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We study linear perturbations of classically stable Q-balls in theories admitting analytic solutions.
Although the corresponding boundary value problem is non-Hermitian, the analysis of perturbations can
also be performed analytically in certain regimes. We show that in theories with the flat potential, large
Q-balls possess soft excitations. We also find a specific vibrational mode for Q-balls with a near-critical
charge, where the perturbation theory for excitations can be developed. Comparing with the results on
stability of Q-balls provides additional checks of our analysis.
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I. INTRODUCTION

The study of linear perturbations above compact
objects is a general issue which can provide interesting
phenomenology. Recent examples include the investigation
of quasinormal modes of black holes, which play an
essential role in the analysis of gravitational wave signals
[1,2]. For stars composed of baryonic matter, the pertur-
bations depend strongly on the internal physics and cannot
be surveyed by the means of field theory. Moreover, the
presence of dissipation usually leaves possible only
numerical analysis in a realistic setting.
To avoid problems related to dissipation, one can

study closed systems that can be formulated in the
Lagrangian form. Nonrelativistic physics provides a very
interesting possibility to investigate a nonuniform Bose-
Einstein condensate; see [3] for a review. It is remark-
able that excitations in the Bose-Einstein condensate can
be studied both theoretically and experimentally in the
dilute gas approximation. Relativistic field theories of a
complex scalar field also provide compact objects that
can be studied in the semiclassical approximation.
Examples of localized stationary configurations with
dynamical gravity include different types of boson stars
(BS) (see [4,5] for reviews) or related objects such as

axion miniclusters [6]. Recently, the analysis of bound
states of BS was performed in [7]. Although their
phenomenology is interesting, gravity precludes the
analytical investigation of excitations of BS. Objects
better suited for this purpose are counterparts of
(solitonic) BS in the limit when gravity is absent.
These are Q-balls [8] arising in theories of a complex
scalar field with potentials of a special type.
In this paper, we first discuss applicability conditions for

the semiclassical treatment of solitons (Sec. II). We then
study linear perturbations of Q-balls in a piecewise para-
bolic potential with the flat direction. In this model, the
perturbations can be found in an analytic form at all
frequencies of the background configuration. This is done
in Sec. III. In Sec. IV, we consider perturbations in the thin-
wall limit of Q-balls in a polynomial potential. One can
think of this case as a complement to the model with the flat
potential where the thin-wall approximation is not appli-
cable. In the Appendix we use a model with an analytic
solution to check the perturbation theory near the critical
charge, developed in the main text.

II. SEMICLASSICAL APPROXIMATION

Consider a Uð1Þ-invariant theory of the complex scalar
field with the Lagrangian

L ¼ j∂μϕj2 − VðjϕjÞ: ð1Þ

The potential VðjϕjÞ is assumed to be a smooth function
of jϕj2 with an absolute minimum at jϕj ¼ 0 at which
Vð0Þ ¼ 0. For the validity of the semiclassical descrip-
tion of solitons [9], the potential must be presentable in
the form
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VðjϕjÞ ¼ 1

g2
UðgjϕjÞ; ð2Þ

where g is a small dimensionless coupling constant. Then,
after an appropriate field redefinition the action of the
theory becomes supplemented with the overall large factor
g−2, thus justifying the semiclassical treatment of solitons.
The form (2) of the potential is convenient in (1þ 1)
dimensions where the field ϕ is itself dimensionless. In
four-dimensional space-time let us suppose that the relevant
scale of a theory is set by a mass m of the boson in the
vacuum ϕ ¼ 0. Then, Eq. (2) is rewritten as

VðjϕjÞ ¼ m4

g2
Uðgjϕj=mÞ: ð3Þ

In this paper we consider two featured potentials giving
essentially different profiles for classically stable Q-balls.
The first one is the piecewise parabolic potential [10],

VðjϕjÞ ¼ m2jϕj2θ
�
1 −

jϕj2
v2

�
þm2v2θ

�jϕj2
v2

− 1

�
; ð4Þ

which admits analytic solutions both for the classical
configurations and linear perturbations above them [11].
It can be written in the form (3) with g ¼ m=v and

