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Here we discuss the description of flavor neutrinos produced or detected in processes which involve
more than one neutrino. We show that in these cases flavor neutrinos cannot be separately described by pure
states, but require a density matrix description. We consider explicitly the examples of νe and ν̄μ production
in μþ decay and νμ detection through scattering on electrons. We show that the density matrix which
describes a flavor neutrino can be approximated with a density matrix of a pure state only when the
differences of the neutrino masses are neglected in the interaction process. In this approximation, the pure
states are the standard flavor states and one recovers the standard expression for the neutrino oscillation
probability. We discuss also the effects of mixing of the three standard light neutrinos with heavy neutrinos
which can be either decoupled because their masses are much larger than the maximum neutrino energy in
the neutrino production process or because they are produced and detected incoherently. Finally, we discuss
the more complicated case of neutrino-electron elastic scattering, in which the initial and final neutrinos do
not have determined flavors, but there is a flavor dependence due to the different contributions of charged-
current and neutral-current interactions.
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I. INTRODUCTION

In the last years neutrino physics has proven to be a
fertile ground for particle theory. The discovery [1,2] of
neutrino oscillations [3–5] has been awarded the 2015
Nobel prize, recognizing its importance. Neutrino oscil-
lations imply that neutrinos must have nonzero masses and
that there is neutrino mixing. The standard theory of
neutrino mixing and oscillations is well known (see, for
example, Refs. [6–8]), but there are subtle issues that
require a special treatment (see, for example, the recent
discussions in Refs. [9–11]).
Neutrino oscillations are transitions among different

neutrino flavors that can be observed at macroscopic
distances from a neutrino source. Different neutrino flavors
(νe, νμ, ντ) are characterized by their production or detection
in association with the corresponding charged lepton (e, μ,
τ). In the standard treatment of neutrino oscillations, flavor

neutrinos are described by states which are unitary super-
positions of massive neutrino states and the mixing matrix is
the unitary matrix that diagonalizes the mass matrix of the
neutrino fields (see Refs. [6,7]). However, in the description
of neutrinos as excitations of quantum fields, the relation
between mass and flavor states is not as simple, due to the
nonexistence of a canonical set of creation and annihilation
operators for the flavor fields [12]. This fact implies that the
neutrino flavor states are phenomenological quantities that
describe neutrinos created or detected in a weak interaction
process as superpositions of massive neutrinos with coef-
ficients determined by the respective interaction amplitudes
[12–15]. The standard neutrino flavor states are recovered in
the realistic approximation of neglecting the neutrino mass
differences in the interaction process.
The localization of the production and detection

processes in a neutrino oscillation experiment and the
associated energy-momentum uncertainties require a
wave-packet description [16] (see Refs. [6,17,18]). It has
been shown in Ref. [14] that also in this case flavor
neutrinos are described by states that are determined by
the interaction process. However, in this paper we avoid
the complications of the wave-packet description by con-
sidering the plane-wave approximation in which flavor
neutrinos are described by superpositions of massive
neutrino states with definite energy and momentum.
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In this paper we discuss the description of flavor
neutrinos produced or detected in weak interaction proc-
esses in which multiple neutrinos are involved. We show
that the different flavor neutrinos cannot be described by
pure states, but require a density matrix description (note
that there are other situations involving neutrinos which
also require a density matrix description, such as when
dealing with unpolarized beams; see, e.g., Refs. [19–21]).
We derive the appropriate density matrix and show that,
under the appropriate approximations the density matrix
description leads to the standard oscillation probability in
the standard case of mixing of three light neutrinos.
We discuss also the effects of mixing of the three standard
light neutrinos with heavy neutrinos which can be either
decoupled because their masses are much larger than the
maximum neutrino energy in the neutrino production
process or because they are produced and detected inco-
herently (see Refs. [6,11,16,18,22]).
We consider also the more complicated case of neutrino-

electron elastic scattering (ES), in which the flavors of
the initial and final neutrinos are not determined, but there
is a flavor dependence, because the νe component interacts
through both charged and neutral currents (CC and NC,
respectively) whereas the νμ and ντ components interact
only through neutral currents.
This paper is organized as follows. In Sec. II we briefly

review the derivation of the flavor states for processes
involving only one flavor neutrino. In Sec. III we discuss
the effects of heavy neutrinos in processes involving only
one flavor neutrino. In Sec. IV we present the density matrix
description of the νe and ν̄μ produced in μþ decay as an
example of a production process involving more than one
neutrino. In Sec. V we derive the density matrix description
of flavor neutrinos in detection processes considering the
example of νμ-electron scattering. In Sec. VI we consider
neutrino-electron elastic scattering. Finally, Sec. VII presents
our conclusions.

II. FLAVOR STATES FOR
ONE-NEUTRINO PROCESSES

Flavor neutrino states are commonly described as super-
positions of neutrino states with a well-defined mass which
amounts to a change of orthonormal basis using the unitary
mixing matrix that diagonalizes the mass matrix of the
neutrino fields. In quantum field theory, however, flavor
neutrinos cannot be fundamentally described as excitations
of flavor fields (due to the lack of a natural Fock space [12])
and are basically a phenomenological concept. In this
section we give a short review of the derivation of the
flavor states that describe flavor neutrinos produced or
detected in weak interaction processes [6,12–15].
Let us consider the decay

PI → PF þ l̄α þ να; ð1Þ

where PI and PF stand for the initial and final particles
besides the produced antilepton l̄α (with α ∈ fe; μ; τg)
and its associated neutrino να, here understood as the
superposition of states of massive neutrinos νi (with
i ∈ f1; 2; 3g) which we derive explicitly below.
The final state of such decay is given by the action of the

S matrix over the initial state jii ¼ jPIi, i.e.,

jfi ∝ ðS − IÞjii ¼
X
j

AP
α;jjνj; lþα ; PFi þ � � � ; ð2Þ

where we disregard the possibility of no decay and “…”
denotes all other possible channels which do not concern us
here. Since the other decays contained in… are orthogonal
to jνj; lþα ; PFi and these states are orthonormal, the coef-
ficients AP

