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Calculations of 1 → N amplitudes in scalar field theories at very high multiplicities exhibit an extremely
rapid growth with the number N of final state particles. This either indicates an end of perturbative
behavior, or possibly even a breakdown of the theory itself. It has recently been proposed that in the
Standard Model this could even lead to a solution of the hierarchy problem in the form of a “Higgsplosion”
[1]. To shed light on this question we consider the quantum mechanical analogue of the scattering
amplitude for N particle production in ϕ4 scalar quantum field theory, which corresponds to transitions
hNjx̂j0i in the anharmonic oscillator with quartic coupling λ. We use recursion relations to calculate the
hNjx̂j0i amplitudes to high order in perturbation theory. Using this we provide evidence that the amplitude
can be written as hNjx̂j0i ∼ expðFðλNÞ=λÞ in the limit of large N and λN fixed. We go beyond the leading
order and provide a systematic expansion in powers of 1=N. We then resum the perturbative results and
investigate the behavior of the amplitude in the region where tree-level perturbation theory violates
unitarity constraints. The resummed amplitudes are in line with unitarity as well as stronger constraints
derived by Bachas [2]. We generalize our result to arbitrary states and powers of local operators hNjx̂qjMi
and confirm that, to exponential accuracy, amplitudes in the large N limit are independent of the explicit
form of the local operator, i.e., in our case q.
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I. INTRODUCTION

Multiparticle amplitudes in weakly coupled scalar quan-
tum field theories have been attracting quite some interest
in the past, since they seem to exhibit factorial growth with
the number of particles produced [3–9]. With the discovery
of a scalar Higgs boson [10,11] this has turned into a
problem of the Standard Model, with an explicit maximal
scale where either novel nonperturbative behavior or new
physics must set in [12,13]. The relevant scale can be
estimated to be ≲1600 TeV at tree level, but higher order
corrections indicate it could even be much lower, possibly
even within the range of the next generation of colliders.
A particularly interesting form of nonperturbative behav-

ior could be a “Higgsplosion” and “Higgspersion” effect
proposed in [1]. Here, the increase in the 1 → N amplitudes
leads to a rapid growth in the decay width of the particle. The
large width suppresses the propagator, effectively cutting off
loop integrals at the scale where 1 → N amplitudes become
large. Since this scale is low, this can address the hierarchy
problem. At the same time the low scale provides for a
potentially rich phenomenology [14–16].

Evidence for the rapid growth of 1 → N amplitudes arises
from perturbative [3–9] as well as semiclassical [17,18]
calculations. An interesting and useful limit to consider
is N → ∞, λN ¼ const. In this double scaling limit the
amplitudes can be written in an exponential form [19–24]

Aðϕ⋆ → NϕÞ ¼ hNjϕj0i ∼ exp

�
1

λ
FðλNÞ

�
: ð1:1Þ

Here the function F is a function of the combination λN
only.
In the semiclassical1 approach [17,18,20] this form is

inherent and indeed it only attempts to compute the
function F. The semiclassical calculations also rely on
the assumption that, to exponential accuracy, the amplitude
in question is independent of the precise form of the local
operator [17,18,25],2 e.g.,

hNjϕj0i ∼ hNjϕ2j0i: ð1:2Þ
It is one of the main aims of the present work to support

these statements with explicit calculations.
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1These techniques for QFT are modeled after the Landau
method in quantum mechanics [25].

2We also briefly mention at the end of Sec. V that this
statement is not sufficient to guarantee that no exponential
corrections arise, if the calculated operator is itself an exponential
of the field operator.
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Phenomenologically the sign of the function F is crucial.
If F > 0 for some value λN > 0 we can always find a rapid
growth of the amplitudes in a limit where we keep λN fixed
at this value and send λ → 0. We are therefore particularly
interested in establishing the sign of the function F. In the
symmetric ϕ4 theory the tree-level calculation results in a
positive F at λN > 8e. But the next correction is negative
[19,26], leaving the case unclear but providing hope for
convergence. In the spontaneously broken system the
situation is more dire. The loop correction is also positive
[9]. This is also supported in the semiclassical calculation
[18] which also yields a positive sign at large λN. In this
paper we will focus on the simpler symmetric case.
Although we are ultimately interested in quantum field

theory we will consider here the quantum mechanical
analogue of the symmetric ϕ4 theory, i.e., the anharmonic
oscillator with a quartic potential

VðxÞ ¼ x2 þ λx4: ð1:3Þ
This will allow us to do explicit calculations to high orders
and perform resummations that enable us to investigate
the large λN behavior. While this can give us important
insights into the desired high multiplicity amplitudes we
should nevertheless be aware that quantum field theory in
four dimensions provides for additional structure and
complications, e.g., a nontrivial phase space.
Quantummechanics has already been a test bed for many

investigations of high order perturbation theory (see, e.g.,
[27–33]). However, with few exceptions [2,5,34–38],
most of these focused on energy levels and wave functions
in or near the ground state. In contrast here we consider
transition amplitudes to highly excited states.
This work is structured as follows. Section II reviews the

general method of reconstructing the wave functions of the
anharmonic oscillator systematically by exploiting recursive
methods. These are then used to derive a perturbative
expression for the multiparticle amplitudes in Sec. III.
Section IV is devoted to investigating the exponentiation
of the multiparticle amplitude in the regime N → ∞ and λN
fixed. In particular, the function F is computed explicitly to
a high perturbative order. We also consider and compute
corrections to the exponent that are suppressed by powers of
1=N. We then use Padé techniques to resum the perturbative
series and show that it remains negative and avoids problems
with unitarity at the point where unitarity breaks down at tree
level. We also compare to the upper bounds derived in [2].
In Sec. V we then extend our results to amplitudes involving
more general local (in time) operators and show that they
indeed only differ in the pre-exponential factor as assumed
in semiclassical calculations. Finally, we briefly summarize
and conclude in Sec. VI.

II. RECONSTRUCTING WAVE FUNCTIONS
OF THE ANHARMONIC OSCILLATOR

For high order calculations recursion relations are an
efficient way to organize perturbation theory. Let us briefly

recall the methods developed by Bender and Wu [27,28],
whose derivation we follow closely.
We are interested in finding solutions to the Schrödinger

equation �
−

d2

dx2
þ VðxÞ − E

�
ψ ¼ 0 ð2:1Þ

for the anharmonic oscillator potential with a unique global
minimum

VðxÞ ¼ x2 þ λx4; λ > 0: ð2:2Þ
In order to find the Nth energy level EN and its corre-

sponding eigenfunction ψN we make use of the recursive
methods developed in [27,28]. We start by introducing the
polynomial ansatz

ψNðx; λÞ ¼ cNe−
x2
2

X∞
n¼0

λnBN
n ðxÞ ð2:3Þ

where cN is a normalization constant and the functions
BN
n ðxÞ are polynomials of the form