UðxÞ ¼ x2θð1 − x2Þ þ θðx2 − 1Þ: ð5Þ

The potential (4) serves to approximate realistic potentials
with the flat direction, which can be of use, e.g., in
describing dark matter by Q-balls [12]. The Heaviside
functions in Eq. (5) can be regularized in a number of ways
by replacing

UðxÞ → UαðxÞ; ð6Þ

where we assume that the regularization parameter α is not
very large and

g ≪ α: ð7Þ

Other theories admitting nontopological solitons contain
potentials of the polynomial form. As was discussed in [8],
in order to allow Q-balls in a theory of one complex scalar
field with the global Uð1Þ-symmetry, it is necessary to
include nonrenormalizable self-interactions into the poly-
nomial scalar potential. Yet, it is enough to add just the
sixth-order term ∝ jϕj6. In [13], the thorough analysis of
Q-balls in the polynomial potential of the sixth degree
was performed. For practical purposes, one can absorb the
constantsm and g in a suitable field redefinition, by writing
m ¼ g ¼ 1. Of course, this does not mean strong coupling
and the overall factor g−2 in the action must be kept
in mind.

The ansatz for spherically symmetric Q-balls takes the
form

ϕ0ðx⃗; tÞ ¼ fðrÞeiωt: ð8Þ

The conserved Uð1Þ charge is then given by

Q ¼ −i
Z

d3xðϕ�
0
_ϕ0 − ϕ0

_ϕ�
0Þ ¼ 8πω

Z
drr2f2ðrÞ; ð9Þ

and we will limit the consideration to the case Q > 0,
which implies the positive frequencies, ω > 0. The charge
conservation does not guarantee stability of nontopological
solitons. The latter, therefore, split on two branches—the
classically stable Q-balls and the classically unstable ones,
dubbed as Q-clouds [14].1

We will study small perturbations of the configura-
tions (8),

ϕ ¼ ϕ0 þ χ; χðx⃗; tÞ ¼ ψðx⃗; tÞeiωt; ð10Þ

where we factored out the background phase factor in the
expression for χ in order to get rid of the explicit time
dependence in the linearized equations for perturbations.
The latter reads as follows:

ð∂0 þ iωÞ2ψ − Δψ ¼ −hðrÞψ� − gðrÞψ ;
ð∂0 − iωÞ2ψ� − Δψ� ¼ −hðrÞψ − gðrÞψ�; ð11Þ

where

hðrÞ ¼
�
z
d2V
dz2

�����
z¼f2ðrÞ

;

gðrÞ ¼
�
z
d2V
dz2

þ dV
dz

�����
z¼f2ðrÞ

; ð12Þ

and we denoted z ¼ jϕj2. Note that, in general, it is
impossible to disentangle the equations for ψ and its
complex conjugate. Also, Eq. (11) cannot be viewed as
an eigenvalue problem for some Hermitian operator. We
will see how to deal with this fact in the examples below.

III. PERTURBATIONS IN PIECEWISE
PARABOLIC POTENTIAL

In this section we study perturbations of Q-balls in three
spatial dimensions and in a theory with the piecewise
parabolic potential equation (4). For this potential, the
functions h, g defined in Eq. (12) become

1Classically stable Q-balls can still be metastable in the small
kinematical region; see [15] for details.
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hðrÞ ¼ −
m2

2
δ

�
fðrÞ
v

− 1

�

gðrÞ ¼ m2θ

�
1 −

f2ðrÞ
v2

�
þ hðrÞ: ð13Þ

Our main concern will be with the discrete spectrum of
modes around a classically stable Q-ball solution whose
frequency is below the critical one,ω < ωc. Wewill refer to
them as the vibrational modes. For completeness, we also
consider a decay mode of the unstable branch of Q-balls,
occurring at ω > ωc. As we will see, an analytic continu-
ation of the decay mode below the cusp point ωc gives a
specific vibrational mode existing for the solutions with the
frequencies close enough to ωc.
From Eq. (13), one observes the mass m of the boson to

be the relevant dimensional parameter in the theory. For this
reason, in this section we measure physical quantities in the
units of this mass, by setting m ¼ 1. Then, ωc ≈ 0.960.

