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The thermodynamic geometry formalism is applied to strongly interacting matter to estimate the
deconfinement temperature. The curved thermodynamic metric for QCD is evaluated on the basis of lattice
data, whereas the hadron resonance gas model is used for the hadronic sector. Since the deconfinement
transition is a crossover, the geometric criterion used to define the (pseudo)critical temperature, as a
function of the baryonchemical potential μB, is RðT; μBÞ ¼ 0, where R is the scalar curvature. The (pseudo)
critical temperature, Tc, resulting from QCD thermodynamic geometry is in good agreement with lattice
and phenomenological freeze-out temperature estimates. The crossing temperature, Th, evaluated by the
hadron resonance gas, which suffers from some model dependence, is larger than Tc (about 20%) signaling
remnants of confinement above the transition.
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I. INTRODUCTION

QCD at high temperature and low baryon density shows a
transition from hadrons to a phase of deconfined quarks and
gluons, i.e., a quark-gluon plasma (QGP). The initial idea of a
deconfinement first-order phase transition to a state of
weakly interacting quarks and gluons has been now modi-
fied, and there are clear indications that, near the critical
temperature, Tc, the system is strongly interacting and the
transition is, indeed, a crossover. The estimate of the (pseudo)
critical temperature,Tc ¼ 154� 9 MeV, atμB ¼ 0, is based
on the lattice results on the chiral susceptibility [1].
A different phenomenological approach to get informa-

tion on the deconfinement transition is the statistical
hadronization model (SHM) [2], in which one evaluates
the hadronization temperature by the yields of particle
species in high-energy collisions (in which the QGP is
presumably formed). The hadronization temperature as a
function of the baryonchemical potential (the freeze-out
curve) in the SHM does not exactly agree with lattice
results (however, see Ref. [3]).
In this paper, we discuss an alternative method, briefly

introduced in Ref. [4], to evaluate the deconfinement
temperature based on thermodynamic geometry, which
applies the formalism of Riemannian geometry to describe
thermodynamic states and phase transitions. The curved
metric for QCD thermodynamics is evaluated on the basis
of lattice data, whereas the hadron resonance gas (HRG)
model is used for the hadronic sector, and the results for the
crossing temperature as a function of μB are in good
agreement (within 10%) with lattice and SHM estimates.
Thermodynamic geometry is described in detail in

Sec. II, since its final (and consistent) version is fairly

recent. Section III contains the definition and the physical
meaning of the fundamental quantity, R; the scalar curva-
ture; and the discussion of the different criteria of the
definition of phase transitions. Since QCD lattice simu-
lations are reliable at small baryon density, in Sec. IV, a
general scheme to evaluate R as a power series in γ2 ¼
ðμB=TÞ2 is introduced. Sections V and VI are, respectively,
devoted to the geometric description of QCD and HRG
thermodynamics. Section VII contains the evaluation of the
crossing temperature, and in Sec. VIII, some final com-
ments are proposed.

II. THERMODYNAMIC GEOMETRY

The introduction of Riemannian geometry to the analysis
of thermodynamic phase space is not intuitive, and the
concept of distance between equilibrium configurations
requires a in-depth study. Nevertheless, it turns out to be a
useful and predictive tool for thermodynamical systems.
The first application of differential geometry to statistical

systems dates back to 1945 with a seminal paper by the
Indian mathematician C. Rao [5], who started the entire
branch of information theory called “information geom-
etry” [6], while the first metric structure for thermodynamic
systems is due to F. Weinhold [7].
Weinhold’s main idea has been to represent differentials

of thermodynamic functions as elements of a vector space
and then to define an inner product: the matrix elements of
the metric, gij, were introduced as the second derivatives of
the internal energy with respect to extensive parameters. In
this formulation, the minimum energy principle for an
isolated system is the basis of the geometry, implying the
tensor character of gij and its Euclidean character. Despite
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the interesting aspects of this approach, which permits
deriving the basic laws of equilibrium thermodynamics
from the geometric postulates, it did not produce any
significant result.
Some years later, shifting from the energy to the entropy

representation, G. Ruppeiner [8] was able to create a
thermodynamic geometry with a clear physical meaning.
He defined the metric tensor as the Hessian of the entropy
density and noticed that the resulting line element, i.e., the
infinitesimal distance between neighboring equilibrium
states, is in inverse relation with the fluctuation probability
defined by the classical theory: a spontaneous fluctuation
between points in phase space is less likely when they are
far apart.
The previous concept of the thermodynamic metric gave

rise to some interesting developments in finite-time thermo-
dynamics, in which the increase in entropy due to non-
equilibrium aspects can be related with the geodetic distance
between the initial and final states of a real process [9].
Moreover, it has been shown that Weinhold’s and

