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In previous work we have presented scheme-independent calculations of physical properties of operators
at a conformally invariant infrared fixed point in an asymptotically free gauge theory with gauge group G
and Nf fermions in a representation R of G. Here we generalize this analysis to the case of fermions in
multiple representations, focusing on the case of two different representations. Our results include the
calculation of the anomalous dimensions of gauge-invariant fermion bilinear operators, and the derivative
of the beta function, evaluated at the infrared fixed point. We illustrate our results in an SUðNcÞ gauge
theory with NF fermions in the fundamental representation and NAdj fermions in the adjoint representation.
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I. INTRODUCTION

In this paper we shall consider a vectorial, asymptotically
free gauge theory (in four spacetime dimensions, at zero
temperature) with gauge group G with massless fermions
transforming according to multiple different representa-
tions of G, which has an exact infrared (IR) fixed point
(IRFP) of the renormalization group [1]. For technical
simplicity, we will restrict ourselves to two different
representations. We thus take the theory to contain Nf

copies (flavors) of Dirac fermions, denoted f, in the
representation R of G, and Nf0 copies of fermions, denoted
f0, in a different representation R0 ofG. In the case in which
f0 transforms according to a self-conjugate representation,
the number Nf0 refers equivalently to a theory with Nf0

Dirac fermions or 2Nf0 Majorana fermions and hence in
this case Nf0 may take on half-integral as well as integral
values. One motivation for such theories is a possible
direction for ultraviolet completions of the Standard Model
that might help to explain the origin of the generational
hierarchy of quark and lepton masses (e.g., [2,3] and
references therein), since this hierarchy could be associated
with the different Euclidean energy/momentum scales at
which fermion condensates form for fermions in different
representations of a strongly coupled gauge interaction
involving beyond-Standard-Model (BSM) physics. In [3]

we studied the infrared evolution and phase structure of this
type of theory. Here we go beyond Refs. [2,3] in presenting
(scheme-independent) calculations of anomalous dimen-
sions of gauge-invariant operators.
We denote the running gauge coupling as g ¼ gðμÞ,

where μ is the Euclidean energy/momentum scale at which
this coupling is measured. We define αðμÞ ¼ gðμÞ2=ð4πÞ.
Since the theory is asymptotically free, its properties can be
computed reliably in the deep ultraviolet (UV) region at
large μ, where the coupling approaches zero. The depend-
ence of αðμÞ on μ is described by the renormalization-group
(RG) beta function, β ¼ dαðμÞ=dt, where dt ¼ d ln μ (the
argument μ will often be suppressed in the notation). We
will consider a theory in which the fermion content is such
that the RG flow from the UV to the IR ends in an exact IR
fixed point, as determined by the zero in the beta function
nearest to the origin for physical coupling, denoted αIR.
Since β ¼ 0 at α ¼ αIR, the resultant theory in this IR limit
is scale-invariant, and is deduced also to be conformally
invariant [4].
The properties of the resultant conformal field theory at

this IRFP are of considerable importance. Physical quan-
tities defined at the IRFP obviously cannot depend on the
scheme used for the regularization and renormalization of
the theory. In conventional computations of these quan-
tities, one first writes them as series expansions in powers
of the coupling, and then evaluates these series expansions
with α set equal to αIR, calculated to a given loop order.
These calculations have been performed for anomalous
dimensions of gauge-invariant fermion bilinears in a theory
with a single fermion representation up to four-loop level
[5–7] and to five-loop level [8]. However, as is well known,
these conventional (finite-order) series expansions are
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scheme-dependent beyond the leading terms. Indeed,
this is a generic property of higher-order calculations in
quantum field theory, such as computations in quantum
chromodynamics (QCD) used to compare with data
from the Fermilab Tevatron and CERN Large Hadron
Collider (LHC).
There is thus strong motivation to calculate and analyze

series expansions for physical properties at the IRFP which
are scheme-independent at each finite order. The fact that
makes this possible is simple but powerful. To review this,
we first specialize to a theory with Nf fermions in a single
representation, R, of the gauge group G. The constraint of
asymptotic freedom means that Nf must be less than a
certain upper (u) bound, denoted Nf;u. Here and below, we
will often formally generalize the number(s) of fermions in
one or multiple representations from non-negative integers
to non-negative real numbers, with the understanding that
for a physical quantity one restricts to integral values.
Furthermore, as noted above, if an f0 fermion transforms
according to a self-conjugate representation, then the
number Nf0 refers equivalently to a theory with Nf0

