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The Abelian decomposition of QCDwhich decomposes the gluons to the color neutral binding gluons (the
neurons) and the colored valence gluons (the chromons) gauge independently naturally generalizes the quark
model to the quark and chromon model which could play the central role in hadron spectroscopy. We discuss
the color reflection symmetry, the fundamental symmetry of the quark and chromon model, and explain how
it describes the glueballs and the glueball-quarkonium mixing in QCD. We present the numerical analysis of
glueball-quarkonium mixing in 0þþ, 2þþ, and 0−þ sectors below 2 GeV and show that in the 0þþ sector
f0ð500Þ and f0ð1500Þ, in the 2þþ sector f2ð1950Þ, and in the 0−þ sector ηð1405Þ and ηð1475Þ could be
identified as the predominant glueball states. We discuss the physical implications of our result.

DOI: 10.1103/PhysRevD.98.096015

I. INTRODUCTION

An important issue in hadron spectroscopy is the
identification of the glueballs. The general wisdom is that
QCD must have glueballs made of gluons [1–3], and
several models of glueballs have been proposed [4–9].
Moreover, lattice QCD was able to construct the low-lying
glueballs based on the first principles of QCD dynamics
[10,11], and the Particle Data Group (PDG) has accumu-
lated a large number of hadronic states that do not seem to
fit the simple quark model as the glueball candidates [12].
In spite of the huge efforts to identify the glueballs

experimentally, so far the search for the glueballs has not
been so successful [13–17]. There are two reasons for this.
First, theoretically, there has been no consensus on how
to construct the glueballs. This has made it difficult to
predict what kind of glueballs we could expect. To see this,
consider the two leading models of glueballs—the bag
model and the constituent gluon model.
The bag model identifies the glueballs as the gauge-

invariant combinations of the gluon fields confined in a bag
[4,5,18]. In this model, the confinement is imposed by
the boundary condition of the bag, where the interaction
among the confined gluons is described by the perturbative

gluon exchange. On the other hand, in the constituent gluon
model the glueballs are identified as the color singlet bound
states of the color octet “constituent gluons,” where the
confinement is enforced by the confining potential [7,8].
Intuitively, these models look reasonable and attractive,

although they have their own advantages and disadvan-
tages. They were able to show the existence of glueballs.
However, they have not been so successful to pinpoint
exactly what are the glueball states and tell us how can we
verify them.
The other reason is that it is not clear how to identify the

glueballs experimentally. This is partly because they could
mix with quarkoniums, so that we must take care of the
possible mixing to identify the glueballs experimentally
[13–17]. This is why we have very few candidates for the
glueballs so far, compared to the huge hadron spectrum
made of quarks listed in PDG.
This makes the search for the glueballs an urgent issue in

high-energy physics, and we have detectors (e.g., GlueX at
Jefferson Lab and PANDA at FAIR) specifically designed
to search for the glueballs [19,20]. To have a successful
identification of glueballs, however, we must have a better
picture of the glueball.
The Abelian decomposition of QCD allows us to do that

[21–24]. It decomposes the QCD gauge potential to the
Abelian restricted potential which has the full color gauge
degrees of freedom and the gauge covariant valence
potential which describes the colored gluons (the chro-
mons) in a gauge-independent way. Moreover, it decom-
poses the restricted potential further to the nontopological
Maxwell part which describes the color neutral binding
gluons (the neurons) and the topological Dirac part which
describes the non-Abelian monopole.
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This tells that there are two types of gluons which play
different roles. The neurons play the role of the binding
gluons which bind the colored source, while the chromons
play the role of the colored source of QCD. So we can view
QCD as the restricted QCD (RCD) made of restricted
potential which has the chromons as the colored source.
We emphasize that this is against the common wisdom

that all gluons (because of the gauge symmetry) are equal,
carrying the same color charge. The Abelian decomposition
tells that this is not true, and tells us how to separate
the colored chromons from the color neutral neurons
unambiguously.
Moreover, the Abelian decomposition allows us to study

the role of the monopole, and prove that it is the monopole
which is responsible for the confinement in lattice QCD
[25–28]. As importantly, it allows us to calculate the QCD
effective action and demonstrate the monopole condensa-
tion gauge independently [29–31].
However, what is most important for our purpose is that

it allows us to have a clear picture of glueballs with which
we can identify them. This is because the chromons play
the role of the constituent gluons while the neurons bind
them, after the confinement sets in. So we can construct the
glueballs with a finite number of chromons as the con-
stituent. This generalizes the quark model to the quark
and chromon model which provides a new picture of
hadrons [21,22,32].
The quark model has been very successful. However, the

quark and chromon model has many advantages. It predicts
new hadronic states, e.g., the hybrid hadrons made of
quarks and chromons. More importantly, it provides a clear
picture of glueballs and their mixing with the iso-singlet
quarkoniums, and allows us to calculate the gluon content
of the mixed states.
Of course, the constituent gluon model can also do that,

but this model cannot tell the difference between the
binding gluons and the constituent gluons. To understand
this, consider the hydrogen atom (or any atom) in QED.
Obviously, we have photon as well as electron (and proton
and neutron) in it, but only the electron determines the
atomic structure of the atom in the periodic table. The
photon plays no role in the atomic structure. It is there in
the form of the electromagnetic field to provide the binding,
not as the constituent which determines the atomic structure
of the atom. So we need not know how many of them are in
the atom to determine it’s place in the periodic table.
Exactly the same way the proton has quarks and gluons,

but only the three quarks become the constituent. The
gluons inside the proton do not play any role in the
baryonic structure of the proton which determine the place
of proton in the hadron spectroscopy. This means that they
must be the “binding” gluons, not the “constituent” gluons,
which (just like the photons in the hydrogen atom) provide
only the binding of the quarks in the proton. If so, what are
the constituent gluons, and how can we distinguish them

from the binding gluons? Obviously, the constituent gluon
model does not provide the answer.
The Abelian decomposition naturally resolves this diffi-

culty. It tells that there are indeed two types of gluons, the
neurons and the chromons, and in general only the chromons
could be treated as the constituent gluons [21,22]. This is
because the neurons (like the photons) provide the binding
force for colored objects, but the chromons (just like the
quarks) become the colored source which make bound states
in QCD. So (with few exceptions) only the chromons could
be qualified to be the constituent of hadrons.
In this picture, the proton has no constituent chromons.

However, we emphasize that this does not mean proton
does not contain the chromons at all. Clearly, the three
valence quarks which make up the proton can exchange
chromons among themselves. Moreover, proton could have
an infinite number of “the sea chromons”, just as they have
the sea quarks. However, obviously, these chromons do not
play the role of the constituent.
In the quark and chromon model, one could (in principle)

construct an infinite number of glueballs with chromons.
So one might ask why experimentally we have not so many
candidates of them. One could think of two reasons why
this is so. First, the glueballs made of chromons have an
intrinsic instability [30,31]. So they have broad widths,
broader than the normal hadronic decay width. This means
that they have a relatively short life-time. So only the low-
lying glueballs could actually be observed experimentally.
This is because the chromons, unlike the quarks, tend to
annihilate each other in the chromo-electric background.
This must be contrasted with quarks, which remain stable
inside the hadrons.
This is closely related to the asymptotic freedom (anti-

screening) of gluons. It is well known that in QED the strong
electric background tends to generate the pair creation of
electrons, which makes the charge screening [33–35].
However, in QCD, gluons and quarks play opposite roles
in the asymptotic freedom. The quarks enhance the screen-
ing while the gluons diminish it to generate the antiscreening
[36,37]. In fact, in the presence of a chromo-electric back-
ground, the chromon loop generates a negative imaginary
part but the quark loop generates a positive imaginary part in
the QCD effective action. This tells that the chromo-electric
field tends to generate the pair annihilation of the chromons
[30,31,38–40].
Second, in our model, the glueballs inevitably mix with

quarkoniums, so that in general they do not appear as
mass eigenstates. So, to identify the glueballs, we have to
consider the possible mixing with the quarkoniums. This
makes the experimental identification of glueballs a non-
trivial matter. This is another reason why the experimental
identification of the glueballs so far has not been so
successful.
Of course, in rare cases we could have the pure glueballs

called the oddballs [7,32]. This is because some of the
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chromoballs have the quantum number JPC which cannot
be made possible with qq̄. In this case, there is no qq̄which
could mix with the oddballs, so that they may exist as pure
chromoballs. This makes the identification of the oddballs
an important issue in QCD.
In a recent paper, we have discussed the general

framework of hadron spectroscopy based on the quark
and chromon model, and showed how the model can
explain the glueball-quarkonium mixing and allow us to
identify the glueballs [32]. The present paper is the sequel
of this work in which we extend the preceding work and
discuss the numerical analysis of the glueball-quarkonium
mixing in more detail to help identify the glueballs without
ambiguity.
Our analysis makes it clear that the chromoballs play

the central role in the meson spectroscopy, although in
general they do not appear as mass eigenstates. In
particular, our analysis tells that the chromoball-
quarkonium mixing makes a deep influence on the qq̄
octet-singlet mixing. In fact, in the quark and chromon
model the qq̄ octet-singlet mixing cannot be discussed
without the chromoball-quarkonium mixing, because the
chromoball-quarkonium mixing inevitably induces the
octet-singlet mixing.
The paper is organized as follows. In Sec. II, we review

the Abelian decomposition which decomposes the gluons
to the color neutral neurons and the colored chromons to
justify the quark and chromon model. In Sec. III, we
discuss the color reflection symmetry which replaces the
non-Abelian gauge symmetry and becomes the fundamen-
tal symmetry of the quark and chromon model. In Sec. IV,
we explain how the chromoballs, the bound states of
chromons, can be understood as the glueballs in the quark
and chromon model. In Sec. V, we discuss the glueball-
quarkonium mixing mechanism. In Sec. VI, we present the
numerical analysis of the low-lying glueball-quarkonium
mixing in 0þþ, 2þþ, and 0−þ sectors below 2 GeV, and
show that f0ð1500Þ, f2ð1950Þ, ηð1405Þ, and ηð1475Þ
become the strong candidates of glueballs. Finally, in
the last section, we discuss the physical implications of
our analysis.

II. ABELIAN DECOMPOSITION OF GLUONS:
NEURONS AND CHROMONS

Before we discuss the Abelian decomposition we have to
know why we need it. Consider the proton. The quark
model tells that it is made of three quarks, but obviously we
need the gluon to bind them. On the other hand, the quark
model tells that there is no “valence” gluon inside the
proton which can be a constituent of the proton. If so, what
is the “binding” gluon inside the proton, and how do we
distinguish it from the valence gluon?
Another motivation is the Abelian dominance, which

asserts that the Abelian part of QCD is responsible for the
color confinement [41,42]. This must be true, because the

non-Abelian (off-diagonal) part describes the colored
gluons which are destined to be confined. Since the
confined prisoner cannot be the confining agent (the jailer),
only the Abelian part can play the role of the confiner.
However, what is the Abelian part, and how do we
separate it?
The Abelian decomposition decomposes the QCD gauge

potential to the restricted (Abelian) part and the valence
(colored) part gauge independently. Consider the SU(2)
QCD first, and let ðn̂1; n̂2; n̂3 ¼ n̂Þ be an arbitrary local
orthonormal basis. To make the Abelian decomposition, we
choose any direction, e.g., n̂, to be the Abelian direction
and impose the isometry to project out the restricted
potential Âμ [21–23]

Dμn̂ ¼ ð∂μ þ gA⃗μ×Þn̂ ¼ 0;

A⃗μ → Âμ ¼ Aμn̂ −
1

g
n̂ × ∂μn̂ ¼ Aμ þ Cμ;

Aμ ¼ Aμn̂; Cμ ¼ −
1

g
n̂ × ∂μn̂; Aμ ¼ n̂ · A⃗μ:

ð1Þ

The Abelian projection has the followings features. First,
Âμ is precisely the potential which leaves the Abelian
direction invariant under the parallel transport. Second, it is
made of two parts—the nontopological (Maxwellian) Aμ

which describes the color neutral gluon (the neuron) and
the topological (Diracian) Cμ which describes the non-
Abelian monopole [43]. Third, the decomposition is gauge
independent. We can rotate n̂ to any direction and still get
exactly the same decomposition.
With this, we have

F̂μν ¼ ðFμν þHμνÞn̂;
Fμν ¼ ∂μAν − ∂νAμ;

Hμν ¼ −
1

g
n̂ · ð∂μn̂ × ∂νn̂Þ: ð2Þ

This tells the followings. First, F̂μν has only the Abelian
component. Second, F̂μν has a dual structure, made of
nontopological Fμν and topological Hμν.
With (1), we can recover the full QCD potential adding

the non-Abelian (colored) part X⃗μ which describes the
colored gluons (the chromons) [21,22]

A⃗μ ¼ Âμ þ X⃗μ; n̂ · X⃗μ ¼ 0: ð3Þ

Under the infinitesimal gauge transformation

δA⃗μ ¼
1

g
Dμα⃗; δn̂i ¼ −α⃗ × n̂i; ð4Þ
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we have

δÂμ ¼
1

g
D̂μα⃗; δX⃗μ ¼ −α⃗ × X⃗μ; ð5Þ

where D̂μ ¼ ∂μ þ gÂμ×. This tells that Âμ has the full
SU(2) gauge degrees of freedom, even though it is
restricted. Moreover, X⃗μ becomes gauge covariant.
Notice that, although the neuron is given by the Abelian

component of A⃗μ, the chromon is not given by the non-

Abelian component of A⃗μ. This is because the Abelian

decomposition decomposes A⃗μ to the neuron, chromon, and
the topological monopole. So the topological part plays an
essential role in the Abelian decomposition.
With the restricted potential we can construct the

restricted QCD (RCD) which has the full non-Abelian
gauge symmetry but is simpler than the QCD

LRCD ¼ −
1

4
F̂2
μν

¼ −
1

4
F2
μν þ

1

2g
Fμνn̂ · ð∂μn̂ × ∂νn̂Þ

−
1

4g2
ð∂μn̂ × ∂νn̂Þ2; ð6Þ

which describes the Abelian subdynamics of QCD. Since
RCD contains the non-Abelian monopole degrees explic-
itly, it provides an ideal platform for us to study the
monopole dynamics gauge independently.
From (3) we have

