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We study the B — p helicity form factors (HFFs) by applying the light-cone sum rules (LCSR) up to
twist-4 accuracy. The HFF has some advantages in comparison to the conventionally calculated transition
form factors; e.g., the HFF parametrization can be achieved via diagonalizable unitarity relations, etc. At the

large recoil point, only the p-meson longitudinal component contributes to the HFFs, and we have H, ,(0) =

0.435fg:gf§ and H,, {1 23(0) = 0. We extrapolate the HFFs to the physically allowable ¢* region and apply
them to the B — p semileptonic decay. We observe that the p-meson longitudinal component dominates its

differential decay width in the low-g? region, and its transverse component dominates the high-¢? region.
Two ratios, Ro, and Ry, are used to characterize those properties, and our LCSR calculation gives

Riow = 0.967f8:§g58 and Ry, = 0.219f8:8753, which agree with the BABAR measurements within errors.

DOI: 10.1103/PhysRevD.98.096013

I. INTRODUCTION

The B-meson decays are important for a precision test
of the standard model (SM) and for seeking new physics
beyond the SM. Within the framework of SM, they can be
used to fix the masses and couplings of the basic particles,
research the CP-violation phenomena, determine more pre-
cise values for the Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements, etc., cf. Refs. [1-8].

For the B-meson decays, one has to deal with the one-
particle, the two-particle, and the three or more particle
matrix elements. Those hadronic matrix elements are key
components for extracting useful information on the under-
lying flavor transitions and studying the decay constants,
the transition form factors (TFFs), the mixings and decay
amplitudes. The y-structures of those non-perturbative
hadronic matrix elements can be decomposed into Lorentz-
invariant structures by using covariant decomposition,
leading to basic TFFs for various decay channels.

Specifically, for the B — light vector meson decays, we
need to deal with seven TFFs for the hadronic matrix
elements [9,10], which are shown in Table I. For conven-
ience, we also present the relations among the B — vector
meson helicity form factors (HFFs) and the hadronic matrix
elements in Table I.

*Corresponding author.
wuxg@cqu.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2018,/98(9)/096013(12)

096013-1

The B — light vector meson decays have been analyzed
by various experimental groups, such as the BABAR
Collaboration [11,12], Belle Collaboration [13], LHCb
Collaboration [14,15], ATLAS Collaboration [16], and
CLEO Collaboration [17]. On the other hand, the TFFs/
HFFs for the B — light vector meson decays have been
calculated under various approaches, such as the light-
cone sum rules (LCSR) [18-27], the lattice QCD (LQCD)
[28-35] and the perturbative QCD (pQCD) [36—40]. Those
approaches are complementary to each other, which are
applicable for different ¢> region. The pQCD approach is
valid in the low-g? region, the LCSR is applicable in the
small- and intermediate-g> region around m? —2myy
(x ~500 MeV is the typical hadronic scale of the decay)
and the LQCD is applicable in the high-¢* region. Among
them, the LCSR prediction can be extrapolated to the whole
g’ region, thus providing an important bridge for connect-
ing various approaches.

There are large differences for the predicted and mea-
sured B — p decay widths at the large-g> region, cf.,
Refs. [12,24,31]. In the paper, we shall adopt the LCSR

TABLE I. The relations among the B — vector meson tran-
sition form factors (TFFs), the helicity form factors (HFFs), and
the hadronic matrix elements.

Matrix element TFFs HFFs
(Vlgy*b|B) 14 Hy o, Hy,
(V|gr*yb|B) Ap, A1, Ag Hy.1, Hyo
(V|ge*q,b|B) T, Hro
(V|ge*y>q,b|B) Ty, Ty Hri, Hro
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TABLEII. The masses of low-lying B, resonances [9] and their
relations to the HFFs, which are obtained by relating the
dominant poles in the LCSRs to those low-lying resonances.

Transition JP Mass (GeV) HFFs
0 5.8 Hy,
b—d 1~ 5.33 Hy,l
1* 5.72 Hyo, Hya

approach to recalculate the B — p hadronic matrix ele-
ments. In different to previous LCSR treatment [25,26], we
shall express the hadronic matrix elements by using the
HFF with the help of the covariant helicity projection
approach [41]. The HFFs are also Lorentz-invariant func-
tions which can be formally expressed as the linear
combination of the usually adopted TFFs.

There are some advantages to using HFFs [9]:
(i) Dispersive bounds on the HFF parametrization can be
achieved via the diagonalizable unitarity relations, and
(ii) there are relations between the HFFs and the spin-parity
quantum numbers, especially when taking the heavy-quark
and/or large-energy limit. Thus, they can be conveniently
adopted for considering the contributions from the excited
states. The relations among the HFFs and the low-lying states
can be obtained by relating the dominant poles in the LCSRs
to those low-lying resonances. We present the masses of low-
lying B, resonances with explicit quantum numbers J* in
Table II, which shall be used in our numerical calculations;
IIT) The LCSRs for the B — V HFFs can be conveniently
used for studying the polarized decay widths.

