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We study the B → ρ helicity form factors (HFFs) by applying the light-cone sum rules (LCSR) up to
twist-4 accuracy. The HFF has some advantages in comparison to the conventionally calculated transition
form factors; e.g., the HFF parametrization can be achieved via diagonalizable unitarity relations, etc. At the
large recoil point, only the ρ-meson longitudinal component contributes to the HFFs, andwe haveHρ;0ð0Þ ¼
0.435þ0.055

−0.045 and Hρ;f1;2gð0Þ≡ 0. We extrapolate the HFFs to the physically allowable q2 region and apply
them to the B → ρ semileptonic decay. We observe that the ρ-meson longitudinal component dominates its
differential decay width in the low-q2 region, and its transverse component dominates the high-q2 region.
Two ratios, Rlow and Rhigh, are used to characterize those properties, and our LCSR calculation gives

Rlow ¼ 0.967þ0.308
−0.285 and Rhigh ¼ 0.219þ0.058

−0.070 , which agree with the BABAR measurements within errors.

DOI: 10.1103/PhysRevD.98.096013

I. INTRODUCTION

The B-meson decays are important for a precision test
of the standard model (SM) and for seeking new physics
beyond the SM. Within the framework of SM, they can be
used to fix the masses and couplings of the basic particles,
research the CP-violation phenomena, determine more pre-
cise values for the Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements, etc., cf. Refs. [1–8].
For the B-meson decays, one has to deal with the one-

particle, the two-particle, and the three or more particle
matrix elements. Those hadronic matrix elements are key
components for extracting useful information on the under-
lying flavor transitions and studying the decay constants,
the transition form factors (TFFs), the mixings and decay
amplitudes. The γ-structures of those non-perturbative
hadronic matrix elements can be decomposed into Lorentz-
invariant structures by using covariant decomposition,
leading to basic TFFs for various decay channels.
Specifically, for the B → light vector meson decays, we

need to deal with seven TFFs for the hadronic matrix
elements [9,10], which are shown in Table I. For conven-
ience, we also present the relations among the B → vector
meson helicity form factors (HFFs) and the hadronic matrix
elements in Table I.

The B → light vector meson decays have been analyzed
by various experimental groups, such as the BABAR
Collaboration [11,12], Belle Collaboration [13], LHCb
Collaboration [14,15], ATLAS Collaboration [16], and
CLEO Collaboration [17]. On the other hand, the TFFs/
HFFs for the B → light vector meson decays have been
calculated under various approaches, such as the light-
cone sum rules (LCSR) [18–27], the lattice QCD (LQCD)
[28–35] and the perturbative QCD (pQCD) [36–40]. Those
approaches are complementary to each other, which are
applicable for different q2 region. The pQCD approach is
valid in the low-q2 region, the LCSR is applicable in the
small- and intermediate-q2 region around m2

b − 2mbχ
(χ ∼ 500 MeV is the typical hadronic scale of the decay)
and the LQCD is applicable in the high-q2 region. Among
them, the LCSR prediction can be extrapolated to the whole
q2 region, thus providing an important bridge for connect-
ing various approaches.
There are large differences for the predicted and mea-

sured B → ρ decay widths at the large-q2 region, cf.,
Refs. [12,24,31]. In the paper, we shall adopt the LCSR

TABLE I. The relations among the B → vector meson tran-
sition form factors (TFFs), the helicity form factors (HFFs), and
the hadronic matrix elements.

Matrix element TFFs HFFs

hVjq̄γμbjBi V
�

HV;0, HV;t

hVjq̄γμγ5bjBi A0, A1, A2 HV;1, HV;2

hVjq̄σμνqνbjBi T1

�
HT ;0

hVjq̄σμνγ5qνbjBi T2, T3 HT ;1, HT ;2
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approach to recalculate the B → ρ hadronic matrix ele-
ments. In different to previous LCSR treatment [25,26], we
shall express the hadronic matrix elements by using the
HFF with the help of the covariant helicity projection
approach [41]. The HFFs are also Lorentz-invariant func-
tions which can be formally expressed as the linear
combination of the usually adopted TFFs.
There are some advantages to using HFFs [9]:

(i) Dispersive bounds on the HFF parametrization can be
achieved via the diagonalizable unitarity relations, and
(ii) there are relations between the HFFs and the spin-parity
quantum numbers, especially when taking the heavy-quark
and/or large-energy limit. Thus, they can be conveniently
adopted for considering the contributions from the excited
states. The relations among theHFFs and the low-lying states
can be obtained by relating the dominant poles in the LCSRs
to those low-lying resonances.We present themasses of low-
lying Bd resonances with explicit quantum numbers JP in
Table II, which shall be used in our numerical calculations;
III) The LCSRs for the B → V HFFs can be conveniently
used for studying the polarized decay widths.
The remaining parts of the paper are organized as

follows. In Sec. II, we give the calculation technology
for the B → ρ HFFs within the LCSR approach. In Sec. III,
we present the numerical results. By extrapolating those
HFFs to the whole q2 region, we study the properties of the
B-meson semileptonic decay B → ρlνl. Sec. IV is reserved
for a summary.

