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We consider the light cone sum-rule description of the pion-photon transition form factor, based
on dispersion relations, in combination with the renormalization group of QCD, in terms of the formal
solution of the Efremov-Radyushkin-Brodsky-Lepage evolution equation, and show that the emerging
scheme amounts to a certain version of fractional analytic perturbation theory (FAPT). In order to
ensure the correct asymptotic behavior of the considered physical quantity, this modified FAPT version
has to be supplemented by process-specific boundary conditions—in contrast to the standard one.
However, it provides the advantage of significantly improving the inclusion of radiative corrections in the
low-momentum regime of QCD perturbation theory using renormalization-group summation.
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I. INTRODUCTION

The description of hard exclusive hadronic processes
in QCD is difficult because it must account for typical
nonperturbative phenomena like the hadron binding
dynamics and/or long-distance effects pertaining to soft
contributions that cannot be assessed by means of pertur-
bative quantum chromodynamics (pQCD).
Consider for example the pion-photon transition form

factor for two highly virtual photons describing the reaction
γ�ð−Q2Þγ�ð−q2Þ → π0 by assuming that Q2, q2 ≫ m2

ρ.
Applying factorization, the pion-photon transition form
factor (TFF) is given by the following correlation function
written in a generic convolution form as follows,

Fγ�γ�π0ðQ2; q2; μ2Þ ∼ Tð2ÞðQ2; q2; μ2; xÞ⊗
x
φð2Þ
π ðx; μ2Þ

þ Tð4ÞðQ2; q2; μ2; xÞ⊗
x
φð4Þ
π ðx; μ2Þ

þ higher inverse-power corrections; ð1Þ

where ⊗
x
≡ R

1
0 dx and the superscript ðnÞ is the twist label.

For simplicity, we have adopted the default scale setting,

i.e., μF ¼ μR ¼ μ, where the abbreviations refer to the
factorization and renormalization scales, respectively.
A useful calculational scheme to implement a consistent

factorization of short-distance dynamics, amenable to QCD
perturbation theory via hard-gluon exchanges, from long-
distance phenomena, encoded in nonperturbative hadron
distribution amplitudes based on the light cone operator
product expansion, is provided by light cone sum rules
(LCSRs) [1,2]. In this scheme, correlation function (1) can
be cast in the form of a dispersion relation in terms of the
large photon virtuality Q2 to obtain a LCSR. This dis-
persive conceptual picture of exclusive hadronic processes
is a key issue in the present investigation.
The pion-photon TFF represents a prototypical example

of such a process and provides valuable information on
the quark structure of the pion in terms of its leading twist-
two (and subleading twist-four) distribution amplitudes

(DAs) φð2;4Þ
π ðxÞ. Moreover, it can be measured in single-tag

experiments. A classification of various theoretical pre-
dictions in comparison with the available data [3–6] can be
found in [7]. In contrast, the pion DA is not directly
measurable but has to be inferred from the data or be
constructed from nonperturbative models. In most theo-
retical analyses, it is reversed engineered from its (first few)
moments [8] (see also [9]),

hξNiπ ≡
Z

1

0

dxð2x − 1ÞNφð2Þ
π ðx; μ2Þ; ð2Þ

where N ¼ 2; 4;…, ξ ¼ 2x − 1 ¼ x − x̄, x̄ ¼ 1 − x, with x
being the longitudinal momentum fraction carried by the
valence quark in the pion. Until now only the second
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moment hξ2iπ has been measured on the lattice, yielding
diverging values [10–15], while there are not enough
experimental data to constrain the moments above
N ¼ 6. For a discussion of these techniques and com-
parison of various types of pion DAs with the lattice
estimates, see [16]. More advanced theoretical aspects
of the light-meson DAs have been considered in [17–19]
with arguments based partly on QCD sum rules with
nonlocal condensates [20–23]. There are also alternative
computational methods, for instance, Dyson-Schwinger
equations [24,25], AdS/QCD [26,27], etc.
On the other hand, we have in our hands the very

powerful method of the QCD renormalization group (RG)
that tells us how QCD properties are related to each other at
different momentum scales (notably, the strong coupling
and dynamical quantities like various parton distribution
functions via their anomalous dimensions). A serious
problem one encounters when applying QCD perturbation
theory is that the running coupling αsðQ2Þ increases
logarithmically at low Q2 so that the validity of the
expansion rapidly deteriorates when Q2 ∼ Λ2

QCD, giving
rise to the Landau singularity. This affects the proper
inclusion of higher-order radiative corrections and the
determination of the optimal choice of the renormaliza-
tion-scale setting procedure considerably [28–30].
To avoid this problem, analytic versions of the power-

series expansion in αs (better said, nonpower expansions)
have been proposed by various authors, e.g., [31–38] (see
[39] for a review and further references while more recent
developments are discussed, for instance, in [40,41]). Such
schemes make use of dispersion relations in the spacelike
and the timelike regions in order to implement causality
while preserving the RG properties—see [42] for a broad
review of such methods. For our analysis below, we
mention explicitly the analytic perturbation theory (APT)
[34] and its generalization to any real power of the coupling
constant, described by fractional APT (FAPT) [43].
As already mentioned with respect to the pion-photon

TFF, LCSRs enable the calculation of various physical
quantities on the basis of dispersion relations. Their main
ingredient is a spectral density that can be calculated in
terms of the hard-scattering amplitude for the quark-gluon
subprocesses order by order in QCD perturbation theory. It
appears therefore natural to investigate the LCSR approach
in conjunction with the renormalization group and see how
the LCSR dispersion representation can match a RG-
improved perturbative expansion. To achieve this goal,
we have to invent a particular version of FAPT that employs
process-dependent boundary conditions on the behavior of

the coupling in the deep infrared (IR) regime in order to
ensure compliance with the QCD asymptotics. The strategy
is to develop a scheme with the advantage of including the
RG series of radiative corrections to the TFF at once.
The rest of the paper is organized as follows. In the

next section (Sec. II) we expose the key idea of RG
improvement by expressing the TFF as a convolution
of hard-scattering amplitudes in QCD perturbation theory
with the twist-two pion distribution amplitude. Section III
deals with the inclusion of radiative corrections into the
LCSR using a dispersive representation in conjunction
with the RG approach. To realize this goal, we have to
“calibrate” the behavior of the FAPT analytic coupling at
Q2 ¼ 0 in such a way as to ensure the correct asymptotic
behavior of the TFF atQ2 → ∞. Drawing on these ideas, we
develop an extended version of FAPT—originally developed
in [43–45] with recourse to [46] (see also [28–30,47] and
[48,49] for reviews)—by augmenting this perturbation
theory with a new analytic charge In that amends the
conflict between the FAPTanalytic couplings atQ2 ¼ 0 and
the asymptotic behavior of the TFF following from QCD. In
Sec. IV we discuss how the soft, i.e., quasireal photon in the
TFF, relevant for single-tag experiments, can be accommo-
dated within the new FAPT framework. Phenomenological
implications of our theoretical scheme are discussed in
Sec. V. Our conclusions are given in Sec. VI, while some
important technical issues are treated in three Appendices.

II. TFF WITH RG IMPROVEMENT

In this section we consider the pion-photon TFF in
convolution form [50–52] and perform a RG summation
with the aim to obtain a LCSR in terms of an improved
dispersion relation (see Sec. III). The key idea of our
procedure here and below is the following. We combine
causality, encoded in the dispersion relations of LCSRs,
with RG invariance, which induces analyticity of the
perturbative expansion in order to transfer the power-series
expansion of the pion-photon TFF in terms of the usual
QCD coupling (and its powers), exhibiting ghost singu-
larities, into a functional expansion over singularity-free
“calibrated” analytic couplings that preserve the ultraviolet
(UV) asymptotics of this observable. Let us now enter the
formal description of this task.
At the twist-two (tw ¼ 2) level, the amplitude for the

hard process γ�ð−Q2Þγ�ð−q2Þ → π0, where the two photon
virtualities are subject to the condition Q2 ≫ m2

ρ and
q2 > m2

ρ, can be written in the general form (referring
for the partial cases of the TFF to [51,53])