Ruppeiner’s metrics are conformal [10] and both are
limiting cases of Rao’s metric [11].
The main result of thermodynamic geometry within

Ruppeiner’s formulation is the “interaction hypothesis,”
which states that the absolute value of the scalar curvature,
R, calculated by the metric, is proportional to the cube of the
correlation length, ξ3, of the underlying thermodynamic
system. This liaison was initially suggested by the obser-
vation that the Riemannian manifold of a classic ideal gas is
flat, and jRj calculated for a van derWaals gas diverges at the
liquid-vapor critical point exactly with the same exponent of
ξ3, predicted by the scaling laws. The interaction hypothesis,
which recalls the well-known connection between the
interaction and curvature of general relativity, stimulated
many authors to evaluate R for several statistical models
with interesting results.

A. Differential geometry and fluctuation theory

The classical fluctuation theory (ClFT) defines a prob-
ability distribution for the equilibrium thermodynamic
states, and it is based on the same principle of statistical
mechanics, but from a different perspective.
Let A0 be an isolated system with very large volume V0

(universe) and A an open subsystem of fixed volume V.
We use the reference frame of the standard densities
a≡ ða0; a1…arÞ, where a0 is the internal energy density
and the other components are the number of particles of the
different species.
The probability density to find A in the point a is

given by

PðaÞdna ¼ CeS0ðaÞdna; ð1Þ

where S0 is the total entropy of the universe formally
regarded as an exact function of the parameters of A and C

is a normalization constant. Of course, the equilibrium
configuration maximizes the value of S0, but this method
allows one to expand classical thermodynamics giving a
quantitative description of the fluctuations around an
isolated equilibrium state [12,13].
By the hypothesis of homogeneity of A and A0, since the

entropy is additive and the standard extensive parameters
(internal energy and particle numbers) are both additive and
conserved, it’s quite easy to show [14] that

S0ðaÞ ¼ V0sða0Þ þ
1

2
V

∂2s
∂aμ∂aν

����
a0

ΔaμΔaν; ð2Þ

where s is the entropy density of the subsystem A and a0 is
the state of the universe, which is an extremal point for S0
(then, the homogeneity implies that a ¼ a0 is the point of
equilibrium between A and A0).
Let us now pay attention to general transformations of

thermodynamic coordinates, y ¼ yðxÞ, that are continuous,
differentiable, and with a nonzero Jacobian in the whole
phase space (with the exception of special states like critical
points). Notice that the expression (1) is not covariant (S0 is
a state function, but the volume element dnx is not
invariant). The transformation rules for the Hessian of
the universe’s entropy are

∂2S0
∂xμ∂xν ¼

∂yσ
∂xν

∂yρ
∂xμ

∂2S0
∂yρ∂yσ þ

∂S0
∂yσ

∂2yσ

∂xμ∂xν : ð3Þ

If x0 ¼ xða0Þ is an extremal point for S0, due to the
maximum entropy principle, first-order derivatives vanish,
and Eq. (3) becomes the transformation rule for the
components of a second-rank tensor. Thus, we can define
the metric tensor1

gij ¼ −
1

kB

∂2sðaÞ
∂ai∂aj

����
a0

; ð4Þ

and if we impose that x0 is a point of maximum for S0, the
quadratic form

ðΔlÞ2 ≡ gμνðx0ÞΔxμΔxν ð5Þ
defines a positive-definite Riemannian metric on the space
of thermodynamic states.
The classical normalized fluctuation probability density

in the Gaussian approximation is given by

Pðx; x0Þdnx ¼
�
V
2π

�
n=2 ffiffiffiffiffiffiffiffiffiffiffi

gðx0Þ
p

× exp

�
−
V
2
gμνðx0ÞΔxμΔxν

�
dnx; ð6Þ

1It is easy to see, combining Eqs. (3) and (2), that the quantities
defined in Eq. (4) are the components of a metric tensor defined
over the phase space of A.
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which is covariant (
ffiffiffi
g

p
dnx is the invariant volume element

of the phase space) and clarifies the statement that a
spontaneous fluctuation between states is less likely if
they are “distant.”
Greene and Callen [13] showed that the ClFT is

completely equivalent to statistical mechanics in its full
form, while in the Gaussian approximation, the equivalence
holds up to second fluctuation moments, but not at higher
orders.

