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We explore signals of lepton-number-violation in the charm physics sector. We study the four-body
jΔLj ¼ 2 decays of theD0 meson,D0 → P−π−μþμþ (P ¼ π,K) as an alternative evidence of the Majorana
nature of neutrinos. We carry out an exploratory study on the potential sensitivity that LHCb experiment
could achieve for these jΔLj ¼ 2 processes. We show that for a long term expected integrated luminosity of
300 fb−1, a signal significance of branching ratios of the order Oð10−9Þ might be accessible, allowing to
improve the experimental bounds obtained by the E791 experiment. Limits on the parameter space of a
heavy sterile neutrino that could be obtained from their experimental search are discussed as well.
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I. INTRODUCTION

Looking for lepton-number-violating (LNV) signals in
neutrinoless double-β (0νββ) nuclear decay is considered
as the most attractive and sensitive way to prove that
neutrinos are their own antiparticles (or not), i.e., elucidate
if neutrinos are Majorana particles (or Dirac ones) [1–4].
Nowadays, the experiments Majorana, GERDA, CUORE,
EXO-200, and KamLAND-Zen [5–9] have reported the
best lower limits on the half-lives of different isotopes
(76Ge, 136Xe, 130Te) that typically leads to T0ν

1=2 ≳ 1025 yr.
Despite all these experimental effort, the lack of evidence
of this jΔLj ¼ 2 process opens the possibility of pursuing
different low-energy search pathways as alternative evi-
dence to test the Majorana nature of neutrinos. This
complementarity is also reinforced by the fact that a
positive observation of 0νββ decay can only probe the
first fermion family (LNV ee sector), while alterna-
tive LNV searches are accessible to different leptonic
sectors [2].
Since their experimental search is accessible to different

flavor facilities, the low-energy studies of jΔLj ¼ 2 decays
of pseudoscalar mesons K, D, Ds, B, Bc, Bs (both charged
and neutral) and the τ lepton have attracted a lot of
theoretical attention [10–40], where different final-state
topologies have been considered. An interesting way of

realizing these jΔLj ¼ 2 decays is through the exchange
of an intermediate on-shell Majorana neutrino N with a
kinematically allowed mass (typically, hundreds of MeVup
to few GeV), leading to a considerably enhancement of the
decay rates [10,13–40]. In Refs. [41,42] have found that the
0νββ rate can also be enhanced due to the contribution from
heavy neutrino exchange with masses in the GeV scale.
Interestingly enough, new physics scenarios with heavy
Majorana neutrinos within this GeV mass range have been
investigated as a simultaneous explanation to the neutrino
mass generation and the baryon asymmetry of the Universe
(via leptogenesis) [43–47].
Experimentally, upper limits (UL) on the branching

ratios of various of these jΔLj ¼ 2 decays have been
obtained by the experiments NA48/2, E865, BABAR,
Belle, LHCb, and E791 [48–57]. See also the Particle
Data Group [58]. In Fig. 1, we present a summary of the
current UL for different three- and four-body channels. The
strongest limits come from kaon sector, particularly from
the channel BRðK− → πþμ−μ−Þ < 8.6 × 10−11 [48]; while
in the heavy flavor sector, the channel BRðB− →
πþμ−μ−Þ < 4.0 × 10−9 [54] provides the strongest one.
A long term integrated luminosity of 300 fb−1 is expected
in future LHCb upgrade, and whereas for Belle II, a 50-fold
increase in integrated luminosity is expected greater than
previous record (Belle and BABAR), allowing to improve
the sensitivity on the jΔLj ¼ 2 channels. Perspectives on
the experimental sensitivity of the NA62 experiment to
searches of heavy neutrinos has been discussed as well
[59]. Furthermore, recent studies show the sensitivity of the
LHCb and CMS experiments to look for LNV signals in
jΔLj ¼ 2 processes of Λb baryon and Bs meson [39,60].
Regarding LNV searches in the charm physics, the