The remaining parts of the paper are organized as
follows. In Sec. II, we give the calculation technology
for the B — p HFFs within the LCSR approach. In Sec. III,
we present the numerical results. By extrapolating those
HFFs to the whole ¢ region, we study the properties of the
B-meson semileptonic decay B — pZv,. Sec. IV is reserved
for a summary.

II. CALCULATION TECHNOLOGY FOR
THE B — p HFFs

As for the B — pfv, semileptonic decays, we need to
deal with the hadronic matrix element:

> (p(k.e,(k))@r.(1 = 7°)b|B(p)). (1)

a=0,%£.1

where k = (k°,0,0, k ), €,(k) are p-meson longitudinal
(ad =0) and transverse (&£) polarization vectors. In the
B-meson rest frame with the z axis along the p-meson
moving direction, and we have

eolk) =~ ([E1,0,0,K), (2)
ey (k) = ;%(0, 1.F i,0), (3)

where |k| = vA/2mp, kO = (M3 + m2 —q*)/2m, with
q=p—k A=(t_=q*)(t,—q*) with 1. = (mg+m,)>.
The polarization vectors satisfy & - ,(k) = 0.

As proposed by Ref. [41], one can adopt the covariant
helicity projection approach to study those hadronic matrix
element (1). The off-shell W-boson has similar polarization
vectors as those of the p-meson, e.g., the off-shell W-boson
vectors with momentum ¢ = (¢°, 0,0, —|g|) are

1

80 - _’90’09_ 0 5 4

(9) \/q—2(|11| q°) (4)
1 )

es(q) = ?5(0,1? i,0), (5)

1

e(q) = ﬁ%

where |G| = |k|, ¢° = (M3 - m3 + g*)/2m,, and the extra
vector ¢,(q) are the timelike polarization vectors. The linear
combinations of the transverse helicity projection vector
£+(q) give

(6)

e_(q) —e.(q)

al) = =02 0100, 0
ez<q>=%ﬁg*(")=<o,o,i,o>. (®)

Using the off-shell W-boson polarization vectors, one
can project out the relevant HFFs from the hadronic matrix
elements [9],

H,0(q?) = \/% > &l(q)

a=0,+,t
< (p(k.,(k))|qr, (1 =7)bIB(p)). (9)

where g = p — k. In the following, we shall not consider
the timelike HFF (7), which can be treated in the same way
and has no contribution to the semileptonic decay width
due to chiral suppression.

Following the standard LCSR procedures [7,21,42], we
can derive the LCSRs for the B — p HFFs. We first define a
two-point correlation function as

2
Ha(p’ ('I) = _l\/% Z €;ﬂ(q)/d4xei‘1"‘

a=0,%.r

x (p(k. (RN T{jv-a,(x). j5(0)}[0).  (10)

where the currents jy_s,(x) = d(x)y,(1 —ys)b(x) and
j3(0) = im,b(0)ysq(0) which has the same quantum state
of the B-meson with J* =07, and ¢ = (0, 1,2).
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In the timelike g region, one can insert a complete series
of the intermediate hadronic states in the correlator (10) and
single out the pole term of the B-meson lowest pseudoscalar,

-2 Y

otk eq(k))|ar, (1= v°)b|B)(B|biysq|0)
my[my—(p+4q)°]
PP
ok eq (K ))an(l— v°)b|B")(B" |biysq|0) (an
my[mz, —(p+4q)°] ’

where (B|biysq|0) = m%f5/m,, with f being the B-meson
decay constant. By replacing the contributions from the
higher-level resonances and continuum states with the
dispersion relations, the invariant amplitudes can be
rewritten as

m%fB
(p+49)

© P%
b [T s,

where s, stands for the continuum threshold parameter
and the ellipsis is the subtraction constant or the finite
g*-polynomial, which has no contribution to the final sum
rules. The spectral densities ptl(s) can be approximated by
|

HE = Hp,a (qZ)

mb[mB

(12)

m,my,(mg — m; —
2\/_mprmB

m
n bfp

H,o =

2
m;,C

(el 50y 1) = my [

AL el 50) )~ m |

wM?

[ (el ) + 510l so) | (o)

2
)/ due! m2—s(u /Mz{zu mCG(c(u,so))(ﬁzl;p(M) +

using the ansatz of the quark-hadron duality [43], i.e

P (s) = p2P(5)8(s - ).