F⃗μν ¼ F̂μν þ D̂μX⃗ν − D̂νX⃗μ þ gX⃗μ × X⃗ν: ð7Þ

With this we can express QCD by

LQCD ¼ −
1

4
F⃗2
μν

¼ −
1

4
F̂2
μν −

1

4
ðD̂μX⃗ν − D̂νX⃗μÞ2

−
g
2
F̂μν · ðX⃗μ × X⃗νÞ −

g2

4
ðX⃗μ × X⃗νÞ2: ð8Þ

This is the extended SU(2) QCD (ECD) which confirms
that QCD can be viewed as RCD made of the binding
gluons, which has the chromons as its source [21,22].
The Abelian decomposition is more complicated but

straightforward. Since SU(3) has rank two, it has two
Abelian directions. Let n̂iði ¼ 1; 2;…; 8Þ be an arbitrary
local orthonormal SU(3) basis, and choose n̂3 ¼ n̂ and
n̂8 ¼ n̂0 to be the Abelian directions. Make the Abelian
projection by

Dμn̂ ¼ 0: ð9Þ

This automatically guarantees [43]

Dμn̂0 ¼ 0; n̂0 ¼ 1ffiffiffi
3

p n̂ � n̂: ð10Þ

where � denotes the d-product. This is because SU(3) has
two vector products, the antisymmetric f-product and the
symmetric d-product.
Solving (9), we have the Abelian projection which

projects out the binding potential,

A⃗μ → Âμ ¼ Aμn̂þ A0
μn̂0 −

1

g
n̂ × ∂μn̂ −

1

g
n̂0 × ∂μn̂0

¼
X
p

2

3
Âp
μ ; ðp ¼ 1; 2; 3Þ;

Âp
μ ¼ Ap

μ n̂p −
1

g
n̂p × ∂μn̂p ¼ Ap

μ þ Cpμ ;

Ap
μ ¼ Ap

μ n̂p; Cpμ ¼ −
1

g
n̂p × ∂μn̂p;

A1
μ ¼ Aμ; A2

μ ¼ −
1

2
Aμ þ

ffiffiffi
3

p

2
A0
μ;

A3
μ ¼ −

1

2
Aμ −

ffiffiffi
3

p

2
A0
μ; n̂1 ¼ n̂;

n̂2 ¼ −
1

2
n̂þ

ffiffiffi
3

p

2
n̂0; n̂3 ¼ −

1

2
n̂ −

ffiffiffi
3

p

2
n̂0;

ð11Þ

where the sum is the sum of the Abelian directions of
three SU(2) subgroups made of ðn̂1; n̂2; n̂1Þ; ðn̂6; n̂7; n̂2Þ;
ðn̂4;−n̂5; n̂3Þ. Notice that the three Âp

μ are not mutually
independent.
Under the infinitesimal gauge transformation

δA⃗μ ¼
1

g
Dμα⃗; δn̂ ¼ −α⃗ × n̂; δn̂0 ¼ −α⃗ × n̂0; ð12Þ

we have [21–23]

δÂμ ¼
1

g
D̂μα⃗: ð13Þ

This confirms that Âμ has the full SU(3) gauge degrees of
freedom.
From this we have the restricted field strength made of

the binding potential

F̂μν ¼
2

3

X
p

F̂p
μν ¼ 2

3

X
p

ðFp
μν þHp

μνÞ2;

Fp
μν ¼ ∂μA

p
ν − ∂νA

p
μ ;

Hp
μν ¼ −

1

g
n̂p · ð∂μn̂p × ∂νn̂pÞ; ð14Þ
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and obtain the restricted QCD (RCD) which has the full
SU(3) gauge symmetry [21–23]

LRCD ¼ −
1

4
F̂2
μν ¼ −

1

6

X
p

ðFp
μν þHp

μνÞ2: ð15Þ

Just like the SU(2) RCD it has a dual structure, made of Fp
μν

and Hp
μν.

Adding the valence part X⃗μ which describes the chro-
mons to the binding potential we have the Abelian
decomposition of the SU(3) gauge potential [44]

A⃗μ ¼ Âμ þ X⃗μ ¼
X
p

�
2

3
Âp
μ þ W⃗p

μ

�
; X⃗μ ¼

X
p

W⃗p
μ ;

W⃗1
μ ¼ X1

μn̂1 þ X2
μn̂2; W⃗2

μ ¼ X6
μn̂6 þ X7

μn̂7;

W⃗3
μ ¼ X4

μn̂4 þ X5
μn̂5: ð16Þ

Again, under the gauge transformation we have [21–23]

δÂμ ¼
1

g
D̂μα⃗; δX⃗μ ¼ −α⃗ × X⃗μ: ð17Þ

This confirms that X⃗μ becomes gauge covariant. Moreover,

this tells that the chromons X⃗μ can be decomposed to the

three SU(2) chromons W⃗p
μ . However, unlike Âp

μ , they are
mutually independent. So we have two neurons and six
chromons in SU(3) QCD. The Abelian decomposition
has also been known as the Cho decomposition, Cho-
Duan-Ge decomposition, or Cho-Faddeev-Niemi decom-
position [45–49].
From (16), we have

D̂μX⃗ν ¼
X
p

D̂p
μW⃗

p
ν ; D̂p

μ ¼ ∂μ þ gÂp
μ×;

X⃗μ × X⃗ν ¼
X
p;q

W⃗p
μ × W⃗q

ν ;

F⃗μν ¼ F̂μν þ D̂μX⃗ν − D̂νX⃗μ þ gX⃗μ × X⃗ν

¼
X
p

�
2

3
F̂p
μν þ ðD̂p

μW⃗
p
ν − D̂p

μW⃗
p
ν Þ
�

þ
X
p;q

W⃗p
μ × W⃗q

ν ; ð18Þ

so that we can express the SU(3) QCD as [29–31]

LECD ¼ LRCD −
1

4
ðD̂μX⃗ν − D̂νX⃗μÞ2 −

g
2
ðD̂μX⃗ν − D̂νX⃗μÞ · ðX⃗μ × X⃗νÞ −

g
2
F̂μν · ðX⃗μ × X⃗νÞ −

g2

4
ðX⃗μ × X⃗νÞ2

¼
X
p

�
−
1

6
ðF̂p

μνÞ2 − 1

4
ðD̂p

μW⃗
p
ν − D̂p

ν W⃗
p
μ Þ2 −

g
2
F̂p
μν · ðW⃗p

μ × W⃗p
ν Þ
�
−
X
p;q

g2

4
ðW⃗p

μ × W⃗q
μÞ2

−
X
p;q;r

g
2
ðD̂p

μW⃗
p
ν − D̂p

ν W⃗
p
μ Þ · ðW⃗q

μ × W⃗r
μÞ −

X
p≠q

g2

4
½ðW⃗p

μ × W⃗q
νÞ · ðW⃗q

μ × W⃗p
ν Þ þ ðW⃗p

μ × W⃗p
ν Þ · ðW⃗q

μ × W⃗q
νÞ�: ð19Þ

This is the SU(3) ECD, which is mathematically identical
to QCD. Adding an extra term or subtracting any existing
term is strictly forbidden.
We can easily add quarks in the Abelian decomposition,

Lq ¼
X
k

Ψ̄kðiγμDμ −mÞΨk

¼
X
k

�
Ψ̄kðiγμD̂μ −mÞΨk þ

g
2
X⃗μ · Ψ̄kðγμ ⃗tÞΨk

�

¼
X
p;k

�
Ψ̄p

k ðiγμD̂p
μ −mÞΨp

k þ
g
2
W⃗p

μ · Ψ̄
p
k ðγμτ⃗pÞΨp

k

�
;

D̂μ ¼ ∂μ þ
g
2i
⃗t · Âμ; D̂p

μ ¼ ∂μ þ
g
2i
τ⃗p · Âp

μ ; ð20Þ

where m is the mass, k is the flavor index, ⃗t is the color
generators of the quark triplet corresponding to the chro-
mons X⃗μ, p denotes the color generators of the quarks
corresponding to three SU(2) subgroups of SU(3), and Ψp

k

represents the three SU(2) quark doublets (i.e., (r; b), (b; g),
and (g; r) doublets) of the (r; b; g) quark triplet.
The Abelian decomposition is summarized graphically.

This is shown in Fig. 1, where the gluons are decomposed
to the restricted potential and the chromon potential in (A),
and the restricted potential is decomposed further to the
nontopological neuron potential Aμ and the topological
monopole potential Cμ in (B).
Although the Abelian decomposition does not change

QCD, it reveals important hidden structures of QCD. First
of all, it tells that there are two types of gluon, the neuron
and chromon, which play totally different role. This means
that there should be two types of gluon jets, the neuron jet
and the chromon jet, which in principle could be tested and
confirmed by experiment. Without the Abelian decompo-
sition we could not tell this because all gluons are treated on
equal footing.
Second, it allows us to decompose the QCD Feynman

diagram in such a way that the conservation of color is
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made explicit. This is shown in Fig. 2. In (A), the three-
point gluon vertex is decomposed to two vertices made of
one neuron plus two chromons and three chromons. In (B),
the four-point gluon vertex is decomposed to three vertices
made of one neuron plus three chromons, two neurons plus
two chromons, and four chromons. In (C), the quark-gluon
vertex is decomposed to the quark-neuron vertex and
quark-chromon vertex.
Notice that three-point vertex made of three neurons or

two neurons and one chromon, and four-point vertex made
of three or four neurons are forbidden by the conservation
of color. Moreover, the quark-neuron interaction does not
change the quark color, but the quark-chromon interaction
changes the quark color.
Another point is that the monopole does not appear in the

diagram for the following reasons. First, after the confine-
ment (the monopole condensation) sets in, the monopole

part disappears completely. So, in the perturbative regime
(inside the hadrons where the asymptotic freedom applies)
only the neurons and chromons contribute to the Feynman
diagrams. However, the more fundamental reason is that
the monopole, as the topological degree of QCD, does not
become a dynamical (i.e., propagating) degree. So, it
cannot appear in the Feynman diagram [29].
Third, the Abelian decomposition of SU(3) QCD reveals

the Weyl symmetry of the SU(3) QCD, and shows that the
theory is invariant under the permutation of three SU(2)
subgroups, or equivalently three colors of SU(3). Indeed,
(11), (19), and (20) clearly show that they are invariant
under the permutation of three SU(2) subgroups. The Weyl
group of SU(N) is the N!-elements permutation group of N
colors. In general, the Abelian decomposition allows us to
express the SU(N) QCD explicitly in the Weyl symmetric
form. This is very important, because this allows us to
express the SU(N) QCD effective action in terms of the
SU(2) QCD effective action.
In the nonperturbative regime, the Abelian decomposi-

tion allows us to demonstrate the monopole dominance,
that it is the monopole which confines the color. In fact,
implementing the Abelian decomposition on lattice, we
can calculate the contribution of the Wilson loop with the
full potential, the restricted potential, and the monopole
potential separately, and show that the monopole potential
produces the confining force [25–28]. The recent lattice
result obtained with the Abelian decomposition is copied in
Fig. 3, which shows that all three potentials produce exactly
the same confining force [27,28]. Clearly, this proves that
the neuron and chromon do not contribute to the Wilson
loop integral.
The lattice result demonstrates the monopole dominance,

that the monopole is essential for the confinement.
However, it does not show how the monopole confines

(a)

(b)

(c)

FIG. 2. The Abelian decomposition of Feynman diagrams in
SU(3) QCD. The three-point and four-point gluon vertices are
decomposed in (A) and (B), and the quark-gluon vertices are
decomposed in (C). Notice that the monopole does not appear in
the Feynman diagram, since it does not represent a dynamical
degree.

(a)

(b)

FIG. 1. The Abelian decomposition of the gluons. The gauge
potential is decomposed to the restricted potential (kinked line)
and the chromon (straight line) in (A), and the restricted potential
is further decomposed to the neuron (wiggly line) and the
monopole (spiked line) in (B).

FIG. 3. The lattice QCD calculation which establishes the
monopole dominance in Wilson loop. Here, the solid, dotted,
and dashed lines are obtained with the full potential, the restricted
potential, and the monopole potential, respectively.
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the color. To show this, we have to calculate the effective
action of QCD. The Abelian decomposition and the
resulting ECD provides us an ideal platform for us to
calculate the QCD effective action gauge independ-
ently [30,31].
This is because, field theoretically, the Abelian decom-

position puts QCD in the background field formalism
[29,50,51]. So we can treat the restricted potential and
the valence potential as the slow varying classical field and
the fluctuating quantum field, and calculate the QCD
effective action in the presence of the monopole back-
ground imposing the gauge invariance.
This allows us to show that the true QCD vacuum is

given by the monopole condensation, more precisely the
monopole-antimonopole pair condensation [30,31]. The
SU(3) QCD effective potential is shown in Fig. 4. This
strongly implies that it is the monopole condensation which
generates the mass gap and the confinement in QCD.
The most important point of the Abelian decomposition

for our purpose in this paper, however, is that it generalizes
the quark model to the quark and chromon model [32]. This
is because the chromons, being colored, are naturally
qualified to become the constituent of hadrons. In contrast,
the neurons, being neutral, play the role of photons which
provides the binding in QED.
This leads us to the quark and chromon model where the

colored quarks and chromons become the constituent of
hadrons. This gives us a new picture of hadron spectros-
copy. Moreover, this provides us a clear picture of the
glueballs and their mixing with quarkoniums and helps us
to identify the glueballs experimentally.
To understand how the quark and chromon model works,

it is important to understand that the Abelian decomposi-
tion reduces the complicated non-Abelian color gauge
symmetry to the discrete symmetry made of finite elements
called the color reflection symmetry which becomes the

fundamental symmetry of the quark and chromon model
[21,22]. This is very important, because this color reflection
symmetry plays the role of the gauge symmetry but is
much easier to handle. So we discuss the color reflection
symmetry in detail in the next section.