Fðtw¼2ÞðQ2; q2Þ ¼ NTT0ðyÞ⊗
y

�
½1þ āsðyÞT ð1Þðy; xÞ þ ā2sðyÞT ð2Þðy; xÞ þ � � ��⊗

x

× exp

�
−
Z

āsðyÞ

as

dα
Vðα; x; zÞ
βðαÞ

��
⊗
z
φð2Þ
π ðz; μ2Þ; ð3Þ
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where we have incorporated the general solution of the RG
equation for the QCD charge pertaining to the β-function,
βðasÞ ¼ −a2sðβ0 þ asβ1 þ � � �Þ, by āsðyÞ≡ āsðq2ȳþQ2yÞ.
Moreover, we have introduced the coupling parameter
asðμ2Þ≡ αsðμ2Þ=4π with as ≡ asðμ2 ¼ μ2F ¼ μ2RÞ and the
color factor NT ¼ ffiffiffi

2
p

fπ=3, whereas the pion decay con-
stant has the value fπ ¼ 132 MeV. The other elements of
the above equation have the following meaning: T0ðyÞ≡
T0ðQ2; q2; yÞ ¼ 1=ðq2ȳþQ2yÞ is the Born term of the
hard-scattering amplitude, 1 ¼ δðx − yÞ, and T ðiÞ is the
coefficient function of the quark-gluon subprocess at
the loop order i, where VðasÞ ¼ asV0 þ a2sV1 þ � � � de-
notes the evolution kernel related to the perturbative
expansion of the Efremov-Radyushkin-Brodsky-Lepage

(ERBL) evolution equation [54,55]. For convenience
later on, we have also introduced the abbreviation QðyÞ≡
q2ȳþQ2y that represents the effective virtuality of the
“hand-bag” diagrams.
The integration over y in (3) is possible for large enough

values of q2, at least for q2 > Λ2
QCD, so that one remains

within the allowed range of pQCD. Strictly speaking, one
has to employ q2 ∼ μ2F ≫ Λ2

QCD in order to ensure that the
calculations are performed within the domain of appli-
cability of the factorization approach of pQCD. At the
one-loop level, the next-to-leading-order (NLO) coefficient
function is T ð1Þ and Eq. (3) reduces in the basis of the
Gegenbauer harmonics ψnðxÞ ¼ 6xx̄C3=2

n ðx − x̄Þ to

Fðtw¼2Þ
n ðQ2; q2Þ⟶1-loop Fðtw¼2Þ

ð1lÞn ¼ NTT0ðyÞ⊗
y

�
½1þ āsðyÞT ð1Þðy; xÞ� exp

�
1

2

Z
āsðyÞ

as

dα
α

γ0ðnÞ
β0

��
⊗
x
ψnðxÞ ð4aÞ

¼ NTT0ðyÞ⊗
y

�
½1þ āsðyÞT ð1Þðy; xÞ�

�
āsðyÞ
asðμ2Þ

�
νn
�
⊗
x
ψnðxÞ: ð4bÞ

The above equation follows from the relations

Vðα; y; zÞ → α · V0ðy; zÞ; V0ðy; zÞ ⊗ ψnðzÞ ¼ −
1

2
γ0ðnÞψnðyÞ; βðαÞ → −a2sβ0; ð5Þ

where asγ0ðnÞ denotes the one-loop anomalous dimension
of the corresponding composite operator of leading twist
with νn ¼ 1

2

γ0ðnÞ
β0

. Finally, the function ψn represents the nth-
harmonic contribution in the conformal expansion of

φð2Þ
π ðx; μ2Þ, i.e.,

φð2Þ
π ðx; μ2Þ ¼ ψ0ðxÞ þ

X∞
n¼2;4;…

anðμ2ÞψnðxÞ: ð6Þ

Because the moments hξNiπ (N ¼ 2; 4;…) and the con-
formal coefficients an are interrelated, once the moments of
the DA have been extracted, one can compute a subset of an
within a margin of theoretical uncertainties at the same
normalization scale [56]. Employing expansion (6), the
leading twist TFF in Eq. (3) reads

Fðtw¼2ÞðQ2; q2Þ ¼ Fðtw¼2Þ
0 ðQ2; q2Þ

þ
X∞

n¼2;4;…

anðμ2ÞFðtw¼2Þ
n ðQ2; q2Þ: ð7Þ

By virtue of ψ0ðxÞ ¼ φasy
π ¼ 6xx̄, φð2Þ

π ðxÞ practically re-
duces to the set of ψnðxÞ, while the ERBL evolution in (4)
is governed by the powers νn.

Thus, the reduced formula (4b) accumulates the one-
loop RG running of ās and also the analogous one entering
the common ERBL factor to all orders of the perturbative
expansion. The contribution of the zeroth-order harmonic
assumes the simplest form γið0Þ ¼ 0, ν0 ¼ 0 due to the
current conservation j5μ ¼ q̄γ5γμq. Therefore, in this case,
expression (4b) finally reduces to

Fðtw¼2Þ
n¼0 ðQ2;q2Þ¼NTT0ðyÞ⊗

y
½1þ āsðyÞT ð1Þðy;xÞ�⊗

x
ψ0ðxÞ:

ð8Þ

Expanding āsðyÞ and the ERBL factors in (4b), one
recovers the results stemming from the radiative corrections
to the TFF at the next-to-next-to-leading order (NNLO)
level [52]. Indeed, within the framework of fixed-order
perturbation theory (FOPT), the hard-scattering amplitudes
have the following structure:

Fðtw¼2Þ
FOPT ðQ2; q2Þ ¼ NTðTLO þ asTNLO þ a2sTNNLO þ � � �Þ

⊗ φð2Þ
π : ð9Þ

The various radiative corrections are given by
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TLO ¼ a0sT0ðxÞ ð10aÞ

asTNLO ¼ a1sT0ðyÞ ⊗ ½T ð1Þ þ LV0�ðy; xÞ; ð10bÞ

a2sTNNLO ¼ a2sT0ðyÞ ⊗
�
T ð2Þ − LT ð1Þβ0 þ LT ð1Þ ⊗ V0 −

L2

2
β0V0 þ

L2

2
V0 ⊗ V0 þ LV1

�
ðy; xÞ; ð10cÞ

where L ¼ LðyÞ ¼ ln ½ðq2ȳþQ2yÞ=μ2�. The underlined
terms in Eq. (10) pertain to the running coupling āsðyÞ
and the common ERBL factor in Eq. (4). The remaining
plain terms represent the one-loop, T ð1Þ, and the two-loop,
T ð2Þ, corrections, respectively—cf. Eq. (3), first line.
Finally, the double underlined term in Eq. (10c) marks
the beginning of the next “tower” of two-loop corrections to
the common term āsðyÞ and the ERBL factor in the general
expression given by Eq. (3). The explicit expressions for
T ð1Þ and V0 are presented in Appendix A, while the
equations for V1 and the elements of T ð2Þ and related
references can be found in Appendix A in [52].
Let us emphasize at this point that one cannot directly

use the formulas given by (4) for small q2, even if Q2 is
large. The reason is that for q2 < μ2F, these expressions run
out of their applicability domain allowed by the “factori-
zation conditions”mentioned before in this section. Indeed,
the scale argument q2ȳþQ2y becomes for y → 0 smaller
than μ2F and hence unprotected. For this reason, we do not
use the complete result of the RG summation at small q2,
but employ instead the FOPT one; see, for instance, Sec. 2
in Ref. [52]. The situation changes completely when one
applies the results expressed via Eqs. (4) and (10) to a
dispersion relation as we now show.

III. RADIATIVE CORRECTIONS TO THE TFF
USING A DISPERSIVE REPRESENTATION

The aim in this section is to discuss the radiative
corrections to the pion-photon TFF using the dispersion-
relation representation that forms the basis of the sum rules
on the light cone [2] (see also [57] for a more recent
exposition of the method).
In this formalism, the TFF satisfies the following

dispersion relation,

FLCSR
γ�γ→π0

ðQ2; q2Þ ¼ NT

Z
∞

0

ρðQ2; sÞ
sþ q2

ds; ð11Þ

where NT ¼ ffiffiffi
2

p
fπ=3, as before, while the spectral density

reads

NTρðQ2; sÞ≡ 1

π
ImfFγ�π0ðQ2;−s − iϵÞ

¼ NT½Tð2ÞðQ2;−s − iϵÞ þ twist-4�g: ð12Þ

In the Born approximation, 1 is the only term that con-
tributes to Eq. (4b). It provides the well-known result [2]

ρðQ2; sÞ ¼
�
φð2ÞðxÞ
Q2 þ s

−
δ2tw-4
Q2

d
ds

φð4ÞðxÞ
�				

x¼s=ðQ2þsÞ
; ð13Þ

where δ2tw-4 sets the scale for the twist-four contribution
and φð4ÞðxÞ is an effective pion DA of twist four. The
above expression is induced by the particular disconti-
nuity of the imaginary part of the Born amplitude
T0ðQ2;−s; yÞ, i.e.,

1

π
ImðT0ðQ2;−s− iϵ;yÞÞ≡ρð0ÞðQ2;sÞ¼ δðy−xÞ=ðQ2þ sÞ;
where x¼ s=ðQ2þ sÞ: ð14Þ

In the framework of FOPT it is clear that higher-order
corrections to ρ also contribute owing to the logarithmic
factors in the Born amplitude T0ðQ2; q2; yÞ [51,58]. Our
goal below is to obtain the radiative corrections within
the LCSR formalism on the ground of the results in
Eqs. (4) and (8) obtained by RG summation. As we see
in the next subsection, this procedure inevitably leads to
an analytic version of QCD perturbation theory which
amends by construction Landau-type singularities.