B. New fluctuation theory

The central role of the distribution Pðx; x0Þ for the
meaning of thermodynamic distance suggested revising
the fluctuation theory [14] due to the several shortcomings
(first of all, the lack of covariance) of the classical theory,
which inhibited a coherent geometric method.
The starting point for the new theory is a Fokker-Planck–

like partial differential equation for the probability P,

∂P
∂t ¼ −

∂
∂xμ ½K

μðxÞP� þ 1

2

∂2

∂xμ∂xν ½g
μνðxÞP�; ð7Þ

where t≡ 1=V, Kμ are coefficients (for a complete explan-
ation, see Ref. [14]) and gμν is the inverse of the metric (4)
in order that the new theory reduces to the classical one in
the thermodynamic limit. Notice that the tensor character of
gμν emerges as a direct consequence of the covariance of the
fluctuation equation.
In the new approach, called the covariant and consistent

fluctuation theory, the absolute value of R is a threshold
point for the scale length of the system: if V ≫ jRj, the
complete solutions of the fluctuation equation are well
approximated by the classical Gaussian (6). On the other
hand, one knows that the classical theory is good in the
thermodynamic limit only, i.e., when the typical correlation
length in the system is much smaller than V. This property
of R supports the interaction hypothesis.

III. SCALAR CURVATURE R

The scalar curvature R is a well-known quantity defined
as the trace of the Ricci tensor and in two dimensions
contains all the information about the geometry. For
example, for the 2-sphere of radius r, its value is R ¼
−2=r2 (in the Weinberg sign convention). In our evaluation
of R, we will use the standard intensive quantities in the
entropy representation

Fμ ≡ ∂sðaÞ
∂aμ ¼

�
1

T
;−

μ1

T
… −

μr

T

�
; ð8Þ

where μi are the chemical potentials of the different species
and T is the overall temperature. In this “frame,” the metric
depends on the derivatives of the thermodynamic potential
ϕ ¼ P=T, where P is the total pressure of the system [14].

In two dimensions, the expression for R is considerably
simplified,

R ¼ kB
2

������
ϕ;11 ϕ;12 ϕ;22

ϕ;111 ϕ;112 ϕ;122

ϕ;112 ϕ;122 ϕ;222

������
,����ϕ;11 ϕ;12

ϕ;21 ϕ;22

����2; ð9Þ

where kB is the Boltzmann’s constant,

g ¼
����ϕ;11 ϕ;12

ϕ;21 ϕ;22

���� ð10Þ

is the determinant of the metric, and the usual comma
notation for derivatives has been used [for example, ϕ;12

indicates the derivative of ϕ with respect to the first
coordinate β ¼ 1=T and the second coordinate (γ ¼ −μ=T)].
As already mentioned, the first confirmations [8] for the

interaction hypothesis came from the study of the classic
ideal gas, represented by a flat space, and of a van der
Waals gas, for which, near the liquid-vapor critical point,
R ∼ t−2 [t ¼ ðT − TcÞ=Tc is the reduced temperature],
exactly as expected from scaling laws if R ∝ ξ3. Direct
calculations of R for other known models give reliable
indications: R shows a very good correspondence with ξ3

over large regions in phase space in the Takahashi
gas [14] and in the ferromagnetic monodimensional
Ising model [15].
This possibility of estimating the correlation length with

no, a priori, knowledge of the microscopic structure of the
system is very appealing and, indeed, stimulated many
applications in the contexts of pure fluids, black holes
thermodynamics, and critical phenomena.
In particular, very interesting results have been obtained

in the field of real fluids. The rationale is that the absolute
value of R is a direct measure of the size of organized
mesoscopic fluctuating structures in thermodynamic sys-
tems [16]. The integration of the phase diagram with R
contours (R diagrams) led to the identification of several
characteristic areas, corresponding to specific features of
the substances, with remarkable results in the case of water
[17]. Moreover, the identification of R with ξ3 allows for a
direct computation of the Widom line [18] through the
isobaric maxima of jRj, which has been explicitly evaluated
for helium, hydrogen, neon, and argon with good agree-
ment with experimental data.