Dirac fermions or 2Nf0 Majorana fermions, so that in this
case, Nf0 may take on half-integral physical values. As Nf

approaches Nf;u from below, the value of the IRFP, αIR,
approaches zero. This means that one can reexpress series
expansions for physical quantities at this IRFP in powers of
the manifestly scheme-independent variable [9,10]

Δf ¼ Nf;u − Nf: ð1:1Þ

In recent work, for theories with Nf fermions in a single
representation of the gauge group G, we have calculated
scheme-independent series expansions for the anomalous
dimensions of gauge-invariant fermion bilinears and the
derivative dβ=dα, both evaluated at the IRFP, to the
respective orders OðΔ4

fÞ and OðΔ5
fÞ [11–19]. These are

the highest orders to which these quantities have been
calculated. We gave explicit expressions for the case
G ¼ SUðNcÞ and R equal to the fundamental, adjoint,
and rank-2 symmetric and antisymmetric tensor represen-
tations, and for other Lie groups, including orthogonal,
symplectic, and exceptional groups.
In this paper we shall generalize our previous scheme-

independent series calculations of physical quantities at
an IRFP from the case of an asymptotically free gauge
theory with Nf fermions in a single representation of the
gauge group G to the case of fermions in multiple different
representations. Specifically, we consider a theory with Nf

fermions in a representation R of G and Nf0 fermions in a
different representation, R0, of G. We present scheme-
independent calculations of the anomalous dimensions
of gauge-invariant fermion bilinear operators to cubic
order in the respective expansion variable [Δf in Eq. (1.1)
for f̄f and Δf0 in Eq. (1.2) for f̄0f0] and to quartic order in

Δf and Δf0 for the derivative of the beta function, evaluated
at the infrared fixed point.
The condition of asymptotic freedom requires that the

value of a certain linear combination of Nf0 and Nf must
be less than an upper bound given below by Eq. (2.3).
For a fixed Nf0 , this implies an upper bound denoted as
Nf < Nf;u, and for a fixedNf, this implies the upper bound
Nf0 < Nf0;u given respectively in Eqs. (2.4) and (2.5) below.
For fixed Nf0 , as Nf approaches Nf;u from below, αIR
approaches zero. Therefore, one can rewrite the series
expansions for physical quantities as power series in the
variable Δf. The coefficients in these series expansions
dependonNf0 . IfΔf is small, thevalue ofαIR is also small, so
that the resultant IR theory may be inferred to be in a
(deconfined) non-Abelian Coulomb phase (NACP), often
called the conformal window. Strong evidence for this in the
single-representation case comes from fully nonperturbative
lattice simulations [20–22]. In the same way, for fixed Nf,
one can rewrite the series expansions for physical quantities
as power series in the variable

Δf0 ¼ Nf0;u − Nf0 : ð1:2Þ
For a general operator O, we denote the full scaling

dimension as DO and its free-field value as DO;free. The
anomalous dimension of this operator, denoted γO, is
defined via the relation [23]

DO ¼ DO;free − γO: ð1:3Þ
Let us denote the fermions of type f as ψ i, i ¼ 1;…; Nf and
the fermions of type f0 as χj, j ¼ 1;…; Nf0 . We shall
calculate scheme-independent series expansions for the
anomalous dimensions, denoted γψ̄ψ ;IR and γχ̄χ;IR of the
respective (gauge-invariant) fermion bilinears