II. CALCULATION TECHNOLOGY FOR
THE B → ρ HFFs

As for the B → ρlνl semileptonic decays, we need to
deal with the hadronic matrix element:X

α¼0;�;t

hρðk; εαðkÞÞjq̄γμð1 − γ5ÞbjBðpÞi: ð1Þ

where k ¼ ðk0; 0; 0; jk⃗jÞ, εαðkÞ are ρ-meson longitudinal
(α ¼ 0) and transverse (�) polarization vectors. In the
B-meson rest frame with the z axis along the ρ-meson
moving direction, and we have

ε0ðkÞ ¼
1

mρ
ðjk⃗j; 0; 0; k0Þ; ð2Þ

ε�ðkÞ ¼ ∓ 1ffiffiffi
2

p ð0; 1;∓ i; 0Þ; ð3Þ

where jk⃗j ¼ ffiffiffi
λ

p
=2mB, k0 ¼ ðM2

B þm2
ρ − q2Þ=2mρ with

q ¼ p − k, λ¼ðt−−q2Þðtþ−q2Þ with t� ¼ ðmB �mρÞ2.
The polarization vectors satisfy k · εαðkÞ ¼ 0.
As proposed by Ref. [41], one can adopt the covariant

helicity projection approach to study those hadronic matrix
element (1). The off-shellW-boson has similar polarization
vectors as those of the ρ-meson, e.g., the off-shellW-boson
vectors with momentum q ¼ ðq0; 0; 0;−jq⃗jÞ are

ε0ðqÞ ¼
1ffiffiffiffiffi
q2

p ðjq⃗j; 0; 0;−q0Þ; ð4Þ

ε�ðqÞ ¼ ∓ 1ffiffiffi
2

p ð0; 1;∓ i; 0Þ; ð5Þ

εtðqÞ ¼
1ffiffiffiffiffi
q2

p q; ð6Þ

where jq⃗j ¼ jk⃗j, q0 ¼ ðM2
B −m2

ρ þ q2Þ=2mρ, and the extra
vector εtðqÞ are the timelike polarization vectors. The linear
combinations of the transverse helicity projection vector
ε�ðqÞ give

ε1ðqÞ ¼
ε−ðqÞ − εþðqÞffiffiffi

2
p ¼ ð0; 1; 0; 0Þ; ð7Þ

ε2ðqÞ ¼
ε−ðqÞ þ εþðqÞffiffiffi

2
p ¼ ð0; 0; i; 0Þ: ð8Þ

Using the off-shell W-boson polarization vectors, one
can project out the relevant HFFs from the hadronic matrix
elements [9],

Hρ;σðq2Þ ¼
ffiffiffiffiffi
q2

λ

r X
α¼0;�;t

ε�μσ ðqÞ

× hρðk; εαðkÞÞjq̄γμð1 − γ5ÞbjBðpÞi; ð9Þ

where q ¼ p − k. In the following, we shall not consider
the timelike HFF (t), which can be treated in the same way
and has no contribution to the semileptonic decay width
due to chiral suppression.
Following the standard LCSR procedures [7,21,42], we

can derive the LCSRs for the B → ρHFFs. We first define a
two-point correlation function as

Πσðp; qÞ ¼ −i

ffiffiffiffiffi
q2

λ

r X
α¼0;�;t

ε�μσ ðqÞ
Z

d4xeiq·x

× hρðk; εαðkÞÞjTfjV−A;μðxÞ; j†Bð0Þgj0i; ð10Þ

where the currents jV−A;μðxÞ ¼ d̄ðxÞγμð1 − γ5ÞbðxÞ and
j†Bð0Þ ¼ imbb̄ð0Þγ5qð0Þ which has the same quantum state
of the B-meson with JP ¼ 0−, and σ ¼ ð0; 1; 2Þ.

TABLE II. The masses of low-lying Bd resonances [9] and their
relations to the HFFs, which are obtained by relating the
dominant poles in the LCSRs to those low-lying resonances.

Transition JP Mass (GeV) HFFs

0− 5.28 HV;t

b → d 1− 5.33 HV;1

1þ 5.72 HV;0, HV;2
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In the timelike q2 region, one can insert a complete series
of the intermediate hadronic states in the correlator (10) and
single out the pole term of theB-meson lowest pseudoscalar,

ΠH
σ ¼

ffiffiffiffiffi
q2

λ

r X
α¼0;�;t

ε�μσ ðqÞ

×
hρðk;εαðkÞÞjq̄γμð1− γ5ÞbjBihBjb̄iγ5qj0i

mb½m2
B− ðpþqÞ2�

þ
ffiffiffiffiffi
q2

λ

r X
α¼0;�;t

X
H

ε�μσ ðqÞ

×
hρðk;εαðkÞÞjq̄γμð1− γ5ÞbjBHihBHjb̄iγ5qj0i

mb½m2
BH − ðpþqÞ2� ; ð11Þ

where hBjb̄iγ5qj0i ¼ m2
BfB=mbwith fB being theB-meson

decay constant. By replacing the contributions from the
higher-level resonances and continuum states with the
dispersion relations, the invariant amplitudes can be
rewritten as

ΠH
σ ¼ m2

BfB
mb½m2

B − ðpþ qÞ2�Hρ;σðq2Þ

þ
Z

∞

s0

ρHσ
s − ðpþ qÞ2 dsþ � � � ; ð12Þ

where s0 stands for the continuum threshold parameter
and the ellipsis is the subtraction constant or the finite
q2-polynomial, which has no contribution to the final sum
rules. The spectral densities ρHσ ðsÞ can be approximated by

using the ansatz of the quark-hadron duality [43], i.e.,
ρHσ ðsÞ ¼ ρQCDσ ðsÞθðs − s0Þ.
In the spacelike q2 region, i.e., ðpþ qÞ2 −m2

b ≪ 0 and
q2 ≪ m2

b for the momentum transfer which corresponds to
small light-cone distance x2 ≈ 0, the correlator (10) can be
calculated by using the operator product expansion (OPE).
By using the b-quark propagator given by Ref. [20], we
obtain

ΠOPE
σ ðp; qÞ ¼ −i

ffiffiffiffiffi
q2

λ

r X
α¼0;�;t

ε�μσ ðqÞ
Z

d4xd4k
ð2πÞ4

eiðq−kÞ·x

m2
b − k2

× fkνhρðk; εαðkÞÞjTfd̄ðxÞγμγνγ5qð0Þgj0i
þ kνhρðk; εαðkÞÞjTfd̄ðxÞγμγνqð0Þgj0i
þmbhρðk; εαðkÞÞjTfd̄ðxÞγμγ5qð0Þgj0i
−mbhρðk; εαðkÞÞjTfd̄ðxÞγμqð0Þgj0i þ � � �g:

ð13Þ

The nonlocal matrix elements can be expressed in terms of
the ρ-meson LCDAs of various twists [21,44], which are
put in the Appendix.
The LCSRs for the B → ρ HFFs are then ready to be

derived by equating the correlator in the timelike and
spacelike regions due to analytic property of the correlator
in different q2 regions. After applying the Borel trans-
formation, which removes the subtraction term in the
dispersion relation and exponentially suppresses the con-
tributions from unknown excited resonances, we get the
required LCSRs for the HFFs:

Hρ;0 ¼
mρmbðm2

B −m2
ρ − q2Þ

2
ffiffiffi
λ

p
mρfBm2

B

Z
1

0

dueðm2
B−sðuÞÞ=M2

�
mρf⊥ρ C
2u2m2

ρ
Θðcðu; s0ÞÞϕ⊥

2;ρðuÞ þ
mρf⊥ρ
2u

Θðcðu; s0ÞÞψk
3;ρðuÞ

þmbf
k
ρ

u
Θðcðu; s0ÞÞϕ⊥

3;ρðuÞ −mρf⊥ρ
�

m2
bC

8u4M4
˜̃Θðcðu; s0ÞÞ þ

C − 2m2
b

8u3M2
Θ̃ðcðu; s0ÞÞ −

1

8u2
Θðcðu; s0ÞÞ

�
ϕ⊥
4;ρðuÞ

−
mbm2

ρf
k
ρ

u2M2
Θ̃ðcðu; s0ÞÞCρðuÞ −mρf⊥ρ

�
C

u3M2
Θ̃ðcðu; s0ÞÞ −

1

u2
Θðcðu; s0ÞÞ

�
ILðuÞ

−mρf⊥ρ
�

2m2
b

2u2M2
Θ̃ðcðu; s0ÞÞ þ

1

2u
Θðcðu; s0ÞÞ

�
H3ðuÞ

�

þ
Z

1

0

dv
Z

1

0

du
Z

1

0

dDeðm2
B−sðuÞÞ=M2 Θ̃ðcðu; s0ÞÞ

u2M2

mbm2
ρðm2

B −m2
ρ − q2Þ

24
ffiffiffi
λ

p
mρfBm2

B

ff⊥ρ ½Ψ̃⊥
4;ρðαÞ − 12ðΨ⊥

4;ρðαÞ − 2vΨ⊥
4;ρðαÞ

þ 2Φ⊥ð1Þ
4;ρ ðαÞ − 2Φ⊥ð2Þ

4;ρ ðαÞ þ 4vΦ⊥ð2Þ
4;ρ ðαÞÞ�ðm2

B −m2
ρ þ 2um2

ρÞ þ 2mbmK�fkρðΦ̃k
3;ρðαÞ þ 12Φk

3;ρðαÞÞg

−
ffiffiffi
λ

p
mρmb

4mρfBm2
B

Z
1

0

dueðm2
B−sðuÞÞ=M2

�
mρf⊥ρ
um2

ρ
Θðcðu; s0ÞÞϕ⊥

2;ρðuÞ −
mbf⊥ρ
uM2

Θ̃ðcðu; s0ÞÞψk
3;ρðuÞ

−
mρf⊥ρ
4

�
m2

b

u3M4
˜̃Θðcðu; s0ÞÞ þ

1

u2M2
Θ̃ðcðu; s0ÞÞ

�
ϕ⊥
4;ρðuÞ þ

2mbf
k
ρ

u2M2
Θ̃ðcðu; s0ÞÞAρðuÞ
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−
m2

ρm3
bf

k
ρ

2u4M6

˜̃̃Θðcðu; s0ÞÞBρðuÞ þ
2mbm2

ρf
k
ρ

u2M4
˜̃Θðcðu; s0ÞÞCρðuÞ þ 2mρf⊥ρ

×

�
C − 2m2

b

u3M4
˜̃Θðcðu; s0ÞÞ −

1

u2M2
Θ̃ðcðu; s0ÞÞ

�
ILðuÞ −

mρf⊥ρ
uM2

Θ̃ðcðu; s0ÞÞH3ðuÞ
�
−
Z

1

0

dv
Z

1

0

du

×
Z

1

0

dDeðm2
B−sðuÞÞ=M2

ffiffiffi
λ

p
mbm2

ρf⊥ρ
24mρfBm2

BðmB þmρÞ
mB þmρ

u2M2
Θ̃ðcðu; s0ÞÞ½Ψ̃⊥

4;ρðαÞ þ 12ð2vΨ⊥
4;ρðαÞ

− Ψ⊥
4;ρðαÞ þ ð4v − 2ÞΦ⊥ð1Þ

4;ρ ðαÞ þ 2Φ⊥ð2Þ
4;ρ ðαÞÞ�; ð14Þ

Hρ;1 ¼
ffiffiffiffiffiffiffi
2q2

p
mb

2fBm2
B

Z
1

0

dueðm2
B−sðuÞÞ=M2

�
f⊥ρ Θðcðu; s0ÞÞϕ⊥

2;ρðuÞ þ
mρmbf

k
ρ

2u2M2
Θ̃ðcðu; s0ÞÞψ⊥

3;ρðuÞ

−
�

m2
b

u2M4
˜̃Θðcðu; s0ÞÞ þ

1

uM2
Θ̃ðcðu; s0ÞÞ

�
m2

ρf⊥ρ
4

ϕ⊥
4;ρðuÞ

�
þ
Z

1

0

dv
Z

1

0

du
Z

1

0

dDeðm2
B−sðuÞÞ=M2

×

ffiffiffiffiffiffiffi
2q2

p
m2

ρf⊥ρ
6ðmB þmρÞ

Θ̃ðcðu; s0ÞÞ
u2M2

½ð2v − 1ÞΨ̃⊥
4;ρðαÞ þ 12ðΨ⊥

4;ρðαÞ − 2ðv − 1ÞðΦ⊥ð1Þ
4;ρ ðαÞ −Φ⊥ð2Þ

4;ρ ðαÞÞÞ�; ð15Þ

Hρ;2 ¼
ffiffiffiffiffiffiffi
2q2

p
mρmbffiffiffi

λ
p

fBm2
B

Z
1

0

dueðm2
B−sðuÞÞ=M2

�
mρf⊥ρ C
2u2m2

ρ
Θðcðu; s0ÞÞϕ⊥

2;ρðuÞ þ
mρf⊥ρ
2u

Θðcðu; s0ÞÞψk
3;ρðuÞ

þmbf
k
ρ

u
Θðcðu; s0ÞÞϕ⊥

3;ρðuÞ −mρf⊥ρ
�

m2
bC

8u4M4
