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