BN
n ðxÞ ¼

X
k

BN
n;kx

k: ð2:4Þ

In a similar manner we make an ansatz for the energy levels
by writing

ENðλÞ ¼ 2N þ 1þ
X∞
n¼1

λnaNn : ð2:5Þ

For simplicity of notationwewill drop the indexN of theNth
level from now on and keep it in mind implicitly. Plugging
this ansatz into the Schrödinger equation (2.1), one can
derive a recursion relation for the polynomial functions
BnðxÞ as the coefficient of the perturbative series at order
OðλnÞ, which is given by

2xB0
n − B00

n þ x4Bn−1 ¼ 2NBn þ
Xn−1
k¼0

an−kBk ð2:6Þ

where B0
n ¼ d

dx BnðxÞ.
At leading order n ¼ 0 we obtain the differential

equation

B00
0 − 2xB0

0 þ 2NB0 ¼ 0 ð2:7Þ
which is exactly solved by the Hermite polynomials of
order N, i.e., BN

0 ðxÞ ¼ HNðxÞ.
We now want to go beyond leading order. Since we

assume the functions BnðxÞ to be polynomials, the relation
(2.6) can be translated into a similar recursive relation for
their polynomial coefficients Bn;k. It takes the form

ðkþ 1Þðkþ 2ÞBn;kþ2 ¼ 2ðk − NÞBn;k þ Bn−1;k−4

−
Xn−1
p¼0

an−pBp;k: ð2:8Þ
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In order to find the tower of coefficients Bn;k we again
have to solve the recursive relation (2.8) by distinguishing
between two different physical cases. We can either
consider even or odd N, i.e., even or odd wave functions
ψN with respect to parity transformations.

(i) For even N we infer that all the odd parts of the
polynomial expansion in BnðxÞ should vanish, i.e.,
Bn;k ¼ 0 for k ∈ 2Nþ 1. In addition we can evaluate
(2.8) for k ¼ 0 to arrive at

2Bn;2 þ 2NBn;0 ¼ −
Xn−1
p¼0

an−pBp;0: ð2:9Þ

If we choose3 Bn;0 ¼ 0 for n ≥ 1, we can immedi-
ately read off the values for energy expansion
coefficients, which are

an ¼ −2
Bn;2

B0;0
∀ n ≥ 1: ð2:10Þ

(ii) Similarly to the considerations for even N we can
derive a relation for the an whenN is an odd number.
In this case we infer that all the even parts of the
polynomial expansion in BnðxÞ should vanish, i.e.,
Bn;k ¼ 0 for k ∈ 2N. Evaluating (2.8) for k ¼ 1

yields

6Bn;3 − 2ð1 − NÞBn;1 ¼ −
Xn−1
p¼0

an−pBp;1: ð2:11Þ

Together with the choice Bn;1 ¼ 0 for n ≥ 1 we
arrive at the final expression for the energy expan-
sion coefficients

an ¼ −6
Bn;3

B0;1
∀ n ≥ 1: ð2:12Þ

We can summarize both cases in the following
relation:

ðkþ 1Þðkþ 2ÞBn;kþ2 − 2ðk − NÞBn;k − Bn−1;k−4

¼
8<
:

2
B0;0

P
n−1
p¼0 Bn−p;2Bp;k N even

6
B0;1

P
n−1
p¼0 Bn−p;3Bp;k N odd

: ð2:13Þ

Keepingn fixed this relation can easily be solved for the full k
tower of coefficients Bn;k, where we use BN

0 ðxÞ ¼ HNðxÞ.
The recursion relation becomes vacuous for sufficiently

large values of k, i.e., the coefficients become proportional
to each other Bn;kþ2 ∝ Bn;k for k ≥ kmax. An explicit

computation shows that this threshold is given by kmax ¼
N þ 4nþ 2. From a physical point of view this is con-
sistent with the fact that the wave function has to be square
integrable. To achieve this we use the proportionality to
truncate the polynomial expansion at order kmax, i.e.,
Bn;k ¼ 0 for k ≥ N þ 4nþ 2.
In fact, this is all the information we need to reconstruct

the Nth level wave function ψN up to arbitrary perturbative
order OðλnÞ. For instance, the first two levels read

ψ0ðxÞ¼ c0e−
x2
2

�
1−

λ

8
ðx4þ3x2Þþ λ2

384
ð3x8þ26x6þ93x4

þ252x2ÞþOðλ3Þ
�

ð2:14Þ

ψ1ðxÞ¼c1e−
x2
2

�
2x−

λ

4
ðx5þ5x3Þþ λ2

192
ð3x9þ38x7þ177x5

þ660x3ÞþOðλ3Þ
�
: ð2:15Þ

Finally, we need to determine the wave function nor-
malization cN . It is given by the condition,

hNjNi ¼
Z
R
dxψ̄NψN ¼ jcN j2

Z
R
dxe−x

2

×
X
n

λnBN
n ðxÞ

X
p

λpBN
p ðxÞ ¼! 1 ð2:16Þ

which again is a perturbative series in powers of the
coupling of the theory. At leading order we recover the
well-known result

jcN j20 ¼
1ffiffiffi

π
p

2NN!
: ð2:17Þ

III. VACUUM TRANSITION AMPLITUDES

In the previous section we recalled how to reconstruct the
Nth level wave function ψN up to arbitrary perturbative
order in the coupling from a tower of recursive relations.
We can use these results to compute transition amplitudes
in the anharmonic oscillator of the form

hNjx̂j0i ¼
Z
R
dxψ̄Nxψ0

¼
Z
R
dxxe−x

2
X
n

λnBN
n ðxÞ

X
p

λpB0
pðxÞ: ð3:1Þ

Since the theory enjoys a Z2 symmetry at the Lagrangian
level (i.e., parity in our case), we can immediately conclude
that

hNjx̂j0i¼ 0 ∀N ∈ 2N: ð3:2Þ
3Since we are essentially solving a differential equation, we are

allowed to fix the boundary conditions.

EXPLORING HIGH MULTIPLICITY AMPLITUDES IN … PHYS. REV. D 98, 096007 (2018)

096007-3



Using a Feynman diagram picture it is straightforward to
see that the tree-level contribution of the amplitude is
expected to be

hNjx̂j0itree ∼ λ
N−1
2 : ð3:3Þ

Plugging the polynomial coefficients derived from (2.8)
into the explicit expression for hNjx̂j0i yields4

hNjx̂j0i¼
X∞
n¼0

λntNn with

tNn ¼
Xn
p¼0

XNþ4p

k¼0

X4ðn−pÞ
l¼0

BN
p;kB

0
n−p;lΓ

�
kþ lþ2

2

�
: ð3:4Þ

This form of the amplitude is in perfect agreement with the
naive expectation (3.3), because we obtain the nontrivial
relation tNn ≡ 0 for n < ðN − 1Þ=2.
Since the computation of hNjx̂j0i is completely similar

to the computation of hNjNi defined in (2.16), we can also
immediately give an expression for the wave function
normalization,