III. COLOR REFLECTION INVARIANCE AND
WEYL SYMMETRY OF ECD

As we have emphasized, the Abelian decomposition is
gauge independent. On the other hand, the selection of the
Abelian direction amounts to the gauge fixing which breaks
the gauge symmetry. However, this does not break the
gauge symmetry completely, because we have a residual
discrete symmetry called the color reflection symmetry
even after the Abelian decomposition [21,22,30].
The importance of this residual symmetry comes from

the following observation. First, this plays the role of the
gauge symmetry after the Abelian decomposition. Second,
this symmetry is much simpler than the color gauge
symmetry. This tells that the Abelian decomposition
reduces the complicated non-Abelian gauge symmetry to
a simple discrete symmetry which is much easier to handle.
So we discuss the color reflection symmetry first.
Consider the SU(2) QCD first and make the color

reflection, the π-rotation of the SU(2) basis along the
n̂2-direction which inverts the color direction n̂,

ðn̂1; n̂2; n̂Þ → ð−n̂1; n̂2;−n̂Þ: ð21Þ

Obviously, this is a gauge transformation which should not
change the physics. On the other hand, under the color
reflection (21) we have [30]

Âμ → ÂðcÞ
μ ¼ −Aμn̂ −

1

g
n̂ × ∂μn̂;

Aμ → AðcÞ
μ ¼ −n̂ · A⃗μ ¼ −Aμ: ð22Þ

Moreover, we have

X⃗μ → X⃗ðcÞ
μ ¼ −ðX1

μn̂1 − X2
μn̂2Þ;

or, in the complex notation

Rμ ¼
1ffiffiffi
2

p ðXμ þ iX2
μÞ

→ RðcÞ
μ ¼ −R̄μ ¼ −

1ffiffiffi
2

p ðXμ − iX2
μÞ; ð23Þ

where Rμ denotes the red chromon.
However, since the isometry condition (1) is insensitive

to (21), we have two different Abelian decompositions
imposing the same isometry,

FIG. 4. The one-loop effective potential of SU(3) QCD which
demonstrates the monopole condensation. The potential is
obtained by integrating out the chromons in the presence of a
constant monopole background.
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A⃗μ ¼ Âμ þ X⃗μ; A⃗μ ¼ ÂðcÞ
μ þ X⃗ðcÞ

μ ; ð24Þ

without changing the physics. This is why the color
reflection (21) becomes a discrete symmetry of QCD after
the Abelian decomposition [21,22].
To understand the meaning of this, notice that the neuron

potential Aμ change the signature, while the topological
part remains invariant. Moreover the chromon changes to
the complex conjugate partner (together with the change of
the signature), which changes the chromon to antichromon
and flips the sign of the chromon charge.
This is what is expected. In the absence of the topo-

logical part, (8) describes QED which is coupled to the
massless charged vector field where the neuron plays the
role of the photon. And in QED it is well known that
the photon has negative charge conjugation quantum
number. So it is natural that Aμ in SU(2) QCD changes
the signature under the color reflection. Similarly we can
argue that Aμ changes the signature under the parity [30].
As importantly, (23) tells that the physics should not

change when we change the chromon to antichromon,
because they are the color reflection partner. This means
that they cannot be separately discussed in QCD and should
always play exactly the same amount of role. This is the
reason why the color should become unphysical and
confined, which makes QCD totally different from QCD
[21,22,30].
In the fundamental representation, the color reflection

(21) is given by the four-element subgroup of SU(2) made
of [21,22]

C1 ¼
�
1 0

0 1

�
; C2 ¼

�−1 0

0 −1

�
;

C3 ¼
�

0 1

−1 0

�
; C4 ¼

�
0 −1
1 0

�
: ð25Þ

This can be expressed by

Ck ¼ DaRb; ða ¼ 1; 2; b ¼ 1; 2; k ¼ 1; 2;…; 4Þ;

D1 ¼
�
1 0

0 1

�
; D2 ¼

�−1 0

0 −1
�

R1 ¼
�
1 0

0 1

�
; R2 ¼

�
0 1

−1 0

�
; ð26Þ

which contains the diagonal subgroup made of D1 and D2.
And this becomes the residual symmetry of the SU(2)
quark doublet ðr; bÞ after the Abelian decomposition.
Notice that R2 plays the role of the generator of the color
reflection group.
As for the gluons which form the adjoint representation

the color reflection can be simplified further for two
reasons. First, the diagonal subgroup has no effect on
the adjoint representation. Second, the color reflection

changes n̂ to −n̂ and ðn̂1; n̂2Þ to ð−n̂1; n̂2Þ. So, the gluon
triplet is decomposed to two independent representations.
Indeed, for the neuron, we have

R2∶ Aμ → −Aμ: ð27Þ

However, for the chromon, we have

R2∶ ðX⃗μ; X⃗
ðcÞ
μ Þ → −ðX⃗ðcÞ

μ ; X⃗μÞ;

or equivalently

R2∶ ðRμ; R̄μÞ → −ðR̄μ; RμÞ: ð28Þ

This confirms that the neuron and chromon transform
independently, forming a one-dimensional and two-
dimensional representation under the color reflection.
This drastically simplifies the non-Abelian gauge
symmetry.
For SU(3), the fundamental representation of the color

reflection group is made up of a 24-element subgroup of
SU(3) given by [21,22,49]

Ck ¼ DaRb;

ða ¼ 1; 2; 3; 4; b ¼ 1; 2;…; 6; k ¼ 1; 2;…; 24Þ;

D1 ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA; D2 ¼

0
B@

−1 0 0

0 −1 0

0 0 1

1
CA;

D3 ¼

0
B@

1 0 0

0 −1 0

0 0 −1

1
CA; D4 ¼

0
B@

−1 0 0

0 1 0

0 0 −1

1
CA;

R1 ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA; R2 ¼

0
B@

0 1 0

−1 0 0

0 0 1

1
CA;

R3 ¼

0
B@

1 0 0

0 0 1

0 −1 0

1
CA; R4 ¼

0
B@

0 0 1

0 −1 0

1 0 0

1
CA;

R5 ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA; R6 ¼

0
B@

0 0 1

−1 0 0

0 −1 0

1
CA; ð29Þ

where the four D-matrices form the diagonal subgroup.
This describes the residual symmetry of the quark triplet
ðr; b; gÞ after the Abelian decomposition. Notice that
here R2 and R3 play the role of the generator. For
example, we have R5 ¼ R3 · R2, R6 ¼ R2 · R3, and
R4 ¼ R2 · R3 · R2.
For the gluon octet which form the adjoint representation

of SU(3) the color reflection can be simplified further. Just
as in SU(2) QCD, the neurons and chromons transform

PENGMING ZHANG, LI-PING ZOU, and Y.M. CHO PHYS. REV. D 98, 096015 (2018)

096015-8



separately, among themselves. To see exactly how they
transform, notice that the two neurons transform as

R2∶
�
Aμ

A0
μ

�
→

�−1 0

0 1

��
Aμ

A0
μ

�
;

R3∶
�
Aμ

A0
μ

�
→

�
1=2

ffiffiffi
3

p
=2ffiffiffi

3
p

=2 −1=2

��
Aμ

A0
μ

�
; ð30Þ

On the other hand, according to (11) and (16) the two
neurons form a (mutually dependent) triplet ðA1

μ; A2
μ; A3

μÞ.
So in terms of the triplet the color reflection acts as follows,

R2∶ ðA1
μ; A2

μ; A3
μÞ → −ðA1

μ; A3
μ; A2

μÞ;
R3∶ ðA1

μ; A2
μ; A3

μÞ → −ðA3
μ; A2

μ; A1
μÞ;

R4∶ ðA1
μ; A2

μ; A3
μÞ → −ðA2

μ; A1
μ; A3

μÞ;
R5∶ ðA1

μ; A2
μ; A3

μÞ → ðA3
μ; A1

μ; A2
μÞ;

R6∶ ðA1
μ; A2

μ; A3
μÞ → ðA2

μ; A3
μ; A1

μÞ: ð31Þ

This tells that basically R2, R3, R4 describe the permuta-
tions of two SU(2) neurons (up to the signature change),
but R5, R6 describe the cyclic permutations of three SU(2)
neurons.
For the six chromons which form a sextet ðW⃗1

μ; W⃗
2
μ;

W⃗3
μ; W⃗

1ðcÞ
μ ; W⃗2ðcÞ

μ ; W⃗3ðcÞ
μ Þ we can express them as three (red,

blue, and green) colored chromons of the SU(2) subgroups
by ðRμ; Bμ; Gμ; R̄μ; B̄μ; ḠμÞ. For these the color reflection
acts as follows,

R2∶ ðRμ; Bμ; Gμ; R̄μ; B̄μ; ḠμÞ
→ ðR̄μ; Ḡμ; B̄μ; Rμ; Gμ; BμÞ;

R3∶ ðRμ; Bμ; Gμ; R̄μ; B̄μ; ḠμÞ
→ −ðḠμ; B̄μ; R̄μ; Gμ; Bμ; RμÞ;

R4∶ ðRμ; Bμ; Gμ; R̄μ; B̄μ; ḠμÞ
→ −ðB̄μ; R̄μ; Ḡμ; Bμ; Rμ; GμÞ;

R5∶ ðRμ; Bμ; Gμ; R̄μ; B̄μ; ḠμÞ
→ −ðGμ; Rμ; Bμ; Ḡμ; R̄μ; B̄μÞ;

R6∶ ðRμ; Bμ; Gμ; R̄μ; B̄μ; ḠμÞ
→ −ðBμ; Gμ; Rμ; B̄μ; Ḡμ; R̄μÞ: ð32Þ

Here, R2, R3, R4 describe the antichromon transformation
(complex conjugation) plus permutations of two chromons,
but R5, R6 describe the cyclic permutations of three
chromons (up to the signature change).
The above discussion reveals another important differ-

ence between the neuron and chromon. Clearly, (31) tells
that the neurons just permute and change the signature of
the wave function, but (32) tells that the chromons change

to antichromons, under the color reflection. In other words,
just like the photon in QED, there are no antineurons in
QCD. In contrast, the chromons have the antichromon
partners. This is because the neurons are neutral but the
chromons are colored, so that the neuron wave functions
have real form, while the chromon wave functions have
complex expression.
At this point one might wonder if there is any relation

between the color reflection group and Weyl group. For
SU(3), the Weyl group is the six-element permutation
group of three colors which has a three-dimensional
representation given by

W1 ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA; W2 ¼

0
B@

0 1 0

1 0 0

0 0 1

1
CA;

W3 ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA; W4 ¼

0
B@

0 0 1

0 1 0

1 0 0

1
CA;

W5 ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA; W6 ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA; ð33Þ

which contains the cyclic Z3 made of W1, W5, and W6.
This tells that the two groups are different. They have

different origin. The Weyl group comes as the symmetry of
the Abelian decomposition, but the color reflection group is
the residual symmetry of the Abelian decomposition.
Unlike the color reflection group (29), the Weyl group
(33) is not a subgroup of SU(3). Moreover, the Weyl group
has no complex conjugation operation which transforms
the chromons to antichromons. On the other hand, they
have a common subgroup Z3, the cyclic permutation group
of three colors.
Obviously, both the color reflection group and the

Weyl group should play a fundamental role in hadron
spectroscopy. Only the color reflection–invariant andWeyl-
invariant combinations of quarks and gluons can become
physical in the quark and chromon model [32]. On the other
hand, the color reflection group plays a more fundamental
role in the sense that it has the complex conjugation
operation which transforms the chromons to antichromons.

IV. GLUEBALLS IN QUARK AND CHROMON
MODEL: CHROMOBALLS

So far, we have discussed the theoretical aspects of QCD
which are exact. From now on we discuss their applications
which inevitably contains approximations, in particular the
quark and chromon model in more detail. We first provide
more argument for the quark and chromon model. In the
constituent gluon model, the gauge-invariant combinations
of the octet gluons, gḡ or ggg, have been thought to form the
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glueballs. This is because all gluons are treated equally in
this model.
As we have pointed out, this has a critical defect.

Obviously, an important role of gluons is to provide the
binging force of the colored objects. So, if all gluons
become the constituent, it is very difficult to explain how
they provide the binding. In the quark and chromon model,
however, only the chromons become the constituent gluon.
This is because only the chromons carry the color charge.
In comparison, the neurons, being color neutral, naturally
assume the role of the binding gluons.
To clarify this point, we compare the possible Feynman

diagrams of two and three chromon interactions shown in
Fig. 5 with the similar Feynman diagrams of neuron
interactions shown in Fig. 6. Clearly, Fig. 5 looks very
similar to the Feynman diagrams of qq̄ and qqq bound
states in the quark model. This means that the chromons,
just like the quarks, can become the constituents of
hadrons. In particular, this means that they could form
chromoball bound states among themselves.
On the other hand, Fig. 6 looks totally different from

Fig. 5. Obviously, Fig. 6 looks very much like the photon
self-interaction in QED. This is because the neurons are not
colored, so that they can interact only through the chromon
or quark loops. So they actually play the role of “the
photons” in QCD whose binding is much weaker than the
chromon binding. This strongly support the quark and
chromon model.
Of course, although the photons in QED do not form a

bound state, there is still a possibility that the neuron
binding is strong enough to form a bound state in QCD.
Nevertheless, it is natural to assume that if the neurons form
a bound state at all, they should form a very weakly bound
state which would look like a bound state of two quarko-
niums or a molecular state made of two light mesons. This
means that there could be only a few neuroballs, the bound
states made of neurons, maybe one or two at most. For this
reason, we will assume that only the chromons become the
constituent in this paper.

This, however, does not mean that they cannot contribute
to the binding. Clearly, Figs. 5 and 6 show that both
neurons and chromons can exchange chromons to make the
binding. However, we emphasize that there is a clear
difference between the role of the chromon to be the
constituent gluon and the exchange gluon.
Now we discuss the characteristic features and new

predictions of the quark and chromon model, and show
how we can test the model experimentally. As we have
explained, the most important change in this model is the
replacement of the non-Abelian gauge group by the color
reflection group. Indeed, the color reflection symmetry
becomes the backbone of the quark and chromon model
[22,23,32].
This simplifies the non-Abelian gauge invariance to the

color reflection invariance. So only the color reflection–
invariant combinations of the chromons become gauge
invariant and thus form the glueballs. This is why the color
reflection group becomes so important in this model.
To amplify this point, we emphasize that the model

reclassifies all hadrons in the quark model. For example, in
the quark model mesons and baryons are viewed as color
singlets made of ð3 × 3̄Þ and ð3 × 3 × 3Þ SU(3) quark
triplets. However, in the new model, the quark triplets
should be interpreted as the triplet of the color reflection
group, not the color SU(3). So, in this reclassification the
mesons and baryons acquire a different interpretation. This,
of course, would not change the hadron spectrum much.
However, it clearly shows that the quark and chromon
model sheds a new light on the old quark model, even for
the hadrons made of quarks.
Notice that for the meson classification the full color

reflection symmetry becomes important, because the anti-
chromons become an important ingredient. However, for

(a)

(b)

FIG. 5. The possible Feynman diagrams which bind the
chromons. Two chromon binding is shown in (A), three chromon
binding is shown in (B). The quarks are represented by the
arrows.