ψ̄ψ ¼
XNf

j¼1

ψ̄ jψ j ð1:4Þ

and

χ̄χ ¼
XNf0

j¼1

χ̄jχj: ð1:5Þ

The anomalous dimension of ψ̄ψ is the same as that of the

(gauge-invariant) bilinear
PNf

j;k¼1 ψ̄ jT aψk, where T a is a
generator of theLie algebra of SUðNfÞ [24], andwe shall use
the symbol γψ̄ψ ;IR to refer to both. An analogous comment
applies to γχ̄χ;IR. We write the scheme-independent series
expansions of γf̄f;IR as

γf̄f;IR ¼
X∞
j¼1

κðfÞj Δj
f ð1:6Þ
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and

γf̄0f0;IR ¼
X∞
j¼1

κðf
0Þ

j Δj
f0 : ð1:7Þ

We shall illustrate our general results in an SUðNcÞ
gauge theory with NF fermions of type f in the funda-
mental (F) representation and NAdj fermions of type f0 in
the adjoint (Adj) representation. For this theory we will
also use an explicit notation with coefficients κðfÞ ¼ κðFÞ

and κðf0Þ ¼ κðAdjÞ.
We shall calculate two equivalent scheme-independent

series expansions of the derivative β0IR. With Nf0 fixed, and
Nf variable, one may write the series as an expansion in
powers of Δf:

β0IR ¼
X∞
j¼2

djΔ
j
f: ð1:8Þ

Alternately, one may take Nf to be fixed and write β0IR as a
series expansion in powers of Δf0 , as

β0IR ¼
X∞
j¼2

d̃jΔ
j
f0 : ð1:9Þ

Note thatd1 ¼ d̃1 ¼ 0 for allG and fermion representations.
This paper is organized as follows. In Sec. II we discuss

the methodology for our calculations. In Secs. III and V we
present our new results for scheme-independent expansions
of the anomalous dimensions of fermion bilinears and
dβ=dα, both evaluated at the infrared fixed point. We
discuss the special cases of the anomalous dimension and
β0IR results for an illustrative theory with gauge group
SUðNcÞ containing fermions in the fundamental and
adjoint representations in Secs. IV and VI, respectively.
Our conclusions are given in Sec. VII, and some relevant
group-theoretic results are reviewed in Appendix.

II. CALCULATIONAL METHODS

A. Beta function and series expansions for
physical quantities

In this section we discuss some background and the
calculational methods that are relevant for our present
work. The series expansion of β in powers of the squared
gauge coupling is

β ¼ −2α
X∞
l¼1

blal; ð2:1Þ

where a ¼ g2=ð16π2Þ ¼ α=ð4πÞ and bl is the l-loop
coefficient. With an overall minus sign extracted, as in
Eq. (2.1), the condition of asymptotic freedom is that

b1 > 0. The one-loop coefficient, b1, is independent of the
scheme used for regularization and renormalization. Mass-
independent schemes include minimal subtraction [25] and
modified minimal subtraction, denoted MS [26]. For mass-
independent schemes, the two-loop coefficient, b2, is also
independent of the specific scheme used [27]. For a theory
with a general gauge group G and Nf fermions in a single
representation, R, the coefficients b1 and b2 were calculated
in [28] and [29], while b3, b4, and b5 were calculated in the
commonly used MS scheme in [30], [31], and [32],
respectively (see also [33]). For the analysis of a theory
with fermions in multiple different representations, one
needs generalizations of these results. These are straightfor-
ward to derive in the case of b1 and b2, but new calculations
are required for higher-loop coefficients. These have
recently been performed in [34] (again in the MS scheme)
up to four-loop order, and we use the results of
Ref. [34] here.
The expansion of the anomalous dimension of the

fermion bilinear γψ̄ψ in powers of the squared gauge
coupling is

γψ̄ψ ¼
X∞
l¼1

cðfÞl al; ð2:2Þ

where cðfÞl is the l-loop coefficient. The analogous expan-

sion applies for γχ̄χ with the replacement cðfÞl → cðf
0Þ

l . The

one-loop coefficient cðfÞ1 is scheme-independent, while the

cðfÞl with l ≥ 2 are scheme-dependent, and similarly with

the cðf
0Þ

l . For a general gauge group G and Nf fermions in a

single representationR ofG, the cðfÞl havebeen calculated up
to loop order l ¼ 4 in [35] and l ¼ 5 in [36]. For the case of
multiple fermion representations, the anomalous dimension
coefficients for the fermion bilinears have been calculated up
to four-loop order in [37]. We use the results of [37] up to
three-loop order here.
Concerning scheme-independent series expansions, the