hNjNi¼
X∞
n¼0

λnmN
n with

mN
n ¼

Xn
p¼0

XNþ4p

k¼0

XNþ4ðn−pÞ

l¼0

BN
p;kB

N
n−p;lΓ

�
kþ lþ1

2

�
: ð3:5Þ

In principle, the amplitude (3.4) together with the
recursive relation of the polynomial coefficients (2.8) is
sufficient to compute hNjx̂j0i up to arbitrary order in λ.
However, we are interested in the analytic N dependence
of hNjx̂j0i, which is contained in (2.8) and (3.4) only
implicitly. Consequently, we need to match assumptions on
the analytic behavior to the numerical expression.
In particular, we observe that hNjx̂j0i is of polynomial

form

hNjx̂j0i ¼ hNjx̂j0itree
X∞
k¼0

λkP2kðNÞ ð3:6Þ

where PkðNÞ denotes a polynomial of degree k with
coefficients in N. Since we can compute hNjx̂j0i for any
N recursively, we can determine these coefficients of Pk
separately in order to completely fix the analytic form of
hNjx̂j0i. For instance, an explicit computation yields

hNjx̂j0i¼ hNjx̂j0itree
�
1−λ

N
16

ð17Nþ20Þþλ2
N
512

ð289N3

þ1680N2þ2072Nþ2060ÞþOðλ3Þ
�

ð3:7Þ

where the tree-level contribution is given by

hNjx̂j0itree ¼
ffiffiffi
π

p
N!

�
λ

4

�N−1
2

: ð3:8Þ

In general the explicit form of hNjx̂j0i in (3.7) can be
computed to arbitrary order in λ with correspondingly long
expressions for each coefficient.
Again, a completely similar computation can be done for

the wave function normalization to arbitrary order in the
coupling. It is given by

hNjNi¼ hNjNi0
�
1−λ

15

16
ð2Nþ1Þþλ2

1

512
ð863ð2Nþ1Þ2

þ718ÞþOðλ3Þ
�
; ð3:9Þ

where hNjNi0 ¼
ffiffiffi
π

p
2NN! was computed before in (2.17).

It is remarkable that the leading terms of the normalization
are an expansion in powers of λN in contrast to the λN2

asymptotics of the amplitude. This implies that the leading
order behavior in λN2 of hNjx̂j0i will not be affected by the
normalization. Nevertheless, since only normalized wave
functions and transition amplitudes are physical, we will
focus on computing the quantity,

AN ≡ hNjx̂j0iffiffiffiffiffiffiffiffiffiffiffiffiffihNjNip ffiffiffiffiffiffiffiffiffiffih0j0ip : ð3:10Þ

In fact, the normalized amplitude is of the form

AN ¼ Atree
N

�
1 −

λ

16
ð17N2 þ 5N − 12Þ

þ λ2

512
ð289N4 þ 1170N3 þ 13N2

þ 664N − 944Þ þOðλ3Þ
�

ð3:11Þ

where the tree-level factor is given by

Atree
N ¼ 1ffiffiffi

2
p ffiffiffiffiffiffi

N!
p �

λ

8

�N−1
2

: ð3:12Þ

Note that in quantum mechanics the reduction of the
prefactor to

ffiffiffiffiffiffi
N!

p
instead of N! arises from the normali-

zation condition. In quantum field theory a similar role is
played by the phase space integration of the squared matrix
element which contains a factor of 1=N! effectively
reducing the growth by a factor

ffiffiffiffiffiffi
N!

p
.

IV. EXPONENTIATION OF THE AMPLITUDE
AND THE HOLY GRAIL FUNCTION

As already mentioned in the Introduction many consid-
erations for high multiplicity amplitudes are based on its

4Note carefully that in this manipulation we are exchanging the
summation and integration even though it might not be strictly
allowed in this case. Indeed this is a point where problems of
perturbation theory may arise.
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exponential form. Let us briefly consider what is special
about this. In principle we can write any functionBðλ; NÞ as

Bðλ; NÞ ¼ exp ½logðBðλ; NÞ� ¼ exp ½Lðλ; NÞ�: ð4:1Þ

We now take the limit N → ∞, λN ¼ const. Assuming that
L behaves as

L ∼ Nκ þOð1=NÞ ð4:2Þ

at large N we have

Lðλ;NÞ¼NκL̂ðλNÞþO
�
1

N

�
¼ 1

λκ
ðλNÞκL̂ðλNÞþO

�
1

N

�
;

ð4:3Þ

where the function L̂ now only depends on the combination
λN. Defining

fðλNÞ ¼ ðλNÞκL̂ðλNÞ; ð4:4Þ

we arrive at the desired form,

Bðλ; NÞ ∼ exp

�
fðλNÞ
λκ

�
: ð4:5Þ

This statement can be generalized to also include 1=N
corrections. Indeed we can write

Bðλ; NÞ ∼ exp

�
1

λκ

�
f0ðλNÞ þ 1

N
f1ðλNÞ þ � � �

��
: ð4:6Þ

Below we will also explicitly compute those 1=N correc-
tions for the case of the anharmonic oscillator.
So far this is a rather general statement. However, the

assumption (4.2) is crucial. Indeed, to obtain (4.6) we also
need to be able to expand in powers of 1=N. In perturbation
theory we will find below that this assumption is fully
justified, κ ¼ 1 and going to sufficiently high order all
coefficients in perturbation theory can be recovered, not only
those that are dominant in the limit N → ∞, λN ¼ const.
Let us illustrate that this is far from trivial by considering

the following example:

Bðλ;NÞ ¼ 2 cosh

�
1

λ
ðλNÞ2

�
¼ 2þ λ2N4 þ 1

12
λ4N8 þ � � � :

ð4:7Þ

In the considered limit one quickly finds

fðλNÞ ¼ ðλNÞ2 ð4:8Þ

and this remains true to all orders in 1=N. However, the
reconstructed function

Bðλ; NÞ ∼ exp

�
fðλNÞ

λ

�
¼ 1þ λN2 þ 1

2
λ2N4 þ 1

6
λ3N6

þ 1

24
λ4N8 þ � � � ; ð4:9Þ

contains coefficients not in the expansion of the original
function. It is straightforward to check that the logarithm of
the original function differs from fðλNÞ by

logðBðλ; NÞÞ − fðλNÞ
λ

¼ expð−2ðλNÞNÞ − 1

2
expð−4ðλNÞNÞ þ � � � : ð4:10Þ

While the assumption equation (4.2) is fulfilled, the differ-
ence is that the true logarithm of the original function
contains a part that is exponentially suppressed as 1=N → 0

and λN ¼ const (i.e., N → ∞). This part, that is not a
function of just the combination λN, contains the informa-
tion about all the coefficients that are not correctly
reproduced by the exponential expðfðλNÞ=λÞ.
In the case of the anharmonic oscillator we find below

the remarkable property that we have exact exponentiation
in the sense that all coefficients of perturbation theory can
be recovered from the exponent, if it is calculated to
sufficiently high order.5

In the last section we demonstrated a procedure how to
compute the amplitude AN , given in (3.10). It was shown
to factorize into AN ¼ Atree