(a)

(b)

FIG. 6. The possible Feynman diagrams of the neuron inter-
action. Two neuron binding is shown in (A), three neuron binding
is shown in (B). The quarks are represented by the arrows.
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the baryons, the Weyl symmetry plays the main role
because baryons have only quarks, not antiquarks.
Obviously, a place where the quark and chromon model

makes a big difference is in the glueball and hybrid hadron.
The model asserts that only the chromoball, the bound state
of chromons, can become the glueball. In other words, the
gg and ggg glueballs are actually the color singlets made of
ð6 × 6̄Þ and ð6 × 6 × 6Þ sextet chromons of the color
reflection group, not ð8 × 8̄Þ and ð8 × 8 × 8Þ SU(3) octets.
This is the difference between the quark and chromon model
and the constituent gluon model [7,8]. So in this model the
quark triplet and chromon sextet of the color reflection group
become the essential ingredients of hadrons.
As importantly the model provides conceptually a clear

picture of chromoball mixing with the quarkonium.
Moreover, the model predicts the existence of the hybrid
hadrons made of the quark triplets and chromon sextets. So
studying the chromoballs and their mixing with quarko-
niums and the hybrid hadrons predicted by the model we
can test the quark and chromon model.
In the quark and chromon model, one expects infinite

tower chromoballs, but experimentally we have not so
many candidates of glueballs. There could be two possible
explanations for this. First, they could easily mix with
quakoniums, unless the conservation of quantum number
forbids the mixing. This means that in reality the physical
glueballs are mixed states, not pure chromoball states.
Certainly this makes the experimental identification of the
glueballs a nontrivial matter [32].
Second, the chromoballs may have an intrinsic instability

and decay faster than ordinary hadrons, which could make
the experimental identification difficult. As we have
pointed out, the chromons tend to annihilate each other
in the color background, which has to do with the
antiscreening of the color charge [30–32,38–40].
We can estimate the glueball partial decay width coming

from this instability. According to the QCD one-loop
effective action, the chromon annihilation probability per
unit volume per unit time is given by [30–32]

ΓA ¼
X
p

11g2

96π
Ē2
p ×

4π

3Λ3
QCD

; ð34Þ

where the sum is on three SU(2) subgroups and Ēp is the
average chromo-electric field of each subgroup inside the
glueballs. Now, if we choose αs ≃ 0.4, ΛQCD ≃ 339 MeV
(for three quark flavors), and Ēp ≃ ðg=πÞΛ2

QCD we have
ΓA ≃ 398 MeV [12]. However, notice that with
ΛQCD ≃ 200 MeV, we have ΓA ≃ 235 MeV [51].
Of course, this is a rough estimate which depends on

many things. For example, the gḡ glueballs and ggg
glueballs may have different color field strengths and
different sizes, and thus may have a different lifetime.
However, we emphasize that the above estimate is the partial

decay width we expect from the asymptotic freedom, in
addition to the “normal” hadronic decay width. This strongly
implies that in general the glueballs (in particular excited
ones) are expected to have very short lifetime.
This instability has another important implication. It has

been widely believed that “the gluon condensation” plays
important role in QCD dynamics [6]. However, the gluon
pair annihilation shown in (34) strongly suggests that this
gluon condensation should become unstable, and thus
cannot last. Moreover, QCD already has the monopole
condensation. This makes the gluon condensation highly
improbable.

V. GLUEBALL-QUARKONIUM MIXING

In the preceding paper, we have outlined how the
chromoballs can mix with quarkoniums in the quark and
chromon model, to show the viability of the above
theoretical discussions [32]. In this paper, we discuss the
mixing in more detail. The possible Feynman diagrams for
the mixing are shown in Fig. 7, which tells that the mixing
takes place not just between chromoballs and quarkoniums
but also between the cc and ccc chromoballs, directly or
through the virtual states made of neurons and/or molecular
bound states of mesons. So in the mixing diagram the role
of neuron and chromon is blurred.
Obviously, the mixing influences the qq̄ octet-singlet

mixing in the quark model. So we review the octet-singlet
mixing in the quark model first. Let

huūjHjuūiEx ¼ hdd̄jHjdd̄iEx ¼ E;

hss̄jHjss̄iEx ¼ E0 ¼ Eþ Δ;

hq0q̄0jHjqq̄iAn ¼ A; ðfor all q; q0Þ: ð35Þ

Now with

(a)

(b)

FIG. 7. The possible glueball-quarkonium mixing diagrams.
The gg and ggg chromoball mixing with quarkoniums are shown
in (A) and (B).
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j8i ¼ juūi þ jdd̄i − 2jss̄iffiffiffi
6

p ;

j1i ¼ juūi þ jdd̄i þ jss̄iffiffiffi
3

p ; ð36Þ

we may obtain the following mass matrix for the qq̄ which
describes the octet-singlet mixing [32],

M2 ¼
� h8jHj8i h8jHj1i
h1jHj8i h1jHj1i

�

¼
�Eþ 2

3
Δ −

ffiffi
2

p
3
Δ

−
ffiffi
2

p
3
Δ Eþ 1

3
Δþ 3A

�
: ð37Þ

Notice that Δ-term is responsible for the mixing. However,
we emphasize that this mixing among the quarks cannot
provide the correct octet-singlet mixing because the glue-
balls inevitably influence the quark octet-singlet mixing.
This is evident in Fig. 7.
Clearly, we can generalize (37) to the following 3 × 3

mixing matrix of one lightest chromoball jGi with the
quark nonet [32]

M2 ¼

0
B@

Eþ 2
3
Δ −

ffiffi
2

p
3
Δ 0

−
ffiffi
2

p
3
Δ Eþ 1

3
Δþ 3A ν

0 ν G

1
CA: ð38Þ

Of course, a similar mixing matrix has been used in the
constituent gluon model. As we have pointed out, however,
this model has critical defects. Our quark and chromon
model can be viewed as a new model which justifies the
above mixing without such defects.
In principle, we should be able to calculate the param-

eters in the mass matrix theoretically. For example, we
could calculate G using the gauge-invariant current oper-
ator, or calculate the mixing parameter ν using the Feynman
diagrams in our model. However, in this paper, we will
fix the parameters with experimental data to see how well
the mixing matrix can explain the glueball-quarkonium
mixing.
Now, diagonalizing the mass matrix, we can transform

the unphysical states ðj8i; j1i; jGiÞ to the mass eigenstates
ðjm1i; jm2i; jm3iÞ, and obtain the information on the
chromon and quark contents of the physical states.
Notice that, assuming that after the confinement the
chromons acquire the constituent mass μ, we can put
G ¼ 4μ2 (supposing the chromoball mass before the
mixing is given by

ffiffiffiffi
G

p ¼ 2μ).
We can easily generalize the mass matrix to the 4 × 4

mixing

M2 ¼

0
BBBBB@

Eþ 2
3
Δ −

ffiffi
2

p
3
Δ 0 0

−
ffiffi
2

p
3
Δ Eþ 1

3
Δþ 3A ν ν0

0 ν G ϵ

0 ν0 ϵ G0

1
CCCCCA
; ð39Þ

to include one more chromoball state jG0i. This has eight
parameters, but we may reduce the parameters to seven by
diagonalizing the 2 × 2 chromoball mass matrix first and
putting ϵ ¼ 0. With this we can express G and G0 by the
chromonmass μ and putG ¼ 4μ2 andG0 ¼ 4μ2 þ δ for two
chromon bound state or G0 ¼ 9μ2 þ δ for three chromon
bound state. Clearly, (38) and (39) demonstrate that the
chromoball-quarkonium mixing inevitably influences the
quarkonium octet-singlet mixing. So we cannot discuss
the qq̄ spectroscopy without the chromoballs.
Diagonalizing the mass matrix we can figure out the

quark and chromon contents of the mass eigenstates.
Moreover, knowing the chromon content of the physical
states, we can calculate the relative branching ratios of
iso-singlet mesons made of heavy quarks, e. g., the J=ψ
radiative decay to the physical states in each channel. This
is because these decays are the Okubo-Zweig-Iizuka (OZI)
suppressed process which can only be made possible
through the intermediate chromoball states.
Let αi be the parameters of the mixing matrix which

determine the gluon content of physical states jmii. We can
predict the relative branching ratios of J=ψ to γX decays
among the physical states with αi, because these decays are
induced by gluons. So, for the S wave decay (i.e., for 0þþ
and 2þþ) we have [32]

R

�
J=ψ → γXk

J=ψ → γXi

�
¼

�
αk
αi

�
2
�
m2

ψ −m2
k

m2
ψ −m2

i

�
3

; ð40Þ

but for the P wave decay (i.e., for 0−þ), we expect to have

R

�
J=ψ → γXk

J=ψ → γXi

�
¼

�
αk
αi

�
2
�
m2

ψ −m2
k

m2
ψ −m2

i

�
5

; ð41Þ

where the last term is the kinematic phase space factor.
Clearly, this argument can also be applied to similar OZI
suppressed decays of heavy tt̄ or bb̄ iso-singlet mesons.
It must be pointed out that, although the chromoballs in

general mix with the quarkoniums, in particular cases the
pure chromoballs could exist. This is because some of
the gg chromoballs become the oddballs, which have the
quantum number JPC that qq̄ cannot have, and thus cannot
mix with the quarkoniums [7,32]. Obviously, these low-
lying oddballs become very important for us to search for
the pure chromoballs.
Independent of the details, however, we emphasize the

clarity of the mixing mechanism in our quark and chromon
model. All terms in the mass matrix have clear physical

PENGMING ZHANG, LI-PING ZOU, and Y.M. CHO PHYS. REV. D 98, 096015 (2018)

096015-12



meaning. For example, we can draw the Feynman diagram
which represents the parameter ν in (38), and could in
principle calculate it theoretically.
Before we close this section, it is worth comparing our

model with the so-called “model-independent” calculations
in the conventional QCD. First, let us compare our model
with the QCD sum rule approach which uses the gauge-
invariant current operator to calculate the glueball mass,
which has been asserted to be model independent [6].
Here, they calculate the mass of the scalar glueball from the
simplest gauge-invariant 0þþ current operator hF⃗μν · F⃗μνi
which supposedly describes the glueball made of two
gluons. Similarly, for the 2þþ glueball they have
hF⃗μα · F⃗ανi. However, notice that actually these operators
contain two, three, and four gluons, so that it is difficult to
justify them as two gluon states.
On the other hand, in our model, the simplest 0þþ and

2þþ current operators are just two chromon states given by
hX⃗μ · X⃗μi and hX⃗μ · X⃗νi [21–23]. Similarly, for the glueballs
made of three chromons we have hdabcXa

μXb
νXc

ρi and
hfabcXa

μXb
νXc

ρi. This is simply impossible in the conven-
tional QCD.
Exactly the same thing can be said about the lattice

calculation. Here, again, the calculations are often claimed
to be “model independent.” However, once we understand
the hidden structures of QCD we have much simpler ways
to calculate the physical quantities. So the conventional
“model-independent” calculations simply become obsolete
and old fashioned after the Abelian decomposition provides
new and simpler ways to calculate the physical quantities.
This is the advantage of the Abelian decomposition.

VI. NUMERICAL ANALYSIS

The above discussion shows that the mixing analysis is a
crucial step for us to identify the glueballs. For the 3 × 3
mixing the mass matrix has five parameters, but we can fix
E and Δ from the qq̄ flavor octet data. So we need three
inputs to fix the mass matrix completely. There are different
ways to fix them. One way is to choose two mass
eigenstates from PDG and treat G (or equivalently the
chromon mass μ) as a free parameter, and find the best fit
for μ which could predict the third physical state and
explain the PDG data best. Another way is to use all three
mass eigenstates as the input, and determine the chromon
mass as well.
For the 4 × 4 mixing the matrix has seven parameters,

but we can reduce this number to five fixing two of them
from the qq̄ flavor octet data. With this we may choose four
mass eigenstates as the input (when available) and find the
physical contents of the mass eigenstates, treating the
chromon mass as free parameters. Or we may choose three
mass eigenstates as the input and predict the mass of the
fourth physical state, imposing an extra constraint, e.g.,
ν0 ¼ ν etc.

In the preceding paper, we have discussed the numerical
analysis of the mixing below 2 GeV in 0þþ; 2þþ and 0−þ
channels with this strategy [32]. However, the numerical
analysis was preliminary and inconclusive, partly because it
depends very much on how to choose the inputs. In the
following, we discuss the mixing in more detail, and
improve the results of the preceding paper.