In the spacelike ¢* region, i.e., (p + ¢)> — m7 < 0 and
q* < m? for the momentum transfer which corresponds to
small light-cone distance x> ~ 0, the correlator (10) can be
calculated by using the operator product expansion (OPE).
By using the b-quark propagator given by Ref. [20], we

obtain
\/7 T e d*xd*k eila=k)x

==y (@n)* my -k
x {k“(p(k. &4(k))[T{d(x)7,7,75q(0)}|0)
+ K {p(k. £,(k))[T{d(x)7,7,q(0)}|0)
+ my (p(k. £4(K))[T{d(x)7,75q(0)}/0)
= my{p(k. £4(k))[T{d(x)7,q(0)}|0) + --}.
(13)

HSPE

-~

The nonlocal matrix elements can be expressed in terms of
the p-meson LCDASs of various twists [21,44], which are
put in the Appendix.

The LCSRs for the B — p HFFs are then ready to be
derived by equating the correlator in the timelike and
spacelike regions due to analytic property of the correlator
in different g> regions. After applying the Borel trans-
formation, which removes the subtraction term in the
dispersion relation and exponentially suppresses the con-
tributions from unknown excited resonances, we get the
required LCSRs for the HFFs:

a5 @ c(u,s0) ()

C—2mi~

Ol 30)) + e O(c(u 0)) = 15Ol 0) |, ()

O(c(u,50)) = 5 O(c(us50)) | 11 ()

2 _ %)

/ dv / du / Detmi-stayywe O 50)) mym i, =
u*M? 242, f gmy

{F7 1%, (@) = 12(¥5, (@) — 20%4, ()

+20, (@) - 20,7 () + 400, (@) (mF — m3 + 2um?) + 2mymp f( L, (@) + 1204 ()}

\/_m m (m%—s(u 2 )fl m f

4mpf/;m};% duemz=sw)/M { u/m; 0O(c (u,so))qbz{p(u) — }1)\/15 @(c(u s0))w) I (u)
% 2 1 < 2

mp41 { TAZ4®( (u,so))-f-m(*)(c(u,so))] bi,(u) + 712111:/{2 O(c(u,50))A, (u)
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2mbm
2M4

m mbf
© 2utM®

<& 211 e1.50)) = 3Ot 50) | 1 o) = 202 B, 50) s of-['ao [ au

uM
x / U iesty_ NAmmRfE  my tm,

Oc(u, 50))B,(u) + 2 O(c(u. 50))Cp(u) + 2m, f

£0(c(u, 50) ¥z, (@) + 12(20'¥5, (a)

0 24m, fym(mp +m,) u*M?
~ ¥ (@) + (40— 2)@; (@) + 20,7 (). (14)
2¢Pmy, [V mf)
Mot = / duems=>(w)/M {f,m(c(u,so))qs;p(u) + 2” R CORNEAT)

z 1 . 201 2
- [ ,2111&4@( (”’SO))+W®(C(”’SO))] el ¢4p } / dv/ dbt/ dDems=sw)/M

m/)ff)_ (:)(C(l/l, SO))
6(mp+m,) u*M>

[(20 - 1)¥4, (@) + 12(¥5, (@) — 2(v — 1)(@;" (@) — @37 (@), (15)

2q°m,m;, [1 2 2 [m,f+C myfy I
H o, =" PO | gyelmy—sw)/M* ) “PLP ~ g , L PP @ , ‘
o= Yt [ it Ol )i, (1) + 57 (c(u 50 1)

_i_mbf/‘l m3C C—-2m3 ~

4M4®( (” s())) +

O(c(uu,50))b () — m, £+ [

mbm2 I

ALY 6. 50))C ) - m,,f,,[3‘;42®< (12500 = 5 O(cl,50) | 1.0

5 (el ) + 5 O(cluso) | st + [av [ [ am
s Ol 50)) V2P
M 12 Af i

+20, (2) - 20,7 (a) + 400, Rg))}(mg — m} + 2um?) + 2mym, f)(®L, (a) + 120}, (@)}, (16)

X e(m —s(u)

{7 [Pa,(@) — 12(¥5, (@) — 205, (a)

I
where we have implicitly set the factorization scale as
. [dD= [dajdaydas6(1-3"3 a;). C=mj+u*m)—q?, / / N

d d =205 ,
E=my—u'm; +q*, F= m;,—u2 ;= q —6]2/ Y WW"(W +¢ o ()= 205, ()]
(my —m3), Q= mp —m; ~ @ cle:so) =eso—mp+ (19)
eq’ — oomy. and s(e) = [my —a(q* —emy)l/e (¢ =u)
with ¢ = 1 — 0. O(c(u, s¢)) denotes the usual step func-
tion. @(c(u, so)) and O(c(u, so)) can be obtained from the u
surface terms &(c(ug, So)) and A(c(ug, s9)), whose explicit ~ Hz(u) = / dvlyy,(v) — ¢
forms have been given in Ref. [10]. The functions A,(u), 0
B,(u), C,(u), Hy(u), and I, (u) are defined as
and