˜̃Θðcðu; s0ÞÞ þ

C − 2m2
b

8u3M2
Θ̃ðcðu; s0ÞÞ −

1

8u2
Θðcðu; s0ÞÞ

�
ϕ⊥
4;ρðuÞ

−
mbm2

ρf
k
ρ

u2M2
Θ̃ðcðu; s0ÞÞCρðuÞ −mρf⊥ρ

�
C

u3M2
Θ̃ðcðu; s0ÞÞ −

1

u2
Θðcðu; s0ÞÞ

�
ILðuÞ

−mρf⊥ρ
�

2m2
b

2u2M2
Θ̃ðcðu; s0ÞÞ þ

1

2u
Θðcðu; s0ÞÞ

�
H3ðuÞ

�
þ
Z

1

0

dv
Z

1

0

du
Z

1

0

dD

× eðm2
B−sðuÞÞ=M2 Θ̃ðcðu; s0ÞÞ

u2M2

ffiffiffiffiffiffiffi
2q2

p
mbm2

ρ

12
ffiffiffi
λ

p
fBm2

B

ff⊥ρ ½Ψ̃⊥
4;ρðαÞ − 12ðΨ⊥

4;ρðαÞ − 2vΨ⊥
4;ρðαÞ

þ 2Φ⊥ð1Þ
4;ρ ðαÞ − 2Φ⊥ð2Þ

4;ρ ðαÞ þ 4vΦ⊥ð2Þ
4;ρ ðαÞÞ�ðm2

B −m2
ρ þ 2um2

ρÞ þ 2mbmρf
k
ρðΦ̃k

3;ρðαÞ þ 12Φk
3;ρðαÞÞg; ð16Þ

where we have implicitly set the factorization scale as
μ:
R
dD¼R dα1dα2dα3δð1−P3

i¼1αiÞ. C¼m2
bþu2m2

ρ−q2,
E ¼ m2

b − u2m2
ρ þ q2, F ¼ m2

b − u2m2
ρ − q2, H ¼ q2=

ðm2
B −m2

ρÞ, Q ¼ m2
B −m2

ρ − q2, cðϱ; s0Þ ¼ ϱs0 −m2
b þ

ϱ̄q2 − ϱϱ̄m2
ρ, and sðϱÞ ¼ ½m2

b − ϱ̄ðq2 − ϱm2
ρÞ�=ϱ (ϱ ¼ u)

with ϱ̄ ¼ 1 − ϱ. Θðcðu; s0ÞÞ denotes the usual step func-

tion. Θ̃ðcðu; s0ÞÞ and ˜̃Θðcðu; s0ÞÞ can be obtained from the
surface terms δðcðu0; s0ÞÞ and Δðcðu0; s0ÞÞ, whose explicit
forms have been given in Ref. [10]. The functions AρðuÞ,
BρðuÞ, CρðuÞ, H3ðuÞ, and ILðuÞ are defined as

AρðuÞ ¼
Z

u

0

dv½ϕk
2;ρðvÞ − ϕ⊥

3;ρðvÞ�; ð17Þ

BρðuÞ ¼
Z

u

0

dvϕk
4;ρðvÞ; ð18Þ

CρðuÞ ¼
Z

u

0

dv
Z

v

0

dw½ψk
4;ρðwÞ þ ϕk

2;ρðwÞ−2ϕ⊥
3;ρðwÞ�;

ð19Þ

H3ðuÞ ¼
Z

u

0

dv½ψ⊥
4;ρðvÞ − ϕ⊥

2;ρðvÞ� ð20Þ

and

ILðuÞ ¼
Z

u

0

dv
Z

v

0

dw

�
ϕk
3;ρðwÞ −

1

2
ϕ⊥
2;ρðwÞ −

1

2
ψ⊥
4;ρðwÞ

�
:

ð21Þ
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III. NUMERICAL RESULTS

A. Input parameters and the HFFs

We take the ρ-meson decay constants [44], f⊥ρ ¼
0.145ð9Þ GeV and fkρ ¼ 0.216ð9Þ GeV, the b-quark pole
mass mb ¼ 4.80� 0.05 GeV, the ρ-meson mass mρ ¼
0.775 GeV, the B-meson mass mB ¼ 5.279 GeV [45]
and the B-meson decay constant fB ¼ 0.160�
0.019 GeV [26]. The factorization scale μ is set as the
typical momentum transfer of B → ρ, i.e., μ≃
ðm2

B −m2
bÞ1=2 ∼ 2 GeV, and we set its error as Δμ ¼

�1 GeV [21].
Up to twist-4 accuracy, the needed ρ-meson light-cone

distribution amplitudes (LCDAs) are grouped in Table III,
in which δ ¼ mρ=mb ∼ 0.16. Since the contributions from
the twist-4 terms themselves are numerically small, we thus
directly adopt the twist-4 LCDA model derived from the
conformal expansion of the matrix element to do the
numerical calculation [44]. Contributions from the twist-

3 LCDAs ϕ⊥
3;ρ, ψ

⊥
3;ρ,Φ

k
3;ρ, and Φ̃

k
3;ρ are suppressed by δ

1 and

the twist-3 contributions from the LCDAs ϕk
3;ρ and ψ

k
3;ρ are

suppressed by δ2. The 2-particle twist-3 LCDAs, i.e., ϕ⊥
3;ρ,

ψ⊥
3;ρ, ϕ

k
3;ρ and ψ

k
3;ρ, can be related to the twist-2 LCDAs ϕ

k
2;ρ

and ϕ⊥
2;ρ via the Wandzura-Wilczek approximation [19,46].