A. 0++ channel

In this channel, PDG lists five iso-singlet mesons,
f0ð500Þ, f0ð980Þ, f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ
below 2 GeV [12]. However, the interpretation of the
scalar mesons has been difficult and controversial, because
some of them have unusually large decay width and some
of them could be viewed as non-qq̄ multiquark states
[13–15]. In this paper, we try to figure out their physical
content within the quark and chromon model with the
following two important issues in mind.
The first issue is what should we choose to be the

isotriplet partner of the flavor octet in this channel. This is
very important because this determines the inputs E and Δ
in the mixing analysis. PDG suggests that the flavor octet
partner of the 0þþ isosinglet are a0ð1450Þ and K�

0ð1430Þ,
not a0ð980Þ and K�

0ð1430Þ [12]. Intuitively, this looks
somewhat strange because this implies that the u and d
quarks are heavier (or at least not lighter) than the s quark.
So it is worth for us to study the possibility that a0ð980Þ
and K�

0ð1430Þ become the octet partners.
If we adopt the PDG view and identify a0ð1450Þ to be

the isotriplet partner, we may choose [12]

E ¼ m2ða0Þ; a0 ¼ a0ð1450Þ;
Δ ¼ 2ðm2ðKÞ −m2ða0ÞÞ; K ¼ K�

0ð1430Þ: ð42Þ

as the input. However, as we have remarked, it is worth for
us to check whether this PDG view is correct or not. Since
the strange meson of the flavor octet of this channel is
K�

0ð1430Þ, one would expect the mass of the nonstrange
isotriplet partner to be less than 1430 MeV.
In this case, a0ð980Þ becomes a natural candidate of the

isotriplet partner of the flavor octet, and we may choose

E ¼ m2ða0Þ; a0 ¼ a0ð980Þ;
Δ ¼ 2ðm2ðKÞ −m2ða0ÞÞ; K ¼ K�

0ð1430Þ: ð43Þ

as the input. So we have two possible inputs, (42) and (43).
The second issue is the interpretation of f0ð500Þ, which

has an unusually broad decay width. According to PDG it
does not fit to the quark model well, and there have been
suggestions that it could be either a tetra-quark state or a
mixed state [52–58]. However, there are other logical
possibilities.
First, it could beviewed as a neuroball, theglueballmade of

neurons [32]. As we pointed out, the neurons (just like the
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photons in QED) have very weak binding because they can
interact only through the quark or chromon loops.
Nevertheless, they could form a loosely bound state which
has a broad decay width. And this is exactly what we find in
f0ð500Þ. This is in line with the popular interpretation that
f0ð500Þ is a tetra-quark state [52–58]. This is evident in
Fig. 6,where the loops canbeviewedasqq̄ or gg bound states.
Another possibility is that f0ð500Þ could be the mono-

ball, the vacuum fluctuation mode of the monopole con-
densation, in QCD [32]. As we have pointed out, if the
color confinement comes from the monopole condensation,
QCD could have a 0þþ vacuum fluctuation mode [21,22].
In this case, f0ð500Þ becomes a natural candidate of this
vacuum fluctuation. This suggests that f0ð500Þ may not be
a simple chromoball or qq̄ state.
With this in mind, we can discuss the mixing. Let us first

exclude fð500Þ in the mixing for the reason discussed
above. In the preceding paper, we have discussed the 3 × 3
mixing with f0ð1500Þ and f0ð1710Þ as the input, adopting
the PDG view (42) [32]. The result is copied in Table I.
Notice that the table shown in the preceding paper had a
typological mistake that the numbers in the last two
columns (i.e.,Rðm2=m1Þ and Rðm3=m1Þ) were inter-
changed. This mistake is corrected in Table I.
The table shows that the third state (with mass around

1400 MeV) could be identified to be f0ð1370Þ, which
becomes predominantly an ss̄ state. However, the physical
contents of two other states depend verymuch on the value of
the chromon mass parameter μ. When μ is around 760 MeV,
f0ð1500Þ become predominantly a chromoball state and
f0ð1710Þ becomes predominantly the uūþ dd̄ state.

On the other hand, when μ increases to 860 MeV,
f0ð1500Þ becomes a uūþ dd̄ state and f0ð1710Þ quickly
becomes a chromoball state. However, f0ð1370Þ remains to
be the ss̄ state, so that here the ss̄ state becomes lighter than
the uūþ dd̄ state. This, of course, is due to the input (42).
This is against the PDG interpretation, which suggests that
f0ð1370Þ is the uūþ dd̄ state and f0ð1710Þ is the ss̄ state.
On the other hand, if we adopt (43) as the input, we obtain

Table II. Here, we have chosen f0ð980Þ and f0ð1500Þ as the
input. The result shows that when μ ≃ 750 MeV, the third
state has mass around 1800 MeV and could be identified as
f0ð1710Þ. In this case, f0ð1500Þ remains predominantly a
chromoball state, but f0ð1710Þ becomes predominantly the
ss̄ state and f0ð980Þ becomes predominantly the uūþ dd̄
state. This, of course, is what we have expected from (43).
Clearly, the two tables give different descriptions, and we

have to know which is closer to the truth. One way to find
which is better is to compare the predictions of the relative
radiative decay ratios of J=ψ with the experimental data.
Experimentally, PDG has new data on the radiative decay
of J=ψ to 0þþ states [12],

J=ψ → γf0ð1710Þ →

8>>>>>>>><
>>>>>>>>:

γKK̄ ≃ ð8.5þ 1.2 − 0.9Þ
×10−4;

γππ ≃ ð4.0� 1.0Þ × 10−4;

γωω ≃ ð3.1� 1.0Þ × 10−4;

γηη ≃ ð2.4þ 1.2 − 0.7Þ
×10−4;

TABLE I. The numerical analysis of the 3 × 3 mixing in the 0þþ channel, with a0ð1450Þ, f0ð1500Þ, and f0ð1710Þ as the input. Here,
the third physical state can be identified as f0ð1370Þ.

m1 ¼ f0ð1500Þ m2 ¼ f0ð1710Þ m3

μ A ν m3 uþ d s G uþ d s G uþ d s G Rðm2=m1Þ Rðm3=m1Þ
0.76 0.27 0.18 1.40 0.07 0.00 0.93 0.73 0.20 0.07 0.19 0.80 0.00 0.05 0.00
0.78 0.23 0.31 1.40 0.26 0.01 0.73 0.59 0.16 0.25 0.15 0.83 0.02 0.14 0.02
0.80 0.18 0.36 1.39 0.44 0.01 0.54 0.45 0.12 0.43 0.11 0.87 0.02 0.59 0.05
0.82 0.14 0.35 1.39 0.62 0.02 0.36 0.30 0.08 0.62 0.09 0.90 0.01 1.26 0.07
0.84 0.09 0.29 1.39 0.79 0.02 0.18 0.15 0.04 0.80 0.05 0.93 0.01 3.26 0.09
0.86 0.04 0.07 1.39 0.96 0.03 0.01 0.01 0.00 0.99 0.03 0.97 0.00 85.71 0.12

TABLE II. The numerical analysis of the 3 × 3 mixing in the 0þþ channel, with a0 ¼ a0ð980Þ, f0ð980Þ, and f0ð1500Þ as the input.
Here, the third physical state could be identified as f0ð1710Þ.

m1 ¼ f0ð980Þ m2 ¼ f0ð1500Þ m3

μ A ν m3 uþ d s G uþ d s G uþ d s G Rðm2=m1Þ Rðm3=m1Þ
0.55 2.44 1.29 3.06 0.05 0.00 0.95 0.44 0.54 0.02 0.51 0.46 0.02 0.01 0.00
0.60 1.91 1.62 2.83 0.11 0.00 0.89 0.43 0.52 0.05 0.46 0.48 0.06 0.04 0.00
0.65 1.33 1.68 2.55 0.21 0.00 0.79 0.40 0.49 0.11 0.39 0.51 0.10 0.09 0.01
0.70 0.71 1.44 2.21 0.41 0.00 0.59 0.34 0.42 0.24 0.24 0.58 0.17 0.26 0.05
0.75 0.04 0.36 1.79 0.95 0.00 0.05 0.05 0.06 0.89 0.00 0.94 0.05 10.75 0.43
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and

J=ψ → γf0ð1500Þ →
8<
:

γππ ≃ ð1.01� 0.32Þ × 10−4;

γηη ≃ ð1.7þ 0.6 − 1.4Þ
×10−5:

Of course, this may not be the final data, because other
decay modes could be discovered later. However, assuming
that this is the final result, we have

Rðf0ð1710Þ=f0ð1500ÞÞ ≃ 15.3: ð44Þ

This is a very important piece of information, because this
determines the glue content of the mass eigenstates.
Now, Table II predicts the relative radiative decay ratio to

be Rðf0ð1710Þ=f0ð1500ÞÞ ≃ 0.04 (at μ ¼ 750 MeV).
Clearly, this is not in line with (44), which is troublesome.
In comparison, according to Table I we have Rðf0ð1710Þ=
f0ð1500ÞÞ ≃ 15.3 (at μ ≃ 856 MeV). This is in good agree-
ment with the PDG data, which implies that Table I is
better. This in turn implies that a0ð1450Þ, not a0ð980Þ,
could be the isotriplet partner of these isosinglet states.
However, this conclusion is premature because the contents
of physical states in Table I is controversial and Rðm2=m1Þ
becomes very sensitive to the change of μ.
Independent of whether this result is correct or not,

however, the above 3 × 3mixing has a critical shortcoming
in that it can explain the mixing of only three physical
states, while here we have at least four physical states
(excluding f0ð500Þ) below 2 GeV. This strongly motivates
us to go to the 4 × 4 mixing. And this is independent of
which input, (42) or (43), we choose.
So we consider the 4 × 4 mixing (39) with two chromo-

ball states 1S0 and 5D0 made of two chromons jGi and jG0i.

Diagonalizing the two chromoball mass matrix first, we
may put

ϵ ¼ 0; G ¼ 4μ2; G0 ¼ Gþ δ; ð45Þ

and consider the mixing of the two qq̄ states with two
chromoballs which have mass

ffiffiffiffi
G

p
and

ffiffiffiffiffi
G0p
. This has

seven parameters, but we can fix two with (42) or (43) and
four with the four mass eigenstates f0ð980Þ, f0ð1370Þ,
f0ð1500Þ, and f0ð1710Þ as the input. With this, we can
diagonalize the mass matrix and find the physical contents
of the mass eigenstates, treating the chromon mass μ as the
free parameter.
Now, adopting the PDG view (42) we obtain Table III,

but with (43) we obtain Table IV. However, the mathemati-
cal equations which we need to solve to diagonalize the
mass matrix are very rigid which often have no solution,
and this forces us to change the input data slightly to find
the solutions. So here we have changed the four mass
eigenstates to 990, 1400, 1505, and 1722 MeVs to obtain
Table III, and to 990, 1370, 1505, 1800 MeVs to obtain
Table IV.
The numerical result of Table III obtained with (42)

suggests that f0ð980Þ is predominantly the 1S0 chromoball
state and f0ð1370Þ is predominantly the ss̄ state. However,
f0ð1500Þ becomes largely the 5D0 chromoball state and
f0ð1710Þ becomes largely the uūþ dd̄ state, although they
have considerable mixing as the chromon mass increases to
600 MeV. This is in line with Table I. However, here the
uūþ dd̄ state remains heavier than the ss̄ state, which
again is due to the input (42).
On the other hand, Table IVobtained with (43) tells that

f0ð980Þ and f0ð1710Þ are the uūþ dd̄ and ss̄ states,
respectively. And f0ð1370Þ and f0ð1500Þ become the

TABLE III. The numerical analysis of the 4 × 4 mixing in the 0þþ channel, with f0ð980Þ, f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ as the
input. Here, a0ð1450Þ is identified as the isotriplet partner.

m1 ¼ f0ð980Þ m2 ¼ f0ð1370Þ m3 ¼ f0ð1500Þ m4 ¼ f0ð1710Þ
μ uþ d s G G0 uþ d s G G0 uþ d s G G0 uþ d s G G0

0.50 0.01 0.01 0.99 0.00 0.19 0.81 0.00 0.01 0.13 0.00 0.00 0.86 0.68 0.18 0.01 0.13
0.52 0.03 0.03 0.94 0.00 0.18 0.80 0.01 0.01 0.17 0.01 0.02 0.81 0.62 0.17 0.04 0.17
0.54 0.06 0.05 0.88 0.01 0.18 0.79 0.01 0.01 0.21 0.01 0.04 0.74 0.55 0.15 0.06 0.24
0.56 0.09 0.08 0.82 0.01 0.18 0.79 0.02 0.01 0.26 0.01 0.08 0.65 0.47 0.13 0.08 0.33
0.58 0.13 0.11 0.75 0.01 0.18 0.78 0.03 0.01 0.32 0.01 0.14 0.53 0.38 0.10 0.08 0.44
0.60 0.17 0.14 0.67 0.02 0.17 0.77 0.05 0.01 0.38 0.01 0.22 0.39 0.27 0.07 0.07 0.58

μ Rðm2=m1Þ Rðm3=m1Þ Rðm4=m1Þ A ν ν0 δ

0.50 0.01 0.54 0.06 0.25 0.19 0.24 1.35
0.52 0.01 0.54 0.10 0.21 0.41 0.28 1.30
0.54 0.02 0.54 0.16 0.17 0.53 0.32 1.26
0.56 0.03 0.54 0.22 0.13 0.61 0.36 1.22
0.58 0.04 0.54 0.31 0.07 0.66 0.40 1.20
0.60 0.06 0.54 0.43 0.01 0.68 0.42 1.21
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1S0 and 5D0 chromoball states. Again this is consistent
with Table II.
As for the J=ψ radiative decay branching ratio, Table III

shows that Rðf0ð1710Þ=f0ð1500ÞÞ ≃ 0.8 when μ ¼ 0.60,
and Table IV gives around 0.05 when μ ¼ 680 MeV.
Clearly, both are too small compared to (44), so that we
cannot tell which is the isotriplet partner of the 0þþ
isosinglet state.
The contrast between Tables III and IV is unmistakable.

This, of course, originates from the inputs (42) and (43).
This analysis has both positive and negative sides. The
positive side is that the result of the 4 × 4 mixing, in
particular the physical contents of the mass eigenstates, is
consistent with the 3 × 3 mixing analysis. However, the
disappointing point is that the 4 × 4 analysis cannot tell
whether the PDG view that a0ð1450Þ, not a0ð980Þ, is the
isotriplet partner of the 0þþ isosinglet state.
So far we have excluded fð500Þ in the mixing, because it

could be viewed as a neuroball or monoball, not a chromo-
ball. On the other hand, there is no reason why it cannot
mix with quarkoniums and chromoballs. Actually, even
when f0ð500Þ becomes a neuroball it makes sense to
include it in the mixing, because the neuroball could be
viewed as a glueball. This must be clear from Figs. 6 and 7.
Moreover, even when it becomes the monoball, the vacuum
fluctuation of the monopole condensation, there is no
reason why it could not mix with quarkoniums and
chromoballs. This justifies the 5 × 5 mixing.
For this reason we consider the following 5 × 5 mixing

with two qq̄ and three glueballs which has nine parameters,

M2 ¼

0
BBBBBBBB@

Eþ 2
3
Δ −

ffiffi
2

p
3
Δ 0 0 0

−
ffiffi
2

p
3
Δ Eþ 1

3
Δþ 3A ν0 ν1 ν2

0 ν0 G0 0 0

0 ν1 0 G1 0

0 ν2 0 0 G2

1
CCCCCCCCA
; ð46Þ

Here, G1 and G2 are the 1S0 and 5D0 chromoball as before,
but G0 is supposed to be the monoball or the neuroball.