N AΣ, where for simplicity of
notation we use [cf. (3.11)]

AΣ ¼ 1 −
λ

16
ð17N2 þ 5N − 12Þ

þ λ2

512
ð289N4 þ 1170N3 þ 13N2

þ 664N − 944Þ þOðλ3Þ: ð4:11Þ

From the explicit form of AΣ an intriguing observation
can be made. The first few leading terms of the amplitude
in λN2

AΣ ∼ 1 −
17

16
λN2 þ 289

512
λ2N4 −

4913

24576
λ3N6 þOðλ4N8Þ

ð4:12Þ

can in fact be written as an exponential function which
takes the form

AΣ ∼ exp

�
−
17

16
λN2

�
: ð4:13Þ

5In more general quantum mechanical systems this is not
generally true and the statement has to be modified, as we will
discuss in future work [39].
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This crucial property of AΣ supports the conjecture that
in the double scaling limitN → ∞ and λ → 0with λN fixed
the full amplitude can be written in exponential form
[17,19,21–24]

AN ∼ exp

�
1

λ
FðλNÞ

�
; ð4:14Þ

where F is sometimes called holy grail function. Note that
at this point we neglect corrections of order 1=N to it
which we will discuss below.
In order to obtain (4.14) we write

AN ¼ Atree
N AΣ ∼ exp

�
1

λ
ðFtree þ FΣÞ

�
: ð4:15Þ

That is, F can be separated into a tree level and a higher
order contribution

FðλNÞ ¼ FtreeðλNÞ þ FΣðλNÞ: ð4:16Þ

Ftree and FΣ correspond to Atree
N and AΣ of the full

amplitude, respectively.
For convenience we use in the following the abbreviation,

ϵ ¼ λN: ð4:17Þ

It is straightforward to write the tree-level amplitude (3.12)
in an exponential form. Using Stirling’s formula as N → ∞
in the double scaling limit, Ftree can be approximated by

FtreeðϵÞ ∼ ϵ

2
ln ϵ −

ϵ

2
−
ϵ

2
ln 8: ð4:18Þ

This tree-level contribution to the holy grail function is
illustrated in Fig. 1.
The observation that the amplitude AN seems to take an

exponential form in the large N regime is not solely a
mathematical statement about its structure. It might also
have physical consequences. To begin with, there are two
distinct points of Ftree which are of interest for our work—
the global minimum at ϵmin ¼ 8 and the root at ϵ0 ¼ 8e
(cf. Fig. 1). The crucial observation is that Ftree at ϵ0
changes from negative to positive sign, i.e., the amplitude
Atree

N will diverge in the limit N → ∞ for any ϵ > ϵ0

lim
N→∞

Atree
N ¼ ∞: ð4:19Þ

This is unphysical since hNjxj0i > 1=ð2ENÞ is incompat-
ible with the commutation relation ½x̂; p̂� ¼ i [5].
This raises the question of how the behavior of F is

changed when we include corrections to the tree-level
result. Indeed, most interesting is the overall sign of F for
any ϵ. Consequently, our aim is to compute F explicitly in
the regime N → ∞ with ϵ fixed.

In practice we will discover that to calculate these
corrections we also need to go beyond leading order in
1=N. We will find that more generally we can reproduce the
full perturbative series by writing6

AN ¼ Atree
N exp

�
1

λ
FΣðλ; NÞ

�
ð4:20Þ

where

FΣðϵ; NÞ ¼ F0ðϵÞ þ
F1ðϵÞ
N

þ F2ðϵÞ
N2

þ � � � ; ð4:21Þ

and where the FiðϵÞ are analytic functions in ϵ.
The polynomial structure of AΣ derived in (4.11) tightly

constrains the possible coefficients and powers of ϵ present
in FΣ. In fact, the functional form of FΣ is given by

FΣðϵ; NÞ ¼
X∞
i;j¼0

cij
ϵi−jþ2

Nj with cij ¼ 0 ∀ j >
iþ 2

2

ð4:22Þ
because then a series expansion yields

exp

�
1

λ
FΣ

�
¼

X∞
k¼0

λ−k

k!

�
cij

1

Nj ϵ
i−jþ2

�
k

¼ ec01 ½1þ λðc00N2 þ c11N þ c22Þ þOðλ2Þ�
ð4:23Þ

0 5 10 15 20 25

−4

−3

−2

−1

0

1

2

FIG. 1. Holy grail function Ftree corresponding to the tree-level
amplitude Atree

N in the double scaling limit N → ∞, ϵ ¼ λN ¼
const (corrections of order 1=N are neglected). It exhibits a global
minimum at ϵmin ¼ 8 and root at ϵ0 ¼ 8e.

6In principle one could be tempted to write Atree
N ¼

exp f1λFtreeðϵ; NÞg with Ftreeðϵ; NÞ ¼ Ftree
0 ðϵÞ þ 1

N F
tree
1 ðϵÞ þ � � �.

However, using Stirling’s formula for the factorial to higher
orders we see that to write it in this form we have to factor out a
λ3=4. Moreover, one should also be mindful of the fact that
Stirling’s series is only asymptotic, suggesting missing pieces of
the type we discussed at the beginning of this section.
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where the sum over i and j is understood. This procedure
gives a structure that could be described as a triangular
expansion of F and can be schematically written as

FΣðϵ; NÞ ≃

8>>>>>>>>>>><
>>>>>>>>>>>:

c00ϵ2 c01 1
N ϵ

1

c10ϵ3 c11 1
N ϵ

2

c20ϵ4 c21 1
N ϵ

3 c22 1
N2 ϵ2

c30ϵ5 c31
1
N ϵ

4 c32
1
N2 ϵ3

c40ϵ6 c41 1
N ϵ

5 c42 1
N2 ϵ4 c43 1

N3 ϵ3

..

. . .
.

9>>>>>>>>>>>=
>>>>>>>>>>>;

:

ð4:24Þ

The ith column in fact corresponds to the terms of FiðϵÞ
defined in (4.21), for instance

F0ðϵÞ ¼ c00ϵ2 þ c10ϵ3 þ c20ϵ4 þOðϵ5Þ: ð4:25Þ

In general, the coefficients cij can be matched to AΣ by
expanding the exponential and determining the missing
coefficients at each order. Using this matching FðϵÞ can be
determined to arbitrary order in ϵ and 1=N. In practice
the computational effort increases rapidly.7 For instance,
the holy grail function corresponding to the factorized
amplitude (4.11) is given by

FΣðϵ; NÞ ¼ −
17

16
ϵ2 þ 125

64
ϵ3 þOðϵ4Þ

þ 1

N

�
−

5

16
ϵ2 þ 99

128
ϵ3 þOðϵ4Þ

�
þO

�
1

N2

�
:

ð4:26Þ

Remarkably, this method of reconstructing the holy grail
function allows us to translate a series expansion of AN in
powers of λN2 into a series expansion of Fðϵ; NÞ in powers
of ϵ ¼ λN. Note that for the latter to be small is a much less
restrictive statement. Moreover the exact correspondence is
a very powerful observation, because a finite number of
coefficients cij in F will generate infinitely many terms of
the amplitude. As discussed at the beginning of this section
it is nontrivial that all coefficients of perturbation theory
can be recovered exactly. We have checked that this is true
to very high order. For instance, we have verified that the
first three nontrivial terms of FΣ,

FΣ ¼ −
17

16
ϵ2 þ 125

64
ϵ3 −

5

16

ϵ2

N
þ � � � ; ð4:27Þ

reproduce the first subleading corrections ðλN2Þk=N of AN
up to order k ¼ 15.
As we have already mentioned all the important infor-

mation about theN → ∞ asymptotics ofAN is contained in

F0ðϵÞ ¼ −
17

16
ϵ2 þ 125

64
ϵ3 −

17815

3072
ϵ4 þ 87549

4096
ϵ5 þOðϵ6Þ:

ð4:28Þ

The holy grail function F with the leading order corrections
is shown in Fig. 2.
We observe that F0 is given by an alternating sum with

monotonically growing coefficients. Hence, naively the
large ϵ asymptotics will be governed by the leading
coefficient of the highest power in ϵ. Accordingly we
cannot simply read off the value of F for large ϵ, because it
depends on the truncation of the series expansion. In order
to still be able to extract a better estimate for F we have

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−6

−5

−4

−3

−2

−1

0

1

FIG. 2. Holy grail function F ¼ Ftree þ F0 in the double
scaling limit N → ∞, ϵ ¼ λN fixed, neglecting corrections of
order 1=N. The label denotes the highest order of ϵ that is
included. The asymptotic behavior for large ϵ is governed by the
maximum order included in the series expansion, indicating that
we have to apply resummation techniques.

0 10 20 30 40 50
−50

−40

−30

−20

−10

0

FIG. 3. Diagonal sequence of Padé approximants of the holy
grail function F in the double scaling limit N → ∞, ϵ ¼ λN fixed
and at leading order in 1=N, i.e., F ¼ Ftree þ F0.

7For instance, the complexity of computing FΣ in (4.24) to the
kth line grows polynomially as approximately Oðk6Þ.
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to resum the perturbative series. Since by construction
we only know a finite (but still arbitrary) number of terms
contained in F, we make use of a Padé approximation.
To keep notation simple we use the standard symbols Pn

m
for the Padé approximants defined by

Pn
mðϵÞ≡

P
n
i¼0 aiϵ

iP
m
j¼0 bjϵ

j ð4:29Þ

where one conventionally chooses b0 ¼ 1 without loss of
generality. As a standard technique of asymptotic analysis
the idea is to consider the diagonal sequence Pn

n and Pn
nþ1.

Taylor expanding both and matching their coefficients ai
and bj to the coefficients in F yields the corresponding
Padé approximants at a given order n. The first few
approximants of that sequence are shown in Fig. 3.
One can clearly see (note the different scale in ϵ) that

resumming the holy grail function F via a Padé approxi-
mation drastically enhances the predictivity for large ϵ. The
true value of the holy grail function F for any value of ϵ is
bounded from above and below by the Padé approximants
Pn
nþ1ðϵÞ and Pn

nðϵÞ. When considering Padé approximants
Pn
nþ1 of higher order the minima and roots are shifted

towards larger ϵ. Additionally, the approximants Pn
n are

monotonically decreasing and do not exhibit any minima or
roots at all. Combining all these observations gives good
evidence that the holy grail function F remains negative for
any value of ϵ in the limit N → ∞, i.e., the corresponding
transition amplitudeAN does not diverge, but remains finite
in that limit instead. This observation is also explicitly
supported by Fig. 4, where the approximants are evaluated
at the minimum ϵ ¼ 8 and root ϵ ¼ 8e of the tree-level
result. They exhibit a nice convergence to a value of F,
which is still negative at ϵ ¼ 8e.
Furthermore, the Padé resummed holy grail function F

that we systematically computed in this section is also
consistent with two existing results on hNjx̂j0i. First of all
in [2] Bachas gives a proof that jhNjx̂j0ij is nontrivially
bounded from above. If the amplitude is indeed of
exponential form, this means that F is also bounded and

in particular negative for any ϵ in the double scaling limit
N → ∞, λN ¼ const. More precisely in [2] explicit bounds
on F are given for ϵ ≪ 1 and ϵ ≫ 1, respectively. Both
limits can be translated into our variables and are shown in
Fig. 5 denoted by B1 and B2.
Another result on hNjx̂j0i is worked out in [35–37].

Using complex WKB methods the authors derive an
explicit scaling of hNjx̂j0i for large N. In particular, for
ϵ ≫ 1 they obtain [37]

hNjx̂j0i ∼ exp

�
−
π

2
N

�
: ð4:30Þ

Again this explicit scaling is translated into our variables
and illustrated in Fig. 5 labeled WKB.
Figure 5 shows that our result of systematically comput-

ing and resumming F is consistent with the results of other
works, indicating that in the double scaling limit the
vacuum transition amplitude hNjx̂j0i indeed fully resums
to an exponential governed by the holy grail function F.

2 3 4 5 6 7

−20

−18

−16

−14

−12

2 3 4 5 6 7

−100

−80

−60

−40

−20

0

FIG. 4. Padé approximants of F evaluated at the minimum ϵ ¼ 8 (left) and the root ϵ ¼ 8e (right) of Ftree. We use the limit N → ∞,
ϵ ¼ λN fixed and neglect corrections of order 1=N.

0 5 10 15 20 25 30
−30

−25

−20

−15

−10

−5

0

FIG. 5. Diagonal sequence of the highest Padé approximants of
the holy grail function F at leading order in 1=N compared to
existing results. B1 and B2 are rigorous bounds corresponding to
the regimes ϵ ≪ 1 and ϵ ≫ 1 respectively [2]. The label WKB
corresponds to a result obtained using complex WKB methods
[37]. The Padé resummed holy grail function appears to be
consistent with both.
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We conclude that for the quartic anharmonic oscillator
in the symmetric phase suitably resummed perturbation
theory alone might be sufficient to make sense of diverging
transition amplitudes for large excitation numbers.