calculation of the coefficient κðfÞj in Eq. (1.6) requires, as

inputs, the values of the bl for 1 ≤ l ≤ jþ 1 and the cðfÞl

for 1 ≤ l ≤ j, and similarly for κðf
0Þ

j , with the replacement

cðfÞl → cðf
0Þ

l . The calculation of the coefficients dj and d̃j in
Eqs. (1.8) and (1.9) requires, as inputs, the values of the bl
for 1 ≤ l ≤ j.
Thus, using the calculation of the beta function for

multiple fermion representation to four-loop order in [34],
together with the calculation of the anomalous dimensions
of the fermion bilinears in [37] up to three-loop order, we
can calculate γψ̄ψ ;IR to orderOðΔ3

fÞ and γχ̄χ;IR to OðΔ3
f0 Þ for

the case of multiple fermion representations. [Note that we
cannot make use of the four-loop calculation of the
anomalous dimensions of fermion bilinears in [37] to
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compute γψ̄ψ ;IR to order OðΔ4
fÞ and γχ̄χ;IR to OðΔ4

f0 Þ,
because this would require, as an input, the five-loop
coefficient b5 in the beta function for this case of multiple
fermion representations, and, to our knowledge, this has not
been calculated.]
Similarly, using the four-loop beta function from [34],

we can calculate the dj and d̃j for β0IR to order j ¼ 4. We
denote the truncation of these series to maximal power
j ¼ p as γψ̄ψ ;IR;Δp

f
, γχ̄χ;IR;Δp

f0
, β0IR;Δp

f
, and β0IR;Δp

f0
, respectively.

Although we use these coefficients as calculated in the MS
scheme below, we emphasize that our results are scheme-
independent, so the specific scheme used for their calcu-
lation does not matter. An explicit illustration of this using
several schemes is given in [38]. We refer the reader to our
previous work for detailed discussions of the procedure for
calculating the coefficients κj and dj in the case of a theory
with Nf fermions in a single representation of G.
Our procedure for calculating scheme-independent

series expansions requires that the IRFP be exact, and
hence we restrict our consideration to the non-Abelian
Coulomb phase, where this condition is satisfied. For
sufficiently smaller values of Nf and/or Nf0, there is
spontaneous chiral symmetry breaking (SχSB), giving rise
to dynamical masses for the f and/or f0 fermions [39].
Most-attractive channel arguments suggest that as Nf and/
or Nf0 decrease(s) and αIR increases, the fermion with the
largest value of Cf would be the first to form bilinear
fermion condensates and hence obtain dynamical masses
and be integrated out of the low-energy effective field
theory (EFT). Assuming that this happens and, say, the f0
fermions condense out, then one would proceed to examine
the resultant EFTwith the remaining massless f fermions to
determine the further evolution of this theory into the
infrared. The details of the construction of the EFTwill not
be relevant here, since we restrict our analysis to the
(chirally symmetric) non-Abelian Coulomb phase.

B. Relevant range of (Nf ;Nf 0)

Since we require that the theory should be asymptotically
free and since our scheme-independent calculational
method requires an exact IR fixed point, which is satisfied
in the non-Abelian Coulomb phase, a first step is to discuss
the corresponding values of the pair ðNf; Nf0 Þ that satisfy
these conditions. We denote this set of values, or more
generally, the region in the first quadrant of the R2 plane
defined by the generalization of ðNf; Nf0 Þ from non-
negative integers (or half-integers in the case of a
Majorana fermion in a self-conjugate representation) to
non-negative real numbers, where the theory has an IRFP in
the non-Abelian Coulomb phase as the region RNACP. We
next discuss the boundaries of this region.
For a specified gauge group G and fermion representa-

tions R and R0, the numbers Nf and Nf0 are bounded above

by the asymptotic freedom (AF) condition that b1 > 0. This
condition is expressed as the inequality on the linear
combination