α;j [where P stands for (neutrino) production] are
given by

AP
α;j ¼ hνj; lþα ; PFjSjPIi: ð3Þ

The state describing the emitted flavor neutrino να is
obtained by projecting the state jfi over jlþα ; PFi,

jναi ∝ hlþα ; PFjfi: ð4Þ

The resulting normalized flavor neutrino state is

jναi ¼
�X

k

jAP
α;kj2

�
−1=2X

j

AP
α;jjνji: ð5Þ

This state describes the neutrino produced in the decay (1)
together with the charged antilepton of the same flavor. It is
different from the standard flavor state,

jναistd ¼
X
i

U�
αijνii; ð6Þ

because the coefficients that determine the superposition
of the massive neutrinos are the matrix elements (3) of the
neutrino production process (1). In order to show how they
are related, we expand the S matrix up to first order in the
Fermi coupling constant GF as

S ≈ I − i
GFffiffiffi
2

p
Z

d4xĵ†CCρðxÞĵρCCðxÞ; ð7Þ

with the weak CC ĵρCCðxÞ given by

ĵρCCðxÞ ¼
X
α;k

U�
αk
ˆ̄νkðxÞγρð1 − γ5Þl̂αðxÞ þ ĥρCCðxÞ; ð8Þ

where ĥρCCðxÞ is the hadronic part of the weak charged
current. Now, using Eq. (3) we can write

AP
α;j ¼ U�

αjM
P
j ; ð9Þ
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where MP
j is given by

MP
j ¼ −i

GFffiffiffi
2

p
Z

d4xhνjlþα j ˆ̄νjðxÞγρð1 − γ5Þl̂αðxÞj0i

× JPI→PF
ρ ðxÞ; ð10Þ

with the hadronic transition amplitude

JPI→PF
ρ ðxÞ≡ hPFjĥρðxÞjPIi: ð11Þ

This decomposition allows us to expand Eq. (5) as

jναi ¼
�X

k

jUαkj2jMP
k j2

�
−1=2X

j

U�
αjM

P
j jνji: ð12Þ

In the standard framework of three-neutrino mixing, it is
known that the neutrino masses are smaller than about 2 eV
(see Refs. [6–8]). In this case, the effects of the neutrino
masses in the matrix elements (10) are negligible since in
all neutrino oscillation experiments the neutrino energy is
larger than about 0.1 MeV. Hence, in the standard frame-
work of three-neutrino mixing and in its extensions with
extra neutrinos much lighter than 0.1 MeV, we can
approximate MP

j ≃MP
0 ∀ j, where MP

0 is the value of
the matrix element in the standard model with massless
neutrinos. Then, using the unitarity of the mixing matrix,
we obtain the standard states given in Eq. (6). Assuming a
similar description of the detected flavor neutrinos in a
neutrino oscillation experiment, one then obtains the
standard flavor transition probability

Pνα→νβðL;EÞ ¼
X
j;k

U�
αjUβjUαkU�

βk exp

�
−i

Δm2
jkL

2E

�
;

ð13Þ

where Δm2
jk ¼ m2

j −m2
k, E is the neutrino energy and L is

the source-detector distance.
The flavor neutrino states allow us to give a complete

picture of neutrino production, oscillations and detection
in the case of processes involving a single neutrino [14].
Particularly notable is that they give the correct production
rate at the neutrino source as an incoherent sum of massive
neutrino states [23–27].

III. EFFECTS OF HEAVY NEUTRINOS

In the standard case of mixing of three light neutrinos the
formalism reviewed in Sec. II is mainly interesting for the
purely theoretical purpose of deriving the flavor neutrino
states and the oscillation probability from first principles.
On the other hand, the flavor neutrino states (12) are
practically useful in the presence of heavy neutrinos, for
which the mass effects in the corresponding matrix ele-
ments (10) are not negligible. A particularly simple and

realistic case is that of mixing between light neutrinos and
very heavy neutrinos which are decoupled because their
masses are much larger than the maximum neutrino energy
in the neutrino production process. This situation occurs,
for example, in seesaw models [28–31].
Let us consider the case of Nl light and Nd heavy

decoupled neutrinos. Ordering the index of the massive
neutrinos according to the size of their masses, we have
MP

j ¼ 0 for j > Nl. Considering MP
j ≃MP

0 for j ≤ Nl,
we obtain directly from Eq. (5) the flavor neutrino states

jναi ¼
�X
k≤Nl

jUαkj2
�
−1=2X

j≤Nl

U�
αjjνji: ð14Þ

These flavor neutrino states can be written in the same form
of the standard flavor states in Eq (6) by defining the

coefficients Ũαj ≡ Uαj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k≤Nl
jUαkj2

q
(see, for example,

Ref. [32]). However, the new coefficients Ũαj are different
from the elements of the mixing matrix of the neutrino
fields and do not constitute a unitary matrix.
Notice that, albeit the flavor neutrino states that we have

derived are normalized by construction (hναjναi ¼ 1), they
may be nonorthogonal. Indeed in the presence of decoupled
heavy neutrinos, from Eq. (14), for α ≠ β we have

hνβjναi ¼
P

j≤Nl
UβjU�

αjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPk≤Nl

jUβkj2Þð
P

k0≤Nl
jUαk0 j2Þ

q : ð15Þ

This means that there is a “zero-distance” probability to
detect the neutrino with a flavor that is different from the
production flavor1 [33]. This effect is not inconsistent with
the unitary normalization of the states (hναjναi ¼ 1), which
quantifies the obvious fact that a neutrino that is produced
with a flavor α can be detected with the same flavor α
immediately after production without any suppression
due to neutrino mixing. It is apparently puzzling thatP

β jhνβjναij2 ≥ 1, which seems a violation of unitarity.
However, one must take into account that the experimental
event rate is given by (the constant of proportionality
depends on the size and composition of the source and
detector)

RαβðL; EÞ ∝ ΓαðEÞPνα→νβðL; EÞσβðEÞ; ð16Þ

where ΓαðEÞ and σβðEÞ are, respectively, the rate of να
production in the source and the detection cross section
of νβ, which must be calculated taking into account the
effects of the heavy neutrino masses. In the case of heavy
decoupled neutrinos we have