V. TRANSITION AMPLITUDES FOR ARBITRARY
STATES INVOLVING GENERAL LOCAL

OPERATORS

So far we have only considered transitions from the
vacuum to some excited state, hNjx̂j0i. However, the same
techniques to compute vacuum transitions can be applied
to transition amplitudes between arbitrary states involving
general local operators, hNjx̂kjMi with k ∈ N.8

In the following, we will argue that in the double scaling
limit N → ∞ with λN fixed the transition amplitudes are
independent of the power of the local operator to expo-
nential accuracy. More precisely we find

hNjx̂kjMi ∼ RkðN;MÞ hNjx̂j0i
hMjx̂j0i ð5:1Þ

where Rk grows at most as a power of the quantum numbers
N and M.
In order to do so we derive the general form of hNjx̂kjMi

and compare it to the right-hand side of (5.1). The general
idea is to reduce the power of the operator that we are
considering by insertions of the identity,

hNjx̂kjMi ¼
X
L

hNjx̂k−1jLihLjx̂jMi: ð5:2Þ

Let us begin by considering the amplitude involving only
a linear position operator (k ¼ 1). In terms of the pertur-
bative ansatz it reads (cf. Sec. II)

hNjx̂jMi ¼
X∞
n¼0

λntN;M
n with

tN;M
n ¼

Xn
p¼0

XNþ4p

k¼0

XMþ4ðn−pÞ

l¼0

BN
p;kB

M
n−p;lΓ

�
kþ lþ 2

2

�
:

ð5:3Þ
After normalizing both states we can extract the tree-level
amplitude,

hNjx̂jMitree ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
N

M

�
þ
�
M

N

�s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijN −Mj!p
2jN−Mj

�
λ

4

�jN−Mj−1
2

:

ð5:4Þ
By examining the exponent of the coupling one can
observe that the interpretation in terms of a field theory
amplitude is not at all obvious—for instance by increasing

M we effectively decrease the number of couplings that is
needed for that particular transition from M to N. Naively,
in the Feynman language of perturbative QFT we would
expect exactly the opposite, because the number of
couplings corresponds to the number of vertices in a given
diagram. However, hNjx̂jMitree contains information not
only on the fully connected amplitude but also about
disconnected pieces. Accordingly some care needs to
be taken to establish a direct correspondence between
hNjx̂jMi and its field theory analogue.
Nevertheless, these transition amplitudes exhibit some

very interesting features. In particular, the form of the tree-
level contribution shows a certain form of crossing sym-
metry and allows for a complete factorization into distinct
amplitudes. We observe that

hNjx̂jMitree ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
N

M

�
þ
�
M

N

�s
hjN −Mjjx̂j0itree: ð5:5Þ

Taking N > M and writing (5.4) as

hNjx̂jMitree ¼
ffiffiffiffiffiffi
N!

pffiffiffiffiffiffi
M!

p 2−N=2

2−M=2

�
λ

4

�N−M−1
2 ð5:6Þ

it is easy to see that the tree-level contribution is in fact
nothing but a quotient of two tree-level amplitudes.
Therefore, we can write

hNjx̂jMitree ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 1

2

r
hNjx̂jKitree

hM þ 1jx̂jKitree
ð5:7Þ

for an arbitrary state jKi with K ≤ M and N þ K odd.
We could for example choose K ¼ 0 for N odd and K ¼ 1
for N even.
In fact these properties of the amplitude are not limited to

the tree-level part, but also carry over to the full amplitude
as we will show below.
Using the same methods as described in Sec. IV the

higher order corrections to the amplitude can be computed.
They are given by

hNjx̂jMi
hNjx̂jMitree

¼ 1þ λ

16
ð−17N2 − 5N þ 17M2 þ 29M þ 12Þ

þ λ2

512
ð289N4 þ 289M4 þ � � �Þ: ð5:8Þ

Again it is surprising that both N and M completely
decouple, i.e., the first mixed terms NxMy show up at
quadratic order of the coupling Oðλ2N2M2Þ. However, this
decoupling in turn makes it straightforward to rewrite the
amplitude into a holy grail function satisfying

hNjx̂jMi ¼ hNjx̂jMitree exp
�
1

λ
FΣðλ; N;MÞ

�
ð5:9Þ8Due to the Z2 symmetry of the Hamiltonian, this amplitude is

only nonvanishing if N þ kþM is even.
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where FΣ is given by

FΣðλ; N;MÞ ¼ λ2
�
−
17

16
N2 −

5

16
N þ 17

16
M2 þ 29

16
M þ 3

4

�
þOðλ3Þ: ð5:10Þ

Furthermore, the decoupling of N and M implies that
the holy grail function can be written as a sum of two
components

FΣðλ; N;MÞ ¼ FΣðλ; NÞ þ F̂Σðλ;MÞ ð5:11Þ

where FΣðλ; NÞ is already known from the vacuum
amplitude hNjx̂j0i given in (4.26). Intriguingly, even the
additional part F̂Σ of the holy grail function can be fully
recovered from hNjx̂j0i by observing

F̂Σðλ;MÞ ¼ −FΣð−λ;−ðM þ 1ÞÞ: ð5:12Þ

Hence, knowing hNjx̂j0i is in principle sufficient to
reconstruct hNjx̂jMi for arbitrary M.
The observation (5.12) allows us to extend the tree-level

result (5.7) to the full amplitude. In the leading N and M
coefficients of the holy grail function (in the 1=N expan-
sion), it can be rewritten as

hNjx̂jMi ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 1

2

r
hNjx̂jKi

hM þ 1jx̂jKi ð5:13Þ

where K ≤ M is again an arbitrary quantum number, such
that N þ K is odd. Since we are neglecting terms of the
form exp ð1=NÞ, it is valid to exponential accuracy.
The fact that transition amplitudes between arbitrary

states reduce to a quotient of two vacuum transitions is not
only surprising on its own, but is in fact a key to computing
transitions for polynomials of local operators between
arbitrary states

hNjPðx̂ÞjMi ¼
X
q

aqhNjx̂qjMi: ð5:14Þ

By generalizing the previous result (5.13) to arbitrary
powers of x̂ we argue that the matrix element for any
power of local operators reduces to vacuum transitions at
leading order in 1=N. More precisely for N > M the
general claim for an arbitrary power of local operators is

hNjx̂qjMi ∼ cqððN þ 1Þ32 − ðM þ 1Þ32Þq−1 hNjx̂jKNi
hM þ 1jx̂jKMi

ð5:15Þ

where cq ∈ R is a positive constant and N þM þ q and
M þ KM have to be even while N þ KN is odd. Again, this
is due to the additional symmetry condition imposed by the

Z2 symmetry of the Hamiltonian. Since we demand
KN < N and KM < M þ 1, it is convenient to choose
KN;M ¼ 0; 1, depending on the parity of the Nth and
Mth level.
In the remaining part of this section wewant to argue that

(5.15) holds by using induction in q. However, because of
parity we have to consider even and odd q separately. For
instance let us show (5.15) for even N, M and q explicitly.
In this case the claim with q ¼ 2p reads

hNjx̂2pjMi∼c2pððNþ1Þ32− ðMþ1Þ32Þ2p−1 hNjx̂j1i
hMþ1jx̂j0i :

ð5:16Þ

The first nontrivial case is p ¼ 1 for which a full derivation
can be found in the Appendix. However, we just state the
result here,

hNjx̂2jMi ∼ ðN þ 1Þ32 − ðM þ 1Þ32
3

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 1

2

r
hNjx̂j1i

hM þ 1jx̂j0i :