A. Vibrational modes

An appropriate ansatz [16] governing the dynamics of
small oscillations on top of the classically stable Q-balls
reads as follows2:

ψðx⃗; tÞ ¼ ðψ ðlÞ
1 ðrÞeiγt þ ψ ðlÞ

2 ðrÞe−iγtÞYl;mðθ;φÞ; ð14Þ

where the parameter γ is taken to be real and positive, ψ ðlÞ
1 ,

ψ ðlÞ
2 are real functions of the radial coordinate, and Yl;m are

spherical harmonics. Substituting this into Eq. (11) and
collecting the terms with equal phase factors, we obtain�
Δr−

lðlþ1Þ
r2

þðωþγÞ2−gðrÞ
�
ψ ðlÞ
1 ðrÞ−hðrÞψ ðlÞ�

2 ðrÞ¼0;�
Δr−

lðlþ1Þ
r2

þðω−γÞ2−gðrÞ
�
ψ ðlÞ
2 ðrÞ−hðrÞψ ðlÞ�

1 ðrÞ¼0:

ð15Þ

The equations for perturbations must be supplemented with
the boundary conditions

ψ ðlÞ
1;2ð∞Þ ¼ 0;

dψ ðlÞ
1;2

dr

����
r¼0

¼ 0: ð16Þ

In order to make the solution of Eq. (15) satisfy the
boundary condition at infinity (i.e., to limit the analysis
to the bound states), we have to impose

ωþ γ < 1: ð17Þ

Equation (15) is solved exactly in the regions of
magnitudes of the background Q-ball fðrÞ > v (r < R)
and fðrÞ < v (r > R). Namely,

ψ ðlÞ
1 ðrÞ ¼

8<
:

A Jlþ1=2ðωþrÞffiffi
r

p ; r < R

BKlþ1=2ðλþrÞffiffi
r

p ; r > R
ð18Þ

and

ψ ðlÞ
2 ðrÞ ¼

8<
:

C Jlþ1=2ðω−rÞffiffi
r

p ; r < R

DKlþ1=2ðλ−rÞffiffi
r

p ; r > R
ð19Þ

where Jlþ1=2 and Klþ1=2 are Bessel and modified Bessel
functions of the first and the second kind, correspondingly
and of the order lþ 1=2, and we denoted

ω� ¼ ω� γ;

λ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðω� γÞ2

q
: ð20Þ

The solutions must be matched smoothly at the point
r ¼ R, which is given by

R ¼ 1

ω

�
π − arctan

ωffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
�
: ð21Þ

This is the matching radius for the background configu-
ration; see [11] for details. One can consider that inside this
radius the scalar potential is flat and outside it is quadratic.
It is this feature that allows us to resolve analytically the
Q-ball profile in the potential (4).
The values of the constants A to D are inferred from the

matching conditions. The latter can be resolved provided
that

�
K0

lþ1=2ðλþRÞ
Klþ1=2ðλþRÞ

−
J0lþ1=2ðωþRÞ
Jlþ1=2ðωþRÞ

þΛ
2

�

×

�
K0

lþ1=2ðλ−RÞ
Klþ1=2ðλ−RÞ

−
J0lþ1=2ðω−RÞ
Jlþ1=2ðω−RÞ

þΛ
2

�
−
Λ2

4
¼ 0; ð22Þ

where

Λ ¼ R

R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
þ 1

: ð23Þ

Equations (17) and (22) determine the spectrum of
vibrational modes near the Q-balls. At a given frequency
ω, there is a finite amount of modes distinguished by
l and an integer n enumerating the solutions of Eq. (22).
Additionally, there is a (2lþ 1) degeneracy in each mode
with the given values of l and n.

2Note that the ansatz (14) does not allow us to catch all
possible excitations of a Q-ball. For example, it excludes the
Uð1Þ modes from consideration unless γ ¼ 0.
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Let us take a closer look at the spectrum of spherically
symmetric modes, l ¼ 0. It is plotted in Fig. 1. We observe
that the number of bound states increases as ω → 0. In this
limit, Q → ∞ and the large Q-balls possess soft modes
with γ → 0; i.e., both γ and ω are much less than the mass
of the free boson. An argument in favor of this property is
the flatness of the scalar potential inside the Q-balls at the
scale ∼ω−1. Interestingly, theQ-balls with the large enough
frequencies do not support any of the modes from the
discrete spectrum. However, close to the stability bound,
one oscillatory solution reappears. As we will see below,
this solution continues to the instability region where it
represents the decay mode.
From Fig. 1, one observes that the dependence of the

relative frequency γ of a given mode on ω linearizes in the
limit ω → 0. To see this explicitly, we take γ ¼ kω and
substitute it to Eq. (22) with l ¼ 0. To the first order in ω,
this gives