A. Key element of the radiative corrections
in the dispersive representation

The RG summation of all radiative corrections to the
TFF in Eq. (4) provides another possibility to extract
the imaginary part of the TFF and get the spectral density
ρ [2,51,52]. Indeed, for the Born contribution, the
corresponding imaginary part is generated by the singu-
larity of T0ðQ2;−s; yÞ [multiplied by powers of loga-
rithmic terms; see Eq. (13) and the text below it],
while the imaginary part after the RG summation of
the radiative corrections originates also from the
Imðāνsð−sȳþQ2yÞ=πÞ contributions.
The general expression for the key perturbative element

in this procedure follows from the first term in Eq. (4b) and
amounts to the following integral, termed In:

AYALA, MIKHAILOV, and STEFANIS PHYS. REV. D 98, 096017 (2018)

096017-4



T0ðQ2; q2; yÞðāνns ðyÞÞ⟶q
2→−s 1

π

Z
∞

0

ds
Im½T0ðQ2;−s; yÞāνns ð−sȳþQ2yÞ�

sþ q2
¼ InðQ2; q2; yÞ ð15aÞ

¼ 1

π

Z
∞

0

ds

�
Re½T0ðQ2;−s; yÞ�Im½āνns ð−sȳþQ2yÞ�

sþ q2
þ Im½T0ðQ2;−s; yÞ�Re½āνns ð−sȳþQ2yÞ�

sþ q2

�
: ð15bÞ

The contribution to the partial TFF FnðQ2; q2Þ can be
expressed in the form of a convolution between the term
In ⊗ Φn, contained in InðQ2; q2; yÞ, and the remainder
of the partial harmonic ΦnðyÞ. The latter includes either
the next radiative correction ΦnðyÞ ¼ T ð1Þðy; xÞ ⊗ ψnðxÞ,
or the Born term ΦnðyÞ ¼ 1 ⊗ ψnðxÞ; see Eq. (4b). After
changing the integration variable s→σ¼−ð−sȳþQ2yÞ≥0,
and applying the principal-value prescription

1=ðσ þ iεÞ ¼ p:v:ð1=σÞ − iπδðσÞ;

we set T0ðQ2;−s; yÞ ∼ −1=ðσ þ iεÞ to obtain for the
integral in Eq. (15b) the expression

InðQ2; q2; yÞ ¼ −
Z

∞

0

dσ
ðσ þQðyÞÞ

�
p:v:

�
1

σ

�
θðσÞ

×
Im½āνns ð−σÞ�

π
− δðσÞRe½āνns ð−σÞ�

�
:

ð15cÞ
The second term in Eq. (15c) containing the δðσÞ function
is induced by the singularity of Im½T0ðQ2;−s; yÞ� in
Eq. (15b). But, in contrast to the Born case in Eq. (14),
this contribution vanishes for the running coupling
Re½āνns ð−0Þ� ¼ 0. This can be explicitly seen in the case
of the one- and two-loop running. Therefore, only the first
term in Eq. (15c) survives, where 1

π Im½āνsð−σ − iεÞ� ¼
ρνðσÞ defines the FAPT spectral density ρνðσÞ, i.e.,

InðQ2; q2; yÞ ¼ −
Z

∞

0

dσ
ρνnðσÞ

ðσ þQðyÞÞσ : ð16Þ

Thus, the key element InðQ2; q2; yÞ can be expressed in
terms of the corresponding FAPT couplings. For the
perturbative spectral density ρν, we employ the standard
FAPT expression [43]

ρðlÞν ðσÞ ¼ 1

π
Im½aνðlÞð−σÞ� ¼

1

π

sin½νφðlÞðσÞ�
ðRðlÞðσÞÞν

⟶
1-loop

ρνðσÞ

¼ 1

π

sin ½ν arccos ðLσ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
σ þ π2

p
Þ�

βν0½π2 þ L2
σ�ν=2

; ð17Þ

where the phase φðlÞ and the radial part RðlÞ have an
l-loop content (see [44] and Appendix B), whereas
Lσ ¼ lnðσ=Λ2

QCDÞ.
Having in mind further considerations to be exposed

later, we define here a more general class of spectral
densities ρνðm2; σÞ by inventing a possible gap in the
variable σ, expressed via the scale m2 ≥ 0, ρνðσÞ →
ρνðm2; σÞ ¼ θðσ > m2ÞρνðσÞ. Inserting ρνðm2; σÞ into
Eq. (16), we obtain for InðQ2; q2;m2Þ the dispersion
integral at the lower limit m2, notably,

InðQ2;q2;m2;yÞ ¼−
Z

∞

m2

dσ
ρνðσÞ

ðσþQðyÞÞσ
¼ T0ðQ2;q2;yÞ½Iνðm2;QðyÞÞ−Aνðm2Þ�:

ð18Þ

Now the rhs of InðQ2; q2; m2; yÞ in Eq. (18) can be
decomposed in terms of a new coupling Iν and the standard
FAPT couplings Aν and Aν, known from [43,44],

−
Z

∞

Y
ds

ρνðsÞ
sðsþ XÞ ¼

1

X

�Z
∞

Y
ds

ρνðsÞ
sþ X

−
Z

∞

Y
ds

ρνðsÞ
s

�
¼ 1

X
½IνðY; XÞ −AνðYÞ� ð19aÞ

IνðY; XÞ¼def
Z

∞

Y

dσ
σ þ X

ρðlÞν ðσÞ ð19bÞ

AνðXÞ ¼ IνðY → 0; XÞ; AνðYÞ ¼ IνðY; X → 0Þ; A1ð0Þ ¼ A1ð0Þ ¼ I1ðY → 0; X → 0Þ: ð19cÞ

Note that the structure of a subtraction in the square brackets in Eq. (18) follows from the decomposition of the integrand in
the rhs of (19a). Some remarks regarding Eq. (19) are here in order. First, the FAPT couplings Aν [43] and Aν [44] refer to
the spacelike and the timelike regime, respectively. Second, the integral Iνðy; xÞ represents a generalization of the previous
two FAPT couplings, as it becomes obvious from Eq. (19c) and from the detailed exposition in Appendix B.
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We close this discussion by formally defining a new
effective coupling Aν, already encountered in (18), that is
used in the next sections, viz.,

Aνðm2; yÞ ¼ Iνðm2; QðyÞÞ −Aνðm2Þ: ð20aÞ

The derivation of Aνðm2; yÞ in terms of the new FAPT
coupling Iν represents a novelty of the present approach.
At the same time Aν bears through it a process dependence
stemming from the Born term. This dependence enters via
the arguments QðyÞ, like in the original case of āsðyÞ, but

also through the argument m2 at the lower limit of the
dispersion integral. Note that for m2 → 0, one has

Aνð0; yÞ ¼ AνðQðyÞÞ −Aνð0Þ ð20bÞ

due to Eq. (19c).

B. Pion-photon TFF within FAPT

Before we continue let us (i) summarize our findings for
the dispersion integral In, (ii) construct a particular version
of the TFF, and (iii) consider it at different scales.