Ay(u) = / gl () - g (). (17)

B, (u) = Audvgbi;p(v), (18) ’ (21)
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III. NUMERICAL RESULTS

A. Input parameters and the HFFs
We take the p-meson decay constants [44], fpl =

0.145(9) GeV and £, = 0.216(9) GeV, the b-quark pole
mass m;, = 4.80 £ 0.05 GeV, the p-meson mass m, =
0.775 GeV, the B-meson mass mp = 5.279 GeV [45]
and the B-meson decay constant fp =0.160 =+
0.019 GeV [26]. The factorization scale p is set as the
typical momentum transfer of B —p, ie., pu=x~
(m% —m2)/2 ~2 GeV, and we set its error as Ay =
+1 GeV [21].

Up to twist-4 accuracy, the needed p-meson light-cone
distribution amplitudes (LCDAs) are grouped in Table III,
in which 6 = m,/m,, ~0.16. Since the contributions from
the twist-4 terms themselves are numerically small, we thus
directly adopt the twist-4 LCDA model derived from the
conformal expansion of the matrix element to do the
numerical calculation [44]. Contributions from the twist-

3LCDAs ¢35, y3,,» CI)! > and i)ﬂ , are suppressed by &' and

the twist-3 contributions from the LCDAs qb! and 1//H are
suppressed by 6% The 2-particle twist-3 LCDAs, i.e., ¢3 p,

Ve . ¢3 ., and y/!; ,» can be related to the twist-2 LCDAs 422 »

and 452; , via the Wandzura-Wilczek approximation [19,46].
The 3-particle twist-3 LCDAs are also numerically small,
and we shall adopt the models of Ref. [44] to do the

calculation. The twist-2 LCDAs, qﬂw and ¢2{p, can be
derived by integrating out the transverse momentum
dependence of the twist-2 light-cone wave-function model

constructed in Refs. [25,26,47-52]. For convenience, we
call it as the WH-DA model, which states

A% \/3xxm
1 M2y q A 3/2
¢2;p(x7/’t0) - 87:3/2]’;1,17/21;[) [1+B G (¢)]
+mj 2
x lErf (bg.p Ko ) —Erf (bﬁ \/m—fﬂ,
k X XX
(22)
where 1 = || or L, respectively. The reduced decay con-

Zf,f/\/gandj?H = ,‘l/\/g,g:bc—l,andthe

stants fﬁ

TABLE III. The p-meson LCDAs with different twist-structures,
where § > m,/m,, [21].
Twist-2 Twist-3 Twist-4

0 i (1) . 1(2
61 ¢2p / q)4;/<) )’ q)4;; )
o ¢2 p ¢§_;p’ Wé_p’ (D!/)’ q)g p /

2 Lol wl gl
0 / ¢3 P ll’zp D3y V/4ﬂ’ ‘{J4ﬂ’ ‘P4;/’

3
1) / / ¢4 . W4 .,

TABLE IV. Parameters of the p-meson transverse leading-twist
LCDA for some typical choices of ay (1 GeV). m, = 0.3 GeV.

ay AZL;F B2L;ﬂ bi/’

0.20 22.679 0.151 0.555
0.14 23.808 0.100 0.572
0.08 25.213 0.050 0.595

TABLE V. Parameters of the p-meson longitudinal leading-

twist LCDA for some typical choices of ag(l GeV).
m, = 0.3 GeV.
al Al gl pl

2 2;p 2;p 2;p
0.22 22.620 0.168 0.549
0.15 23.951 0.109 0.569
0.08 25.275 0.048 0.590

error function Erf(x) :\/l; [§e"dt. The lepton quark

mass m,, is usually taken as 0.3 GeV and we vary it within
the region of [0 2 0.4] GeV for its uncertainty. The
parameters A%, - BA > and b’1 can be determined by using
the usual constraints:

(i) The normalization condition, [ ¢3.,(x)dx = 1;

(ii) The average of the squared transverse momentum,

(K2))/* = 0.37 GeV [47,53].
(iii)) The second Gegenbauer moments of the twist-2
LCDAs ¢, and ¢2p, ay (1 GeV) = 0.14(6) and
al(1 GeV) = 0.15(7) [44].

Using those constraints, we can obtain the LCDA at the
scale of 1 GeV, whose behavior at any other scales can be
achieved via the renormalization group evolution [54].
The LCDA at any other scales can be obtained by using the
conventional evolutlon equation. We present the parameters
of ¢5; ., and (,{) in Tables IV and V, and the corresponding
curves in F1g l Those two LCDAs are close in shape,
both of which change from a convex behavior to a doubly
humped behavior with the increment of the second
Gegenbauer moment.