A. R-crossing method

The correlation between R and ξ3 led [18] to a new
method to characterize the first-order phase transitions. In
fact, starting from the Widom’s microscopic description of
the liquid-gas coexistence region, i.e., from the idea that the
correlation lengths of the two phases must be the same at
the transition, one concludes that also R has to vary with
continuity in a first-order transition.
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The previous consideration suggested an analytical
method, called R crossing: knowing the representation
of thermodynamic quantities in the two phases, one can
build up the transition curve by imposing the continuity of
R. In other terms, the location of the coexistence curve of a
first-order phase transition can be obtained from the
equality of R calculated in the two different phases.
In Ref. [18], by using the two physical branches of the

van der Waals model as separate representations for the
liquid and vapor phases, the value of R has been evaluated
along different isotherms. For a given temperature, the
value of the pressure that realizes the crossing between the
curvatures is selected to be the point of transition. This
method has led to quantitative improvements with respect
to Maxwell’s construction in fitting the experimental data
for different real fluids.
Moreover, the R-crossing method has been tested in

systems with different features: in Refs. [19,20], it has been
applied to construct the vapor-liquid coexistence line for
the Lennard-Jones fluids, finding striking agreement with
other methods; in Ref. [21], the authors studied the
geometry of the thermodynamics of first- and second-order
phase transitions of the mean-field Curie-Weiss model
(ferromagnetic systems) and also of liquid-liquid phase
transitions. Another field of application of the R-crossing
method is the study of phase transitions of cosmological
interest: in Ref. [22], the authors studied the liquid gas–like
first-order phase transition in a dyonic charged anti-de
Sitter (AdS) black hole, and in Ref. [23], the authors
studied the Hawking-Page transitions in Gauss-Bonnet-
AdS black holes.

B. Sign of R and R= 0 criterion

All the cited papers in Sec. III A concern first-order
phases transitions. However, two different phases could be
related by a crossover, as for the QCD deconfinement
phenomenon, and a different criterion, based on the sign of
R, can be introduced to study this kind of physical behavior.
Within the thermodynamic geometry approach, the

physical meaning of the sign of R is still under debate,
but there are indications that it is directly related to the
microscopic interactions.
More precisely, some calculations concerning pure fluids

reveal that most of the liquid and gaseous regions in the
T − P phase diagram, where R < 0, correspond to suffi-
ciently large average molecular separation distances in
which the attractive part of the intermolecular interaction
potential dominates. There are, however, fluid states with
positive R, which typically occur at large densities with
repulsive intermolecular interactions. In this context, the
R ¼ 0 curves are able to analytically identify some anoma-
lous behaviors observed in experimental data of several
substances (in particular, of water) [16,24].
Moreover, the thermodynamic scalar curvature for the

Lennard-Jones system exhibits a transition from R > 0 to

R < 0 when the attraction in the intermolecular potential
dominates [19,20].
A similar behavior has been found for quantum gases,

but with a different meaning: R is positive for Fermi
statistical interactions, and it is negative in the bosonic case
[25]. Analogous results apply for ideal quantum gases
obeying Gentile’s statistics [26] and for quantum group
invariant systems (see Ref. [27] and references therein).
A interesting analysis concerns an anyon gas [28] with a

parametric statistical distribution given by

ni ¼
1

eðei−μÞ=T þ 2α − 1
; ð11Þ

where α is the parameter that specifies the statistical
behavior (α ¼ 0 corresponds to bosons, α ¼ 1 corresponds
to fermions, and 0 < α < 1 corresponds to intermediate
statistics). The sign of R changes at α ¼ 1=2 in the classical
limit (dot-dashed line in Fig. 1), and the R ¼ 0 condition is
satisfied by slightly lower values of α (continuous line)
when deviations from the classical behavior are included
(see Ref. [28] for details).
Finally, the sign of R can hide information on the

underlying interactions for black holes. For example, in
Ref. [29], one shows that the scalar curvature remains
negative for the metastable phase of the black hole but

FIG. 1. −R for an ideal anyon gas of particles obeying frac-
tional statistics as a function of the parameter α that specifies the
particle content: α ¼ 0 corresponds to bosons, α ¼ 1 corresponds
to fermions, and 0 < α < 1 corresponds to intermediate statistics.
The dot-dashed line is for the classical limit, and the continuous
one shows the change in R due to nonclassical behavior. Figure is
from Ref. [28], in which the authors’ scalar curvature corresponds
to −R with our definition.
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changes sign at the Hawking-Page transition temperature
that, therefore, can be associated with the condition R ¼ 0.