ð5:17Þ

Having established the first nontrivial case, we can
proceed by considering p → pþ 1 and inserting the
identity operator, i.e.,

hNjx̂2ðpþ1ÞjMi ¼
X∞
L¼0

hNjx̂2pjLihLjx̂2jMi: ð5:18Þ

Splitting the sum into three different contributions depend-
ing on the parameter ranges of L and applying the induction
hypothesis (5.16) together with the initial result (5.17),
we obtain

hNjx̂2ðpþ1ÞjMi ∼ c2pðS1 þ S2 þ S3Þ ð5:19Þ

where we have

S1ðNÞ≡ hNjx̂j1ihMjx̂j1i

×
XM
L¼0

Lþ 1

2
½ðN þ 1Þ32 − ðLþ 1Þ32�2p−1

×
ðM þ 1Þ32 − ðLþ 1Þ32

3
ffiffiffi
2

p 1

hLþ 1jx̂j0i2 ð5:20Þ

S2ðNÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 1

2

r
hNjx̂j1i

hM þ 1jx̂j0i

×
XN
L¼M

ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

2

r
½ðN þ 1Þ32 − ðLþ 1Þ32�2p−1

×
ðLþ 1Þ32 − ðM þ 1Þ32

3
ffiffiffi
2

p hLjx̂j1i
hLþ 1jx̂j0i ð5:21Þ
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S3ðNÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ 1ÞðM þ 1Þ

2

r
1

hN þ 1jx̂j0ihM þ 1jx̂j0i

×
X∞
L¼N

½ðLþ 1Þ32 − ðN þ 1Þ32�2p−1

×
ðLþ 1Þ32 − ðM þ 1Þ32

3
ffiffiffi
2

p hLjx̂j1i2: ð5:22Þ

That is, we have three contributions S1; S2 and S3 to the
leading N behavior of the amplitude. Similar to the case
p ¼ 1 (cf. the Appendix) these can be analyzed independ-
ently with respect to their asymptotics for large N.

(i) The first contribution S1 contains a sum that is only
explicitly dependent on N. That is, we can just pick
the term with the highest power ofN as the dominant
contribution to S1. This gives

S1ðNÞ ∼ ðN þ 1Þ32ð2p−1ÞhNjx̂j1i: ð5:23Þ

(ii) In contrast to S1 the second contribution S2 involves
a sum that depends on N both explicitly and
implicitly (since it appears as a boundary term).
However, by observing that hLjx̂j1i=hLþ 1jx̂j0i ∼
Oð1Þwe can evaluate the sum explicitly by rewriting
it as an integral. Then considering that the sum
contains only even L, this leads to

S2ðNÞ∼ ½ðNþ1Þ32− ðMþ1Þ32�2pþ1

ð3 ffiffiffi
2

p Þ22pð2pþ1Þ hNjx̂j1i: ð5:24Þ

(iii) Unfortunately, the last contribution S3 cannot be
carried out in full detail, because the sum not only
depends on N but also on the form of hLjx̂j1i.
However, since we are only interested in the para-
metric dependence on N, we can use that we expect
the amplitudes to be of exponential form [cf. (4.30)]

hNjx̂j0; 1i ∼ e−cN ð5:25Þ

where c is a positive constant. Using this parametric
ansatz for hLjx̂j1i we can establish an upper bound
for the sum contained in S3 by writing

X∞
L¼N

½ðLþ 1Þ32�3phLjx̂j1i2 ∼
Z

∞

L¼N=2
ð2Lþ 1Þ3pe−4cL

¼ 1

2
e2cðN þ 1Þ3pþ1E−3p½2cðN þ 1Þ� ð5:26Þ

where EnðzÞ denotes the exponential integral func-
tion and we used that the summation contains only
even L. Using the asymptotic expansion of EnðzÞ

EnðzÞ ∼
e−z

z

�
1 −

n
z
þO

�
n2

z2

��
ðz → ∞Þ ð5:27Þ

we can infer that the dominant terms of S3 are at
most of order

S3ðNÞ≲ ðN þ 1Þ32ð2pþ1
3
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 1

2

r
hN þ 1jx̂j0i
hM þ 1jx̂j0i :

ð5:28Þ

Comparing the asymptotic terms for large N of S1, S2
and S3, we can conclude that the dominant contribution is
given by S2. Finally, we obtain

hNjx̂2ðpþ1ÞjMi ∼ c2ðpþ1Þ½ðN þ 1Þ32 − ðM þ 1Þ32�2ðpþ1Þ−1

×

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 1

2

r
hNjx̂j1i

hM þ 1jx̂j0i ð5:29Þ

which is exactly the induction hypothesis for pþ 1.
Even though we will not give the full argument, it is

straightforward to do the same computation for odd N and
M and also for odd q (with N andM of different parity) by
doing the same manipulations to the initial amplitude.
In summary, we find that to exponential accuracy for any

power of the local operator the corresponding transition
amplitude is equal to the linear one,

hNjx̂qjMi ∼ cqððN þ 1Þ32 − ðM þ 1Þ32Þq−1 hNjx̂jKNi
hM þ 1jx̂jKMi

ð5:30Þ

where cq ∈ R is a positive constant and N þM þ q and
M þ KM have to be even while N þ KN is odd.
As a particular example this implies that

hNjx̂qj0i ∼ cqðN þ 1Þ32ðq−1ÞhNjx̂j0i: ð5:31Þ

This suggests that to exponential accuracy and in the
double scaling limit hNjx̂j0i contains all the information
on hNjx̂qj0i. Consequently, by comparison to previous
results on the vacuum transition hNjx̂j0i we can conclude
that hNjx̂qj0i also remains finite as N → ∞.
Finally, our result supports the assumption that, to

exponential accuracy, the amplitude in question is inde-
pendent of the precise form of the local operator, e.g.,

hNjϕj0i ∼ hNjϕ2j0i: ð5:32Þ

This is one of the ingredients in semiclassical calculations.
However, some caution is needed in its direct application
because the semiclassical methods of [17,18] make use of
an exponential operator expðjϕ̂Þ. For finite j Eq. (5.31) is
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not sufficient to guarantee that there are no exponential
prefactors. Hence, the limit j → 0 has to be taken with care.

VI. CONCLUSIONS

High multiplicity amplitudes in scalar quantum field
theories have recently attracted renewed attention
[1,13–16]. Perturbative as well as semiclassical calculations
indicate a potential growth of these amplitudes [3–9,17,18].
This raises questions about the consistency of the calculation
and perhaps even the theory itself [13], but it could also lead
to an interesting solution of the hierarchy problem [1].
To shed light on this we investigate the anharmonic

quantum mechanical oscillator which is the analogue of ϕ4

theory. In contrast to most studies of this system (notable
exceptions are [2,5,34–38]) we focus on the transition
amplitudes hNjx̂j0i that are the analogue to the high
multiplicity amplitudes. Our results for the system with
a single minimum can be summarized as follows:

(i) The perturbative series can be reproduced exactly by

hNjx̂j0i ¼ hNjx̂j0itree exp
�
1

λ
FΣðλ; NÞ

�
; ð6:1Þ

where

FΣðϵ; NÞ ¼ F0ðϵÞ þ
F1ðϵÞ
N

þ F2ðϵÞ
N2

þO
�

1

N3

�
:

ð6:2Þ
We have explicitly checked this to a significant order
(Oðλ16Þ) in perturbation theory providing additional
evidence for this form conjectured in [17,19–24]. We
have clarified that in the anharmonic oscillator with
quartic coupling this seems to be an exact correspon-
dence order by order in ϵ and 1=N. (We will consider
more general potentials in future work [39].)