In this case, we can put all five physical states below
2 GeV, including f0ð500Þ, and adopt (42) or (43) as the
input, and treat μ as a free parameter. However, we need to
impose one more constraint to fix the mass matrix
completely.
To do that, we may have to take into account the

possibility that G0 is not an ordinary chromoball. There
are two possibilities. If f0ð500Þ is the neuroball, it is natural
to expect ν0 to be of the same order as ν1 and ν2. This must
be clear from the mixing diagram Fig. 7. In this case, we
could assume

ν0 ≃
ν1 þ ν2

2
: ð47Þ

On the other hand, if f0ð500Þ is the monoball, its coupling
to ordinary chromoball and quarkonium states could be of
second order. In this case, ν0 could be much smaller than ν1
and ν2. Here, we will use (47) as the constraint. Of course,
we emphasize that there is no justification for this. We
assume this just for simplicity to fix the mass matrix
completely.
Now, with

G0 ¼ 4μ20; G1 ¼ G0 þ δ ¼ 4μ2; G2 ¼ G0 þ δ0;

ð48Þ

we obtain Table V using (42), and Table VI using (43).
However, diagonalizing the 5 × 5matrix involves solving a
sixth order polynomial, and it is not easy to find the
solution with the input data. So we have changed the input
masses a little bit, and used 550, 990, 1400, 1505, and
1722 MeVs for f0ð500Þ, f0ð980Þ, f0ð1370Þ, f0ð1500Þ, and
f0ð1710Þ to obtain Table V, and 550, 990, 1370, 1505,
and 1800 for f0ð500Þ, f0ð980Þ, f0ð1370Þ, f0ð1500Þ, and
f0ð1710Þ to obtain Table VI.
Notice that here we have expressed G0 in terms of the

neuron effective mass μ0 (assuming that G0 is the neuro-
ball) to compare it with the chromon mass μ fixed by G1. In
this 5 × 5 mixing, the glueballs play the dominant role,
because only two of the physical states can be the qq̄ states.

TABLE IV. The numerical analysis of the 4 × 4 mixing in the 0þþ channel, with f0ð980Þ, f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ as the
input. Here, a0ð980Þ is identified as the isotriplet partner.

m1 ¼ f0ð980Þ m2 ¼ f0ð1370Þ m3 ¼ f0ð1500Þ m4 ¼ f0ð1710Þ
μ uþ d s G G0 uþ d s G G0 uþ d s G G0 uþ d s G G0

0.67 0.86 0.00 0.14 0.01 0.13 0.04 0.83 0.04 0.01 0.01 0.00 0.98 0.01 0.96 0.03 0.01
0.68 0.90 0.00 0.05 0.05 0.04 0.01 0.94 0.01 0.05 0.06 0.00 0.89 0.01 0.93 0.01 0.05

μ Rðm2=m1Þ Rðm3=m1Þ Rðm4=m1Þ A ν ν0 δ

0.67 4.17 4.21 0.11 0.08 0.40 0.13 0.47
0.68 7.07 5.73 0.26 0.07 0.25 0.35 0.40
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So here the issue becomes which of the five physical states
are the qq̄ states, not the glueball states.
Table V tells that f0ð1370Þ is predominantly the ss̄ state,

and f0ð1710Þ becomes the mixed state about half of which
is the uūþ dd̄ state (and f0ð1500Þ becomes the mixed
states about quarter of which is the uūþ dd̄ state). This is
consistent with Table I. Moreover, the table tells the
followings. First, f0ð500Þ is the mainly the lowest energy
glueball which could be interpreted as either the neuroball
or the monoball. Second, f0ð980Þ and f0ð1500Þ are mainly
the 1S0 and 5D0 chromoball states, and a considerable part
of f0ð1710Þ is made of 5D0 chromoball.
In comparison, Table VI tells that f0ð980Þ and f0ð1710Þ

predominantly the uūþ dd̄ and ss̄ states, respectively.

This is in line with Table II. Moreover, this table tells that
f0ð500Þ is mainly the lowest energy the neuroball (or the
monoball), and f0ð1370Þ and f0ð1500Þ are mainly the 1S0
and 5D0 chromoball states.
In the literature, there have been diverse interpretations

of the scalar mesons. One of the popular views is that
f0ð500Þ and f0ð980Þ are the tetra-quark states [52–63],
f0ð1370Þ and f0ð1500Þ are the mixed state [64–70], and
f0ð1710Þ is a scalar glueball [71–73]. Another view is that
f0ð1370Þ, f0ð1710Þ, a0ð1450Þ, and K�

0ð1430Þ are the
members of the flavor nonet, f0ð1710Þ being mainly the
ss̄ state [74,75]. In this view, f0ð1500Þ can naturally be
identified as predominantly the glueball state. And this
seems to be endorsed by PDG [12].

TABLE V. The numerical analysis of the 5 × 5mixing in the 0þþ channel, with all five mass eigenstates (f0ð500Þ, f0ð980Þ, f0ð1370Þ,
f0ð1500Þ, and f0ð1710Þ) as the input. Here, a0ð1450Þ is identified as the isotriplet partner.

m1 ¼ f0ð500Þ m2 ¼ f0ð980Þ m3 ¼ f0ð1370Þ m4 ¼ f0ð1500Þ
μ0 μ uþ d s G0 G1 G2 uþ d s G0 G1 G2 uþ d s G0 G1 G2 uþ d s G0 G1 G2

0.28 0.50 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.18 0.81 0.00 0.00 0.01 0.13 0.00 0.00 0.00 0.87
0.30 0.52 0.01 0.01 0.97 0.00 0.00 0.03 0.02 0.01 0.94 0.00 0.18 0.80 0.00 0.01 0.01 0.18 0.01 0.01 0.02 0.79
0.32 0.53 0.03 0.02 0.92 0.02 0.00 0.04 0.04 0.05 0.87 0.00 0.18 0.79 0.00 0.01 0.01 0.23 0.01 0.01 0.04 0.71
0.34 0.55 0.05 0.04 0.86 0.04 0.00 0.06 0.05 0.09 0.80 0.01 0.18 0.79 0.00 0.02 0.01 0.27 0.01 0.02 0.08 0.63
0.36 0.56 0.08 0.05 0.80 0.07 0.00 0.06 0.05 0.15 0.73 0.01 0.18 0.78 0.00 0.02 0.01 0.31 0.01 0.02 0.11 0.55

m5 ¼ f0ð1710Þ
μ0 μ uþ d s G0 G1 G2 Rðm2=m1Þ Rðm3=m1Þ Rðm4=m1Þ Rðm5=m1Þ A ν1 ν2 δ δ0

0.28 0.50 0.69 0.19 0.00 0.00 0.12 0.80 0.01 0.43 0.05 0.26 0.10 0.23 0.67 2.03
0.30 0.52 0.60 0.16 0.01 0.03 0.19 0.78 0.01 0.41 0.09 0.20 0.29 0.40 0.71 2.09
0.32 0.53 0.52 0.14 0.02 0.06 0.27 0.77 0.02 0.40 0.13 0.14 0.54 0.34 0.73 2.03
0.34 0.55 0.44 0.12 0.02 0.08 0.35 0.79 0.02 0.39 0.17 0.09 0.61 0.38 0.74 2.03
0.36 0.56 0.38 0.10 0.02 0.07 0.42 0.81 0.03 0.39 0.22 0.04 0.67 0.40 0.73 2.02

TABLE VI. The numerical analysis of the 5 × 5 mixing in the 0þþ channel, with all five mass eigenstates (f0ð500Þ, f0ð980Þ,
f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ) as the input. Here, a0ð980Þ is identified as the isotriplet partner.

m1 ¼ f0ð500Þ m2 ¼ f0ð980Þ m3 ¼ f0ð1370Þ m4 ¼ f0ð1500Þ
μ0 μ uþ d s G0 G1 G2 uþ d s G0 G1 G2 uþ d s G0 G1 G2 uþ d s G0 G1 G2

0.28 0.66 0.01 0.00 0.99 0.00 0.00 0.85 0.00 0.01 0.12 0.01 0.12 0.03 0.00 0.83 0.01 0.01 0.02 0.00 0.00 0.97
0.30 0.69 0.07 0.00 0.92 0.00 0.00 0.85 0.00 0.07 0.00 0.08 0.00 0.00 0.00 1.00 0.00 0.08 0.09 0.00 0.00 0.83
0.32 0.68 0.13 0.00 0.86 0.00 0.01 0.77 0.00 0.14 0.01 0.08 0.00 0.00 0.00 1.00 0.00 0.08 0.10 0.00 0.00 0.82
0.34 0.68 0.20 0.01 0.78 0.00 0.01 0.69 0.00 0.21 0.02 0.08 0.02 0.00 0.00 0.97 0.01 0.09 0.11 0.00 0.00 0.81
0.36 0.68 0.26 0.01 0.71 0.01 0.02 0.61 0.00 0.28 0.03 0.07 0.03 0.01 0.00 0.95 0.02 0.09 0.11 0.00 0.00 0.80

m5 ¼ f0ð1710Þ
μ0 μ uþ d s G0 G1 G2 Rðm2=m1Þ Rðm3=m1Þ Rðm4=m1Þ Rðm5=m1Þ A ν1 ν2 δ δ0

0.28 0.66 0.01 0.95 0.00 0.03 0.01 0.12 0.49 0.48 0.01 0.08 0.39 −0.18 1.48 1.95
0.30 0.69 0.01 0.90 0.00 0.01 0.09 0.13 0.62 0.44 0.03 0.04 0.02 −0.48 1.52 1.88
0.32 0.68 0.01 0.89 0.00 0.00 0.09 0.21 0.66 0.46 0.04 0.03 0.50 0.10 1.46 1.83
0.34 0.68 0.01 0.88 0.01 0.01 0.10 0.31 0.70 0.50 0.04 0.01 0.19 0.51 1.40 1.77
0.36 0.68 0.01 0.87 0.01 0.01 0.10 0.42 0.76 0.54 0.05 0.00 0.25 0.53 1.34 1.71
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Our analysis does not entirely support this. If we identify
a0ð1450Þ as the isotriplet partner, f0ð1370Þ and f0ð1710Þ
become the qq̄ states. However, according to Table V,
f0ð1370Þ turns out to be predominantly the ss̄ state. On the
other hand, Table VI shows that f0ð1710Þ becomes
predominantly the ss̄ state, if we identify a0ð980Þ as the
isotriplet partner. So, at this point it is premature to make a
definite conclusion on which state, a0ð980Þ or a0ð1450Þ, is
the isotriplet partner of the 0þþ isosinglet qq̄ state. We just
remark that here our analysis does show that the possibility
that a0ð980Þ could be the isotriplet partner remains an
option.
However, we like to emphasize two remarkable results of

our mixing. First, both tables seem to be consistent with the
view that f0ð500Þ is the neuroball. Moreover, they suggest
that the neuron mass μ0 is around 300 MeV, which is
smaller than the chromon mass. This is interesting and
reasonable. This should be compared with the popular view
that f0ð500Þ (and f0ð980Þ) are the tetra-quark states. As we
have pointed out, in our quark and chromon model the
tetra-quark states could be interpreted as the glueballs made
of two neurons or chromons. This must be clear from
Figs. 5 and 6. So this result is not inconsistent with the
popular view that f0ð500Þ is a tetra-quark state.
Second, both tables suggest that f0ð1500Þ could be

predominantly the chromoball state. This is also very
interesting. On the other hand, in both tables the radiative
decay ratio Rðf0ð1710Þ=f0ð1500ÞÞ turns out to be too
small compared to (44). However, we notice that the
relative radiative decay ratios, in general, are very sensitive
to the inputs, so that this could be due to the ad hoc
constraint (47).
To summarize, it is difficult to draw any conclusive result

from the above numerical analysis. Perhaps one positive
side of the above analysis is that a0ð980Þ could still turn out
to be the isotriplet partner of the flavor octet in this channel.
Another point is the physical content of f0ð500Þ. It has
been a big mystery in hadron spectroscopy, on which a
huge amount of literature exists [76–79]. In this paper, we
studied the possibility that it could be interpreted as a
neuroball. Our result appears to be consistent with this
view. However, it could also turn out to be the monoball,
and we certainly need more analysis to make a definite
conclusion on this.