1In other words, the produced neutrino is a superposition of
massive neutrinos that in a charged-current weak interaction can
generate different charged leptons.
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ΓαðEÞ ¼ Γ0
αðEÞ

�X
k≤Nl

jUαkj2
�
; ð17Þ

σβðEÞ ¼ σ0βðEÞ
�X

k≤Nl

jUβkj2
�
; ð18Þ

where Γ0
αðEÞ and σ0βðEÞ are the values of the production rate

and detection cross section for massless neutrinos that are
normally used in the calculations of the rates in neutrino
oscillation experiments. From Eq. (14) we obtain the flavor
transition probability

Pνα→νβðL;EÞ ¼
�X
j0≤Nl

jUαj0 j2
�
−1
�X
k0≤Nl

jUβk0 j2
�
−1

×
X

j;k≤Nl

U�
αjUβjUαkU�

βk exp

�
−i

Δm2
jkL

2E

�
:

ð19Þ

Therefore, the coefficients in Eqs. (17)–(19) cancel and the
experimental event rate can be written conveniently in the
usual form

RαβðL; EÞ ∝ Γ0
αðEÞPeff

να→νβðL; EÞσ0βðEÞ; ð20Þ

with the effective flavor transition probability

Peff
να→νβðL;EÞ ¼

X
j;k≤Nl

U�
αjUβjUαkU�

βk exp

�
−i

Δm2
jkL

2E

�
:

ð21Þ

In this way, one can easily take into account the mixing
with decoupled heavy neutrinos in the usual method of
calculation of the rates in neutrino oscillation experiments
by an appropriate choice of the normalization of the flavor
transition probability.
Moreover, expression (20) for the experimental rate can

be easily generalized to the case of heavy neutrinos that are
not decoupled, but are produced and detected incoherently
(see Refs. [6,11,16,18,22]). Here and in the following we
assume, for simplicity, that these heavy neutrinos have
mass splittings of the order or larger than their masses, in
order to be produced incoherently among themselves. This
is a likely situation, since having almost degenerate heavy
neutrinos would require an appropriate fine-tuning.
Heavy neutrinos are produced incoherently if the

mass differences are larger than the mass uncertainty in
the production process. From the relativistic energy-
momentum dispersion relation, one can find that for
ultrarelativistic neutrinos the mass uncertainty in the
production process is of the order of

ffiffiffiffiffiffiffiffiffi
EσE

p
, where

E ≃ p is the neutrino energy approximately equal to its

momentum and σE ≃ σp is the energy-momentum uncer-
tainty in the production process (see Refs. [6,11,
16,18,22]). For neutrinos produced by decays in matter
the energy uncertainty is determined by the spatial locali-
zation σx of the production process through the uncertainty
principle: σE ≃ σp ∼ σ−1x . In normal matter σx is of the order
of the interatomic distance, σx ∼ 10−8 cm, leading to
σE ∼ 1 keV. Considering a typical energy of 10 MeV,
neutrinos with masses larger than 100 keV are produced
incoherently. For the detection process one can make
similar considerations, but it is often more important that
coherence is effectively lost because of the separation of the
wave packets, which occurs quickly in the case of heavy
neutrinos. Indeed, since the size of the neutrino wave
packets is of the order of σx, the coherence length is given
by Lcoh ∼ E2σx=jΔm2j (see Refs. [6,11,18,22]), and for
neutrinos produced in matter with E ∼ 10 MeV the coher-
ence length is smaller than about 1 m if their masses are
larger than about 100 eV. Since all neutrino oscillation
experiments have a source-detector distance larger than
1 m, if the neutrino energy is smaller than about 10 MeV
the heavy neutrinos with masses larger than about 100 eV
must be treated incoherently.
Let us consider Nl light neutrinos, Nh heavy incoherent

nondecoupled neutrinos, and Nd heavy decoupled neutri-
nos. Ordering the index of the massive neutrinos according
to the size of their masses, we have

RαβðL;EÞ ∝ Γ0
αðEÞPeff

να→νβðL;EÞσ0βðEÞ

þ
XNlþNh

k¼Nlþ1

Γk
αðEÞjUαkj2jUβkj2σkβðEÞ; ð22Þ

where Γk
αðEÞ and σkβðEÞ are the production rate and the

detection cross section for a neutrino with heavy mass mk
which is produced and detected incoherently.
Finally, let us also notice that the effective flavor

transition probability (21) is more attractive than the flavor
transition probability (19) because

X
β

Peff
να→νβðL; EÞ ¼

X
j≤Nl

jUαjj2 ≤ 1; ð23Þ

whereas

X
β

Pνα→νβðL;EÞ ¼
�X
j≤Nl

jUαjj2
�
−1

≥ 1; ð24Þ

which follows from the above-mentioned fact thatP
β jhνβjναij2 ≥ 1. Note that in Eqs. (23) and (24) the

summation over the flavor index β is carried out over all the
neutrino favors, including the three active neutrinos and
the sterile neutrinos that are present if the total number of
massive neutrinos is bigger than 3.
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IV. MULTIPLE NEUTRINO PRODUCTION

The construction of the flavor neutrino states reviewed in
Sec. II is well suited, for instance, for the description of νe ’s
produced in βþ decays or νμ’s produced in πþ decays (and,
with obvious modifications, ν̄e’s produced in β− decays or
ν̄μ’s produced in π− decays). In these cases we have only
one flavor neutrino that is described by a pure state.
Let us now discuss how the description of flavor

neutrinos must be modified in the case of reactions
involving more than one neutrino.
Let us consider as an example the neutrino creation

process

μþ → eþ þ νe þ ν̄μ: ð25Þ

How can one describe the emitted electron neutrino and
muon antineutrino? One can see that the method reviewed
in Sec. I must be extended by considering, for example,
the description of the νe. The derivation of its state would
require the projection heþ; ν̄μjfi analogous to Eq. (4),
which in this case is not possible, because the state jν̄μi is
still not defined.
In order to derive the correct description of the emitted νe

and ν̄μ let us first consider the final state of the process (25),

jfi ∝ ðS − IÞjμþi ¼
X
k;j

AP
μ;e;k;jjeþ; νk; ν̄ji þ � � � ; ð26Þ

where … denotes other possible decay channels irrelevant
for our purposes (e.g., μþ → eþ þ γ). Using the orthonor-
mality of the states, the coefficients AP