(i) The general expression for Fγ�π
FAPTðQ2; q2;m2Þ, which includes all involved scales, reads

νðn ¼ 0Þ ¼ 0; Fγ�π
FAPT;0ðQ2; q2;m2Þ ¼ NTT0ðQ2; q2; yÞ⊗

y
f1þ A1ðm2; yÞT ð1Þðy; xÞg⊗

x
ψ0ðxÞ ð21aÞ

νðn ≠ 0Þ ≠ 0; Fγ�π
FAPT;nðQ2; q2;m2Þ ¼ NT

aνns ðμ2ÞT0ðQ2; q2; yÞ⊗
y

fAνnðm2; yÞ1þ A1þνnðm2; yÞT ð1Þðy; xÞg⊗
x
ψnðxÞ: ð21bÞ

It is instructive to compare the above results with the initial expressions given by Eqs. (4b) and (8). One observes that
Eqs. (21a) and (21b) have the same structure as the original expressions and can be recast into the form of Eqs. (4b) and (8),
respectively, using the evident replacement Aνðm2; yÞ → āνsðyÞ.
(ii) We show next the results for Fγπ

FAPTðQ2;m2Þ in the limits q2 → 0, QðyÞ → yQ2 and m2 ≥ 0 in explicit form,

νðn ¼ 0Þ ¼ 0; Q2Fγπ
FAPT;0 ≡ F0ðQ2;m2Þ ¼ NT

�Z
1

0

ψ0ðxÞ
x

dxþ
�
A1ðm2; yÞ

y

�
⊗
y
T ð1Þðy; xÞ⊗

x
ψ0ðxÞ

�
; ð22aÞ

νðn ≠ 0Þ ≠ 0; Q2Fγπ
FAPT;n ≡ FnðQ2;m2Þ

¼ NT

aνns ðμ2Þ
��

Aνnðm2; yÞ
y

�
⊗
y
ψnðyÞ þ

�
A1þνnðm2; yÞ

y

�
⊗
y
T ð1Þðy; xÞ⊗

x
ψnðxÞ

�
: ð22bÞ

These equations can again be related to the initial expres-
sions given by Eqs. (4b) and (8) by means of the
replacement Aνðm2;yÞ¼Iνðm2;Q2yÞ−Aνðm2Þ→ āνsðyÞ.
(iii) Definition (20a) of the effective coupling Aν,

supplemented by Eqs. (21) and (22), reveals that the
high-energy asymptotic behavior of the form-factor com-
ponents FnðQ2Þ is determined in part by the low-energy
behavior of Aνðm2Þ or the value of Aνð0Þ ¼ Aνð0Þ for
m2 ¼ 0. Thus, determining the low-energy behavior of the
FAPT couplings, one would be in the position to extract
information about the high-energy behavior of the tran-
sition form factor—an arguably unexpected result that
demands a rigorous explanation.

C. Low-energy modification of
FAPT—calibration procedure

However, this seemingly obvious connection does not
work because it causes a spurious contribution to the
asymptotic value of the TFF that contradicts pQCD.
Indeed, for the effective couplings of APT one has
according to (B7) A1 ¼ I1ðm2; Q2yÞ −A1ðm2Þ < 0,
which entails a sign flip of the radiative corrections
due to the second term −A1ðm2Þ. Moreover, for

m2 ¼ 0, Að1Þ
1 ð0Þ¼Að1Þ

1 ð0Þ¼1=β0 [32–34] and A1ð0; yÞ →
½A1ðQðyÞÞ −A1ð0Þ�. If one were to substitute these expres-
sions into Eq. (22a), one would immediately arrive at a
result for the asymptotic (scaled) TFF that would clearly
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contradict the limit derived with pQCD in the asymptotic
regime. This contradiction in the behavior of Q2F0ðQ2 →
∞Þ can be traced back to the radiative corrections to the
inverse moment that are created just by the disturbing term
−A1ð0Þ. In fact, the deviation from the standard contribu-
tion, proportional to asðμ2 ∼Q2Þ, can be estimated from
Eq. (22a), see [51], to be given by the following distortion
term:

δ ¼ −
�
A1ð0Þ
y

�
⊗
y
T ð1Þðy; xÞ⊗

x
ψ0ðxÞ ¼ −A1ð0ÞCF

Z
1

0

dx
x

×

�
−5þ π2

3
− ln2ðx̄=xÞ

�
ψ0ðxÞ ¼ 15A1ð0ÞCF: ð23Þ

The quantity δ is a large constant, comparable to the Born

term
R
1
0

ψ0ðxÞ
x dx ¼ 3 ∼ 15A1ð0ÞCF ¼ 1

β0
20 ¼ 20

9
(with

Nf ¼ 3), which certainly destroys the asymptotic behavior
of Q2Fn¼0ðQ2Þ. The latter turns out to be larger than the
asymptotic limit

ffiffiffi
2

p
fπ ≈ 0.187 already in the vicinity of

the normalization scale μ0 ≃ 1 GeV, as one can see from
the behavior of the solid line in the right panel of Fig. 1, and
disagrees with the analogous result obtained in the left
panel within pQCD. Such a situation calls for a remedy.
To restore the correspondence of our perturbative

expansion to the standard pQCD theory, we have to
eliminate the distortion term to the TFF at Q2 → ∞ by
appropriately adjusting the mathematical IR behavior
of the new analytic couplings in such a way as to preserve
the validity of the QCD asymptotics applicable to this
particular physical process. This can be achieved by
imposing the condition A1ð0Þ, A1ð0Þ ≃ 0 in A1, which
is tantamount to a calibration of their behavior in Eq. (20a).
The calibration procedure has more consequences.

Consider noninteger values of the index ν within FAPT.
Then the unbounded behavior of the FAPT couplings

at one loop for 0 < ν < 1, Að1−loopÞ
ν<1 ðQ2Þ, Að1−loopÞ

ν<1 ðQ2Þ

nearQ2 ¼ 0would render the corresponding expressions in
Eqs. (21b) and (22b) meaningless (with the related details
being given in Appendix B). Consequently, in order to
obtain a TFF with the correct behavior in the asymptotic
regime, we have to set

Að1Þ
ν ð0Þ ¼ Að1Þ

ν ð0Þ ¼ 0; for 0 < ν ≤ 1. ð24Þ

This implies that the initial FAPT couplings, which were
constructed without employing any nonperturbative input
at low momenta to saturate them in the deep IR regime,
should be corrected at Q2 ≈ 0 a posteriori in order to
avoid spurious, i.e., unphysical constants. Thus, the
present scheme represents an advance over the original
FAPT and corrects the corresponding expressions for the
analytic couplings displayed in the middle columns of
Eqs. (B6) in Appendix B. Note that the imposition of
calibration is a novelty of the present investigation and
differs from other approaches that try to model the low-
energy behavior of the couplings [59–61]. The difference
relative to [59] arises from the imposition Aνð0Þ ¼ δ at
small fixed value δ, while in [60,61] one sets Aνð0Þ ∼Q2

(when Q2 ↦ 0) as suggested by lattice simulations [62]
for dressing functions. In any case, the above redefinition
based on calibration renders the TFF compatible with the
QCD asymptotic limit for ν > 1, as one can see from the
last column in Eq. (B6). In what follows, we refer to this
calibrated version of FAPT as “cal-FAPT.” As one sees
from the right panel of Fig. 2, this version of FAPT
guarantees that the TFF behavior subject to condition (24)
indeed reproduces the pQCD limit and the TFF result for
n ¼ 0 (left panel) in contrast to the Q2Fn¼0ðQ2Þ behavior
entailed by the standard FAPT couplings; see Fig. 1 (solid
line for n ¼ 0 in the right panel). In contrast, the calibrated
counterpart of the TFF shows excellent agreement with
the PQCD result as it is effected in the right panel
of Fig. 2.