The 3-particle twist-3 LCDAs are also numerically small,
and we shall adopt the models of Ref. [44] to do the

calculation. The twist-2 LCDAs, ϕk
2;ρ and ϕ⊥

2;ρ, can be
derived by integrating out the transverse momentum
dependence of the twist-2 light-cone wave-function model
constructed in Refs. [25,26,47–52]. For convenience, we
call it as the WH-DA model, which states

ϕλ
2;ρðx;μ0Þ ¼

Aλ
2;ρ

ffiffiffiffiffiffiffiffi
3xx̄

p
mq

8π3=2f̃λρbλ2;ρ
½1þBλ

2;ρC
3=2
2 ðςÞ�

×

"
Erf

 
bλ2;ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ20þm2

q

xx̄

s !
−Erf

 
bλ2;ρ

ffiffiffiffiffiffi
m2

q

xx̄

s !#
;

ð22Þ
where λ ¼ k or ⊥, respectively. The reduced decay con-

stants f̃⊥ρ ¼ f⊥ρ =
ffiffiffi
3

p
and f̃kρ ¼ fkρ=

ffiffiffi
5

p
, ς ¼ 2x − 1, and the

error function ErfðxÞ ¼ 2ffiffi
π

p
R
x
0 e

−t2dt. The lepton quark

mass mq is usually taken as 0.3 GeV and we vary it within
the region of [0.2, 0.4] GeV for its uncertainty. The
parameters Aλ

2;ρ, B
λ
2;ρ, and bλ2;ρ can be determined by using

the usual constraints:
(i) The normalization condition,

R
ϕλ
2;ρðxÞdx ¼ 1;

(ii) The average of the squared transverse momentum,
hk2⊥i1=2ρ ¼ 0.37 GeV [47,53].

(iii) The second Gegenbauer moments of the twist-2
LCDAs ϕ⊥

2;ρ and ϕk
2;ρ, a

⊥
2 ð1 GeVÞ ¼ 0.14ð6Þ and

ak2ð1 GeVÞ ¼ 0.15ð7Þ [44].
Using those constraints, we can obtain the LCDA at the

scale of 1 GeV, whose behavior at any other scales can be
achieved via the renormalization group evolution [54].
The LCDA at any other scales can be obtained by using the
conventional evolution equation. We present the parameters
of ϕ⊥

2;ρ and ϕk
2;ρ in Tables IV and V, and the corresponding

curves in Fig. 1. Those two LCDAs are close in shape,
both of which change from a convex behavior to a doubly
humped behavior with the increment of the second
Gegenbauer moment.
Figure 2 shows how the LCDA ϕλ

2;ρ changes with mq.
It is drawn by fixing all other input parameters to be their
central values, and the LCDA parameters are refitted by
fixing the second Gegenbauer moments a⊥2 ð1 GeVÞ ¼
0.14 and ak2ð1 GeVÞ ¼ 0.15. As shown by Fig. 2, different
choices of light constitute quark mq can make sizable
effects to the LCDA. Thus when discussing the uncertain-
ties, the LCDA uncertainties from different choice of mq

shall also be included.
As for the LCSRs of the HFFs, we also need to know

the continuum threshold s0 and the allowable range of the
Borel parameter M2, i.e., the so-called Borel window.
The continuum threshold s0, being as the demarcation of

TABLE III. The ρ-meson LCDAswith different twist-structures,
where δ ≃mρ=mb [21].

Twist-2 Twist-3 Twist-4

δ0 ϕ⊥
2;ρ / Φ⊥ð1Þ

4;ρ , Φ⊥ð2Þ
4;ρ

δ1 ϕk
2;ρ ϕ⊥

3;ρ, ψ
⊥
3;ρ, Φ

k
3;ρ, Φ̃

k
3;ρ

/

δ2 / ϕk
3;ρ, ψ

k
3;ρ

ϕ⊥
4;ρ, ψ

⊥
4;ρ, Ψ⊥

4;ρ, Ψ̃
⊥
4;ρ

δ3 / / ϕk
4;ρ, ψ

k
4;ρ

TABLE IV. Parameters of the ρ-meson transverse leading-twist
LCDA for some typical choices of a⊥2 ð1 GeVÞ. mq ¼ 0.3 GeV.

a⊥2 A⊥
2;ρ B⊥

2;ρ b⊥2;ρ
0.20 22.679 0.151 0.555
0.14 23.808 0.100 0.572
0.08 25.213 0.050 0.595

TABLE V. Parameters of the ρ-meson longitudinal leading-

twist LCDA for some typical choices of ak2ð1 GeVÞ.
mq ¼ 0.3 GeV.

ak2 Ak
2;ρ Bk

2;ρ bk2;ρ
0.22 22.620 0.168 0.549
0.15 23.951 0.109 0.569
0.08 25.275 0.048 0.590
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the B-meson ground state and higher mass contributions,
is usually set as the one that is close to the first known
resonance of the B-meson ground state. For this purpose,
we set s0 as 34.0� 1.0 GeV2, which indicates that the
excitation energy is around 0.45 GeV to 0.65 GeV. The
correlator is expanded over 1=M2, when we calculate it to
all-power series, it shall be independent to the choice of
1=M2. However we only know its first several terms, and
we have to set a proper range for M2. As a conservative
prediction, we require the continuum contribution to be
less than 65% of the total LCSR to set the upper limit of
M2, e.g., R∝

s0
dsρtotðsÞe−s=M2R∝

m2
b
dsρtotðsÞe−s=M2 ≤ 65%: ð23Þ

Generally, the net contributions from the highest-twist
terms increase with the decrement of M2, and the lower
limit of M2 is usually fixed by requiring the highest-twist
contributions to be small so as to ensure the convergence
of the twist expansion. For the present considered three

HFFs Hρ;σ, the twist-4 contributions behave quite differ-
ently. As a unified criteria for those HFFs, we adopt the
flatness of the HFFs over M2 to set the lower limit of M2;
e.g., we require the HFFs to be changed less than 1%
within the Borel window. The determined Borel window
M2 are listed in the Table VI.
We take the HFFs Hρ;σðq2 ¼ 10Þ as explicit examples

to show how the HFFs change with the input parameters.