Figure 2 shows how the LCDA g{)’é; , changes with m,.
It is drawn by fixing all other input parameters to be their
central values, and the LCDA parameters are refitted by
fixing the second Gegenbauer moments a; (1 GeV) =

0.14 and ag(l GeV) = 0.15. As shown by Fig. 2, different
choices of light constitute quark m, can make sizable
effects to the LCDA. Thus when discussing the uncertain-
ties, the LCDA uncertainties from different choice of m,
shall also be included.

As for the LCSRs of the HFFs, we also need to know
the continuum threshold s, and the allowable range of the
Borel parameter M2, i.e., the so-called Borel window.
The continuum threshold s, being as the demarcation of
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= ] - - WH-DA for dl) = 0.22 b\
05r I .
'] Al
] --=-WH-DA for dl, = 0.08 q
]
WH-DA for al = 0.15(7)
O Il Il Il Il
0 0.2 0.4 0.6 0.8 1
X
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/’—‘:‘ :~ ,’; \~\\
£ // S 7/ \ag \\ \
L %5 R \ i
1 '1 4 S\
g o S\
= F — WH-DA for a5 = 0.14 . \‘
= 4 !
& b - - WH-DA for a3 = 0.20 b
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i --=-WH-DA for a3 = 0.08 3
WH-DA for a3 = 0.14(6)
0 Il Il Il Il
0 0.2 0.4 0.6 0.8 1

xT

FIG. 1. The leading-twist LCDA ¢4, (X, g = 1 GeV), where 4
stands for the transverse (4 = 1) and longitudinal (1= ||)
components, respectively. m, = 0.3 GeV.

the B-meson ground state and higher mass contributions,
is usually set as the one that is close to the first known
resonance of the B-meson ground state. For this purpose,
we set sy as 34.0 & 1.0 GeV?, which indicates that the
excitation energy is around 0.45 GeV to 0.65 GeV. The
correlator is expanded over 1/M 2 when we calculate it to
all-power series, it shall be independent to the choice of
1/M?. However we only know its first several terms, and
we have to set a proper range for M2. As a conservative
prediction, we require the continuum contribution to be
less than 65% of the total LCSR to set the upper limit of
M?, eg.,

f;: dsptot(s>e—s/M2
[ dsp (s)e= /"

< 65%. (23)

Generally, the net contributions from the highest-twist
terms increase with the decrement of M2, and the lower
limit of M? is usually fixed by requiring the highest-twist
contributions to be small so as to ensure the convergence
of the twist expansion. For the present considered three

1.5 . , ' ' '
R N e TN
! P ~ . 7 e~ ~, \‘
1, 4 g ~ N - . - N . N
4 -
1r S/ “\, _
= o \‘
< ¥ !
8 4 ‘
= 4l \
— & 1 “
< ! \
1
05t |, -
! \
! — WH-DA for m, = 0.3 “
! - - WH-DA for m, = 0.4 \
! ----WH-DA for m, = 0.2 “
I’ l‘
0 . . ) ,
0 0.2 0.4 0.6 0.8 1
X
L5 : : . . .

¢2L.;p(m7 /1‘0)

—WH-DA for m, = 0.3
- - WH-DA for m, = 0.4
--=-WH-DA for m, = 0.2

0 L L L L
0 0.2 0.4 0.6 0.8 1
T

FIG. 2. The leading-twist LCDA qb’;; (%, g =1 GeV) for
m, € [0.2,0.4] GeV, where 4 stands for the transverse (4 = L)

and longitudinal (A = ||) components, respectively. ay (1GeV)=
0.14 and al(1 GeV) = 0.15.

HFFs H,, ;, the twist-4 contributions behave quite differ-
ently. As a unified criteria for those HFFs, we adopt the
flatness of the HFFs over M? to set the lower limit of M?;
e.g., we require the HFFs to be changed less than 1%
within the Borel window. The determined Borel window
M? are listed in the Table VI.

We take the HFFs 7"[p.¢,(q2 = 10) as explicit examples
to show how the HFFs change with the input parameters.

TABLE VI.  The Borel parameter M? for the HFFs H, , at the
continuum threshold s, = 34.0 GeV>.

Hp,() Hp,l H

.2
2 0. . 3.7
M 25193 34,1137 21.8137

096013-6



B — p HELICITY FORM FACTORS ...

PHYS. REV. D 98, 096013 (2018)

TABLE VII. Uncertainties of the LCSR predictions on the
HFFs ‘H,, at the ¢> = 10 caused by the errors of the input
parameters; e.g., ADA shows the uncertainty caused by varying
the leading-twist LCDAs with the parameters listed in Tables IV
and V, in which the uncertainties caused by varying m, from
0.2 GeV — 0.4 GeV are also included.