FIG. 1. Left panel:Q2Fγπ
n ðQ2Þ for n ¼ 0, 2, 4, 6 calculated in pQCD. Right panel: The same quantity calculated with the modified (but

uncalibrated) FAPT, Q2Fγπ
FAPT;nðQ2Þ, according to Eq. (22) for Að1Þ

1 ð0Þ ¼ 1=β0 with m2 ¼ 4m2
π ≈ 0.08 GeV2.
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IV. HADRONIC PHOTON CONTENT IN LCSR

In the previous section we have constructed a new
perturbative expansion that includes all radiative correc-
tions to the TFF using RG summation while preserving its
QCD asymptotics. In this section, we are going to imple-
ment this scheme to the LCSR formulation in terms of the
calibrated FAPT.
To this end, let us extend the initial expression for the

pion TFF in the LCSR, given by Eq. (11), to the case of a
quasireal photon γðq2Þ with a virtuality q2 ≪ m2

ρ. This can
be done in terms of a physical spectral density that takes
into account the vector-meson properties of the quasireal
photon. Employing the physical spectral density ρph with
ρphðσÞ ¼ δðσ −m2

ρÞ
ffiffiffi
2

p
fρFρπðQ2Þ þ θðσ > s0ÞNTρðQ2; σÞ

we substitute ρph → ρ into (11), to obtain [2]

Fγ�πðQ2; q2Þ ¼ NT

Z
∞

s0

ρðQ2; σÞdσ
σ þ q2

þ
ffiffiffi
2

p
fρ

FρπðQ2Þ
m2

ρ þ q2
;

ð25Þ

where the term δðs −m2
ρÞ

ffiffiffi
2

p
fρFρπðQ2Þ in the physical

spectral density models the ρ=ω-resonances. Applying the
“duality approximation,” which involves the TFF Fρπ to
describe the intermediate subprocess γ�ρ0 → π0 (see Sec. 2
in [2] for details), we find

ffiffiffi
2

p
fρ

FρπðQ2Þ
m2

ρ þ q2
¼ NT

Z
s0

0

ρðQ2; sÞds
sþ q2

: ð26aÞ

From the Borel transform B̂q2→M2 of (26a), we get

ffiffiffi
2

p
fρFρπðQ2Þ ¼ NT

Z
s0

0

exp

�
m2

ρ − s

M2

�
ρðQ2; sÞds; ð26bÞ

finally arriving at the total TFF expression for Fγ�π [2],
evaluated in the limit q2 → 0, i.e.,

FγπðQ2Þ ¼ NT

�Z
∞

s0

ρðQ2; sÞ ds
s

þ 1

m2
ρ

Z
s0

0

exp

�
m2

ρ − s

M2

�
ρðQ2; sÞds

�
; ð27Þ

whereM2 is the Borel parameter. We use for simplicity the
fixed value M2 ≈ 0.9 GeV2. Increasing the Borel mass to
M2 ¼ 1.1 GeV2 would affect the TFF between 10 and
40 GeV2 only by about 4% [63], which shows that its
influence on the TFF is small; see also [57]. For a more
sophisticated treatment, we refer to our previous works,
e.g., [16].
The first term in Eqs. (25) and analogously in (27) stems

from the hard (i.e., quark-gluon) part with the integration
taken over the duality interval s0. Here s0 plays the role of
the main scale parameter in the model of the physical
density. Note that for s0 → 0, expression (27) reduces to the
first term, i.e., to the initial form of Eq. (11), and further to
the harmonic expansions encountered in Eqs. (21) and (22).
The numerical value of the effective threshold parameter s0
in the ρ-meson channel is fixed to the value s0 ¼ 1.5 GeV2;
see, for instance, [50]. The second term in Eq. (27) is the
result obtained for the TFF Fρπ following from Eq. (26b)
and originates from the soft (i.e., hadronic) part of the pion
TFF. For the considerations to follow, it is useful to reduce
Eq. (27) to the Born approximation by taking for ρ the
expression in (13) and by replacing the variable of
integration s → x ¼ s=ðQ2 þ sÞ to get

Q2FγπðQ2Þ ¼ NT

�Z
1

x0

ρ̄ðQ2; x̄Þ dx
x

þQ2

m2
ρ

Z
x0

0

exp
�
m2

ρ −Q2x=x̄

M2

�
ρ̄ðQ2; x̄Þ dx

x̄

�
;

ð28aÞ

ρ̄ðQ2; xÞ ¼ φð2Þ
π ðxÞ þ δ2tw-4

Q2
x2

d
dx

φð4ÞðxÞ; ð28bÞ

FIG. 2. Left panel: Q2Fγπ
n ðQ2Þ for n ¼ 0, 2, 4, 6 calculated in pQCD as in Fig. 1. Right panel: TFF Q2Fγπ

FAPT;nðQ2Þ according to
Eq. (22) within the calibrated FAPT Aνð0Þ ¼ Aνð0Þ ¼ 0.
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where x0 ¼ s0=ðQ2 þ s0Þ. The twist-four term depends on
the parameter δ2tw-4ðμ2Þ, which assumes values in the
interval δ2tw-4ðμ2Þ ¼ 0.19� 0.04 GeV2 [64]. Below we use
the elements of the expansion ρ̄ðQ2; xÞ expressed in terms
of the Gegenbauer harmonics, i.e., ρ̄ðQ2; xÞ ¼ ρ̄0ðQ2; xÞ þP

n¼2;4;…anðQ2Þρ̄nðQ2; xÞ, where

ρ̄0ðQ2; xÞ ¼ ψ0ðxÞ þ
δ2tw-4
Q2

x
d
dx

φð4ÞðxÞ;

ρ̄nðQ2; xÞ ¼ ψnðxÞ: ð28cÞ

Note that in this expression we combined the twist-four
contribution with the ψ0 component of the twist-two
spectral density into a single spectral density termed ρ̄0.

A. Hard part of the LCSR with RG summation

The first term in Eq. (27), notably,

NT

Z
∞

s0

ds
s
ρðQ2; sÞ ¼ NTFH

FAPTðQ2;m2; s0Þ; ð29Þ

represents the hard (label H) contribution to the LCSR and
can be directly expressed in terms of FAPT. The only

difference with respect to Eqs. (21) and (22) is the lower
limit of integration s0 instead of 0. This shift induces a more
complicated structure of the effective coupling Aν →
Aνðm2; s0; yÞ as it now depends on two scale parameters:
m2 and s0. Performing similar calculations as those to
derive Eq. (18) for the key element In in Sec. III A, we
derive the following expression,

Aνðm2; s0;yÞ ¼ θðy ≥ y0Þ½Iνðm2;QðyÞÞ−Aνðm2Þ�
þ θðy < y0Þ½Iνðs0ðyÞ;QðyÞÞ−Aνðs0ðyÞÞ�;

ð30aÞ

s0ðyÞ ¼ s0ȳ −Q2y; y0 ¼
s0 −m2

s0 þQ2
; ð30bÞ

where we have imposed the condition m2 < s0 [see for the
general expression given by Eq. (C5) Appendix C]. The
effective coupling Aνðm2; s0; yÞ is a continuous function in
the vicinity of y ¼ y0 and s0ðy0Þ ¼ m2, as it follows from
the definitions in Eq. (30b). Note that in the limit m2 ¼ 0,
Aνð0; s0; xÞ in Eq. (30a) becomes

Aνð0; s0; xÞ ¼ θðx ≥ x0Þ½AνðQðxÞÞ −Aνð0Þ� þ θðx < x0Þ½Iνðs0ðxÞ; QðxÞÞ −Aνðs0ðxÞÞ�; ð30cÞ

where Aνð0Þ ¼ Aνð0Þ and y0 ¼ x0 ¼ s0=ðQ2 þ s0Þ. Let us conclude these considerations by presenting the harmonic
representation for the hard part in Eq. (29),

Q2FH
FAPT;0ðQ2;m2; s0Þ ¼ NT

�Z
1

x0

ρ̄0ðQ2; x̄Þ dx
x
þ
�
A1ðm2; s0; xÞ

x

�
⊗
x
T ð1Þðx; yÞ⊗

y
ψ0ðyÞ

�
; ð31aÞ

Q2FH
FAPT;nðQ2;m2; s0Þ ¼

NT

aνns ðμ2Þ
��

Aνnðm2; s0; xÞ
x

�
⊗
x
1þ

�
A1þνnðm2; s0; xÞ

x

�
⊗
x
T ð1Þðx; yÞ

�
⊗
y
ψnðyÞ: ð31bÞ

The first entry in Eq. (31a) pertains to the contribution of
the zero harmonic in the expansion of the first term in
Eq. (28a). The structure of the next entry in Eq. (31a),
which represents the radiative correction related to A1, is
more interesting because the first term in Eq. (30c) (sim-
plified by setting m2 ¼ 0) corresponds to the integration
over the expected hard region x ≥ x0, while in the region
x < x0 a new contribution from the second term appears in
addition. On the other hand, the limit x0 → 0, s0 → m2 (or
0) in the hard part of Eqs. (31a) and (31b) reproduces the
known FAPT result encountered in Eqs. (22a) and (22b).