FIG. 1. The leading-twist LCDA ϕλ
2;ρðx; μ0 ¼ 1 GeVÞ, where λ

stands for the transverse (λ ¼ ⊥) and longitudinal (λ ¼ k)
components, respectively. mq ¼ 0.3 GeV.

FIG. 2. The leading-twist LCDA ϕλ
2;ρðx; μ0 ¼ 1 GeVÞ for

mq ∈ ½0.2; 0.4� GeV, where λ stands for the transverse (λ ¼ ⊥)
and longitudinal (λ ¼ k) components, respectively. a⊥2 ð1GeVÞ¼
0.14 and ak2ð1 GeVÞ ¼ 0.15.

TABLE VI. The Borel parameter M2 for the HFFs Hρ;σ at the
continuum threshold s0 ¼ 34.0 GeV2.

Hρ;0 Hρ;1 Hρ;2

M2 25þ0.5
−0.7 34.1þ12.5

−7.8 21.8þ3.7
−2.0
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The results are collected in Table VII, where errors from the
B-meson decay constant fB, the b-quark pole mass mb,
the ρ-meson mass mρ, the factorization scale μ, the Borel
parameter M2, and the continuum threshold s0. Table VII
shows that the main errors of those HFFs come from the
parameters mb, fB, and s0, whose effects could be up to
∼10%–20% accordingly.

B. Extrapolation of the HFFs to all q2 regions

The LCSR method is only valid for large energy of the
final-state vector meson, e.g., Eρ ≫ ΛQCD. It implies a not
too large q2 via the relation q2 ¼ m2

B − 2mBEρ, e.g.,

0 ≤ q2 ≤ q2LCSR;max ≃ 14 GeV2:

On the other hand, the allowable physical range for q2 is
about ½0; 20.3� GeV2, in which the upper limit is fixed by
q2max ¼ ðmB −mρÞ2 [21]. We adopt the method suggested
by Ref. [9] to do the extrapolation of the HFFs, i.e., the
HFFs Hρ;σ shall be extrapolated as a simplified series
expansion as follows:

Hρ;0ðtÞ ¼
1

BðtÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðt; t−Þ

p
ϕV−A
T ðtÞ

X
k¼0;1

aρ;0k zk; ð24Þ

Hρ;1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−zðt; 0Þp

BðtÞϕV−A
T ðtÞ

X
k¼0;1

aρ;1k zk; ð25Þ

Hρ;2ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−zðt; 0Þp

BðtÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðt; t−Þ

p
ϕV−A
T ðtÞ

X
k¼0;1

aρ;2k zk; ð26Þ

TABLE VII. Uncertainties of the LCSR predictions on the
HFFs Hρ;σ at the q2 ¼ 10 caused by the errors of the input
parameters; e.g., ΔDA shows the uncertainty caused by varying
the leading-twist LCDAs with the parameters listed in Tables IV
and V, in which the uncertainties caused by varying mq from
0.2 GeV → 0.4 GeV are also included.

Central ΔDA Δμ ΔM2 Δs0 Δðmb; fBÞ
Hρ;0 0.688 þ0.003

−0.003
þ0.000
−0.005

þ0.006
−0.004

þ0.027
−0.027

þ0.076
−0.062

Hρ;1 0.314 þ0.002
−0.002

þ0.000
−0.002

þ0.000
−0.000

þ0.015
−0.018

þ0.020
−0.016

Hρ;2 0.408 þ0.003
−0.003

þ0.000
−0.003

þ0.003
−0.003

þ0.024
−0.026

þ0.032
−0.025

TABLE VIII. The fitted parameters aρ;σk for the HFFs Hρ;σ ,
where all input parameters are set to be their central values.

Hρ;0 Hρ;1 Hρ;2

aρ;σ0 0.257 0.386 0.354

aρ;σ1 1.511 −1.020 −0.310
Δ 0.238 0.045 0.128

FIG. 3. The extrapolated LCSR predictions on the B → ρ HFFs
Hρ;ð0;1;2Þðq2Þ. The solid lines are center values and the shaded
bands represent their uncertainties.
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where ϕX
I ðtÞ¼1,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−zðt;0Þp ¼

ffiffiffiffiffi
q2

p
=mB, BðtÞ¼1−q2=m2

ρ;σ,ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðt; t−Þ

p ¼ ffiffiffi
λ

p
=m2

B, and

zðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p ð27Þ

with t� ¼ ðmB �mρÞ2 and t0 ¼ tþð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t−=tþ

p Þ.
The parameters aρ;σk can be determined by requiring

the “quality” of fit (Δ) to be less than one, where Δ is
defined as

Δ ¼
P

tjHρ;σðtÞ −Hfit
ρ;σðtÞjP

tjHρ;σðtÞj
× 100; ð28Þ

where t ∈ ½0; 1
2
;…; 27

2
; 14� GeV2. We put the determined

parameters aρ;σk in Table VIII, in which all the input
parameters are set to be their central values.
We put the extrapolated B → ρ HFFs Hρ;σðq2Þ in Fig. 3,

where the shaded band stands for the squared average of all
the mentioned uncertainties. All the HFFs are monotonically
increasewith the increment ofq2, and at the large recoil point,
we have Hρ;0ð0Þ ¼ 0.435þ0.055

−0.045 and Hρ;f1;2gð0Þ≡ 0.