μ;e;k;j are given by

AP
μ;e;k;j ¼ heþ; νk; ν̄jjSjμþi ¼ U�

ekUμjMP
k;j; ð27Þ

where

MP
k;j ¼ −i

GFffiffiffi
2

p
Z

d4xheþ; νk; ν̄jj ˆ̄νkðxÞγρð1 − γ5ÞêðxÞ

× ˆ̄μðxÞγρð1 − γ5Þν̂jðxÞjμþi: ð28Þ

The final state in Eq. (26) is an entangled state in which
it is not possible to separate the neutrino and antineutrino
components. Therefore, the neutrino and the antineutrino
cannot be described by a pure state and should each
separately be described by a density matrix, which is the
most general description of a quantum system which may
be a subsystem of a larger closed system.
The density matrix operator that describes the complete

final state in Eq. (26) is

ρ̂ ¼ jfihfj
¼ NP

X
k;j;k0;j0

AP
μ;e;k;jA

P�
μ;e;k0;j0 jeþ; νk; ν̄jiheþ; νk0 ; ν̄j0 j; ð29Þ

where NP is a normalization coefficient determined by the
condition Trðρ̂Þ ¼ 1, i.e.,

X
k00;j00

heþ; νk00 ; ν̄j00 jρ̂jeþ; νk00 ; ν̄j00 i ¼ 1: ð30Þ

This gives

NP ¼
�X

k;j

jAP
μ;e;k;jj2

�
−1

¼
�X

k;j

jUekj2jUμjj2jMP
k;jj2

�
−1
: ð31Þ

The νe and ν̄μ are separately described by the partial traces
over the other degrees of freedom of the complete system,

ρ̂νe ¼
X
j

heþ; ν̄jjρ̂jeþ; ν̄ji

¼ NP
X
k;k0;j

AP
μ;e;k;jA

P�
μ;e;k0;jjνkihνk0 j; ð32Þ

ρ̂ν̄μ ¼
X
k

heþ; νkjρ̂jeþ; νki

¼ NP
X
k;j;j0

AP
μ;e;k;jA

P�
μ;e;k;j0 jν̄jihν̄j0 j: ð33Þ

Using Eq. (27), we obtain

ρ̂νe ¼ NP
X
j

jUμjj2
X
k;k0

U�
ekUek0MP

k;jM
P�
k0;jjνkihνk0 j; ð34Þ

ρ̂ν̄μ ¼ NP
X
k

jUekj2
X
j;j0

UμjU�
μj0M

P
k;jM

P�
k;j0 jν̄jihν̄j0 j: ð35Þ

These density matrices describe separately the νe and ν̄μ
and one can see that, because of the dependence of the
interaction matrix elements on j in Eq. (34) and on k
in Eq. (35), they are not density matrices of pure states
[as one can also verify by checking that Trðρ̂2νeÞ < 1 and
Trðρ̂2ν̄μÞ < 1]. Hence, the νe and ν̄μ cannot be described by
pure states. It is interesting to note that while the complete
density matrix in Eq. (29) allows us to correctly calculate
the decay rate for the process (25) as an incoherent sum
over massive neutrino states, the density matrices in
Eqs. (34) and (35) do not. This can be understood as a
consequence of information loss due to taking the partial
trace of the complete density matrix.
The νe and ν̄μ can be approximately described by pure

states in experiments that are not sensitive to the depend-
ence ofMP

k;j on the neutrino masses, where it is possible to
approximate MP

k;j ≃MP, ∀ j, k. Taking into account that
in this case ðNPÞ−1 ≃ jMPj2, we obtain
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ρ̂νe ≃
�X

k

U�
ekjνki

��X
k0
Uek0 hνk0 j

�
; ð36Þ

ρ̂ν̄μ ≃
�X

j

Uμjjν̄ji
��X

j0
U�

μj0 hν̄j0 j
�
; ð37Þ

which are the density matrices associated with the standard
flavor states given in Eq. (6). Therefore, in this approxi-
mation we recover the standard description of the neutrino
flavor states.
Now consider, for example, the electron neutrino,

described by ρ̂νe, as the initial state of an oscillation
experiment. It propagates freely and then it can be detected
with a different flavor, for instance via the process

νμ þDI → μ− þDF; ð38Þ

where DI and DF are the initial and final states of
the other particles involved in the detection. We first
apply a spatiotemporal translation, Uðt ¼ T; x⃗ ¼ L⃗Þ ¼
exp ð−ip̂0T þ i ⃗p̂ · L⃗Þ to the density matrix ρ̂νe , which gives

ρ̂νeðT; L⃗Þ ¼ UðT; L⃗Þρ̂νeU†ðT; L⃗Þ
¼ NP

X
j

jUμjj2
X
k;k0

U�
ekUek0MP

k;jM
P�
k0;j

× exp ½−iðEk − Ek0 ÞT
þ iðp⃗k − p⃗k0 Þ · L⃗�jνkihνk0 j: ð39Þ

In the relativistic approximation, where T ≃ L≡ jL⃗j,
considering for simplicity all the massive neutrinos propa-
gating in the direction of L⃗ (see the discussion in
Section VIII. 1.3 of Ref. [6]) and using Eq. (5.7) of
Ref. [15], we obtain

ρ̂νeðT; L⃗Þ ¼ UðT; L⃗Þρ̂νeU†ðT; L⃗Þ
¼ NP

X
j

jUμjj2
X
k;k0

U�
ekUek0MP

k;jM
P�
k0;j

× exp

�
−i

Δm2
kk0L

2E

�
jνkihν0kj; ð40Þ

where Δm2
kk0 ¼ m2

k −m2
k0 and E is the neutrino energy in

the massless approximation. Let us now consider the
probability of detecting the neutrino as a νμ,

Pνe→νμ ¼ Tr½ρ̂νeðT; L⃗ÞjνDμ ihνDμ j�; ð41Þ

where the state jνDμ i is given by Eq. (5) with the appropriate
amplitudes associated with the detection (D) reaction in
Eq. (38). The resulting probability is