IV. POWER SERIES EXPANSION OF THE SCALAR
CURVATURE IN TWO DIMENSIONS

In this paper, we investigate the thermodynamic geom-
etry of the deconfinement transition by considering two
thermodynamic variables, β ¼ 1=T and γ2, i.e., a two-
dimensional thermodynamic metric [see Eq. (9)].
In the high-temperature regime, the phase of strong

interacting matter is described by QCD lattice simulations,
reliable at low baryon density, and therefore in the
calculation of the potential ϕ ¼ P=T, we consider a power
series expansion in γ2 < 1.
By the expression of the pressure P as a power series

around the point μB ¼ 0,

Pðβ; γÞ ¼ P0 þ P2γ
2 þ P4γ

4 þ P6γ
6 þ � � � ; ð12Þ

the thermodynamical potential ϕ ¼ P=T, the metric tensor
gij ¼ ϕ;ij, and the scalar curvature R can be expressed by
analogous power series (see the Appendix), i.e.,

ϕðβ; γÞ ¼ AðβÞ þ BðβÞγ2 þ CðβÞγ4 þDðβÞγ6 þ � � � ; ð13Þ

Rðβ; γÞ ¼
X
n¼0

ROð2nÞðβÞγ2n: ð14Þ

The coefficients of the thermodynamical potential are
given by

AðβÞ¼P0ðβÞβ; BðβÞ¼P2ðβÞβ¼
χ2ðβÞ
2!β3

;

CðβÞ¼P4ðβÞβ¼
χ4ðβÞ
4!β3

; DðβÞ¼P6ðβÞβ¼
χ6ðβÞ
6!β3

; ð15Þ

where χ2n ¼ ∂2n

∂γ2n ðPβ4Þjγ¼0 ¼ ð2nÞ!P2nβ
4.

The coefficients ROð2nÞ are functions of A;B;… in
Eqs. (13) and (15) and of their derivatives with respect
to β. Particularly, one can see that the 2n-coefficient ROð2nÞ
is a function of the first 2ðnþ 1Þ coefficients of the
expansion for the potential ϕ in Eq. (13). For example,
the zero-order term, ROð0Þ, depends on the first and second
coefficients of the ϕ series expansion, and it is given by

ROð0Þ ¼
1

2

B0

A00B

�
A000

A00 −
B0

B

�

¼ 1

2P̈0

�
3þ T

_χ2
χ2

��
P̈0

P̈0

−
_χ2
χ2

�
; ð16Þ

where 0 and _ denote, respectively, the derivative with
respect to β and T; P0ðβÞ is the pressure, and

χ2ðβÞ ¼ ∂2ðP=T4Þ=∂γ2, both at μB ¼ 0. The other terms
are evaluated in Appendix.
In conclusion, if one knows the pressure up to γ6, g and R

can be calculated up to γ4.

V. THERMODYNAMIC GEOMETRY OF QCD

Following the results of the QCD lattice (L) simulations
in Ref. [30], the expansion series for the pressure is

PLðβ; γÞ ≃ PL
0 þ

X∞
n¼1

PL
2n

β4
γ2n; ð17Þ

and, by comparison with Eq. (13), one gets

AL ¼ PL
0β; BL ¼ PL

2

β3
;

CL ¼ PL
4

β3
; DL ¼ PL

6

β3
; ð18Þ

where, for strangeness neutral systems with a fixed ratio of
electric charge to baryon density (see Ref. [30] for details),
one has

PL
2 ðβÞ ¼

1

2
½NB

1 ðβÞ þ rq1ðβÞNB
1 ðβÞ� ð19Þ

PL
4 ðβÞ¼

1

4
½NB

3 ðβÞþ rðq1ðβÞNB
3 ðβÞþ3q3ðβÞNB

1 ðβÞÞ� ð20Þ

PL
6 ðβÞ ¼

1

6
½NB

5 ðβÞ þ rðq1ðβÞNB
5 ðβÞ

þ 3q3ðβÞNB
3 ðβ þ 5q5ðβÞNB

1 ðβÞÞÞ�; ð21Þ

with NB
2n−1 being the (2n − 1)th coefficient for the power

expansion of the baryon number density divided by T3,

nB
T3

¼
X∞
n¼1

NB
2n−1γ

2n−1; ð22Þ

q2n−1 are the expansion coefficients for the electric charge
chemical potential; and

r≡ nQ
nB

; ð23Þ

with nQ and nB the charge and baryon number densities,
respectively.
Three special cases are considered: the electric neutral

systems, r ¼ 0; the isospin symmetric limit r ¼ 1=2, i.e.,
qk ¼ 0 ∀ k, which gives the same result of r ¼ 0; and
r ¼ 0.4, usually considered for applications to heavy ion
collisions [30,31].
Figure 2 shows the scalar curvature R evaluated by

Eqs. (14) and (17)–(23). The black curves are based on
lattice data with the condition nS ¼ nQ ¼ 0 (or equivalent
for the isospin symmetric limit), whereas the red ones are
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for nS ¼ 0 and nQ=nB ¼ 0.4. The continuous lines are for
μB ¼ 0 MeV, the dashed ones are for μB ¼ 80 MeV, and
the dotted lines are for μB ¼ 135 MeV.