B. Soft part of the LCSR with RG summation

We consider now the soft part of the LCSR expressed by
(27). The quasireal photon induces a contribution that is

encoded in
ffiffiffi
2

p
fρFρπ and can be expressed within FAPT as

follows:

ffiffiffi
2

p
fρFρπðQ2Þ ¼ NT exp

�
m2

ρ

M2

�
B̂q2→M2

×
�Z

s0

m2

ρðQ2; sÞds
sþ q2

¼ Fγ�π
FAPTðQ2; q2;m2Þ

− Fγ�π
FAPTðQ2; q2; s0Þ

�
: ð32Þ

The term Fγ�π
FAPTðQ2; q2;m2Þ was already discussed in

connection with Eq. (21). Taking it into account and
employing the definition of the effective coupling, we
obtain
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exp

�
m2

ρ

M2

�
B̂q2→M2 ½Fγ�π

FAPTðQ2; q2;m2Þ − Fγ�π
FAPTðQ2; q2; s0Þ� ¼

n ¼ 0∶
Z

x0

0

exp

�
m2

ρ

M2
−
Q2

M2

x
x̄

�
ρ̄0ðQ2; x̄Þ dx

x̄
ð33aÞ

þ
Z

x0

0

exp

�
m2

ρ

M2
−
Q2

M2

x
x̄

�
dx
x̄
Δ1ðm2; xÞT ð1Þðx; yÞ⊗

y
ψ0ðyÞ þOðA2Þ ð33bÞ

n ≠ 0∶
Z

x0

0

exp

�
m2

ρ

M2
−
Q2

M2

x
x̄

�
dx
x̄
½Δνnðm2; xÞψnðxÞ þ Δ1þνnðm2; xÞT ð1Þðx; yÞ⊗

y
ψnðyÞ� þOðA2Þ; ð33cÞ

where the first term in Eq. (33a) corresponds to the zero-harmonics part of the second term in Eq. (28a). Note that a new
coupling Δνðm2; yÞ appears in these equations, which originates from the differences ½Aνðm2; xÞ −Aνðm2; s0; xÞ� written in
the form

Aνðm2; yÞ −Aνðm2; s0; yÞ ¼ θðy < y0ÞΔνðm2; yÞ
Δνðm2; yÞ ¼ ½Iνðm2; QðyÞÞ − Iνðs0ðyÞ; QðyÞÞ þAνðs0ðyÞÞ −Aνðm2Þ�; ð34aÞ

Aνð0; xÞ −Aνð0; s0; xÞ ¼ θðx < x0ÞΔνð0; xÞ
Δνð0; xÞ ¼ ½AνðQðxÞÞ − Iνðs0ðxÞ; QðxÞÞ þAνðs0ðxÞÞ −Aνð0Þ�: ð34bÞ

One can see from Eqs. (33) and (34) that the integration
domain x < x0 for the radiative corrections is the same as
for the Born term in (33a). Moreover, the standard structure
of the integral is restored, while the quantity Δν plays the
role of an effective coupling in the soft part.
Expressions (33b) and (33c) are derived by assuming

that the effective couplingAν does not depend [by means of
the function QðyÞ] on q2 and is taken at q2 ¼ 0, i.e.,
QðyÞ → yQ2. This approximation is justified, provided
Aνðm2; yÞ depends on q2 in a significantly weaker way
than TðQ2; q2; yÞ. We consider the conditions for the
validity of this approximation further below.
Let us now concentrate our attention on the complete

LCSR result for the TFF by combining the soft part
(denoted by S) in (33),

FS
FAPTðQ2Þ ¼ 1

m2
ρ
exp

�
m2

ρ

M2

�
B̂q2→M2 ½Fγ�π

FAPTðQ2; q2;m2Þ

− Fγ�π
FAPTðQ2; q2; s0Þ�; ð35Þ

with the hard part given by Eqs. (29) and (31). Substituting
Eqs. (29) and (35) into the initial Eq. (25), we arrive at the
final equation for Fγ�π

LCSRðQ2Þ,
Q2Fγπ

LCSRðQ2Þ ¼ NT½Q2FH
FAPTðQ2Þ

þQ2FS
FAPTðQ2Þ þ twist-4�: ð36Þ

This equation is the FAPT analogue of the LCSR given by
Eq. (27). However, it possesses some advantages relative to
that and includes some new effects: (i) It has no singular-
ities in the perturbative expansion [cf. Eq. (4)]. (ii) It

contains all logarithmic power corrections by virtue of the
RG summation (taken here in the one-loop approximation),
while thevaluesof thesecorrections are smaller in comparison
to those in standard pQCD using FOPT—thus significantly
improving the reliability of the perturbative expansion. (iii) It
takes into account the particular low-energy behavior of the
quasireal photon within the LCSR approach.

V. EFFECT OF RG SUMMATION
ON THE TFF IN LCSR

From the calculational point of view, this FAPT-inspired
approach may help avoid the appearance of large radia-
tive corrections to the pion-photon TFF at low/moderate
momenta because such terms become small by virtue of the
FAPT summation in contrast to FOPT. Indeed, the smallness
of the next-order FAPT coupling I2 in Fig. 4, shown in
Appendix B by a shaded area at the bottom of the three-
dimensional graphics, explicitly illustrates this feature.
The content of the rhs of the general LCSR expression

(36) for the pion-photon TFF can be recast in terms of the
ψn-expansion, cf. Eq. (7), to obtain

Fγπ
LCSRðQ2Þ ¼ Fγπ

LCSR;0ðQ2Þ þ
X

n¼2;4;…

anðμ2ÞFγπ
LCSR;nðQ2Þ;

ð37Þ
where the expressions for the partial TFFs Fγπ

LCSR;n follow
from Eqs. (31) and (33). To simplify the final representation
of Fγπ

LCSR;n, as well as for further analysis in future work, we
use the effective couplings Aνð0; s0; yÞ for m2 ¼ 0 from
Eqs. (30c) and (34b) so that we arrive at
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Q2Fγπ
LCSR;0ðQ2Þ ¼ NT

�Z
x̄0

0

ρ̄0ðQ2; xÞ dx
x̄
þQ2

m2
ρ

Z
1

x̄0

exp

�
m2

ρ

M2
−
Q2

M2

x̄
x

�
ρ̄0ðQ2; xÞ dx

x
þ ð38aÞ

�
A1ð0; s0; xÞ

x

�
⊗
x
T ð1Þðx; yÞ⊗

y
ψ0ðyÞ þ

Q2

m2
ρ

Z
1

x̄0

exp

�
m2

ρ

M2
−
Q2

M2

x̄
x

�
dx
x
Δ1ð0; x̄ÞT ð1Þðx̄; yÞ⊗

y
ψ0ðyÞ þOðA2Þ

�
; ð38bÞ

Q2Fγπ
LCSR;nðQ2Þ ¼ NT

aνns ðμ2Þ
��

Aνnð0; s0; xÞ
x

�
⊗
x
ψnðxÞ þ

�
A1þνnð0; s0; xÞ

x

�
⊗
x
T ð1Þðx; yÞ⊗

y
ψnðyÞþ ð38cÞ

Q2

m2
ρ

Z
1

x̄0

exp

�
m2

ρ

M2
−
Q2

M2

x̄
x

�
dx
x
½Δνnð0; x̄ÞψnðxÞ þ Δ1þνnð0; x̄ÞT ð1Þðx̄; yÞ⊗

y
ψnðyÞ� þOðA2Þg; ð38dÞ

where the functions Δνnð0; x̄Þ and Δν1þn
ð0; x̄Þ are defined

analogously to (34a) and (34b), and denote the effective
couplings entering the soft part. The two equations above
represent our final expressions for the TFF in the dispersive
form of RG augmented LCSRs and encapsulate the
calibrated FAPT expansion for this quantity. Let us also
supply some important remarks. First, the Born contribu-
tion in Eq. (38a) coincides with the standard one for
the zero harmonic, see Eq. (28) [where x̄0 ≡ 1 − x0 ¼
Q2=ðQ2 þ s0Þ], while all further corrections in (38b)–(38d)
appear as the result of the FAPT summation of the radiative
corrections (see Sec. IV). Second, their contributions bear
the same minus sign and for momentum transfers in the
range 0.6 ≤ Q2 ≲ 10 GeV2 have a magnitude a few times
smaller than the FOPT results [51,57]. The important
element of these corrections, i.e., the convolution term
T ð1Þðx; yÞ ⊗ ψnðyÞ, is given in Appendix A. Third, by
significantly reducing the size of the radiation corrections,
the actual constraint for the applicability of the LCSR
approach resides with the high-twist contributions that
become important for Q2 ≲m2