LHCb collaboration found 90% confidence level limits
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on the branching ratios of the three-body decays BRðDþ →
π−μþμþÞ < 2.2 × 10−8 and BRðDþ

s → π−μþμþÞ < 1.2 ×
10−7 [53], that improve by several orders of magnitude the
previous limits obtained by BABAR [50]. While, the four-
body channels D0 → h−h0−lþl0þ, where h, h0 ¼ π, K and
l, l0 ¼ e, μ, were studied by the E791 collaboration [57]
more than a decade ago and 90% confidence level upper
limits of order Oð10−5–10−4Þ for their branching ratios
were obtained. Currently, the LHCb experiment has col-
lected the largest sample of charmed mesons and supple-
mentary searches of jΔLj ¼ 2 channels could be performed,
thus complementing previous LHCb analysis [52–54].
Our aim in this work is to explore a charmed search to

track the possible LNV signals at the LHCb experiment by
studying the four-body jΔLj ¼ 2 decays of the D0 meson,
D0 → P−π−μþμþ (P ¼ π, K). Their search will provide an
alternative evidence of the Majorana nature of neutrinos,
allowing to prove the LNV μμ sector. Without referring to
any new physics scenario, we will consider a simplified
approach in which one heavy Majorana neutrino N couples
to a charged lepton (l ¼ μ) whose its strength is charac-
terized by the quantity VlN [10]. We will treat the mass mN

and mixing VμN of this heavy sterile neutrino as unknown
phenomenological parameters that can be constrained (set)
from the experimental non-observation (observation)
of jΔLj ¼ 2 processes [10,15,20]. We carry out an explor-
atory study on the potential sensitivity that LHCb
experiment could achieve for these jΔLj ¼ 2 processes
(same-sign μþμþ), by taking into account its corresponding
signal significance. We will show that branching fractions
sensitivity at the LHCb experiment will be able to improve
by several orders of magnitude the experimental limits
obtained by E791 [25,57].
The paper is structured as follows. In Sec. II we study the

four-body LNV decays of the D0 meson. Section III
contains the experimental sensitivity at the LHCb. We
present in Sec. IV the exclusion regions on the parameter
space ðmN; jVμN j2Þ that can be achieved from their exper-
imental searches at the LHCb experiment. We close with
concluding remarks in Sec. V.

II. FOUR-BODY jΔLj= 2 DECAYS OF D0 MESON

We conduct a study of the four-body jΔLj ¼ 2 decays of
theD0 meson,D0 → P−π−μþμþ, withP ¼ π,K denoting a
final-state light meson. Under the simplified assumption
that one Majorana neutrinoN, with a kinematically allowed
mass in the range mN ∈ ½0.25; 1.62� GeV such that it can
be produced on-shell in these processes, dominates the
decay amplitude. These four-body jΔLj ¼ 2 channels have
been previously studied in Refs. [25–27] using different
approaches for the evaluation of the hadronic transition
D → P. Taking the UL reported by E791 experiment [57],
in Ref. [25] obtained bounds on the parameters space of a
heavy neutrino (mN , jVμN j2) that turned out to be very mild.
Moreover, the authors of Ref. [26] estimated from 2.9 fb−1

Monte Carlo sample that BESIII experiment could get an
UL on the channelD0 → K−π−eþeþ of the order 1 × 10−9;
nevertheless, such a sensitivity is far below the one
obtained from 0νββ decay. Here, we present a reanalysis
of these jΔLj ¼ 2 channels by considering the recent lattice
QCD calculations of the semileptonic D → P form factors
[61]. We pay particular attention to the μþμþ channels
and their experimental signal at the LHCb experiment
(see Sec. III).
The branching fraction of the four-body jΔLj ¼ 2 decays

D0 → P−π−μþμþ can be written in the factorized form

BðD0 → P−π−μþμþÞ ¼ BðD0 → P−μþNÞ
× ΓðN → μþπ−ÞτN=ℏ; ð1Þ

where the on-shell Majorana neutrino is produces through
the semileptonic decay D0 → P−μþN and consecutively
N → μþπ−, with τN as the lifetime of the Majorana neu-
trino. The decay width of N → μþπ− is given by the
expression [10]
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FIG. 1. Current experimental UL on branching ratios of
three- (top) and four-body (bottom) ΔL ¼ 2 decays. Taken from
NA48/2, E865, BABAR, Belle, LHCb, and E791 Collaborations
[48–57]. For simplicity we have not included the UL on B− →
Vþl−l0−, with V ¼ ρ, K�, D�, which are typically of the order
≲10−7 [51].
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ΓðN → μþπ−Þ ¼ jVμN j2Γ̄ðN → μ−πþÞ; ð2Þ

with

Γ̄ðN → μþπ−Þ ¼ G2
F

16π
jVCKM

ud j2f2πmN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

N;m
2
μ; m2

πÞ
q

×

��
1 −

m2
μ

m2
N

�
2

−
m2

π

m2
N

�
1þ m2

μ

m2
N

��
; ð3Þ

whereGF is theFermiconstant,fπ is thepiondecayconstant,
and VCKM

ud is the Cabbibo-Kobayashi-Maskawa (CKM)
matrix element involved.
The branching ratio of D0 → P−μþN is given by the

expression [34]