Pνe→νμ ¼
X
j;k;k0

jUμjj2
�

MD
kM

D�
k0

ðPijUμij2jMD
i j2Þ

�

×

� MP
k;jM

P�
k0;j

ðPa;bjUeaj2jUμbj2jMP
a;bj2Þ

�

× U�
ekUμkUek0U�

μk0 exp

�
−i

Δm2
kk0L

2E

�
; ð42Þ

which has the standard oscillation phase. Moreover, if the
differences of the neutrino masses are negligible in the
production and detection processes, we have MD

k ≃MD

and MP
k;j ≃MP, ∀ j, k, which leads to the standard flavor

transition probability (13) with α ¼ e and β ¼ μ.
It is also interesting to consider the case of Nl light

and Nd heavy decoupled neutrinos discussed in Sec. III.
Since in this case MP

k;j ¼ 0 for k > Nl and/or j > Nl and
we can approximate MP

k;j ≃MP
0;0 for k; j ≤ Nl, from

Eqs. (34) and (35) we obtain

ρ̂νe ≃
�X
j≤Nl

jUejj2
�
−1
�X

k≤Nl

U�
ekjνki

�

×

�X
k0≤Nl

Uek0 hνk0 j
�
; ð43Þ

ρ̂ν̄μ ≃
�X
j≤Nl

jUμkj2
�
−1
�X

j≤Nl

Uμjjν̄ji
�

×

�X
j0≤Nl

U�
μj0 hν̄j0 j

�
; ð44Þ

which are the density matrices associated with the flavor
states in Eq. (14). Hence, also in this case we recover the
description in terms of flavor states. Note, however, that the
result is not trivial, in particular, regarding the disappear-
ance of any effect due to the mixing of the undetected
neutrino.
On the other hand, in the case of Nl light neutrinos, Nh

heavy neutrinos that are produced and detected incoher-
ently, and Nd heavy decoupled neutrinos, from Eq. (34)
applied to this situation, we obtain the rather complicated
density matrix

ρ̂νe ¼NP

��
jMP

0;0j2
X
j≤Nl

jUμjj2

þ
XNlþNh

j¼Nlþ1

jUμjj2jMP
0;jj2

� X
k;k0≤Nl

U�
ekUek0 jνkihνk0 j

þ
X

j≤NlþNh

jUμjj2
XNlþNh

k¼Nlþ1

jUekj2jMP
k;jj2jνkihνkj

�
: ð45Þ
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Taking into account that the μþ decay probability is ðNPÞ−1,
given in Eq. (31), and the probability of the detection
process (38) is ðNDÞ−1 ¼ P

k jUμkj2jMD
k j2, the rate of a

νe → νμ oscillation experiment is given by

ReμðL;EÞ ∝
Z

dPSðNPÞ−1Pνe→νμðNDÞ−1; ð46Þ

where Pνe→νμ is the oscillation probability given by Eq. (41)
and the integration over dPS represents schematically the
integration over the phase space. After simplification of the
factor NP in ρ̂νe and the factor ND in jνDμ ihνDμ j, integrating
over the phase space we obtain

ReμðL;EÞ

∝
�X

j≤Nl

jUμjj2
�
Γ0;0
μþ ðEÞPeff

νe→νμðL;EÞσ0μðEÞ

þ
XNlþNh

j¼Nlþ1

jUμjj2Γ0;j
μþ ðEÞPeff

νe→νμðL;EÞσ0μðEÞ

þ
X

j≤NlþNh

jUμjj2
XNlþNh

k¼Nlþ1

Γk;j
μþ ðEÞjUekj2jUμkj2σkμðEÞ;

ð47Þ

where Peff
νe→νμðL;EÞ is the effective probability in Eq. (21),

Γk;j
μþ ðEÞ is the decay rate of μþ → eþ þ νk þ ν̄j, and σkμðEÞ

is the detection cross section for a neutrino with mass mk.
For these quantities, k ¼ 0 and j ¼ 0 indicate massless
neutrinos. Equation (47) shows that the experimental rate
depends not only on the heavy neutrino masses that
constitute the detected neutrino, but also on those that
constitute the undetected neutrino.

V. DETECTION PROCESSES

It is interesting to study detection processes for flavor
neutrinos where there is more than one neutrino involved
with the approach described above for production proc-
esses. There are subtle differences, which we discuss in this
section.
Let us consider as an example the “inverse muon decay”

neutrino detection process

νμ þ e− → μ− þ νe: ð48Þ

Although this process can be used to detect muon neutrinos
[34–36] it is not used in practice for neutrino oscillation
experiments, because the neutrino energy threshold is high
(about 10.92 GeV) and the cross section is about one
thousand times smaller than that of νμ charged-current
scattering on neutrons. However, at least in principle one
can ask which is the correct description of the detected νμ,

taking into account that the νe in the final state is a
superposition of massive neutrinos that is not known
a priori.
Since the final neutrino is a superposition of orthogonal

massive neutrinos, the cross section of the process (48) is
the incoherent sum of the cross sections with the different
massive neutrinos in the final state,

σðνμþe−→μ−þνeÞ¼
X
j

σðνμþe−→μ−þνjÞ: ð49Þ

Therefore, the detected νμ must be described by a density
matrix, which allows us to describe the incoherent sum in
Eq. (49). We start by considering the separate processes

νμ þ e− → μ− þ νj: ð50Þ

The corresponding initial states are given by

jiji ∝ ðS† − IÞjμ−; νji ¼
X
k

AD
μ;e;k;jjνk; e−i þ…; ð51Þ

with

AD
μ;e;k;j ¼ hνk; e−jS†jμ−; νji ¼ U�

μkUejMD
k;j; ð52Þ

where

MD
k;j ¼ i

GFffiffiffi
2

p
Z

d4xhνk; e−jēðxÞγρð1 − γ5ÞνjðxÞ

× ν̄kðxÞγρð1 − γ5ÞμðxÞjμ−; νji: ð53Þ

The density matrix operator that describes the initial state
in the process (48) is then