ρ.
In order to test the capabilities of the new scheme in

more real terms, we illustrate in Fig. 3 its application to the
TFF in comparison with the experimental data. For the sake
of definiteness, we employ the family of the bimodal
bimodal Bakulev-Mikhailov-Stefanis (BMS) pion DAs,
obtained in [65]. The corresponding results for the TFF
are shown in the form of a green strip which quantifies the
variation of these DAs in terms of their coefficients
f1; a2; a4g in the Gegenbauer decomposition given by
Eq. (6) (for derivation and justification see [18,52,65]
and references therein).
The predictions shown in Fig. 3 are obtained by employ-

ing the values of these coefficients at the normalization
scale μ2 ≈ 1 GeV2 [50,56] that are given by fa2ðμ2Þ¼
0.20ðþ0.05=−0.06Þ;a4ðμ2Þ¼−0.14ðþ0.09=−0.07Þ;…g.1

The other LCSR parameters have been fixed by previous
investigations to the values [2,64] s0 ≈ 1.5 GeV2, M2 ¼
0.9 GeV2, and δ2tw-4ðμ2Þ ≈ λ2q=2 ≈ 0.19 GeV2 and are not
varied here.
Using Eq. (37) and the partial TFF terms Fγπ

LCSR;n from
Eqs. (38), we obtain for Q2Fγπ

FAPTðQ2Þ the prediction
shown by the solid black line in Fig. 3. The (green) strip
enveloping this curve indicates the admitted theoretical
variations of the BMS DA in terms of a2 and a4, while
other uncertainties are not considered here. The interested
reader can find estimates of the various theoretical uncer-
tainties entering the TFF calculation in [52,63]. It is worth
noting that the platykurtic pion DA [17] yields very similar
TFF predictions to the BMS-like DAs and has, therefore,
been omitted in Fig. 3—[66].
The presented prediction is in good agreement with all

experimental data, especially in the low/moderate region of

FIG. 3. Theoretical predictions for the scaled γ�γπ0 transition
form factor Q2Fγπ

FAPTðQ2Þ using the BMS DA—black curve—
shown in comparison with various experimental data up to
10 GeV2 with labels as indicated in the figure. The green strip
around the black curve shows the theoretical uncertainties (see
the text) of the BMS DA obtained with QCD sum rules with
nonlocal condensates; see [65]. The shallow dip around 3 GeV2

is a numerical artifact.

1The values a2 and a4 are strongly correlated along the line
a2 þ a4 ¼ const.
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Q2 ≤ 5 GeV2, as comparison with the LCSR result in
Fig. 4 of [66] also reveals, though a more detailed
comparison requires additional analysis. The achieved
agreement with the experimental data results from the
decrease of the negative contribution of the resummed
radiative corrections within the applied dispersion repre-
sentation. We restrict ourselves in this work to this
qualitative observation, while a full-fledged analysis of
the experimental data within the presented elaborated
FAPT-LCSR approach will be carried out in future work.
For phenomenological purposes such analysis appears
particularly useful for the expected low-momentum data
of the BESIII Collaboration.

VI. CONCLUSIONS

In this work we considered the π0γ�γ TFF and proposed
an approach, which combines the method of LCSRs based
on dispersion relations, with the renormalization-group
summation expressed in terms of the formal solution of
the ERBL evolution equation. We argued that this pro-
cedure gives rise to a particular version of FAPT [43,44]
and worked out the technical details.
The advantage of the obtained calibrated FAPT

scheme pertains to process-dependent boundary conditions
imposed on the analytic versions of the couplings in the
deep infrared region in order to preserve the asymptotic
behavior of the TFF prescribed by perturbative QCD.

The resulting theoretical scheme provides the possibility
to include the infinite series of radiative corrections to the
considered TFF via RG summation. The involved tech-
niques are exposed in the text with more calculational
details being given in three dedicated Appendices.
Though our focus in this work was primarily on the

methodological aspects of the new framework, we also
provided a qualitative phenomenological application to
show the effect on the TFF of the RG summation of the
radiative corrections. To this end, we presented a quali-
tative prediction for the scaled π0γ�γ TFF employing
BMS-like pion DAs, which we show in Fig. 3 for low to
intermediate Q2 values in comparison with the existing
data. We argue that the use of the RG-improved LCSR
provides an improvement relative to the standard LCSR
method based on FOPT—especially at low Q2 [52].
Dedicated analysis of the asymptotic regime of the TFF
in theory and in terms of the experimental data will be
given in [67].
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APPENDIX A: NEXT-ORDER PERTURBATION ELEMENTS

The coefficient function of the partonic subprocess T ð1Þ and the evolution kernel Vð0Þ
þ ,

1

CF
T ð1Þðx; yÞ ¼ ½−3Vb þ g�þðx; yÞ − 3δðx − yÞ; ðA1Þ

1

CF
Vð0Þ
þ ðx; yÞ ¼ 2

�
Cθðy > xÞ x

y

�
1þ 1

y − x

��
þ
≡ 2½Vaðx; yÞ þ Vbðx; yÞ�þ; ðA2Þ

are determined by the elements

gþðx; yÞ ¼ −2
�
θðy > xÞ ln ð1 − x=yÞ

y − x
þ θðy < xÞ lnð1 − x̄=ȳÞ

x − y

�
þ
; ðA3aÞ

Vaðx; yÞ ¼ Cθðy > xÞ x
y
; Vbðx; yÞ ¼ Cθðy > xÞ x

y

�
1

y − x

�
; ðA3bÞ

where the symbol C means C ¼ 1þ fx → x̄; y → ȳg. The expression for the key convolution term T ð1Þðx; yÞ ⊗ ψnðyÞ in
the harmonic expansion can be significantly simplified to get

1

CF
T ð1Þðx; yÞ⊗

y
ψ0ðyÞ ¼

�
−3þ π2

3
− ln2

�
x̄
x

��
ψ0ðxÞ − 2ψ0ðxÞ; ðA4Þ
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1

CF
T ð1Þðx; yÞ⊗

y
ψnðyÞ ¼

�
−3ð1þ vbðnÞÞ þ π2

3
− ln2

�
x̄
x

��
ψnðxÞ − 2

Xn
l¼0;2;…

Gnlψ lðxÞ; ðA5Þ

vbðnÞ ¼ 2ðψð2Þ − ψð2þ nÞÞ; vðnÞ ¼ 1=ðnþ 1Þðnþ 2Þ − 1=2þ 2ðψð2Þ − ψð2þ nÞÞ; ðA6Þ

see Appendix A in [51]. The quantities vbðnÞ and vðnÞ ¼ − 1
2CF

γ0ðnÞ are the eigenvalues of the elements Vbþ and Vaþ þ Vbþ
of the one-loop kernel in Eq. (A2), respectively. Expression Gnl denotes the elements of a calculable triangular matrix
(omitted here)—see for details [51,57].

APPENDIX B: ANALYTIC PROPERTIES OF FAPT COUPLINGS

1. Initial FAPT couplings

In this Appendix we give the expressions for the standard one-loop running couplings and their FAPT counterparts.
To facilitate the representation, we express them in terms of the auxiliary variable L ¼ lnðQ2=Λ2

QCDÞ, multiplied for
simplicity by the term βν0. In other words, we shift the origin of the different coupling images to the values
as → As ¼ β0as ¼ β0αs=ð4πÞ,

Aν
s½L� ¼

1

Lν standard pQCD; ðB1aÞ

Að1Þ
ν ½L� ¼ 1

Lν −
Fðe−L; 1 − νÞ

ΓðνÞ spacelike FAPT; ðB1bÞ

Að1Þ
ν ½Ls� ¼

sin ½ðν − 1Þ arccos ðLs=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2

s þ π2Þ
p

Þ�
πðν − 1ÞðL2

s þ π2Þðν−1Þ=2 timelike FAPT; ðB1cÞ

where the symbol ½L� is used to denote the function argument, clearly distinguishing it from the Q2 dependence.2 The

spectral density ρð1Þν has the form (Lσ ¼ lnðσ=Λ2
QCDÞ)