ðkπ cos kπ − sin kπÞ sin kπ ¼ 0: ð24Þ
The solution of this equation is well approximated by

kn ≈
n
2
; n ¼ 1; 3; 4; 5;… ð25Þ

where we have excluded the root with n ¼ 2 since the
latter is singular; see Fig. 2 for a comparison of Eq. (25)
with the exact solution. Finally, for the vibrational mode
existing in the opposite part of the spectrum, ω → ωc,
Fig. 1 demonstrates that

γ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωc − ω

p
: ð26Þ

Note that whenever γ is small, one can make use of the
perturbation theory with respect to γ. In this limit, the linear
perturbations of the Q-balls take a simple form

ψ1 ∼ f þ γ
∂f
∂ωþOðγ2Þ; ψ2 ∼ −f þ γ

∂f
∂ωþOðγ2Þ:

ð27Þ

From Fig. 2 we see that, apart from the region of low
frequencies, the perturbation theory suits well to describe
the vibrational mode appearing when ω approaches the
critical value. Note also that the expansion (27) is not
peculiar to the potential (4). In fact, the soft modes
described by the ansatz (14), as well as the mode in the
vicinity of the cusp point, are of this form regardless of the

FIG. 1. The discrete spectrum of linear perturbations of classically stable Q-balls in the potential (4), at l ¼ 0. The dashed line shows
the bound specified by Eq. (17), which separates the discrete and continuous parts of the spectrum. All quantities are normalized to the
parameter m. The left panel shows the overall picture, while the right panel takes a closer look at the vibrational mode near the
cusp point.

FIG. 2. The discrete spectrum of spherically symmetric per-
turbations of Q-balls with low frequencies ω. One observes the
oscillation rates γ to become proportional to ω. The solid lines
show the exact solution, while the dotted lines represent the
approximate formula γ ¼ kω with k given in Eq. (25). The
number (n) marks the mode at the nth energy level, according to
Eq. (25).
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shape of the scalar potential. In the Appendix we explicitly
illustrate this using another exactly solvable potential.
The structure of the spectrum with a nonzero orbital

momentum is similar to that with l ¼ 0. This is demon-
strated in Fig. 3, where the modes with l ¼ 1, 2 are plotted.
One sees that unlike the l ¼ 0 case, there are no vibrational
modes in the vicinity of the cusp point.

B. Decay mode

The decay mode is captured by the following perturba-
tion ansatz with l ¼ 0:

ψðx⃗; tÞ ¼ ζðrÞeγt; ð28Þ

where γ is taken to be real and positive. Studying the
condition under which this mode exists, one arrives at
the Vakhitov-Kolokolov criterion dQ=dω > 0 [17] of the
instability of Q-balls [14]. Substituting Eq. (28) into
Eq. (11), we deduce

ðΔr − ðγ þ iωÞ2 þ gðrÞÞζðrÞ þ hðrÞζ�ðrÞ ¼ 0;

ðΔr − ðγ − iωÞ2 þ gðrÞÞζ�ðrÞ þ hðrÞζðrÞ ¼ 0: ð29Þ

Imposing the boundary conditions

ζ0ð0Þ ¼ 0; ζð∞Þ ¼ 0 ð30Þ

results in the solution

ζðrÞ ¼
(
A sin ðλrÞ

r ; r < R;

B e−ϑr
r ; r > R;

ð31Þ

and the analogous expression for ζ�. Here we denote

λ2 ¼ ω2 − γ2 − 2iγω;

ϑ2 ¼ m2 þ γ2 − ω2 þ 2iγω; ð32Þ

and R is given in Eq. (21). The constants A, B, and λ are
found from a smooth matching of the two parts of the
solution at r ¼ R. For λ we have

ðjλj2 − jϑj2 þ ϑRΛÞ cosð2λRRÞ
þ ðjλj2 þ jϑj2 − ϑRΛÞ coshð2λIRÞ
þ ð2ϑIλI þ 2ϑRλR − λRΛÞ sinð2λRRÞ
þ ð2ϑRλI − 2ϑIλR − λIΛÞ sinhð2λIRÞ ¼ 0; ð33Þ

where the subscript I (R) means imaginary (real) part, and
Λ is defined in Eq. (23).3