ρ̂D ¼ 1

3

X
j

jijihijj

¼ ND
X
j;k;k0

AD
μ;e;k;jA

D�
μ;e;k0;jjνk; e−ihνk0 ; e−j; ð54Þ

where ND is the normalization coefficient given by

ND ¼
�X

k;j

jAD
μ;e;k;jj2

�
−1
: ð55Þ

The normalized density matrix that describes the detected
νμ is given by the trace over the initial electron state,

ρ̂Dνμ ¼ he−jρ̂Dje−i
¼ ND

X
j;k;k0

AD
μ;e;k;jA

D�
μ;e;k0;jjνkihνk0 j

¼ ND
X
j

jUejj2
X
k;k0

U�
μkUμk0MD

k;jM
D�
k0;jjνkihνk0 j: ð56Þ
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If reaction (48) is used in a neutrino oscillation experiment
with initial νe’s produced by the decay of μþ (for example, in
a neutrino factory) and described by the density matrix (40),
we can calculate an oscillation probability associated with
the reaction by2

Pe→μ ¼ Tr½ρ̂νeðT; L⃗Þρ̂Dνμ �: ð57Þ

We omit the lengthy explicit expression of the proba-
bility resulting from Eq. (57), which can be calculated
straightforwardly, but note that it can be shown that
Pe→μ ≤ 1. We also emphasize that in the usual approxi-
mation in which the differences of the neutrino masses are

negligible in the production and detection processes we
haveMP

k;j ≃MP and MD
k;j ≃MD, ∀ j, k. In this approxi-

mation we recover the standard expression in Eq. (13) for
the oscillation probability. Also in the case of Nl light and
Nd heavy decoupled neutrinos discussed in Sec. III we
obtain a description in terms of the flavor states in Eq. (14).
On the other hand, the case of Nl light neutrinos, Nh

heavy neutrinos that are produced and detected incoher-
ently, and Nd heavy decoupled neutrinos is rather compli-
cated. One can derive the detection density matrix in
analogy with the production density matrix in Eq. (45).
Then, in analogy with the derivation of Eq. (47) we obtain
the νe → νμ experimental rate

ReμðL; EÞ ∝
�X

j≤Nl

jUμjj2
��X

k≤Nl

jUekj2
�
Γ0;0
μþ ðEÞPeff

νe→νμðL;EÞσ0;0μ ðEÞ

þ
�X

k≤Nl

jUekj2
� XNlþNh

j¼Nlþ1

jUμjj2Γ0;j
μþ ðEÞPeff

νe→νμðL;EÞσ0;0μ ðEÞ

þ
�X

j≤Nl

jUμjj2
� XNlþNh

k¼Nlþ1

jUekj2Γ0;0
μþ ðEÞPeff

νe→νμðL;EÞσ0;kμ ðEÞ

þ
X

j;k≤NlþNh

jUμjj2jUekj2
XNlþNh

i¼Nlþ1

jUeij2jUμij2Γi;j
μþðEÞσi;kμ ðEÞ; ð58Þ

where σi;kμ ðEÞ is the νi þ e− → μ− þ νk cross section. This
equation shows that the experimental rate depends not only
on the heavy neutrino masses that constitute the detected
neutrino, but also on those that constitute the undetected
neutrino in the production process and the undetected final
neutrino in the detection process.

VI. NEUTRINO-ELECTRON ELASTIC
SCATTERING

Neutrinos can also be detected with the neutrino-electron
ES process

νþ e− → νþ e−: ð59Þ

This is a more complicated case, because it is not a pure
charged-current interaction in which a leptonic flavor is
selected. However, there is a flavor dependence, due to the
fact that νμ’s and ντ’s interact only through neutral currents,
whereas νe’s interact through both charged and neutral
currents. For example, in water Cherenkov solar neutrino
experiments information on solar neutrino oscillations is

obtained by observing the ES reaction (59) induced by
solar neutrinos, taking into account that the cross section
σESνe ðEÞ of νe ’s is about six times larger than the cross
section σESνμ;τðEÞ of νμ ’s and ντ’s. In these experiments, the
rate of ES events in a detector is calculated as

RES ¼ Ne

Z
dEϕνeðEÞ½Pνe→νeðEÞσESνe ðEÞ

þ
X
α¼μ;τ

Pνe→ναðEÞσESνμ;τðEÞ�; ð60Þ

where Ne is the number of electrons in the detector, ϕνeðEÞ
is the solar νe flux, and Pνe→ναðEÞ is the probability of
νe → να oscillations from the center of the Sun to the
detector. Note that the standard cross sections σESνe ðEÞ and
σESνμ;τðEÞ are calculated neglecting the neutrino masses.
In the following we present a schematic calculation of

RES that takes into account the neutrino masses in the
interaction process and we show that it reduces to the
expression in Eq. (60) only in the standard framework of
mixing of three light neutrinos and in its extensions with
light sterile neutrinos.
It is possible in principle to define a density matrix that

describes the neutrino detected in the ES process (59)
following a method similar to that presented in Sec. V, but

2See the similar treatment in Ref. [20]. Note that the set
fρ̂Dνμ ; I − ρ̂Dνμg can be considered as a discrete unsharp positive
operator-valued measure (POVM); see Ref. [37].
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such a density matrix is not useful to obtain the rate RES,
where the oscillation probability and the cross section are
not factorized. Therefore, we calculate directly RES con-
sidering a neutrino with energy E coming from the Sun,
which is described by the state

jνSðEÞi ¼
X
k

Aνe→νkðEÞjνkðEÞi; ð61Þ

where Aνe→νk is the amplitude of νe → νk transitions from
the center of the Sun to the detector. In practice, in the
standard framework of three-neutrino mixing, the estab-
lished values of the neutrino masses and mixing imply that
solar neutrinos arrive at Earth as effectively incoherent
sums of mass eigenstates [38,39]. Therefore, the measur-
able oscillation probability is obtained by omitting the
interference terms between different massive neutrino
contributions. However, since we consider the general
theory, which in principle allows the possibility of vacuum
oscillations between the Sun and the Earth due to very
small mass splittings (see, for example, Ref. [6]), we
consider the description in Eq. (61) with the additional
prescription of omitting, when needed, the interference
terms between incoherent massive neutrino contributions in
the calculation of the oscillation probability.
Since the final neutrino in the detection process (59) is a

superposition of orthogonal massive neutrinos, the cross
section is, similarly to that of process (48), the incoherent
sum of the cross sections of the processes