IV. THE B → ρ SEMILEPTONIC DECAY AND
THE CKM MATRIX ELEMENT jVubj

In this subsection, we apply the HFFs Hρ;σðq2Þ to study
the semileptonic decay B → ρlνl, which is frequently used
for precision test the SM and for searching of new physics
beyond SM.
Within the SM, the total differential decay width of

B → ρlνl can be written as

1

jVubj2
dΓ
dq2

¼ Gλðq2Þ3=2½H2
ρ;0ðq2Þ þH2

ρ;1ðq2Þ þH2
ρ;2ðq2Þ�;

ð29Þ
where the terms proportional m2

l have been suppressed due
to the large chiral suppression for the light leptons with
negligible masses, the parameter G ¼ G2

F=ð192π3m3
BÞ with

the fermi coupling constant GF ¼ 1.166 × 10−5 GeV−2

[45], and the phase-space factor λðq2Þ¼ðm2
Bþm2

ρ−q2Þ2−
4m2

Bm
2
ρ. Our LCSR prediction for the differential decay

width 1=jVubj2 × dΓ=dq2 is presented in Fig. 4, where the
uncertainties from all error sources are added in quadrature.
As a comparison, the UKQCD group LQCD prediction
[28] and their extrapolated LQCD prediction (with the help
of the heavy quark symmetry, kinematic constraints and the
LCSR scaling relations) [31] are presented as a compari-
son. Our LCSR prediction is consistent with the LQCD
prediction within the intermediate q2 region; however our
LCSR prediction prefer a larger 1=jVubj2 × dΓ=dq2 in
the low-q2 region and a smaller 1=jVubj2 × dΓ=dq2 in
the high-q2 region.

As a minor point, we pick out the uncertainty caused by
varying mq ∈ ½0.2; 0.4� GeV from the above uncertainty,
and present the LCSR prediction for the differential decay
width 1=jVubj2 × dΓ=dq2 in Fig. 5. It shows the uncertainty
caused by mq is small, which agree with the observation
of Table VII that the dominant uncertainties are from the
parameters mb, fB, and s0.
We present the total decay width Γ=jVubj2 in Table IX, in

which we also present the ratio Γk=Γ⊥ as a useful reference.
The total decay width, Γ ¼ Γk þ Γ⊥, where the decay
width for the ρ-meson longitudinal components Γk is
defined as

Γk ¼ GjVubj2
Z

q2max

0

dq2λðq2Þ3=2H2
ρ;0ðq2Þ

FIG. 4. The LCSR prediction for the differential decay width
1=jVubj2 × dΓ=dq2. The LQCD prediction [28] and the extrapo-
lated prediction of UKQCD group by using of the LQCD result
[31] are presented as a comparison. The shaded bands are their
theoretical errors.

FIG. 5. The LCSR prediction for the differential decay width
1=jVubj2 × dΓ=dq2 for mq ∈ ½0.2; 0.4� GeV, where the uncer-
tainties from all error sources are added in quadrature.
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and the decay width for the ρ-meson transverse compo-
nents Γ⊥ is defined as

Γ⊥ ¼ GjVubj2
Z

q2max

0

dq2λðq2Þ3=2½H2
ρ;1ðq2Þ þH2

ρ;2ðq2Þ�:

Table IX shows that, due to the large cancelation of the
differences among different q2 regions, the difference for
the total decay width Γ between the integrated LCSR and
LQCD predictions shall be greatly suppressed.
We present the LCSR predictions for the polarized

differential decay widths 1=jVubj2 × dΓk=dq2 and
1=jVubj2 × dΓ⊥=dq2 in Fig. 6, in which all the input
parameters are set to be their central values. Figure 6
shows that the differential decay widths for the final-state
ρ-meson transverse and longitudinal components behave
quite differently. The longitudinal differential decay width
dΓk=dq2 monotonously deceases with the increment of q2,
and the transverse differential decay width dΓ⊥=dq2 shall
first increase and then decrease with the increment of q2.
Both of them tend to zero for q2 → q2max due to the phase-
space suppression. As a result, the ρ-meson longitudinal
component dominates the low-q2 region, and its transverse
component dominates the high-q2 region.

Experimentally, the BABAR Collaboration measured the
partial decay widths in three different q2 regions [12]

ΔΓlow ¼
Z

8

0

dΓ
dq2

dq2 ¼ ð0.747� 0.234Þ × 10−4; ð30Þ

ΔΓmid ¼
Z

16

8

dΓ
dq2

dq2 ¼ ð0.980� 0.187Þ × 10−4; ð31Þ

ΔΓhigh ¼
Z

20.3

16

dΓ
dq2

dq2 ¼ ð0.256� 0.072Þ × 10−4; ð32Þ

which lead to

Rlow ¼ Γlow

Γmid
¼ 0.762� 0.280; ð33Þ

Rhigh ¼
Γhigh

Γmid
¼ 0.216� 0.089: ð34Þ

OurLCSRcalculation gives,Rlow ¼ 0.967þ0.308
−0.285 andRhigh ¼

0.219þ0.058
−0.070 ; and the extrapolated LQCD calculation gives,

TABLE IX. The LCSR predictions and the extrapolated LQCD
predictions of the UKQCD group [31] for the total decay width
Γ=jVubj2 and the ratio Γk=Γ⊥.

Γ=jVubj2 Γk=Γ⊥
LCSR 12.1þ2.6

−2.5 1.14þ0.35
−0.34

UKQCD 10.9þ2.3
−1.5 0.80þ0.04

−0.03

FIG. 6. The LCSR predictions for the polarized differential
decay widths 1=jVubj2 × dΓk=dq2 and 1=jVubj2 × dΓ⊥=dq2. The
LQCD result for total differential decay width [28] is presented as
a comparison.