The solution of Eq. (33) is shown in Fig. 4. One observes
that γ → 0 as ω approaches the cusp point. It is easy to
show that near the cusp

γ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω − ωc

p
: ð34Þ

Comparing with Eq. (26), we see that the solution is
continued analytically beyond the cusp point where it
becomes the vibrational mode in the spectrum of Q-balls
lying close to the stability bound. This is shown explicitly
on the right panel of Fig. 4 where we denote

γ̃2 ≡ γ2 for ω < ωc; γ̃2 ≡ −γ2 for ω ≥ ωc: ð35Þ

Note that, except for a vicinity of the point ω ¼ 1, the
decay rate γ is small enough, which makes the perturbation
theory with respect to γ applicable almost everywhere
along the unstable branch ofQ-balls. For example, the form
of the decay mode to the linear order in γ is

ψe−γt ∼ if þ γ
∂f
∂ωþOðγ2Þ: ð36Þ

FIG. 3. The discrete spectrum of linear perturbations of classically stableQ-balls in the potential (4), at l ¼ 1 (the left panel) and l ¼ 2
(the right panel); cf. Fig. 1.

3In cases when the potential does not admit analytic solutions,
Eq. (29) can be solved numerically; see, e.g., [15].
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In this expression, the first term represents the Goldstone
mode corresponding to the global Uð1Þ symmetry of the
theory.

IV. THIN-WALL LIMIT OF Q-BALLS IN
POLYNOMIAL POTENTIAL

A. Ansatz

In general, a theory of the complex scalar field with a
polynomial potential does not admit analytic Q-ball sol-
utions in three spatial dimensions. Nevertheless, an ana-
lytical description of both the Q-balls and their excitations
can be obtained in certain limits of parameters of the theory.
One of these limits is governed by the so-called thin-wall
approximation [8]. In this regime, the properties of aQ-ball
are well captured by a few quantities—a distance R to the
wall separating interior and exterior regions of the con-
figuration, and a magnitude f0 of the scalar field in the
interior. Hence, the thin-wall approximation allows us to
reduce the full variational problem to a problem of finding a
(conditional) extremum of a function depending on the
finite amount of parameters.
In order to justify the transition from the description

of a solution in terms of the fields to the description in
terms of just a finite set of variables, a suitable field
ansatz containing such variables must be adopted. The
latter must be chosen in a way compatible with the
equations of motion of the original theory. The thin-wall
approximation implies the existence of a small param-
eter ϵ with respect to which one measures a degree of
validity of the chosen ansatz. Perturbation theory built
with ϵ will ensure the independence of the leading-order
characteristics of the solution R and f0 of the details of
the ansatz.
In this section we consider the simplest bounded below

polynomial potential of the sixth degree, which is conven-
iently parametrized as follows:

VðjϕjÞ ¼ ðδðjϕj2 − v2Þ2 þ ω2
minÞjϕ2j; ð37Þ

where δ > 0. With this potential, the frequencies of non-
topological solitons are confined in the region

ωmin < ω < m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
min þ δv4

q
: ð38Þ

The thin-wall approximation is applicable for stable
Q-balls near the lower bound of this region, ωmin > 0,
and we expect

ϵ ¼ ω − ωmin ð39Þ
to be an appropriate small parameter. The ansatz for the
Q-balls in this limit can be chosen in a number of ways. For
example, the form of the solution in (1þ 1) dimensions
[18] suggests the following expression for the magnitude of
the scalar field:

fðrÞ ¼
�
f0; r < R;

f0ðcosh2aðr− RÞ þ bsinh2aðr− RÞÞ−1
2; r ≥ R

ð40Þ

with a, b > 0. It captures a more subtle structure of the
solution, allowing us to compute, for example, a proper
thickness of the wall, which is subleading to the radius of a
Q-ball. However, for the purposes of studying perturbations
on top of the Q-balls, it is enough to make the simplest
choice possible,

fðrÞ ¼ f0θ

�
1 −

r
R

�
: ð41Þ

Below we proceed with this form of the ansatz, by
computing first f0 and R to the leading order in ϵ, and
then studying analytically the discrete spectrum of
perturbations.