2 .
Central ADA  Au AM Asy  A(my; fp)
0003 +0.000  +0.006  +0.027 +0.076
Hyo  0.688 0003  —=0005  —0004  —0.027 -0.062
H 0314  +0002  +0.000  +0.000  +0.015 +0.020
p.1 : 0002 —0002 0000  —0.018 -0.016
+0003  +0.000  +0.003  +0.024 +0.032
My 0408 0003 0003  —0.003  —0.026 -0.025

The results are collected in Table VII, where errors from the
B-meson decay constant fp, the b-quark pole mass m,,
the p-meson mass m,,, the factorization scale y, the Borel
parameter M?, and the continuum threshold s,. Table VII
shows that the main errors of those HFFs come from the
parameters m,;,, fp, and s;, whose effects could be up to
~10%-20% accordingly.

B. Extrapolation of the HFFs to all g> regions

The LCSR method is only valid for large energy of the
final-state Vector meson, e.g., E > AQCD It implies a not
too large ¢* via the relation ¢> = m% —2mgE,, e.g.,

0<¢*< QiCSR,max ~ 14 GeV>.

On the other hand, the allowable physical range for ¢ is
about [0,20.3] GeV?, in which the upper limit is fixed by
Gax = (mp —m,)? [21]. We adopt the method suggested
by Ref. [9] to do the extrapolation of the HFFs, i.e., the
HFFs H,, shall be extrapolated as a simplified series
expansion as follows:

— ! a/)O k
Holt) = B(1)\/z(t,1_)pp~4(1) kz():l ’
T, 1) = _;TiAOt) kz():l pl e 29)
Hoal) = g A 29

B(1)\/z(t, 1) =

TABLE VIIL. The fitted parameters a;” for the HFFs H

p.0>
where all input parameters are set to be their central values.
Hp.() H/z.l Hﬁ.Z
ay’ 0.257 0.386 0.354
ay’ 1.511 —1.020 -0.310
A 0.238 0.045 0.128

1.8

1.6 1

Hr)-ﬂ(qz)

0.2f J
0 I
0 5 10 15
2 2
¢*(GeV?)
1.4 T T T
1.2F J
1 L
n:@/ 0.8 1
= 06} ]
0.4F 1
021 J
0 1 1 1 |
0 5 10 15
¢*(GeV?)
2 L
1.5F 1
=
< L _
NS 1
0.5F 1
O 1 1 1
0 5 10 15
¢*(GeV?)
FIG. 3. The extrapolated LCSR predictions on the B — p HFFs

H,,'(O'l,z)(qz). The solid lines are center values and the shaded
bands represent their uncertainties.

096013-7



CHENG, WU, ZHOU, and FU

PHYS. REV. D 98, 096013 (2018)

where ¢f (1) =1, \/=2(1.0)=+/q?/mp. B(1)=1-¢*/m2,,
Vz(t 1) = \/a/m}, and

_ VL=~
2 = Vi =i+ =1 @7)

with 7. = (mp £m,)? and 1o =1, (1 — /1 —1_/1,).

The parameters a;° can be determined by requiring
the “quality” of fit (A) to be less than one, where A is
defined as

A = il Hoo(t) = Hy(0)]
2l Hpa (1)

where 1 € [0,1,...,%, 14] GeV2. We put the determined
parameters «;” in Table VIII, in which all the input
parameters are set to be their central values.

We put the extrapolated B — p HFFs H,, ,(¢?) in Fig. 3,
where the shaded band stands for the squared average of all
the mentioned uncertainties. All the HFFs are monotonically
increase with the increment of ¢, and at the large recoil point,
we have H,,((0) = 0.43520073 and H,, (5, (0) = 0.

x 100, (28)

IV. THE B — p SEMILEPTONIC DECAY AND
THE CKM MATRIX ELEMENT |V ;|

In this subsection, we apply the HFFs Hw(qz) to study
the semileptonic decay B — pfv,, which is frequently used
for precision test the SM and for searching of new physics
beyond SM.

Within the SM, the total differential decay width of
B — pfuv, can be written as

1 dr

GV IHE A ? 2 (2 2 (.2
Vo dg ~ ) H0(@) +7,,(67) £ H,(40)]:

(29)

where the terms proportional m% have been suppressed due
to the large chiral suppression for the light leptons with
negligible masses, the parameter G = G%/(192z°m3) with
the fermi coupling constant Gy = 1.166 x 107> GeV~>
[45], and the phase-space factor A(g*)=(m}+m3—q*)*—
4m%m?. Our LCSR prediction for the differential decay
width 1/|V|* x dI"/dq? is presented in Fig. 4, where the
uncertainties from all error sources are added in quadrature.
As a comparison, the UKQCD group LQCD prediction
[28] and their extrapolated LQCD prediction (with the help
of the heavy quark symmetry, kinematic constraints and the
LCSR scaling relations) [31] are presented as a compari-
son. Our LCSR prediction is consistent with the LQCD
prediction within the intermediate ¢> region; however our
LCSR prediction prefer a larger 1/|Vy|* x dI'/dg* in
the low-g* region and a smaller 1/|Vy|*> x dT'/dq? in
the high-¢° region.