B. 2++ channel

In this channel, we have three physical states below
2 GeV, f2ð1270Þ, f02ð1525Þ, and f2ð1950Þ. On the other
hand, we have to keep in mind that there is the fourth state
f2ð2010Þ just above 2 GeV, which could be included in the
mixing. Another point is that PDG lists five more unestab-
lished states, f2ð1430Þ, f2ð1565Þ, f2ð1640Þ, f2ð1810Þ, and
f2ð1910Þ, some of which could turn out to be real states. In
this paper, we will consider only the three and f2ð2010Þ
established states in the mixing analysis, but the fact that

there are so many unestablished 2þþ states implies that we
have to be careful to analyse the mixing in this channel.
In the preceding paper, we have studied the 3 × 3mixing

of one chromoball and two quarkoniums, using

E ¼ m2ða2Þ; a2 ¼ a2ð1320Þ;
Δ ¼ 2ðm2ðK�Þ −m2ða2ÞÞ;
K� ¼ K�

2ð1430Þ; ð49Þ

with two physical states f2ð1270Þ and f2ð1950Þ as the
input, and predicted the mass of the third physical state
varying the chromon mass μ as a free parameter [32].
The result suggests that, when the mass parameter μ is

around 760 MeV, f2ð1270Þ becomes a mixture of uūþ dd̄
and chromoball, f2ð1950Þ becomes a mixture of uūþ dd̄,
ss̄ and the chromoball, but f0ð1525Þ becomes predomi-
nantly the ss̄ state.
On the other hand, when μ becomes around 860 MeV,

f2ð1270Þ becomes predominantly uūþ dd̄ state, f2ð1950Þ
becomes predominantly the chromoball, and f02ð1525Þ
remains predominantly the ss̄ state. This was in line with
the PDG suggestion, which interprets f2ð1270Þ and
f02ð1525Þ as the qq̄ states [12].
However, now we have more experimental data on the

J=ψ radiative decay from PDG [12]

J=ψ → γf2ð1270Þ ≃ ð1.43� 0.11Þ × 10−3;

J=ψ → γf02ð1525Þ ≃ ð4.5þ 0.7 − 0.4Þ × 10−4;

J=ψ → γf2ð1950Þ ≃ ð7.0� 2.2Þ × 10−4;

which give us

Rðf2ð1525Þ=f2ð1270ÞÞ ≃ 0.36;

Rðf2ð1950Þ=f2ð1270ÞÞ ≃ 0.49;

Rðf2ð1950Þ=f02ð1525ÞÞ ≃ 1.56: ð50Þ

So we could test these experimental data in our analysis.
In this paper, we first do the 3 × 3 mixing with all three

inputs, f2ð1270Þ, f02ð1525Þ, and f2ð1950Þ, with (49). In
this case, we can fix all five mixing parameters, including
the chromon mass μ, completely. To find the solution,
however, we have to vary the masses a bit. Changing the
masses of f2ð1270Þ, f02ð1525Þ, and f2ð1950Þ to 1275,
1515, and 1944 MeVs, we obtain Table VII which suggests
the chromon mass to be around 920 MeV.
One might worry that μ ≃ 920 MeV of Table VII is a bit

too large. However, remember that here the 2þþ chromo-
ball is 5S2 state in which the spin of two chromons are
parallel. And the spin-spin interaction could have made the
chromon mass large. So the large chromon mass here
actually could be interpreted to include the energy coming
from the spin-spin interaction.
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The result tells that f2ð1270Þ is predominantly the
uūþ dd̄ state, f02ð1525Þ is predominantly the ss̄ state,
and f2ð1950Þ is predominantly the chromoball state. This
agrees well with the result of the preceding paper, and is
consistent with the PDG view [12,32].
Notice that the table gives us Rðf02ð1525Þ=f2ð1270ÞÞ ≃

0.41 which agrees well with the PDG value 0.36, but
Rðf2ð1950Þ=f2ð1270ÞÞ becomes 2.33 which is a little
larger than the PDG value (50). However, we find that
we could reduce this number by changing the mass of
f2ð1525Þ to around 1490 MeV. With this change of the
input, the chromon mass is reduced to around 840 MeVand
Rðf2ð1950Þ=f2ð1270ÞÞ becomes around 0.57.
Now, remember that here we have f0ð2010Þ just above

2 GeV, and it would be unfair to exclude this in the mixing.
So we consider the 4 × 4 mixing with the four mass
eigenstates and (49) as the input, and obtain Table VIII.
Here, again, we have changed the input masses a little, to
1275, 1500, 1944, and 2100 MeVs, to find the solution.
Remarkably, the result in Table VIII is very similar to the

Table VII. Although the numbers are different, the general
feature is the same. Here, again, f2ð1270Þ becomes
predominantly the uūþ dd̄ state, f02ð1525Þ becomes pre-
dominantly the ss̄ state, and f2ð1950Þ becomes predomi-
nantly a chromoball state. The only new thing is that
f2ð2010Þ becomes the second chromoball state, so that we
can interpret f2ð1950Þ and f2ð2010Þ to be predominantly
the 5S2 and 1D2 chromoballs.

The main difference between the two tables is the J=ψ
relative radiative decay ratio. This is because the ratio is
very sensitive to the chromoball contents of the physical
states, so that a small change of the chromoball contents
influence the ratio significantly. In Table VIII, the radiative
decay ratios turn out to be larger then the PDG values (50).
However, we find that the ratios could be reduced to PDG
values by changing the mass of f02ð1525Þ to around
1490 MeV.
We can do the 4 × 4 mixing with the three mass

eigenstates below 2 GeV and (49) as the input, and try
to predict the fourth state. The result is shown in Table IX.
However, here again, we have changed the mass eigenval-
ues to 1275, 1500, and 1944 MeVs to obtain the solutions.
Remarkably, it predicts that the mass of the fourth state is

around 2100 MeV, which we can identify to be f2ð2010Þ.
With this identification Table IX becomes very similar to
Table VIII, which confirms that f2ð1270Þ is predominantly
the uūþ dd̄ state, f02ð1525Þ is predominantly the ss̄ state,
but f2ð1950Þ and f0ð2010Þ are predominantly the 5S2 and
1D2 chromoballs.
So, all in all the mixing in the 2þþ channel seems to work

fine, and the upshot of our mixing is that f2ð1950Þ and
f0ð2010Þ are predominantly the chromoball states. On the
other hand, it is good to remember that there are different
suggestions in the literature. Clearly, there have been claims
that f2ð1270Þ and f02ð1525Þ are the qq̄ states as PDG
suggests [80–82]. On the other hand, there have been

TABLE VII. The numerical analysis of the 3 × 3 mixing in the 2þþ channel, with f2ð1270Þ, f02ð1525Þ and f2ð1950Þ as the input.

m1 ¼ f02ð1270Þ m2 ¼ f02ð1525Þ m3 ¼ f2ð1950Þ
μ uþ d s G uþ d s G uþ d s G Rðm2=m1Þ Rðm3=m1Þ A ν

0.92 0.86 0.01 0.13 0.04 0.88 0.07 0.10 0.10 0.80 0.41 2.33 0.07 0.79

TABLE VIII. The numerical analysis of the 4 × 4mixing in the 2þþ channel, with f2ð1270Þ, f02ð1525Þ, f2ð1950Þ, and f2ð2010Þ as the
input.

m1 ¼ f2ð1270Þ m2 ¼ f02ð1525Þ m3 ¼ f2ð1950Þ m4 ¼ f2ð2010Þ
μ uþ d s G G0 uþ d s G G0 uþ d s G G0 uþ d s G G0

0.90 0.80 0.01 0.19 0.00 0.06 0.85 0.09 0.00 0.13 0.14 0.72 0.01 0.01 0.00 0.01 0.99
0.91 0.79 0.01 0.18 0.02 0.06 0.85 0.08 0.01 0.09 0.09 0.67 0.15 0.05 0.05 0.07 0.83
0.92 0.79 0.01 0.17 0.03 0.06 0.85 0.07 0.01 0.06 0.06 0.61 0.27 0.09 0.08 0.14 0.69
0.93 0.79 0.01 0.16 0.04 0.06 0.86 0.07 0.01 0.03 0.03 0.54 0.39 0.12 0.10 0.22 0.55
0.94 0.78 0.01 0.16 0.04 0.06 0.86 0.07 0.02 0.01 0.01 0.44 0.53 0.14 0.12 0.33 0.41

μ Rðm2=m1Þ Rðm3=m1Þ Rðm4=m1Þ A ν ν0 δ

0.90 1.49 1.43 0.37 0.11 0.89 0.14 1.16
0.91 1.62 1.26 0.34 0.14 0.91 0.44 0.94
0.92 1.71 1.13 0.33 0.15 0.93 0.56 0.75
0.93 1.78 1.04 0.31 0.17 0.96 0.62 0.56
0.94 1.82 0.98 0.31 0.18 0.99 0.62 0.39
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assertions that they can be viewed as molecular states
[83–86]. So we need more time to understand the physical
contents of the 2þþ states clearly.
However, what really makes the mixing analysis com-

plicated is the fact that experimentally we have five
unestablished states here, f2ð1430Þ, f2ð1565Þ, f2ð1640Þ,
f2ð1810Þ, and f2ð1910Þ [12]. Some of them could turn out
to be real states and make the mixing unreliable. So we
need more experimental clarification on the unestablished
states. Even if all remain unestablished, we have to explain
why there are so many unestablished states in this channel.

C. 0−+ channel

This channel has attracted special attention because of
the octet-singlet mixing, the U(1) problem, PCAC etc. In
this channel, we have five established states below 2 GeV,
ηð548Þ, η0ð958Þ, ηð1295Þ, ηð1405Þ, and ηð1475Þ, and one
unestablished state ηð1760Þ.
In the preceding paper, we discussed the 4 × 4mixing of

two chromoball states and two qq̄ states, using

E ¼ m2ðπÞ; π ¼ πð140Þ;
Δ ¼ 2ðm2ðKÞ −m2ðπÞÞ; K ¼ Kð498Þ; ð51Þ

with η0ð958Þ, ηð1405Þ, and ηð1760Þ as the input.
The result showed that the mass of the fourth physical

state becomes around 550 MeV, which could be interpreted
to be ηð548Þ. In this case, ηð548Þ turns out to be a mixture
of uūþ dd̄ and ss̄, while η0ð958Þ becomes predominantly a
gg chromoball [32].
This is not satisfactory and not in line with PDG, which

interprets η0ð958Þ as predominantly a qq̄ state. There are
other problems. For example, the physical contents of
ηð1405Þ and ηð1760Þ depended very much on the chro-
mon mass.

Moreover, the J=ψ radiative decay ratios in this table do
not agree well with PDG values. Indeed, experimentally
PDG has new data

J=ψ → γηð548Þ ≃ ð1.104� 0.034Þ × 10−3;

J=ψ → γη0ð958Þ ≃ ð5.15� 0.16Þ × 10−3;

J=ψ → γηð1405=1475Þ ≃ 4.9 × 10−3; ð52Þ

which reveals

Rðη0ð958Þ=ηð548ÞÞ ≃ 4.66;

Rðηð1405=1475Þ=ηð548ÞÞ ≃ 4.44: ð53Þ

So, we need to explain this.
However, most critical defect of the 4 × 4 mixing is that

it cannot explain all five physical states. This is the critical
shortcoming of the 4 × 4 mixing. For this reason we
discuss the 5 × 5 mixing in the following which could
explain all five established states.
Consider the following mixing matrix,

M2 ¼

0
BBBBBBBB@

Eþ 2
3
Δ −

ffiffi
2

p
3
Δ 0 0 0

−
ffiffi
2

p
3
Δ Eþ 1

3
Δþ 3A ν1 ν2 ν3

0 ν1 G1 0 0

0 ν2 0 G2 0

0 ν3 0 0 G3

1
CCCCCCCCA
; ð54Þ

which describes the mixing of three chromoball states with
two quarkoniums below 2 GeV. This has nine parameters.
Now, normally we could choose seven inputs, (51) and five
mass eigenvalue, and treat μ as a free parameter. In this

TABLE IX. The numerical analysis of the 4 × 4 mixing in the 2þþ channel, with states f2ð1270Þ, f02ð1525Þ, f2ð1950Þ as the input.
The fourth state could be interpreted as f2ð2010Þ.

m1 ¼ f2ð1270Þ m2 ¼ f02ð1525Þ m3 ¼ f2ð1950Þ m4

μ m4 uþ d s G G0 uþ d s G G0 uþ d s G G0 uþ d s G G0

0.90 2.86 0.80 0.01 0.19 0.00 0.06 0.85 0.09 0.00 0.14 0.14 0.72 0.00 0.00 0.00 0.00 0.99
0.91 2.11 0.79 0.01 0.18 0.02 0.06 0.85 0.08 0.01 0.09 0.09 0.68 0.14 0.05 0.05 0.06 0.84
0.92 2.07 0.79 0.01 0.18 0.02 0.06 0.85 0.08 0.01 0.05 0.05 0.54 0.36 0.10 0.09 0.21 0.61
0.93 2.07 0.79 0.01 0.18 0.03 0.06 0.86 0.07 0.01 0.02 0.02 0.42 0.54 0.13 0.11 0.33 0.43
0.94 2.08 0.78 0.01 0.17 0.03 0.06 0.86 0.07 0.01 0.01 0.01 0.33 0.65 0.14 0.12 0.43 0.21

μ m4 Rðm2=m1Þ Rðm3=m1Þ Rðm4=m1Þ A ν ϵ

0.90 2.86 1.48 0.03 0.37 0.12 0.89 4.89
0.91 2.11 1.61 1.23 0.34 0.14 0.91 0.98
0.92 2.07 1.75 1.20 0.33 0.15 0.95 0.63
0.93 2.07 1.82 1.10 0.32 0.16 0.98 0.46
0.94 2.08 1.85 1.01 0.31 0.17 1.02 0.33
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case, we need one more constraint, and might impose the
following constraint

ν1 ¼ ν; ν2 ¼
ν1 þ ν3

2
; ν3 ¼ ν0; ð55Þ

just for simplicity.
However, here we choose a slightly different input. We

choose four mass eigenstates, η0ð958Þ, ηð1295Þ, ηð1405Þ,
ηð1475Þ, and Rðηð1475Þ=η0ð958ÞÞ ¼ 0.95 of (53) in stead
of ηð548Þ. With this we could predict the mass of the fifth
physical state. The reason is that, as we have pointed out the
mathematical equations which we need to solve to diag-
onalize the mass matrix are very rigid, so that we could not
find the solution when we use the five mass eigenstates as
the inputs.
Assuming that G3 is the ggg chromoball, we may let

G1 ¼ 4μ2; G2 ¼ 4μ2 þ δ; G3 ¼ 9μ2 þ δ0: ð56Þ

Actually this is also artificial, because here G1, G2, G3 are
supposed to be the mass eigenstates of three chromoballs.
Nevertheless, we adopt (56) here, because this could
provide some insight on the chromon mass and their
binding.
With (55) and (56) we obtain Table X. The result shows

that the mass of the fifth physical state is around 520 MeV,
which could be identified as ηð548Þ. In this case ηð548Þ
turns out to be a mixture of uūþ dd̄ and ss̄, while η0ð958Þ
becomes largely a mixture of ss̄ and a gg chromoball, with
less than 20% contamination of uūþ dd̄. And ηð1295Þ is
made of more than 50% gg chromoball and less than 20%
uūþ dd̄ and ss̄ each.
However, remarkably, the table shows that ηð1405Þ and