νþ e− → νj þ e−: ð62Þ

The rate of ES events in a detector is given by

RES ¼ Ne

Z
dEϕνeðEÞσSðEÞ; ð63Þ

with

σSðEÞ ¼
Z

dPS
X
j

jhνj; e−jðS − IÞjνSðEÞ; e−ij2; ð64Þ

where the integration over dPS represents schematically
the integration over the phase space. In this case, we must
consider an expansion of the S matrix that contains, in
addition to the charged-current weak interactions already
considered in Eq. (7), also neutral-current interactions,

S ≈ I − i
GFffiffiffi
2

p
Z

d4x½ĵ†CCρðxÞĵρCCðxÞ þ ĵNCρðxÞĵρNCðxÞ�:

ð65Þ

Considering the possible existence of sterile (light or
heavy) neutrinos beyond the standard framework of
three-neutrino mixing, the weak neutral current is given by

ĵρNCðxÞ ¼
1

2

X
j;k

X
α¼e;μ;τ

U�
αjUαk ˆ̄νjðxÞγρð1 − γ5Þν̂kðxÞ

þ ˆ̄eðxÞγρðgeV − γ5geAÞêðxÞ; ð66Þ

where geV ¼ −1=2þ 2 sin2 ϑW and geA ¼ −1=2, and ϑW is
the weak mixing angle. Note the possible existence of
flavor-changing neutral currents due to the failure [40]
of the Glashow-Iliopoulos-Maiani mechanism [41] in
the presence of sterile neutrinos (since in this caseP

α¼e;μ;τ U
�
αjUαk ≠ δjk). Then, σSðEÞ is given by

σSðEÞ ¼
Z

dPS
X
j

j
X
k

Aνe→νkðEÞ

× fU�
ejUek½MCC

j;k ðEÞ þMNC
j;k ðEÞ�

þ
X
α¼μ;τ

U�
αjUαkMNC

j;k ðEÞgj2; ð67Þ

with the CC and NC matrix elements

MCC
j;k ðEÞ ¼ −i

GFffiffiffi
2

p
Z

d4xhνj; e−j ˆ̄eðxÞγρð1 − γ5Þν̂kðxÞ

× ˆ̄νjðxÞγρð1 − γ5ÞêðxÞjνk; e−i; ð68Þ

MNC
j;k ðEÞ ¼ −i

GFffiffiffi
2

p
Z

d4xhνj; e−j ˆ̄eðxÞγρðgeV − γ5geAÞêðxÞ

× ˆ̄νjðxÞγρð1 − γ5Þν̂kðxÞjνk; e−i: ð69Þ

We omit the expression of σSðEÞ obtained from the
evaluation of the squared modulus in the general expression
in Eq. (67) because it does not yield any simplification and
the resulting expression is rather cumbersome. Let us only
note that in general there are interference terms between the
νe terms U�

ejUek½MCC
j;k ðEÞ þMNC

j;k ðEÞ� and the νμ;τ termsP
α¼μ;τU

�
αjUαkMNC

j;k ðEÞ that do not allow a separation of
the corresponding cross sections as in the standard expres-
sion (60) for the ES event rate. These interference
terms disappear in the standard framework of mixing of
three light neutrinos and in its extensions with light sterile
neutrinos, where we can approximateMCC

j;k ðEÞ ≃MCC
0;0ðEÞ

and MNC
j;k ðEÞ ≃MNC

0;0 ðEÞ∀ k; j. In this case, taking into
account the unitarity relation

X
j

U�
αjUβj ¼ δαβ; ð70Þ

we obtain

σSðEÞ ≃
Z

dPS½Pνe→νeðEÞjMCC
0;0ðEÞ þMNC

0;0 ðEÞj2

þ
X
α¼μ;τ

Pνe→ναðEÞjMNC
0;0 ðEÞj2�; ð71Þ
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where Pνe→να ¼ jPk Aνe→νkUαkj2. When the squared
moduli of the interaction matrix elements are integrated
over the phase space, they give the cross sections in
Eq. (60),

σSðEÞ ≃ Pνe→νeðEÞσESνe ðEÞ þ
X
α¼μ;τ

Pνe→ναðEÞσESνμ;τðEÞ; ð72Þ

with the standard cross sections σESνe ðEÞ and σESνμ;τðEÞ
calculated neglecting the neutrino masses. Hence, the
expression (60) used to calculate the rate of ES events
in water Cherenkov solar neutrino experiments is correct in
the standard framework of mixing of three light neutrinos
and in its extensions with light sterile neutrinos. Note that
the flavor-changing neutral currents present in the case of
light sterile neutrinos do not give any observable effect,
because the flavor of the final neutrino in the elastic
scattering process (59) is not observed.
As remarked after Eq. (61), we described the neutrinos

coming from the Sun as coherent superpositions of massive
neutrinos. If solar neutrinos arrive at Earth as incoherent
sums of the mass eigenstates because of the separation of
the corresponding wave packets, the rate of ES events is
obtained by summing incoherently the different massive
neutrino contributions. This is equivalent to neglecting the

interference terms in the evaluation of the squared modulus
in Eq. (67), but Eq. (71) is obtained anyhow in the standard
framework of mixing of three light neutrinos and in its
extensions with light sterile neutrinos. The incoherence
must be taken into account in the calculation of the
transition probabilities Pνe→να , which in the coherent case
are given by

Pcoh
νe→να ¼

				
X
k

Aνe→νkUαk

				
2

; ð73Þ

whereas in the incoherent case they are given by

Pinc
νe→να ¼

X
k

jAνe→νk j2jUαkj2: ð74Þ

Let us now consider the case of Nl light and Nd heavy
decoupled neutrinos, in which k ≤ Nl and MCC

j;k ðEÞ ¼
MNC

j;k ðEÞ ¼ 0 for j > Nl, whereas MCC
j;k ðEÞ ≃MCC

0;0ðEÞ
and MNC

j;k ðEÞ ≃MNC
0;0 ðEÞ for j ≤ Nl. In this case, the

expression of σSðEÞ is different in the coherent and
incoherent descriptions of the neutrinos coming from the
Sun. Considering, for simplicity, only the realistic incoher-
ent case, we obtain