FIG. 4. Left panel: The decay rate of unstable Q-balls in the potential (4). Right panel: The transition between the decay and
vibrational modes, with γ̃ defined in Eq. (35); cf. Fig. 1.
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B. Q-ball solution in the thin-wall regime

With the ansatz (41) applied, the global charge of a
Q-ball is written as

Q ¼ 8

3
πR3ωf20: ð42Þ

Further, the energy of the soliton takes the form [8],

E ¼ Esurf þ Evol; ð43Þ

where the surface energy of the wall is given by

Esurf ¼ lim
ω→ωmin

Z
d3xðð∇fÞ2þVðfÞ−ω2f2Þ ¼ 8πR2

ffiffiffi
δ

p
v4;

ð44Þ

and the energy of the Q-ball’s interior is

Evol¼
Z

d3xðω2þω2
minÞf2¼

4

3
πR3ðω2þω2

minÞf20: ð45Þ

The size R of the Q-ball and its magnitude f0 are found
by minimizing the energy while keeping the charge fixed.
To the leading order in ϵ this gives

f0 ¼ vþOðϵÞ; R ¼
ffiffiffi
δ

p
v2

2ωmin

1

ϵ
þOð1Þ: ð46Þ

As expected, R experiences a powerlike divergence
as ϵ → 0.
Equation (46) coincides with those obtained, e.g., in [13]

after a suitable reparametrization of the potential (37) is
made. Note also that, as a cross-check, one can make sure
that the well-known relation between the energy and the
charge of a Q-ball,

dE
dω

¼ ω
dQ
dω

; ð47Þ

is satisfied upon substituting Eq. (46) into the expressions
for Q and E and differentiating with respect to ω.

C. Vibrational modes in the thin-wall regime

Proceeding as in the case of the piecewise parabolic
potential studied before, we choose the ansatz for pertur-
bations according to Eq. (14) and substitute it into Eq. (11)
where the functions h, g are taken as

hðrÞ ¼ −4δv2f2ðrÞ þ 6δf4ðrÞ;
gðrÞ ¼ m2 − 8δv2f2ðrÞ þ 9δf4ðrÞ; ð48Þ

and fðrÞ is given in Eqs. (41) and (46). The resulting
equations are solved analytically in the regions r > R and

r < R, and the corresponding solutions are subject to the
boundary conditions (16) and the requirement of a smooth
matching at r ¼ R.
In the exterior of the Q-ball, r > R, a straightforward

calculation gives

ψ ðlÞ
1 ðrÞ ¼ C

klþ1
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ðωþ γÞ2

p
rÞ

r
;

ψ ðlÞ
2 ðrÞ ¼ D

klþ1
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ðω − γÞ2

p
rÞ

r
; ð49Þ

where

klþ1
2
ðxÞ ¼ ffiffiffi

x
p

Klþ1
2
ðxÞ: ð50Þ

Inside the Q-ball, r < R, the components ψ and ψ� of the
perturbation in Eq. (11) cannot be disentangled. Let us
denote Ψ ¼ ðψ1;ψ2ÞT . Then, in the matrix notation,

ððΔþω2þ γ2−αÞ×12×2þ2ωγσ3−2βσ1ÞΨ¼ 0; ð51Þ

where σ1;3 are the Pauli matrices and we introduced

α ¼ gðr < RÞ ¼ m2 þ δv4; β ¼ hðr < RÞ
2

¼ δv4:

ð52Þ

Let U be the matrix diagonalizing the last two terms of the
operator in the lhs of Eq. (51). Then, introducing a vector Ξ
such that Ψ ¼ UΞ, one obtains separate equations for the
components ξ1 and ξ2 of Ξ. Solving them yields

ξðlÞ1 ¼ A
jlþ1

2

�
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ γ2 − αþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωγÞ2 þ β2

pq �
r

;