ρð1Þν ½Lσ� ¼
1

π
Im½aνðlÞð−σÞ� ¼

1

π

sin ½ν arccos ðLσ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
σ þ π2

p
Þ�

ðL2
σ þ π2Þν=2 : ðB1dÞ

Here, Fðe
−L;1−νÞ
ΓðνÞ is the “pole remover,” expressed in terms of the Lerch transcendental function Fðz; sÞð¼ LisðzÞÞ [43]. The

following equation,

Fðz; 1 − νÞ þ exp ðiπð1 − νÞÞFð1=z; 1 − νÞ ¼ ð2iπÞ1−ν
Γð1 − νÞ ζ

�
ν;
lnðzÞ
2iπ

�
; ðB2Þ

determines the analytic continuation into the outer region of the radius of convergence, making use of the Hurwitz zeta
function ζðν; zÞ. The first few terms of its asymptotic expansion for argðzÞ < π are given by [70]

ζðν; zÞjjzj→∞ ¼ −
�
z
2πi

�
1−ν 1

1 − ν
þ 1

2

�
z
2πi

�
−ν

þ � � � ðB3Þ

Using this asymptotic expansion for L → −∞ (which corresponds toQ2 → 0) and for 0 ≤ ν ≤ 1, we obtain for Eq. (B2) the
following expression:

FðejLj; 1 − νÞ þOðe−jLjÞ ¼ ð2πiÞ1−ν
Γð1 − νÞ ζ

�
ν;
jLj
2iπ

�
¼ −

1

Γð2 − νÞ ½jLj�
1−ν þ iπ

Γð1 − νÞ ½jLj�
−ν þ � � � : ðB4Þ

2An expression analogous to (B1c) was derived long ago in [68,69] in connection with multiloop calculations and the Higgs-boson
decay into hadrons.
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By substituting the asymptotic form of this equation into
(B1b), we get

Að1Þ
ν ½L� ⟹L→−∞ 1

Lν þ
1

ΓðνÞΓð2 − νÞ jLj
1−ν

−
iπ

ΓðνÞΓð1 − νÞ jLj
−ν þ � � � ; ðB5Þ

where the second term leads to a divergence in the limit
∼jLj1−ν when L → −∞. Employing Eqs. (B5) and (B1c),
one can then obtain the range of values of the functions

Að1Þ
ν , Að1Þ

ν , notably,

Að1Þ
0 ½L� ¼ 1; Að1Þ

0<ν<1½L → −∞� → jLj1−ν;
Að1Þ

1 ½L → −∞� → 1; Að1Þ
ν>1½L → −∞� → 0; ðB6aÞ

Að1Þ
0 ½L� ¼ 1; Að1Þ

0<ν<1½L → −∞� → ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ π2

p
Þ1−ν;

Að1Þ
1 ½L → −∞� → 1; Að1Þ

ν>1½L → −∞� → 0: ðB6bÞ
One observes that the couplingsAð1Þ

ν ½L�,Að1Þ
ν ½L� become

unbounded in the vicinity of Q2 ¼ 0 and 0 < ν ≤ 1. In
some sense, the well-known singularity of the standard
running coupling Aν

s½L� in Eq. (B1a) for L ¼ 0 and ν > 0
turns in the limit L → −∞ into a singularity of the FAPT
couplings for 0 < ν < 1, cf. (B1b) and (B1c). Therefore,

these results for Að1Þ
ν ½L�, Að1Þ

ν ½L� cannot be directly used in
the vicinity of Q2 ¼ 0 and 0 < ν ≤ 1, where the FAPT
couplings are ill defined. One needs to calibrate these
couplings in this regime by demanding that they vanish.
This intervention guarantees at the same time that observ-
ables calculated with them, e.g., the TFF, have the correct
UV asymptotics following from pQCD. To this end, we

redefine the couplings Að1Þ
ν , Að1Þ

ν in the vicinity of Q2 ¼ 0

and for 0 < ν ≤ 1, to be Að1Þ
ν ½−∞� ¼ 0, Að1Þ

ν ½−∞� ¼ 0,
while the behavior of these couplings for ν > 1 remains
unaffected.

2. Generalized FAPT coupling I ν

During the calculation considered in Sec. III A, a new,
more general, two-argument coupling Iνðy; xÞ appeared
“naturally” in Eq. (19), viz.,

FIG. 4. Three-dimensional plot of the generalized coupling
IνðlnðxÞ; lnðyÞÞ using logarithmic scales. The abbreviations in the
plot mean Lx ¼ lnðxÞ, Ly ¼ lnðyÞ, with Iν being considered for
three different values of the index ν ¼ 1=2, 1, 2 and Nf ¼ 3.

FIG. 5. “Distorting mirror” symmetry in the two-dimensional projections of the three-dimensional plots of Iν. The couplings
Iνðy; fixedÞ, Iνðfixed; xÞ are taken at different values of the index ν ¼ 1=2, 1, 3=2, 2.
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p
Iνðy; xÞ ¼

Z
∞

y

ds
sþ x

ρνðsÞ ¼

8>><
>>:

h
AνðyÞ − x

R
∞
y

ds
sðsþxÞ ρνðsÞ

i
≤ AνðyÞ; for ρν ≥ 0;h

AνðxÞ −
R y
0

ds
sþx ρνðsÞ

i
≤ AνðxÞ; for ρν ≥ 0;

ðB7Þ

Iνðy; x → 0Þ ¼ AνðyÞ; Iνðy → 0; xÞ ¼ AνðxÞ; I1ðy → 0; x → 0Þ ¼ A1ð0Þ ¼ A1ð0Þ: ðB8Þ

The coupling Iνðy; xÞ is regular for y > 0, x > 0, while for y ¼ 0 or x ¼ 0 it reduces to the initial FAPT couplings in
accordance with Eq. (B8). The behavior of Iνðy; xÞ with respect to the arguments ðx; yÞ is illustrated in Fig. 4, while the
graphics showing its behavior when one of its arguments is fixed is displayed in Fig. 5. One appreciates in this figure the
smallness of the next-order FAPT coupling I2.

APPENDIX C: TWO SCALES EFFECTIVE COUPLING

Here we outline the calculation of the key element of the dispersion integral discussed in Sec. IVA, viz.,

NT

Z
∞

s0

ds
sþ q2

ρðQ2; sÞ ¼ Fγ�π
FAPTðQ2;m2; s0Þ; ðC1Þ

at the low limit s0. After changing the integration variable to s → σ ¼ −ð−sȳþQ2yÞ ≥ 0, the low limit becomes
sðyÞ ¼ s0ȳ −Q2y. The value of the low limit sðyÞ > m2 of this function leads to a new constraint for the range of
integration in the variable σ, notably, σ > sðyÞ. On the other hand, if sðyÞ ≤ m2, one should start to integrate with σ ¼ m2,
where ρνðσÞ ≠ 0. In the range s0 > m2, one then obtains

InðQ2; q2Þ ¼ −θðs0 > m2Þ
�
θðsðyÞ > m2Þ

Z
∞

sðyÞ
ds

ρνnðσÞ
σðσ þQðyÞÞ þ θðsðyÞ ≤ m2Þ

Z
∞

m2

ds
ρνnðσÞ

σðσ þQðyÞÞ
�
; ðC2Þ

while for the case s0 < m2 only the second term survives, i.e.,

InðQ2; q2Þ ¼ −θðs0 < m2Þ
Z

∞

m2

ds
ρνnðσÞ

σðσ þQðyÞÞ : ðC3Þ

Substituting Eq. (18) into Eq. (C2), one arrives at the final expression for In,

InðQ2; q2Þ ¼ T0ðQ2; q2; yÞfθðy < y0Þ½IνnðsðyÞ; QðyÞÞ −AνnðsðyÞÞ�
þ θðy ≥ y0Þ½Iνnðm2; QðyÞÞ −Aνnðm2Þ�g; ðC4Þ

where y0 ¼ ðs0 −m2Þ=ðs0 þQ2Þ and the couplings Aν and Aν appear as the limits of Iν by allowing their arguments to
approach 0, cf. (19c). The effective coupling Aνðm2; s0; yÞ, following from Eqs. (C2) and (C3), reads

Aνðm2; s0; yÞ ¼
�
θðy < y0Þ½IνnðsðyÞ; QðyÞÞ −AνnðsðyÞÞ� þ θðy ≥ y0Þ½Iνnðm2; QðyÞÞ −Aνnðm2Þ�; m2 < s0

Iνnðm2; QðyÞÞ −Aνnðm2Þ; m2 > s0;
ðC5Þ

whereas the quantity Aνðm2; yÞ in the vicinity of y0 for sðy0Þ ¼ m2 is a continuous function as it follows from the
properties expressed in (19c). In the limit s0; m2 → 0, one has Aνð0; yÞ → ½AνðQðyÞÞ −Aνð0Þ�, which completes the
argument.
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