VI. THERMODYNAMIC GEOMETRY OF THE
HADRON RESONANCE GAS

The confined phase can be described in terms of a
noninteracting gas of hadrons. There are several versions of
the HRG, which give different results [33] with some
ambiguity and dependence on the specific model.
In the HRG model with pointlike constituents, if

mmax is the maximum mass one includes, the trace anomaly
can be written as a sum over all particles species with mass
mi ≤ mmax [34],�
Θμμ

T4

�
H
¼

X
mi≤mmax

di
2π2

X∞
k¼1

ð−ηiÞkþ1

k

�
mi

T

�
3

K1

�
kmi

T

�
;

ð24Þ
where ηi ¼ −1ðþ1Þ for bosons (fermions), K1 is the
modified Bessel function, and di are the degeneracy factors.
For small μB, the baryon sector of a HRG can be

described by the Boltzmann approximation, and the pres-
sure can be written as [30]

PHðβ; γÞ ¼ PH
0 ðβÞ þ PH

B ðβÞðcosh γ − 1Þ; ð25Þ

where PH
0 ðβÞ ¼ PH

MðβÞ þ PH
B ðβÞ is the total pressure at

μB ¼ 0 [Eq. (24)] and PH
MðβÞ and PH

B ðβÞ are the meson and
baryon contributions to Eq. (24), respectively.
In Fig. 3 are plotted the total pressure PH

0 ðβÞ at μB ¼ 0,
the meson part PH

MðβÞ, and the baryonic part PH
B ðβÞ.

For comparison with the QCD calculations in Sec. V, one
evaluates the series expansion in γ2 of Eq. (25) in the
Boltzmann approximation (i.e., all baryon number suscep-
tibilities are identical, χH2k ¼ χH2 ¼ 2PH

Bβ
4) to obtain

PHðβ; γÞ ≃ PH
0 ðβÞ þ

χH2 ðβÞ
β4

X∞
n¼1

γ2n

ð2nÞ! ; ð26Þ

and the coefficients of the thermodynamical potential for
the hadronic (H) sector are given by

AH ¼ PH
0 β; BH ¼ χH2

β3
;

CH ¼ 2BH

4!
; DH ¼ 2BH

6!
: ð27Þ

In Fig. 4 is plotted the scalar curvature R for different
values of the baryonchemical potential: μB ¼ 0 MeV
(continuous lines), μB ¼ 80 MeV (dotted lines), and
μB ¼ 135 MeV (dashed lines), obtained by the expansion
of Eq. (14) at order γ4.

VII. TRANSITION TEMPERATURE

In the QGP phase, the system is mostly of fermionic
type, while in the confined phase, it is essentially a bosonic

FIG. 3. The total pressure of a HRG gas PH
0 ðβÞ (black line), the

meson contribution PH
MðβÞ (dotted line), and the PH

B ðβÞ
(dot-dashed line) at μB ¼ 0.

FIG. 2. The scalar curvature R from Eq. (14): the black curves
are for lattice data obtained for the condition nS ¼ nQ ¼ 0 (or
equivalent for the isospin symmetric limit), while the reds are for
nS ¼ 0 and nQ=nB ¼ 0.4 [30,32]. The continuous lines are for
μB ¼ 0 MeV, the dashed ones for μB ¼ 80 MeV and the dotted
lines for μB ¼ 135 MeV.