ξðlÞ2 ¼ B
ilþ1

2

�
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωγÞ2 þ β2

p
− ω2 − γ2

q �
r

; ð53Þ

where

jlþ1
2
ðxÞ ¼ ffiffiffi

x
p

Jlþ1
2
ðxÞ;

ilþ1
2
ðxÞ ¼ ffiffiffi

x
p

Ilþ1
2
ðxÞ; ð54Þ

and Ilþ1
2
ðxÞ is the modified Bessel function of the first kind

and of the order lþ 1=2. From this and an explicit form of
the matrix U,

U ¼
�
−ωγ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2γ2 þ β2

p
−ωγ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2γ2 þ β2

p
β β

�
;

ð55Þ

one restores the components ψ ðlÞ
1 and ψ ðlÞ

2 of the
perturbation.
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The values of the constants A to D are found by matching smoothly the modes at the position of the wall r ¼ R. The
matching also determines an equation that allowable values of γ must satisfy. The latter reads as follows:

�
−2λþλ−

k0
lþ1

2

ðλþRÞ
klþ1

2
ðλþRÞ

k0
lþ1

2

ðλ−RÞ
klþ1

2
ðλ−RÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2ω2

q
þ ωþλ−

j0
lþ1

2

ðωþRÞ
jlþ1

2
ðωþRÞ

k0
lþ1

2

ðλ−RÞ
klþ1

2
ðλ−RÞ

�
γωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2ω2

q �

þ ωþλþ
j0
lþ1

2

ðωþRÞ
jlþ1

2
ðωþRÞ

k0
lþ1

2

ðλþRÞ
klþ1

2
ðλþRÞ

�
−γωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2ω2

q ��

þ ω−

j0
lþ1

2

ðω−RÞ
jlþ1

2
ðω−RÞ

�
−2ωþ

j0
lþ1

2

ðωþRÞ
jlþ1

2
ðωþRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2ω2

q
þ λ−

k0
lþ1

2

ðλ−RÞ
klþ1

2
ðλ−RÞ

�
−γωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2ω2

q �

þ λþ
k0
lþ1

2

ðλþRÞ
klþ1

2
ðλþRÞ

�
γωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2ω2

q ��
¼ 0; ð56Þ

where

ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2γ2 þ β2

q
� ðω2 þ γ2 − αÞ

r
;

λ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ðω� γÞ2

q
: ð57Þ

Shown in Fig. 5 are the values of γ solving Eq. (56) at
different Q-ball’s frequencies and with a particular choice
of the parameters of the potential. We see that the spectrum
of vibrational modes around a Q-ball in the polynomial
potential shows the same behavior as the one in the

piecewise parabolic potential. In particular, all energy
levels tend to zero as the lower bound ω ¼ ωmin is
approached, and near this bound the spectrum linearizes.
Equation (56) allows significant simplification in the

limit of large R. Using the properties of the special
functions [19],

− lim
x→∞

k0
lþ1

2

ðxÞ
klþ1

2
ðxÞ ¼ lim

x→∞

i0
lþ1

2

ðxÞ
ilþ1

2
ðxÞ ¼ 1; ð58Þ

we arrive at

jlþ1
2
ðωþRÞ

j0
lþ1

2

ðωþRÞ
¼ −

ωþ
ω−

γωðλ− − λþÞ þ ðλ− þ λþ þ 2ω−Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2ω2

p
γωð−λ− þ λþÞ þ ððλ− þ λþÞ þ 2λ−λþ

ω−
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ γ2ω2

p : ð59Þ

FIG. 5. The spectrum of vibrational modes of stable Q-balls in the thin-wall approximation. The parameters of the potential (37) are
chosen as δ ¼ 1.5, v ¼ 0.9, ωmin ¼ 0.126. All quantities are normalized to m. The left panel shows the full spectrum of the spherically
symmetric modes, l ¼ 0. The right panel compares the modes with n ¼ 1 and with different orbital momenta. For illustrative purposes,
only the region near ωmin is shown.
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From Fig. 5 we see that at any given energy level

γ ¼ kϵ: ð60Þ

The coefficient k can be found by substituting this into
Eq. (59). The result is

kn;l ¼
2ωmin

m
μn;lþ1

2
; n ¼ 0; 1; 2;… ð61Þ

where μn;lþ1
2
denotes the nth zero of the Bessel function of

the first kind and of the order lþ 1=2.
Finally, let us evaluate the amount N of discrete energy

levels on top of a Q-ball in the thin-wall approximation.
This amount is finite in view of the constraint