L B e e e e L B e e e e e |

1|V | >xdldg?(10712GeV-")

+ LQCD
02r e - LCSR
— Extrapolated LQCD
0.0 ' : : '
0 5 10 15 20
q°(GeV?)

FIG. 4. The LCSR prediction for the differential decay width
1/|V i |* x dU/dq*. The LQCD prediction [28] and the extrapo-
lated prediction of UKQCD group by using of the LQCD result
[31] are presented as a comparison. The shaded bands are their
theoretical errors.

1.0 1
S
& 0.8r 1
o R
I?_ ”-’_—,—- ____
& 06F = .
3
[ - 2
X 04 — mgy=0.3 (GeV?) 1
= [ ===—- mq=0.2 (GeV?)
N A - mgy=0.4 (GeV?) ]
0ol . . ‘ .
0 5 10 15 20
a*(GeV?)
FIG. 5. The LCSR prediction for the differential decay width

1/|Vp|* x dT'/dg? for m, € [0.2,0.4] GeV, where the uncer-
tainties from all error sources are added in quadrature.

As a minor point, we pick out the uncertainty caused by
varying m, € [0.2,0.4] GeV from the above uncertainty,
and present the LCSR prediction for the differential decay
width 1/|V,,|? x dT"/dg? in Fig. 5. It shows the uncertainty
caused by m, is small, which agree with the observation
of Table VII that the dominant uncertainties are from the
parameters my, fp, and s.

We present the total decay width I"/|V,,,|? in Table IX, in
which we also present the ratio I'j /" as a useful reference.

The total decay width, " = [l + T+, where the decay

width for the p-meson longitudinal components I'l is
defined as

s
rl = gV, P A dPUP ) o)
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TABLE IX. The LCSR predictions and the extrapolated LQCD
predictions of the UKQCD group [31] for the total decay width
I'/|Vy|* and the ratio I'y /T, .

U/|V|? Iy/Ty
LCSR 12,1138 1141037
UKQCD 109132 0.80703

and the decay width for the p-meson transverse compo-
nents I'" is defined as

s
L = GIV,P / APV (@) + Ha(aP)].

Table IX shows that, due to the large cancelation of the
differences among different ¢> regions, the difference for
the total decay width I" between the integrated LCSR and
LQCD predictions shall be greatly suppressed.

We present the LCSR predictions for the polarized
differential decay widths 1/|V,,[> x dl'l/dg*> and
1/|Vu|*> x dT+/dg? in Fig. 6, in which all the input
parameters are set to be their central values. Figure 6
shows that the differential decay widths for the final-state
p-meson transverse and longitudinal components behave
quite differently. The longitudinal differential decay width
dr'l /dg? monotonously deceases with the increment of ¢2,
and the transverse differential decay width dI'*/dg” shall
first increase and then decrease with the increment of ¢°.
Both of them tend to zero for ¢*> — g2, due to the phase-
space suppression. As a result, the p-meson longitudinal
component dominates the low-g? region, and its transverse
component dominates the high-g> region.

— T T T T T T T T
I e LQCD for g = Total i
—~ 10 == - o=Total ]
% | emm—— o = Transvese (1)
[ mmemaaaa- o = Longitudinal
O osl g an i
L et TITIE =
2 [ TN
G 08k IS
ke] [T, N
R .
o \
2 04r .";u:' N\‘\ \
o : /” ...... \\‘\
5 ,,/ ~..... Y
E o 2 K ,,, ~ . \\\‘ -
: ’/ '~~. \{
R el
ST %
0.0 “= : ra '
0 5 10 15 20
2 2
g (GeV?)

FIG. 6. The LCSR predictions for the polarized differential
decay widths 1/|V,,|> x dT'l /dg* and 1/|V ;,|> x dT""/dg?. The
LQCD result for total differential decay width [28] is presented as
a comparison.

—_— v Extrapolated LQCD
o » LCSR
—_— o BaBar
0.0 0.5 1.0 15 2.0 2.5

== v Extrapolated LQCD

LCSR

BaBar

———] °

I P

00 02 04

[ |

06 08 10
Rhigh

FIG.7. The LCSR predictions for the ratios Ry, and Rp;g,. The
BABAR [12] results and the values by using extrapolated LQCD
predictions [31] are also presented.