σSðEÞ ≃
Z

dPS



jMCC

0;0ðEÞ þMNC
0;0 ðEÞj2Pinc;eff

νe→νeðEÞ
X
j≤Nl

jUejj2 þ jMNC
0;0 ðEÞj2

X
k≤Nl

jAνe→νkðEÞj2
X
j≤Nl

				
X
α¼μ;τ

U�
αjUαk

				
2

þ 2½MCC
0;0ðEÞ þMNC

0;0 ðEÞ�MNC�
0;0 ðEÞ

X
k≤Nl

jAνe→νkðEÞj2Re
X
j≤Nl

U�
ejUek

X
α¼μ;τ

UαjU�
αk

�
; ð75Þ

where

Pinc;eff
νe→νe ¼

X
k≤Nl

jAνe→νk j2jUekj2: ð76Þ

Integrating over the phase space, we obtain

σSðEÞ ≃ σESνe ðEÞPinc;eff
νe→νeðEÞ

X
j≤Nl

jUejj2

þ σESνμ;τðEÞ
X
k≤Nl

jAνe→νkðEÞj2
X
j≤Nl

				
X
α¼μ;τ

U�
αjUαk

				
2

þ σESint ðEÞ
X
k≤Nl

jAνe→νkðEÞj2

× Re
X
j≤Nl

U�
ejUek

X
α¼μ;τ

UαjU�
αk: ð77Þ

This expression is rather complicated and quite different
from the standard one in Eq. (72), especially for the
contribution of the new cross section σESint ðEÞ obtained
from the interference of the νe and νμ;τ interaction

amplitudes. The presence of this interference cross section
is due to the nonorthogonality of the νe and νμ;τ states
discussed in Sec. III. We can write σESint ðEÞ as

σESint ðEÞ ¼ σESνe ðEÞ þ σESνμ;τðEÞ − σES;CCνe ðEÞ; ð78Þ

where σES;CCνe ðEÞ is the cross section of νe due to charged-
current interactions only, which is obtained from the
standard expression of σESνe ðEÞ (see, for example, Ref. [6])
by replacing the real values of geV and geA with g

e
V ¼ geA ¼ 0.

In the more general case of Nl light neutrinos that are
detected incoherently, Nh heavy neutrinos that are pro-
duced and detected incoherently, and Nd heavy decoupled
neutrinos, σSðEÞ is obtained by adding to Eq. (77)

ΔσSðEÞ ¼
Z

dPS


 XNlþNh

j¼Nlþ1

X
k≤Nl

jAνe→νkðEÞj2Λj;kðEÞ

þ
X

j≤NlþNh

XNlþNh

k¼Nlþ1

jUekj2Λj;kðEÞ
�
; ð79Þ
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with

Λj;kðEÞ ¼ jUejj2jUekj2jMCC
j;k ðEÞ þMNC

j;k ðEÞj2

þ
X

α;β¼μ;τ

U�
αjUαkUβjU�

βkjMNC
j;k ðEÞj2

þ 2ReU�
ejUek

X
α¼μ;τ

UαjU�
αk

× ½MCC
j;k ðEÞ þMNC

j;k ðEÞ�MNC�
j;k ðEÞ: ð80Þ

In Eq. (79) we took into account that for the Nh heavy
neutrinos that are produced and detected incoherently
jAνe→νk j2 ¼ jUekj2 because their masses are much larger
than the matter potential that can change the effective
mixing of light neutrinos in the Sun with respect to that in
vacuum.

VII. CONCLUSION

Neutrino oscillation is one of the most interesting
phenomena in modern fundamental physics. It was pro-
posed about 60 years ago [3–5], and it was observed about
20 years ago [1,2]. Its standard theory is well known (see,
for example, Refs. [6–8]), but it is also well known that it is
an approximation and several subtle issues have been
discussed in the literature (see, for example, the recent
discussions in Refs. [9–11]). A particular subtle problem is
the description of flavor neutrinos [12–15].
In this paper we discussed how to describe flavor neutrinos

produced or detected in processes that involve more than one
neutrino. We have shown that in these cases flavor neutrinos
cannot be described by pure states, but require a density
matrix description. The densitymatrices can be approximated
with densitymatrices of pure states only when the differences
of theneutrinomasses are neglected in the interactionprocess.
In this approximation, the pure states are the standard flavor
states and one recovers the standard expression for the
neutrino oscillation probability.

Wediscussedalso theeffectsofmixingof the three standard
light neutrinos with heavy neutrinos, which can be either
decoupled because their masses are much larger than the
maximum neutrino energy in the neutrino production process
or produced and detected incoherently.We have shown that in
the case of only decoupled heavy neutrinos the densitymatrix
description reduces to a description in terms of flavor states,
which however have the nonstandard features discussed in
Sec. III. On the other hand, in the presence of heavy neutrinos
that are not decoupled the density matrix description is
nonreducible. In a neutrino oscillation experiment with
production and detection processes involving multiple neu-
trinos the experimental rate depends not only on the heavy
neutrinomasses that constitute the detected neutrino, but also
on those that constitute the undetected neutrinos.
We also discussed the more complicated case of neu-

trino-electron elastic scattering, in which the flavors of the
initial and a final neutrino are not determined, but there is a
flavor dependence due to the different contributions of
charged-current and neutral-current interactions. In this
case it is not useful to define a density matrix that describes
the detected neutrino, because the oscillation probability
and the cross section are not factorized in the detection rate.
As an example, we calculated the rate of neutrino-electron
elastic scattering events in a solar neutrino experiment and
we have shown that the usual expression in which the rate is
given by the sum of the νe and νμ;τ contributions is obtained
only in the standard framework of mixing of three light
neutrinos and in its extensions with light sterile neutrinos.
Let us finally note that, although for simplicity we

considered as examples processes in which there are only
two neutrinos, the formalism can be extended in a
straightforward way to the more complicated case of
interactions involving more than two neutrinos.
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