FIG. 4. The scalar curvature R, evaluated by Eqs. (26) and (27)
for different values of the baryonchemical potential, μB ¼ 0 MeV
(continuous lines), μB ¼ 80 MeV (dotted lines), and μB ¼
135 MeV (dashed lines), obtained by the expansion of
Eq. (14) at the fourth order.
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(mesonic) one. Moreover, one knows from lattice simu-
lation that the transition is a crossover and therefore,
following the previous discussion, the crossing temperature
from QGP to a confined mesonic system can be evaluated
by implementing the condition R ¼ 0.
In Fig. 5 is plotted the critical temperature TcðμBÞ at

which the scalar curvature of the QGP phase crosses the
R ¼ 0 line, both for r ¼ 0 or r ¼ 0.5 (continuous black
line) and for nS ¼ 0 and nQ=nB ¼ 0.4 (black dotted line),
compared with lattice results [30,32] and the freeze-out
temperature obtained by the ALICE [35] and STAR [36,37]
collaborations. The yellow curve gives the crossover
temperature, and the blue and black grid bands are obtained
by considering fixed values of the energy density (blue)
or of the entropy density (grid) (see Refs. [30,32] for
details).
The same criterion, R ¼ 0, applied to the HRG gives the

crossing from a mostly mesonic system to a fermion-
dominated one at temperature Th. The values of Th as a
function of μB for the HRG model we considered are given
in Table I and are larger (about 20%) than Tc. However, one
has to notice that Th is strongly model dependent. For
example, in fitting ALICE data by the HRG when all
mesons are pointlike while all baryons have an effective
hard-core radius of 0.3 fm, the χ2 has a broad minimum in
the temperature range of 155–210 MeV, with fit quality
comparable to the T ≃ 155 MeV minimum in the point-
particle case [33].

If, on the other hand, the two temperatures, Th and Tc,
turn out to be different, a possible interpretation could be
that, since the deconfinement transition is a crossover, one
can expect remnants of confinement slightly above Tc.
Indeed, the persistence of stringlike objects above Tc has
ben obtained by many different methods: lattice simula-
tions [38,39], the quasiparticle approach [40,41], the
Nambu-Jona-Lasinio (NJL) correlator [42,43], Mott tran-
sitions [44], and confinement mechanisms [45].
Following this interpretation, Tc is the deconfinement

temperature, and Th is the temperature of the complete
melting of a light meson.

VIII. CONCLUSIONS

Thermodynamic geometry applied to the QCD
deconfinemt transition is a useful tool to evaluate the
transition temperature Tc. The results, obtained by the
criterion R ¼ 0, are in good agreement with lattice data and
freeze-out calculations in the low-density region. However,
the criterion is completely general and can be applied at
large baryon density if the potentialΦ can be estimated in a
reliable way.
The QCD transition temperature evaluated by R ¼ 0

turns out to be larger (about 10%) than lattice results, but
one has to recall that the condition R ¼ 0, i.e., the
interpretation of deconfinement as a crossover between a
fermionic system and a bosonic one, is only a first
approximation. Indeed, in the QCD phase, there is a
gluonic contribution, and in the confined phase, there is
a small fermionic density (at small μB).
Moreover, the temperature, Th, evaluated by HRG, is

larger than Tc, suggesting the interpretation that the meson
melting temperature is larger than the temperature asso-
ciated with the chiral susceptibility. As previously dis-
cussed, this conclusion could be model dependent, and we
have used a specific model of the HRG. The introduction of
other dynamical details, as the excluded volume, could
change the HRG evaluation of R by including some
effective repulsive interaction similar to Fermi statistic
effects and then closing, in part, the gap with the value
of R for a fermionic system. This analysis will be carried
out in a forthcoming paper.
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TABLE I. The temperature Th obtained by the criterion RH ¼ 0
for the HRG model discussed in the text.

μB (MeV) 0 20 40 60 80 120
Th (MeV) 202.4 202.0 200.7 198.6 195.5 186.2

FIG. 5. The crossing temperature, both for r ¼ 0 or r ¼ 0.5
(continuous black line) and for nS ¼ 0 and nQ=nB ¼ 0.4 (black
dotted line), compared with lattice data (see the text [32]) and the
results of the freeze-out temperature from the ALICE (purple
point [35]) and STAR (red points [36,37]) collaborations.
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APPENDIX: POWER SERIES
OF THE SCALAR R