FIG. 7. The LCSR predictions for the ratios Rlow and Rhigh. The
BABAR [12] results and the values by using extrapolated LQCD
predictions [31] are also presented.
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Rlow ¼ 0.668þ0.283
−0.154 and Rhigh ¼ 0.409þ0.032

−0.051 . A comparison
of those two ratios is presented in Fig. 7. The LCSR
predictions agree with the BABARmeasurement with errors,
while the extrapolated LQCD prefers a larger Rhigh, which is
about 1.6σ deviation from the BABAR measurement.
Because the (middle) partial decay widths ΔΓmid for the
LCSR and LQCD approaches are close to each other, by
comparingRlow andRhigh with the experimental data, one can
get the correct decay widths in different q2 regions and, thus,
confirm which theoretical prediction is more reliable.
As a final remark, with the help of the branching

ratio BðB0 → ρ−lþνlÞ ¼ ð2.45� 0.32Þ × 10−4 and the
lifetime τðB0Þ ¼ 1.520� 0.004 ps [55], we obtain jVubj ¼
ð2.96þ0.52

−0.51Þ × 10−3, where the error is weighted average
of all the mentioned error sources. This value agrees
with the BABAR predictions [56], ð2.75� 0.24Þ × 10−3

and ð2.83� 0.24Þ × 10−3, and the CLEO predictions [17],
ð3.23� 0.24þ0.23

−0.26 � 0.58Þ × 10−3 and ð3.25� 0.14þ0.21
−0.29�

0.55Þ × 10−3, within errors.

V. SUMMARY

We have studied the HFFs for the B-meson semileptonic
decay B → ρlνl within the LCSR approach. Figure 3
shows that the extrapolated HFFs within the whole q2

region. At the large recoil point, only the ρ-meson
longitudinal component contributes; e.g., Hρ;0ð0Þ ¼
0.435þ0.055

−0.045 and Hρ;f1;2gð0Þ≡ 0, where the errors are
squared averages of the considered error sources. By
applying the extrapolated HFFs to the semileptonic decay

B → ρlνl, we observe that the differential decay width
1=jVubj2 × dΓ=dq2, as shown by Fig. 4, is consistent with
the Lattice QCD prediction within the intermediate-q2

region. However our LCSR prediction prefer a larger
1=jVubj2 × dΓ=dq2 in the low-q2 region and a smaller
1=jVubj2 × dΓ=dq2 in the high-q2 region. More explicitly,
Fig. 6 shows that the longitudinal decay width dominates
the lower-q2 region and the transverse one dominates the
higher-q2 region. Two typical ratios Rlow and Rhigh can be
used to test those properties. Our LCSR calculation shows
that Rlow ¼ 0.967þ0.308

−0.285 and Rhigh ¼ 0.219þ0.058
−0.070 . Figure 7

shows that those predictions agree with the BABAR
measurements within errors. Thus by using the HFFs with
definite polarizations, some useful information can be
achieved. A more precise measurement of those ratios
shall be helpful for testing various calculation approaches.
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APPENDIX: THE NONLOCAL MATRIX ELEMENTS

The nonlocal matrix elements used in our calculation are [10,21,44]

hρðk; εðkÞÞjd̄ðxÞqð0Þj0i ¼ −
i
2
f⊥ρ ðE · xÞm2

ρ

Z
1

0

dueiup·xψk
3;ρðuÞ; ðA1Þ

hρðk; εðkÞÞjd̄ðxÞγβγ5qð0Þj0i ¼
1

4
εβmρf

k
ρ

Z
1

0

dueiup·xψ⊥
3;ρðxÞ; ðA2Þ

hρðk; εðkÞÞjd̄ðxÞγβqð0Þj0i ¼ mρf
k
ρ

Z
1

0

dueiup·x
�
E · x
p · x

pβϕ
k
2;ρðuÞ þ Eβϕ

⊥
3;ρðuÞ

�
; ðA3Þ

hρðk; εðkÞÞjd̄ðxÞγβqð0Þj0i ¼ mρf
k
ρ

Z
1

0

dueiup·x
�
E · x
p · x

pβ½ϕk
2;ρðuÞ þ ϕ⊥

3;ρðuÞ� þ
E · x
p · x

pβ
m2

ρx2

16
ϕk
4;ρðuÞ

þ Eβϕ
⊥
3;ρðuÞ −

1

2
xβ

E · x
ðp · xÞ2 m

2
ρ½ψk

4;ρðuÞ þ ϕk
2;ρðuÞ − 2ϕ⊥

3;ρðuÞ�
�
; ðA4Þ
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hρðp; λÞjd̄ðxÞσμνqð0Þj0i ¼ −if⊥ρ
Z

1

0

dueiup·x
�
ðEμpν − EνpμÞ

�
ϕ⊥
2;ρðuÞ þ

m2
ρx2

16
ϕ⊥
4;ρðuÞ

�

þ ðpμxν − pνxμÞ
E · x

ðp · xÞ2m
2
ρ

�
ϕk
3;ρðuÞ −

1

2
ϕ⊥
2;ρðuÞ −

1

2
ψ⊥
4;ρðuÞ

�

þ 1

2
ðEμxν − EνxμÞ

m2
ρ

p · x
½ψ⊥

4;ρðuÞ − ϕ⊥
2;ρðuÞ�

�
; ðA5Þ

where f⊥ρ and fkρ are ρ-meson decay constants, which are
defined as

hρðk; εðkÞÞjd̄ð0Þγμqð0Þj0i ¼ fkρmρEμ; ðA6Þ

hρðk; εðkÞÞjd̄ð0Þσμνqð0Þj0i ¼ if⊥ρ ðEμpν − EνpμÞ: ðA7Þ

To do the simplification, the following identities are
helpful:

γμγν ¼ gμν − iσμν; ðA8Þ

γμγνγ5 ¼ gμνγ5 −
1

2
εμναβσ

αβ; ðA9Þ

γ5σ
ρσ ¼ −

i
2
σαβερσαβ; ðA10Þ

σμνγ
α ¼ iðgανγμ − gαμγνÞ þ εαμνβγ

βγ5: ðA11Þ
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