γ þ ω < m; ð62Þ

separating the bound states from the continuous spectrum.
Using the asymptotics of the zeros of the Bessel function,

μn;lþ1
2
¼ πðnþ l

2
Þ þOðn−1Þ; l is fixed;

μn;lþ1
2
¼ lþOðl1=3Þ; n is fixed;

ð63Þ

we have

N ∼
�
m − ωmin

ϵ

m
ωmin

�
3

∼ R3; ð64Þ

where, in the second estimation, we made use of Eq. (46).
We observe that the number of bound states is proportional
to the internal volume of the Q-ball. One expects this result
to hold in the general case. In particular, the similar
counting shows that in the piecewise parabolic potential
the number of bound states follows the same rule, N ∼ R3,
where R is identified with the matching radius (21),
provided that the size of the Q-ball is large enough.

V. CONCLUSION

In this paper, our aim was to study properties of
perturbations of (classically stable) Q-balls arising in
theories of the complex scalar field in different setups.
In choosing particular models for investigation, we were
motivated by the possibility to perform the analytical
treatment of both the background solitons and their
excitations. Namely, we discussed the model with the
piecewise parabolic potential containing the flat direction,
which can approximate realistic theories relevant for
cosmology. A complement to this case is the theories with
potentials exhibiting a powerlike behavior at large fields.
Here we considered the simplest bounded below potential
of the sixth degree and focused on studying the thin-wall
limit of Q-balls in this potential.

We found that the spectra of vibrations of Q-balls in our
examples have some properties in common. This enables us
to believe that their appearance is, in fact, insensitive to the
particular scalar potential. We saw that the large Q-balls in
the model with the flat direction support a bunch of soft
modes with the frequencies ω ∼ γ → 0, well below the mass
of the boson in vacuum. The largeQ-balls in the polynomial
potential, on the other hand, do not contain soft modes due to
the finiteness of the minimal frequency ωmin. Interestingly,
the Q-balls with the nearly critical charges possess the
vibrational mode which is related to the decay mode of the
Q-clouds. It is important to note that the near-critical regime
of these (in general, relativistic) solitons can be analyzed by
the means of the perturbation theory with respect to the
relative frequency γ of an excitation. This result may be of
some interest in studies of relativistic BS, for which the
possibility of the analytical treatment is limited.
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APPENDIX: MORE ON MODE EXPANSION
NEAR THE CUSP POINT

Let us demonstrate that Eq. (27) represents the general
form of linear perturbations of a Q-ball near the cusp point.
To this end, we consider yet another potential admitting
analytic Q-ball configurations. It reads as follows [20]:

VðjϕjÞ ¼ −m2jϕj2 ln
�
λjϕj2
m2

�
; ðA1Þ

where m; λ > 0.4 The profile of a Q-ball is given by

f0ðrÞ ¼
mffiffiffi
λ

p e−
ðmrÞ2

2
− ω2

2m2þ1: ðA2Þ

The linear perturbations governed by the ansatz (14) can
also be found analytically. With this ansatz applied,
Eq. (15) becomes similar to the equation for the one-
dimensional harmonic oscillator, and the perturbations ψ1

and ψ2 are eigenfunctions of that oscillator [20].
The oscillation rate near the cusp point is

γ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −

m2

2

r
; ðA3Þ

4Note that because of the infinite mass of free quanta, the cusp
point in this potential arises in the top-right corner of the EðQÞ
plot. Hence, it sets an upper limit on the charge and energy of
Q-balls, contrary to the common case when the cusp appears in
the bottom-left and constrains the charge and energy from below.
The former picture is more typical for BS (see, e.g., [21]).
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and the corresponding vibrational mode reads as follows:

ψ1 ¼
�
1−

γω

m2

�
f0; ψ2 ¼

�
1−

γω

m2

��
1þ 2γω

m2
þ γ2

m2

�
f0

ðA4Þ

up to an overall normalization constant. Extracting the
linear order in γ, we obtain

ψ1 ∼ f0 þ γ
∂f0
∂ω þOðγ2Þ; ψ2 ∼ −f0 þ γ

∂f0
∂ω þOðγ2Þ;

ðA5Þ

in agreement with Eq. (27). Thus, the perturbation theory
with respect to the parameter jω − ωcj1=2 works well for the
potential (A1).
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