BðD0→P−μþNÞ¼ jUμN j2
Z

dt
dB̄ðD0→P−μþNÞ

dt
; ð4Þ

where

dB̄ðD0 → P−μþNÞ
dt

¼ G2
FτD0

384π3m3
Dℏ

jVCKM
cq j2 ½λðm

2
μ; m2

N; tÞλðm2
D;m

2
P; tÞ�1=2

t3

× ð½FDPþ ðtÞ�2CþðtÞ þ ½FDP
0 ðtÞ�2C0ðtÞÞ; ð5Þ

is the so-called differential canonical branching ratio [34],
where VCKM

cq is the CKM element (with q ¼ d, s for P ¼ π,
K,); and FDPþ ðtÞ and FDP

0 ðtÞ are the vector and scalar form
factors for the D → P transition, respectively, which are
evaluated at the square of the transferred momentum
t ¼ ðpD − pPÞ2. The kinematic coefficients CþðtÞ and
C0ðtÞ involved in Eq. (5) are defined as

CþðtÞ ¼ λðm2
D;m

2
P; tÞ½2t2 þ tðm2

μ þm2
NÞ þ ðm2

μ −m2
NÞ2�;

ð6Þ

C0ðtÞ ¼ 3ðm2
D −m2

PÞ½m2
μðtþ 2m2

N −m2
μÞ

þm2
Nðt −m2

NÞ�; ð7Þ

respectively, where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ
xzþ yzÞ is the usual kinematic Källen function. The total
branching fraction is then obtained by integrating the
differential canonical branching ratio over the full t region
½ðmμ þmNÞ2; ðmD −mPÞ2�.
In later calculations we will use the following

inputs [58]: jVCKM
ud j¼0.97417, jVCKM

cd j ¼ 0.218, jVCKM
cs j ¼

0.997, and fπ ¼ 130.2ð1.7Þ MeV.1 The masses of par-
ticles involved are taken from [58]. For the form factors

associated with the D → P transition, we will use the
theoretical predictions provided by the lattice QCD
approach [61].

III. EXPERIMENTAL SENSITIVITY
AT THE LHCB

The LHCb experiment is a perfect scenario to perform
searches for LNV processes from heavy hadron decays,
given the excellent detector performance and the large
amount of data that has been collected, and that will be
collected during future LHC runs [62–64]. Using an
integrated luminosity of 2 fb−1 collected from pp colli-
sions at a center-of-mass energy of 8 TeV, the LHCb
collaboration observed the decays D0 → πþπ−μþμ− and
D0 → KþK−μþμ− [65]. These decays share the same type
of particles in the final state as the LNV mode under study,
and therefore we can use information from this analysis to
extrapolate sensitivity considerations of D0 → LNV in the
framework of the LHCb experiment for different data
sample sizes.
In the LHCb analysis the D0 meson candidates, are

extracted from a D�þ → D0πþ sample, produced directly
from the pp collision vertex. Given the small phase-space
in this decay, there is a clean signature to select the D0

candidates and reduce random background events. If the
selected D0 mesons were selected to come directly from
the pp collision, the sample of D0 would have been larger,
but the background level would have made unfeasible the
extraction of the signal. The measured branching frac-
tion for these decays are Bππ ≡ BðD0 → πþπ−μþμ−Þ ¼
ð9.64� 1.20Þ × 10−7 and BKK ≡ BðD0 → KþK−μþμ−Þ ¼
ð1.54� 0.32Þ × 10−7, where the quoted error contains the
statistical and systematic uncertainties. The extracted signal
yields, after combining several di-muon regions of study,
are Nππ ¼ 561� 28 and NKK ¼ 34� 6 signal events, as
stated in Table I of Ref. [65], for D0 → πþπ−μþμ− and
D0 → KþK−μþμ− respectively. A conservative approxi-
mation is to consider that signal efficiency in the LHCb
experiment will remain constant along the years, which is
highly unlikely since the detector and algorithms are in
constant improvement, thus the number of expected events
of a decay with the same particles in the final state, should
scale linearly with the luminosity and with the cross
section, which up to a good approximation scales linearly,
as well, with the center-of-mass energy. Hence, a good
estimation of the number of events of a decay with same
final state as the LNV modes under study, for different
conditions of luminosity L, pp collisions at a different
center-of-mass energy

ffiffiffi
s

p
and different branching fraction

B, is

NLNV
S;hh ðL;

ffiffiffi
s

p
;BÞ ¼ L ·

ffiffiffi
s

p
· B · Nhh

2 fb−1 · 8 TeV · Bhh
; ð8Þ1See the review “Leptonic decays of charged pseudoscalar

mesons” from PDG [58].
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where the subindex hh refers to the different hadronic
decays.
We have considered three different LHCb scenarios,