Let us consider the power series expansions in γ2 for the
pressure, i.e.,

Pðβ; γÞ ¼ P0ðβÞ þ P2ðβÞγ2 þ P4ðβÞγ4
þ P6ðβÞγ6 þ P8ðβÞγ8 þ � � � ; ðA1Þ

and for the potential Φ,

ϕðβ; γÞ ¼ AðβÞ þ BðβÞγ2 þ CðβÞγ4
þDðβÞγ6 þ EðβÞγ8 þ � � � : ðA2Þ

The metric element g11 ¼ ϕ11 and the determinant g can be
written, respectively, as

g11ðβ; γÞ ¼ A00 þ B00γ2 þþC00γ4 þD00γ6 þ � � � ; ðA3Þ
gðβ;γÞ¼gOð0Þ þgOð2Þγ2þgOð4Þγ4þgOð6Þγ6þ��� ; ðA4Þ

where

gOð0ÞðβÞ ¼ 2BA00; ðA5Þ
gOð2Þ ¼ 2ð6CA00 þ BB00 − 2B02Þ; ðA6Þ
gOð4Þ ¼ 2ð15DA00 þ 6CB00 − 8B0C0 þ BC00Þ; ðA7Þ
gOð6Þ ¼ 2ð28EA00 þ15DB00−12B0D0

þBD00 þ6CC00−8C02Þ ðA8Þ

and the symbol 0 indicates the derivative with respect to β.
From previous equations, it turns out that the 2nth term

of the series expansion of Eq. (A4) depends on the first

2ðnþ 1Þ terms of the expansion of P. Therefore, if we
know the pressure up to γ6, g and R can be evaluated at
most up to γ4.
To show that Eq. (A1) leads to a similar series expansion

for R, i.e.,

Rðβ;γÞ¼ROð0ÞðβÞþROð2ÞðβÞγ2þROð4ÞðβÞγ4þ��� ; ðA9Þ

let us define the auxiliary variable Γ≡ γ2 and consider the
metric determinant and R as a function of Γ, that is,

g ¼
���� ϕ11 2

ffiffiffi
Γ

p
ϕ12̃

2
ffiffiffi
Γ

p
ϕ12̃ 2ϕ2̃ þ 4Γϕ2̃ 2̃

����
¼ 2ϕ11ϕ2̃ þ 4Γ½ϕ11ϕ2̃ 2̃ − ðϕ12̃Þ2� ðA10Þ

and

2g2R¼ 4ϕ12̃ðϕ2̃ϕ111−ϕ11ϕ12̃Þ
þ8Γðϕ2̃ϕ111ϕ12̃ 2̃−2ϕ12̃ϕ2̃ 2̃ϕ111þ3ϕ11ϕ2̃ 2̃ϕ112̃

þϕ2
12̃
ϕ112̃−ϕ2̃ϕ

2
112̃

−2ϕ11ϕ12̃ϕ12̃ 2̃Þ
þ16Γ2ðϕ11ϕ112̃ϕ2̃ 2̃ 2̃þϕ12̃ϕ112̃ϕ12̃ 2̃

þϕ2̃ 2̃ϕ111ϕ12̃ 2̃−ϕ2̃ 2̃ϕ
2
112̃

−ϕ11ϕ
2
12̃ 2̃

−ϕ12̃ϕ111ϕ2̃ 2̃ 2̃Þ

where the subscripts 1, 2, and 2̃ indicate, respectively, the
derivatives with respect to β, γ, and Γ. This expression is
formally exact, and the replacement of Φ as a power series
of Γ gives the final result.
Finally, the terms in Eq. (A9) are

ROð0ÞðβÞ ¼
B0

2BA00

�
A000

A00 −
B0

B

�
; ðA11Þ

ROð2ÞðβÞ ¼ −
B0

2BA00

�
A000

A00 −
B0

B

��
6C
B

þB00

A00 −
2B02

BA00

�
−
B002 − 3A000C0

BA002 þ 6CA00B00

B2A002 þ B0

2BA00

�
B000

A00 −
6CA000

BA00 −
12C0

B

�
þ B02B00

2B2A002 ;

ðA12Þ

ROð4ÞðβÞ ¼
B0

2BA00

�
A000

A00 −
B0

B

��
3

�
6C
B

þ B00

A00 −
2B02

BA00

�
2

−
30D
B

−
12CB00

BA00 þ 16B0C0

BA00 −
2C00

A00

�

−
1

BA00

�
6C
B

þ B00

A00 −
2B02

BA00

��
−
2ðB002 − 3A000C0Þ

A00 þ 12CB00

B
þ B02B00

BA00 − B0
�
6CA000

BA00 þ 12C0

B
−
B000

A00

��

þ 1

2BA00

�
15A000D0

A00 þ 60DB00

B
þ 24CC00

B
−
36C02

B
−
45DA000B0

BA00 −
30D0B0

B
−
6B0CB000

BA00 þ B0C000

A00 −
8B00C00

A00 þ 3B02C00

BA00

�

þ C0ð6CA000 þ 3BB000 þ 2B0B00Þ
B2A002 : ðA13Þ
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