Experimentally, the BABAR Collaboration measured the
partial decay widths in three different ¢ regions [12]

8 dI’

Al = /0 d—qquz = (0.747 + 0.234) x 1074, (30)
1640 )

Al g = ; d—qqu = (0.980 £ 0.187) x 1077, (31)
03 dl B

Alyigh = [6 d—qqu = (0.256 £0.072) x 107*, (32)

which lead to

r
Rigw = =2 = 0.762 + 0.280, (33)
1ﬂmid
Q¥
Ryigh = rh %’: = 0.216 =+ 0.089. (34)

Our LCSR calculation gives, Ry, = 0.967f8:§§§ and Rpjgp, =
0.21970:9%8; and the extrapolated LQCD calculation gives,
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Ry = 0.6687072) and Ry, = 0.4097003F. A comparison
of those two ratios is presented in Fig. 7. The LCSR
predictions agree with the BABAR measurement with errors,
while the extrapolated LQCD prefers a larger Ry;,p,, Which is
about 1.60 deviation from the BABAR measurement.
Because the (middle) partial decay widths Al ;4 for the
LCSR and LQCD approaches are close to each other, by
comparing Ry,,, and Ry;g, with the experimental data, one can
get the correct decay widths in different g® regions and, thus,
confirm which theoretical prediction is more reliable.

As a final remark, with the help of the branching
ratio B(B® — p=¢*v,) = (2.45+£0.32) x 10™* and the
lifetime 7(B°) = 1.520 £ 0.004 ps [55], we obtain |V, | =
(2.96703%) x 1073, where the error is weighted average
of all the mentioned error sources. This value agrees
with the BABAR predictions [56], (2.75 4 0.24) x 1073
and (2.83 £ 0.24) x 1073, and the CLEO predictions [17],
(3.23 +£0.247022 +0.58) x 10 and (3.25+0.147021+
0.55) x 1073, within errors.

V. SUMMARY

We have studied the HFFs for the B-meson semileptonic
decay B — pfuv, within the LCSR approach. Figure 3
shows that the extrapolated HFFs within the whole g?
region. At the large recoil point, only the p-meson
longitudinal component contributes; e.g., H,(0) =
0.435100%2 and H,12(0) =0, where the errors are
squared averages of the considered error sources. By
applying the extrapolated HFFs to the semileptonic decay

B — pfv,, we observe that the differential decay width
1/|V|? x dI"/dq?, as shown by Fig. 4, is consistent with
the Lattice QCD prediction within the intermediate-g?
region. However our LCSR prediction prefer a larger
1/|Vw|* x dT'/dg* in the low-g*> region and a smaller
1/|Vuw|?> X dT'/dq? in the high-¢* region. More explicitly,
Fig. 6 shows that the longitudinal decay width dominates
the lower-g? region and the transverse one dominates the
higher-g> region. Two typical ratios R, and Ryign can be
used to test those properties. Our LCSR calculation shows
that Ryo,, = 0.96710308 and Ry;g, = 0.21970¢%. Figure 7
shows that those predictions agree with the BABAR
measurements within errors. Thus by using the HFFs with
definite polarizations, some useful information can be
achieved. A more precise measurement of those ratios
shall be helpful for testing various calculation approaches.
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APPENDIX: THE NONLOCAL MATRIX ELEMENTS

The nonlocal matrix elements used in our calculation are [10,21,44]

(p(k. (k))|d(x)q(0)|0) = f,, (E-x)m / dueP vyl (u). (A1)
_ 1 1 .
(ol () x)7750(0)]0) =  eym, f) / dueP iyt (x), (A2)
ok (kDIA)759(0)]0) = m, duew{m )+ Bt (u >} (A3)
_ E - x
(p(k. £(k))|(x)r59(0)[0) = m, f! d{ L () + () | ()
-yt ) - Exﬂ(f. ) 2l () + () - z¢3£,,<u>}}, (A4)
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. Nax)oa(0)0) = =is [ duefw{w,,py _Ep) [qszﬁp(u) L

+

N =

where fﬁ and f ﬂ are p-meson decay constants, which are
defined as

(p(k, £(K))|d(0)7,9(0)[0) = fym,E,, (A6)
(p(k.e(k))|d(0)0,,4(0)[0) = if; (E,p,

To do the simplification, the following identities are
helpful:

- El/pﬂ ) . (A7)

(nyu - Eux,u)

m2x?

ok, )

. 1 1
+ (p/txz/ - pvxﬂ> ﬁm,{% |:¢!;/1(u> - Eﬁbip(”) - 5Wip<”):|

mZ

k() = ]}, (3)
|
Yulv = Gu — iaﬂl/’ (AS)
1 p
Yul¥s = Gul's = 5 Epapo™ s (A9)
i

}/50p6 = _Egaﬂgpaaﬂ’ (AIO)
Gﬂuya - i(QauyM - gaﬂyu) + sauyﬂyﬂYS' (All)
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