L ¼ 10, 50, and 300 fb−1, which correspond to the typical
projections of short, middle, and long term expected
integrated luminosities, respectively. Figure 2 shows an
estimation of the number of events that can be detected in
the LHCb experiment as a function of the branching
fraction and integrated luminosity for the two modes. In
Ref. [66] a study of the variation of the reconstruction
efficiency, with fully simulated Monte Carlo samples
dedicated to the LHCb experiment, is performed for long
lived particles with mass within 20–80 GeV=c2 and life-
times in the range of 5–100 ps. Hence, the uncertainties
shown in Fig. 2 correspond to the propagation of the error
in the signal yields and in addition a 30% of uncertainty has

been assigned to account for efficiency effects in the
reconstruction of massive lived neutrinos. In Table I the
number of expected LNVevents in LHCb, for a given value
of integrated luminosity and branching fraction is reported,
showing that in long term, for values of branching fraction
above 10−10 there will be chances to detect LNV D0 →
h−h−μþμþ decays.
However, the number of detected events is not always a

good indicator of the sensitivity to claim discovery of such
type of events. In this case, the signal significance will gave
a better estimation of the real chance of observing the LNV
D0 decay. In a large-sample limit, the discovery signifi-
cance Z, is given by [58]

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
ðNS þ NBÞ log

NS þ NB

NB
− NS

�s
; ð9Þ

where NS and NB denote the number of signal and
background events respectively. In Table I of Ref. [65],
not only number of signal events are quoted but also the
significance, therefore a background estimation can be
done by finding the roots of Eq. (9), and after we can
extrapolate to our specific energy and luminosity scenario.
In the LHCb analysis two main sources of background are
treated, random combinatoric and peaking background
from misidentified hadrons as muons. Same sources back-
ground will be present in the LNV modes and therefore we
do not split among those background sources, and instead
consider all sources as one. From performing the procedure
above mentioned, we found in the D0 → πþπ−μþμ− LHCb
sample a about 235� 15 background events, and for the
D0 → KþK−μþμ− a total of 7� 3, Where in both cases
the uncertainty is assigned as

ffiffiffiffiffiffiffi
NB

p
. Assuming that the

background scales with the luminosity and with the center-
of-mass energy, just as the signal yield, the extrapolation of
background events expected in the LNC decay modes is
computed as

FIG. 2. Number of expected events at LHCb, for D0 →
π−π−μþμþ (top) and D0 → K−K−μþμþ (bottom) as a function
of the branching fraction, for different luminosity values: L ¼
10 fb−1 (solid green), 50 fb−1 (dotted blue), and 300 fb−1

(dashed red). The filled region represents the uncertainty in
the computation.

TABLE I. Number of expected LNVevents for a given value of
integrated luminosity and branching fraction.

L (fb−1) B NLNV
S;ππ NLNV

S;KK

10 10−7 509� 167 193� 78

10−8 51� 17 19� 8

10−9 5� 2 2� 1

50 10−7 2546� 836 966� 392

10−8 255� 84 97� 39

10−9 26� 8 10� 4

10−10 3� 1 -

300 10−7 15276� 5016 5795� 2350

10−8 1528� 502 580� 235

10−9 153� 50 58� 23

10−10 15� 5 6� 2
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NLNV
B;hhðL;

ffiffiffi
s

p Þ ¼ L ·
ffiffiffi
s

p
· NB;hh

2 fb−1 × 8 TeV
: ð10Þ

Figure 3 shows how the signal significance changes with
the branching fraction of the LNV decays. The extrapolated
background level is quoted in Table II, where it is also
quoted the minimum branching fraction of the LNV from
which observation can be achieved in the LHCb experi-
ment. This show that for a long term expected integrated
luminosity of 300 fb−1, branching fractions of the order
Oð10−9Þ would be reachable, allowing to improve by
several orders of magnitude the experimental limits
obtained by E791 experiment.