(ii) In the double scaling limit N → ∞ and λ → 0 with
ϵ ¼ λN fixed the asymptotic behavior of hNjx̂j0i is
governed by FtreeðϵÞ þ F0ðϵÞ. Using Padé resum-
mation the perturbative behavior is significantly
improved and we find strong indications that

FtreeðϵÞ þ F0ðϵÞ < 0 ∀ ϵ: ð6:3Þ
This avoids problems with unitarity and existing
bounds from [2,5].

(iii) These results can be generalized to a larger class of
amplitudes,

hNjx̂jMi¼ hNjx̂jMitree exp
�
1

λ
FΣðλ;N;MÞ

�
ð6:4Þ

where FΣ is schematically given by

FΣðλ;N;MÞ¼FΣðλ;NÞ−FΣð−λ;−ðMþ1ÞÞ: ð6:5Þ

In particular the amplitude factorizes into two
distinct pieces.

(iv) We also confirm the conjecture that to exponential
accuracy the amplitude is independent of the precise
form of the inserted local operator,9 a feature already
mentioned in [25]. We obtain

hNjx̂qjMi ∼ cqððN þ 1Þ32 − ðM þ 1Þ32Þq−1

×
hNjx̂jKNi

hM þ 1jx̂jKMi
: ð6:6Þ

In our toy model, our results indicate that suitable
resummation of the perturbative coefficients can prevent
the growth of high multiplicity amplitudes and preserves
unitarity. This indicates a possible path towards how such
a strong growth at high multiplicities could be resolved
also in the case of the Standard Model Higgs. However,
we note that there are two crucial differences between our
toy model and the Higgs. The first is that the Higgs is a
spontaneously broken theory and already in quantum
mechanics this leads to the relevance of nonperturbative
instantonic configurations. Secondly, the Higgs is a four-
dimensional quantum field theory. This allows for the
final states to disperse into space after the interaction,
something that is not possible in quantum mechanics.
Both of these merit further investigation.
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APPENDIX: TRANSITION AMPLITUDES
INVOLVING QUADRATIC POSITION

OPERATORS

As the simplest example of higher power local operators
let us consider a quadratic transition hNjx̂2jMi with
N > M. Due to the Z2 symmetry of the Hamiltonian the
states N and M have to be of the same parity in order to
obtain a nonvanishing result. Consequently there are two
cases (even and odd parity) that we have to consider.
These are, however, very similar in the computation. We
will therefore demonstrate the relation for N, M odd and
just give the result for N, M even.
Let us begin by inserting an identity operator into

hNjx̂2jMi,

hNjx̂2jMi ¼
X∞
L¼0

hNjx̂jLihLjx̂jMi ðA1Þ

9As long as the operator in question is polynomial in the field
operator.
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where L has to be even in this case. This effectively reduces the power of the operator at the cost of introducing an infinite
sum. However, splitting the sum into three different pieces and using (5.13) we can write

hNjx̂2jMi ∼ hNjx̂j0ihMjx̂j0i
XM
L¼0

Lþ 1

2

1

hLþ 1jx̂j0i2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 1

2

r
hNjx̂j0i

hM þ 1jx̂j1i
XN
L¼M

ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

2

r
hLjx̂j1i

hLþ 1jx̂j0i

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 1

2

r
1

hN þ 1jx̂j1i
1

hM þ 1jx̂j1i
X∞
L¼N

hLjx̂j1i2: ðA2Þ

Since we are only interested in the leading terms in N
of hNjx̂2jMi, we have to determine which of the three
contributions is dominant for large N. We will discuss them
separately in order of appearance.

(i) The first contribution

S1ðNÞ≡ hNjx̂j0ihMjx̂j0i
XM
L¼0

Lþ 1

2

1

hLþ 1jx̂j0i2

ðA3Þ

is obvious to determine, since the sum does not
involve any N and thus we conclude for the leading
terms of S1

S1ðNÞ ∼ hNjx̂j0i: ðA4Þ

(ii) The second contribution

S2ðNÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 1

2

r
hNjx̂j0i

hM þ 1jx̂j1i

×
XN
L¼M

ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

2

r
hLjx̂j1i

hLþ 1jx̂j0i ðA5Þ

is a little bit more complicated to determine than S1,
because the sum now involvesN as a boundary term.
However, since we are mainly interested in the
parametric dependence for large N we can estimate
the sum by using hLjx̂j1i=hLþ 1jx̂j0i ∼Oð1Þ. We
can then carry it out explicitly by going to the
continuum limit, i.e., to an integral which reads

XN
L¼M

ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

2

r
¼

Z N
2

M
2

dL

ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1

2

r

¼ ðN þ 1Þ32 − ðM þ 1Þ32
3

ffiffiffi
2

p ðA6Þ

where we used that the sum only includes terms with
even L. The dominant terms in N then are

S2ðNÞ ∼ ððN þ 1Þ32 − ðM þ 1Þ32ÞhNjx̂j0i: ðA7Þ

(iii) The third contribution

S3ðNÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 1

2

r
1

hN þ 1jx̂j1i
1

hM þ 1jx̂j1i

×
X∞
L¼N

hNjx̂j1i2 ðA8Þ

is the most involved one, because the sum involves
N not only as a boundary term but also the a priori
unknown amplitudes hLjx̂j1i. However, if we think
back to earlier results, we know that all amplitudes
should parametrically be of exponential form
[cf. (4.30)], i.e.,

hNjx̂j0; 1i ∼ e−cN ðA9Þ
where c > 0. Similar to S2 using this ansatz the sum
can be continued to an integral, such that we obtain

X∞
L¼N

hLjx̂j1i ∼ e−2cN ∼ hNjx̂j0i2 ðA10Þ

where we used the parametric exponential depend-
ence of the amplitude twice. Thus, the third con-
tribution reads in the leading terms in N

S3ðNÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

2

r
hN þ 1jx̂j1i: ðA11Þ

If we compare all three different contributions S1, S2
and S3 for large N, we conclude that parametrically S2 is
the dominant contribution to hNjx̂2jMi. In summary, we
can write

hNjx̂2jMi ∼ ðN þ 1Þ32 − ðM þ 1Þ32
3

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 1

2

r
hNjx̂j0i

hM þ 1jx̂j1i
ðA12Þ

for N,M odd and N > M. In a similar way, the same result
can also be obtained for N, M even. The only difference is
that now the low lying states are exchanged because of
parity conservation,

hNjx̂2jMi ∼ ðN þ 1Þ32 − ðM þ 1Þ32
3

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 1

2

r
hNjx̂j1i

hM þ 1jx̂j0i :

ðA13Þ
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