ηð1475Þ are mainly the chromoball states. Moreover, the
J=ψ radiative decay ratios Rðηð1405Þ=η0ð958ÞÞ is perfect,
although Rðη0ð958Þ=ηð548ÞÞ looks a bit larger. This looks

interesting and reasonable, considering the fact that we
have imposed the ad hoc constraints (55) and (56).
Notice that δ0 turns out to be negative, which shows that

the mass of the three chromon bound state is smaller than
the sum of the chromon masses. This might be understood
to imply that the three chromon binding is quite strong. On
the other hand, this could also be an artefact of (56). For
instance we could introduce a new chromon mass μ0 with
G3 ¼ 3μ20 as shown in the table, and avoid the negative
binding energy.
In the literature, of course, we have different views. The

popular view that PDG endorses is that ηð548Þ and η0ð958Þ
are predominantly the uūþ dd̄ and ss̄ states, and that
ηð1295Þ and ηð1475Þ are the first radial excitations of
ηð548Þ and η0ð958Þ [87–89]. However, it is widely agreed
that ηð1405Þ is indeed a pseudo-scalar glueball [90–95].
This is endorsed by PDG and by our analysis, although
there exists a lattice result which might contradict with this
view [11].
Our result implies that the spectrum of the light pseudo-

scalar mesons could be understood within the context of the
quarkonium-chromoball mixing. Nevertheless, the idea that
ηð1295Þ and ηð1475Þ could be the radial excitations of
ηð548Þ and η0ð958Þ should be taken seriously [87–89].
To see how this popular view fares in our quark and

chromon model, we consider the 3 × 3 mixing with only
three physical states, ηð548Þ, η0ð958Þ, and ηð1405Þ, exclud-
ing the supposedly radially excited states ηð1295Þ and
ηð1475Þ. Normally in the 3 × 3 mixing we could use the
three masses and (51) as the input to diagonalize the mass
matrix, but in this case we could not find the solution. So we
choose only two mass eigenvalues, η0ð958Þ and ηð1405Þ,
and vary the mass of ηð548Þ. With this we obtain Table XI.
Interestingly, when the mass of ηð548Þ becomes

510 MeV, the radiative decay ratio Rðηð1405Þ=ηð958ÞÞ ≃
1.2 becomes close to the experimental value 0.95. In this

TABLE X. The numerical analysis of the 5 × 5 mixing in the 0−þ channel. Here, we have used η0ð958Þ, ηð1275Þ, ηð1405Þ, ηð1475Þ,
and Rðηð1475Þ=η0ð958ÞÞ ¼ 0.95 as the input. The fifth state could be interpreted as ηð548Þ.

m1 ¼ η0ð958Þ m2 ¼ ηð1295Þ m3 ¼ ηð1405Þ m4 ¼ ηð1475Þ
μ m5 uþ d s G1 G2 G3 uþ d s G1 G2 G3 uþ d s G1 G2 G3 uþ d s G1 G2 G3

0.58 0.52 0.18 0.37 0.43 0.01 0.01 0.19 0.18 0.53 0.06 0.05 0.02 0.01 0.01 0.92 0.04 0.04 0.03 0.02 0.02 0.90
0.58 0.52 0.18 0.36 0.44 0.01 0.00 0.17 0.16 0.50 0.15 0.02 0.05 0.04 0.04 0.82 0.05 0.02 0.02 0.01 0.02 0.93
0.58 0.51 0.18 0.37 0.43 0.00 0.01 0.19 0.18 0.54 0.00 0.08 0.00 0.00 0.00 1.00 0.00 0.04 0.03 0.02 0.00 0.91
0.58 0.52 0.17 0.35 0.46 0.02 0.00 0.14 0.13 0.44 0.30 0.00 0.12 0.10 0.10 0.68 0.00 0.00 0.00 0.00 0.00 1.00

m5

μ m5 uþ d s G1 G2 G3 Rðm2=m1Þ Rðm3=m1Þ Rðm4=m1Þ Rðm5=m1Þ A ν ν0 δ δ0 μ0

0.58 0.52 0.58 0.41 0.01 0.00 0.00 0.90 1.12 0.95 0.03 0.36 0.40 −0.17 0.62 −0.89 0.487
0.58 0.52 0.58 0.41 0.01 0.00 0.00 0.93 1.02 0.95 0.03 0.37 0.41 −0.17 0.58 −0.87 0.489
0.58 0.51 0.58 0.41 0.01 0.00 0.00 0.89 1.17 0.95 0.03 0.36 0.40 0.01 0.63 −0.91 0.485
0.58 0.52 0.57 0.42 0.01 0.01 0.00 0.97 0.84 0.95 0.03 0.38 0.43 −0.01 0.52 −0.85 0.492
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case, ηð548Þ becomes 60% uūþ dd̄ and 39% ss̄, but
η0ð958Þ becomes a mixture of 47% ss̄ and 30% gg. And
ηð1405Þ becomes predominantly (69%) a chromoball.
To understand the physical meaning of Table XI, we

notice that the physical contents depend very much on the
mass of ηð548Þ. Moreover, as the mass approaches to the
physical value 548 MeV, η0ð958Þ becomes predominantly
the glueball.
This is troublesome, and does not seem to support the

PDG view (that ηð1295Þ and ηð1475Þ are the radial
excitations of ηð548Þ and η0ð958Þ) at all. This implies that
our result shown in Table X is at least as good as the PDG
view, although this matter has to be studied more carefully.
In this section, we have extended and improved the

numerical analysis of the quarkonium-chromoball mixing
of the preceding paper in three channels 0þþ, 2þþ, and 0−þ
below 2 GeV, based on our quark and chromon model.
Although the numerical results are still inconclusive, the
results in this paper seem to work better.
Theoretically, it must be clear that the numerical mixing

should be regarded as an approximation. Moreover, tech-
nically the equation we need to solve to diagonalize the
mass matrix is very rigid and sensitive to the ad hoc
constraints we have imposed.
With these shortcomings it is natural that our results are

not perfect. Nevertheless, it is fair to say that the above
mixing analysis does show that the quark and chromon
model provides a conceptually simple way to understand
the glueballs and their mixing with quarkoniums.

VII. DISCUSSIONS

One of the main problems in hadron spectroscopy has
been the identification of the glueballs. In this paper, we
have made the numerical analysis of chromoball-quarko-
nium mixing to identify the glueballs, based on the quark
and chromon model obtained by the Abelian decomposi-
tion [32]. Our mixing analysis is a rough approximation,
but it does confirm that the glueballs (i.e., the chromoballs)
play a fundamental role in the hadron spectroscopy,
although in general (except for the oddballs) they exist
as mixed states. In fact, the analysis tells that it is simply
impossible to understand the meson spectroscopy with-
out them.

Our analysis was able to pinpoint the glueball candidates
below 2 GeV successfully. Indeed, our results strongly
indicate that f0ð1500Þ in the 0þþ sector, f2ð1950Þ in the
2þþ sector, and ηð1405Þ and ηð1475Þ in the 0−þ sector
become predominantly the glueballs. Some of them have
been suggested to be the glueball states before, but some of
them [e.g., ηð1475Þ] are our suggestion.
In our mixing analysis, we have also tried to settle other

unresolved issues. First, in the 0þþ sector an important
issue is what is the isotriplet qq̄ partner of the isosinglet
qq̄. There are two contending views. The popular view
endorsed by PDG is that a0ð1450Þ is the isotriplet partner,
but the opposite view suggests that a0ð980Þ is the isotriplet
parner [12,32]. The popular view appears intuitively
strange because, if this is so, the strange flavor octet
partner K�

0ð1430Þ becomes lighter than a0ð1450Þ. So it is
important to find out which view is correct, and why. We
tried to resolve this issue in our mixing. Unfortunately, our
analysis could not provide a conclusive answer on this, but
it does imply that the opposite view is not completely
excluded yet.
Another issue in this sector is the nature of f0ð500Þ,

which has been a big mystery [52–58,76–79]. In the
quark and chromon model, the chromons are supposed to
be the constituent gluons, but logically we cannot
exclude the possibility that the neurons could also form
a loosely bound state. In this paper, we discussed this
possibility. Our analysis suggests that f0ð500Þ could be
viewed a neuroball state, and this is independent of
which state we choose to be the isotriplet partner. In our
quark and chromon model, the neuroballs (if exist)
should look very much like loosely bound states of
two (or three) qq̄ mesons or gg chromoballs, and f0ð500Þ
nicely fits in this picture. Remarkably, this is consistent
with the popular view advocated by many authors
[52–58]. However, we emphasize that in detail two views
are different. The one interprets f0ð500Þ to be a glueball,
but the other interprets it a molecular state.
A related issue is whether the monopole condensation in

QCD could generate a 0þþ vacuum fluctuation mode or not
[21,22,32]. Theoretically, this, of course, is a fundamental
question. If the answer turns out to be in the affirmative,
f0ð500Þ would be a natural candidate of the vacuum
fluctuation. This is a very interesting and attractive

TABLE XI. The numerical analysis of the 3 × 3mixing in the 0−þ channel. Here, we choose η0ð958Þ and ηð1405Þ as the input and vary
the mass of ηð548Þ to obtain the table. No solution can be found when mðηð548ÞÞ > 541 MeV.

m1 ¼ ηð548Þ m2 ¼ η0ð958Þ m3 ¼ ηð1405Þ
mðηð548ÞÞ A ν μ uþ d s G uþ d s G uþ d s G Rðm3=m2Þ Rðm1=m2Þ
510 0.34 0.51 0.64 0.60 0.39 0.01 0.23 0.47 0.30 0.17 0.14 0.69 1.2 0.05
520 0.41 0.55 0.60 0.56 0.43 0.01 0.16 0.33 0.51 0.28 0.24 0.48 0.49 0.03
530 0.50 0.48 0.55 0.51 0.48 0.01 0.09 0.19 0.72 0.40 0.34 0.27 0.19 0.02
540 0.58 0.22 0.49 0.47 0.53 0.00 0.01 0.03 0.95 0.52 0.43 0.04 0.02 0.003
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possibility which warrants further study. Here, we just
emphasize that our analysis does not exclude this
possibility.
The mixing in the 2þþ sector is rather straightforward

because there are no controversial issues here. Here, we
have three physical states below 2 GeV, and our result tells
that f2ð1275Þ and f02ð1525Þ are the uūþ dd̄ and ss̄ states,
respectively. This, of course, is in line with the PDG
interpretation [12]. Moreover, our result tells that f2ð1950Þ
is predominantly the chromoball state, which agrees with
our result in the preceding paper [32].
This sounds all very nice, but we have to swallow this

with a grain of salt. The problem is that in this sector PDG
shows that there are five unestablished states, and some of
them could turn out to be real. And it is quite possible that
this could give us a serious impact on the mixing analysis.
Finally, in the 0−þ sector an important issue is whether

ηð1295Þ and ηð1750Þ are the radial excitations of ηð548Þ
and η0ð958Þ or not [87–89]. Our mixing analysis provides a
different picture. Our result tells that ηð1295Þ can be viewed
as a mixed state made of more than 50% gg chromoball and
less than 20% uūþ dd̄ and ss̄ each, and ηð1475Þ is mainly
the ggg chromoball state. This looks very interesting and
reasonable, although we have yet to see which view is
correct.
One of the problems in the mixing analysis is that the

mathematical equations to diagonalize the mass matrix are
very rigid and sensitive to the input data. This is trouble-
some because in reality we often do not have enough input
data. This has forced us to impose ad hoc constraints like
(47) and (55) which may have distorted the reality.
However, this is a technical problem we could avoid when
enough experimental data become available.
Independent of the details, however, we emphasize the

conceptual simplicity and clarity of the quark and chromon
model. As a natural generalization of the quark model it
tells what are the glueballs made of and how they mix with
quarkoniums without ambiguity. Most importantly, it
provides us the general framework of the hadron spectros-
copy in simple and clear terms.
Of course, there are other models of glueballs, in

particular the constituent gluon model, which allow similar
mixing analysis. In fact, superficially our mixing analysis is
almost identical to the mixing in this model. As we have
emphasized, however, the constituent model has the critical
defect that it cannot tell exactly what are the constituent
gluons. In comparison, our model tells what are the
constituent gluons and what are the binding gluons which
bind the constituent gluons. This is because our model is
based on different logic, that QCD is made of two types of
gluons which play different roles. No other model is based
on this fact.
To amplify this point, consider the so-called “model-

independent” calculations of gluball spectrum, the QCD
sum rule approach [6] and the lattice calculation [10,11].

It has been assumed that these calculations are based on
“the first principles” of QCD and thus regarded as model
independent. However, we have to know what is the first
principles of QCD before we know how to calculate the
glueball spectrum. As we have emphasized, the Abelian
decomposition reveals the hidden principles of QCD,
which makes the old-fashioned first principles obsolete.
For instance, in the QCD sum rule approach people have

been calculating the glueball mass with the conventional
current operators made of two gauge field strengths,
claiming that this is based on the model-independent first
principles. However, the Abelian decomposition tells that
actually there is a new and much simpler way to calculate
the glueball mass, with the gauge-invariant current oper-
ators made of two chromons. And obviously the two
methods will give us different results.
Exactly the same way, in the lattice calculation we can

construct the glueballs implementing the Abelian decom-
position on lattice or without implementing it. And again
we get different results [27,28]. Clearly, in the conventional
lattice glueball calculations, the ingredient of the glueballs
is two or three gauge field strengths. In comparison, in our
approach, the ingredient of the glueballs is two or three
chromons, and obviously the chromons are totally different
from the gauge field strengths. Consequently the two
calculations should have different results.
These two examples clearly tells that we must under-

stand the first principles of QCD first, before we actually
make the “model-independent” calculations. As we have
explained in the first part of the paper, the Abelian
decomposition allows us to do that. And this is not a
conjecture, but mathematically a well established fact in
QCD [21–31,45–48]. This is the advantage of the quark
and chromon model.
Before we close we emphasize that the quark and

chromon model is not just a theoretical proposal. The
underlying proposition of the model that there exist two
types of gluons could be tested directly by experiment. We
already have enough knowledge on how to differentiate the
gluon jet from the quark jet experimentally [96–100].
Moreover, there has been a new proposal on how to
separate different types of jets at LHC [101]. Using this
knowledge, we could actually confirm the existence of two
types of gluon jets experimentally. So we do have an
unmistakable way to justify the quark and chromon model
experimentally.
Obviously, our numerical results in this paper are not

perfect and cannot explain everything. Nevertheless, they
do demonstrate that the quark and chromon model is at
least as good as any other model in the literature which
describes the glueballs and their mixing with quarkoniums.
Moreover, the numerical mixing analysis is not the only
application of our model. The next application would be to
implement the Abelian decomposition in the QCD sum rule
and the lattice QCD calculations and obtain a better
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understanding of glueballs. The work in these directions is
in progress.
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