IV. EXCLUSION REGIONS ON THE
PARAMETER SPACE (mN;jVμNj2)

Based on the LHCb sensitivity analysis presented in the
previous Sec. III, in the following, we examine the bounds
on the parameter space of a heavy sterile neutrino
ðmN; jVμN j2Þ that can be achieved from the experimental
searches on D0 → ðπ−π−; K−π−Þμþμþ at the LHCb
experiment.
To constraint the squared magnitude jVμN j2 as a function

of the mass mN , the following relation obtained from
Eq. (1) can be used for that purpose

jVμN j2 ¼
�

BðD0 → P−π−μþμþÞℏ
B̄ðD0 → P−μþNÞ × Γ̄ðN → μþπ−ÞτN

�
1=2

;

ð11Þ

where B̄ðD0 → P−μþNÞ and Γ̄ðN → μþπ−Þ are given by
Eqs. (5) and (3), respectively. We will consider heavy
neutrino lifetimes of τN ¼ ½5; 100� ps as benchmark points
in our analysis. This will allow us to extract limits on jVμN j2
without any additional assumption on the relative size of
the mixing matrix elements.
Considering an expected LHCb sensitivity on the

branching fractions of the order BðD0 → P−π−μþμþÞ <
10−9 for 300 fb−1, in Figs. 4(a) and 4(b) we show the
exclusions regions on the ðmN; jVμN j2Þ plane obtained from
future searches onD0→π−π−μþμþ andD0 → K−π−μþμþ,
respectively. In both cases, the black, blue, and gray
regions represent the bounds obtained for heavy neutrino
lifetimes of τN ¼ 5 and 100 ps, respectively. We also
plot the exclusion limits obtained from searches on
jΔLj ¼ 2 channels, K− → πþμ−μ− from NA48/2 (taken
for τN ¼ 1000 ps) [48] and B− → πþμ−μ− from LHCb
[54], for comparison. For the B− → πþμ−μ− channel, we
compare with the revised limit [32] from the LHCb
analysis [54]. In the range of mN relevant for D0 →
ðπ−π−; K−π−Þμþμþ channels, we can observe that the
most stringent bound is given by K− → πþμ−μ−, which
can reach jVμN j2 ∼Oð10−5Þ, but only for a very narrow
mass window of [0.25, 0.38] GeV. For mN > 0.38 GeV,
the four-body channels under study would improve the
region of jVμN j2 covered by the channel B− → πþμ−μ−.

FIG. 3. Signal significance expected in the LHCb experiment,
for D0 → π−π−μþμþ (top) and D0 → K−K−μþμþ (bottom) as a
function of the branching fraction, for different luminosity values:
L ¼ 10 fb−1 (solid green), 50 fb−1 (dotted blue), and 300 fb−1

(dashed red). The filled region represents the uncertainty in the
computation. Horizontal black dot-dashed lines correspond to 3σ
and 5σ limit.

TABLE II. Extrapolated background level, and branching
fraction from which there can be observation of LNV modes
at LHCb.

L (fb−1) NLNV
B;ππ BLNV

ππ NLNV
B;KK BLNV

KK

10 2056 >3.4 × 10−8 61 >1.5 × 10−8

50 10281 >1.5 × 10−8 306 >6.6 × 10−9

300 61687 >6.1 × 10−9 1837 >2.7 × 10−9
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For further comparison, in Figs. 4(a) and 4(b) we also
show the limits coming from different search strategies
such as Belle [67], DELPHI [68], NA3 [69], and
CHARMII [70] experiments.2 As can be seen, our jΔLj ¼
2 channels proposals have comparable sensitivity that
different search strategies in the region mass where
these overlap. In particular, searches on D0→K−π−μþμþ
could slightly improve those limits in the mass window
of ∼½0.38; 1� GeV.
We encourage the experimental colleagues from the

LHCb experiment to look for heavy Majorana neutrinos
through the search on four-body jΔLj ¼ 2 decays of the
D0 meson, thus complementing previous LHCb analysis
[52–54]. Additionally, these searches can be also per-
formed at the Belle II and BESIII experiments.

V. CONCLUSIONS

We have explored a charmed search to track the
possible signals of lepton-number-violation at the LHCb
experiment, due to the copious charm production. We

studied the four-body jΔLj ¼ 2 decays of the D0 meson,
D0 → P−π−μþμþ (P ¼ π, K), induced by an on-shell
Majorana neutrino N with a mass of few GeV. We
performed an exploratory study on the potential sensitivity
(signal significance) that LHCb experiment could achieve
for these jΔLj ¼ 2 processes. For a long term expected
integrated luminosity of 300 fb−1, we found that branching
fractions of the order Oð10−9Þ might be feasible. Such a
sensitivity will improve by several orders of magnitude the
experimental limits obtained by E791. It is also found that
for a neutrino mass window of 0.25 ≤ mN ≤ 1.62 GeV,
exclusion regions on the parameter space ðmN; jVμN j2Þ that
could be obtained from their experimental search will have
comparable sensitivity that previous bounds. Particularly,
searches on D0 → K−π−μþμþ could slightly improve
bounds in the range of ∼½0.38; 1� GeV.
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