NfTf þ Nf0Tf0 <
11CA

4
; ð2:3Þ

where CA and Tf are group invariants defined in Appendix.
Thus, for fixed Nf0 , the AF property implies that Nf is
bounded above as Nf < Nf;u, where

Nf;u ¼
11CA − 4Nf0Tf0

4Tf
; ð2:4Þ

and similarly, for fixed Nf, the AF condition implies that
Nf0 is bounded above as Nf0 < Nf0;u, where

Nf0;u ¼
11CA − 4NfTf

4Tf0
: ð2:5Þ

The upper boundary of this asymptotically free region,
which is also the upper boundary of the regionRNACP, inNf

andNf0 is the locus of solutions to the conditionb1 ¼ 0. This
is a finite segment of the lineNfTf þ Nf0Tf0 ¼ 11CA=4.We
may picture the first quadrant in the R2 space defined by
non-negative ðNf; Nf0 Þ to be such that Nf is the horizontal
axis and Nf0 is the vertical axis. Then the line segment
bounding the asymptotically free region is an oblique
line segment running from the upper left to the lower right,
with slope

∂Nf0

∂Nf

����
b1¼0

¼ −
Tf

Tf0
: ð2:6Þ

This line segment intersects the horizontal axis at the
point ðNf; Nf0 Þ ¼ ð11CA=ð4TfÞ; 0Þ and the vertical axis
at the point ðNf;Nf0 Þ ¼ ð0; 11CA=ð4Tf0 ÞÞ. Without loss of
generality, we take f to be the (nonsinglet) fermion repre-
sentation of smaller dimension. The respective scheme-
independent expansions in powers of Δf and Δf0 amount
to moving into the interior of the non-Abelian Coulomb
phase from the upper boundary line horizontally (moving
leftward) and vertically (moving downward).
In our earlier work on theories with Nf fermions in a

single fermion representation of the gauge group, we
denoted the lower boundary of the NACP as Nf;cr. In that
case, we assumed that Nf was in the NACP interval
INACP∶Nf;cr < Nf < Nf;u. Here the generalization of this
is the set of physical values of Nf and Nf0 in the region
RNACP. Even in the case of a single fermion representation,
the value of Nf;cr is not known precisely. This question of
the value of Nf;cr for various specific theories has been
investigated in a number of lattice studies [20,21], which
continue at present. As noted above, we have previously
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presented approximate analytic results relevant for this
study in [2,3]. Corresponding lattice studies could be
carried out for theories with multiple different fermion
representations to study properties of the respective theo-
ries. An example is a recent lattice study of an SU(4) gauge
theory with Nf ¼ 2 Dirac fermions in the fundamental
representation and Nf0 ¼ 2 Dirac fermions in the (self-
conjugate) antisymmetric rank-2 tensor representation
[40,41], which finds that the (zero-temperature) theory is
in the phase with chiral symmetry breaking for both types
of fermions. Since our results are restricted to an exact
infrared fixed point in the (conformally invariant) non-
Abelian Coulomb phase, they are not directly applicable to
this theory.
For the present study, with the axes of the first-quadrant

quarter plane in ðNf; Nf0 Þ ∈ R2 as defined above, the upper
boundary of the NACP is the line segment resulting from
the b1 ¼ 0 condition. The analogue of the lower boundary
of the NACP atNf;cr for the present study with two fermion
representations is a line segment or nonlinear curve dis-
placed in the direction to the lower left relative to the
oblique b1 ¼ 0 line, so that the resultant NACP forms a
region in which physical values of Nf and Nf0 define
possible IR theories. This lower boundary of the NACP
intersects the horizontal axis at the point ðNf;Nf0 Þ ¼
ðNf;cr; 0Þ and intersects the vertical axis at the point
ðNf; Nf0 Þ ¼ ð0; Nf0;crÞ. Although this lower boundary of
the NACP is not known, one can get a rough idea of where
it lies by generalizing the analysis that we gave in our
previous work for theories with a single fermion repre-
sentation [12,13,15]. This analysis was based on the
observation that the two-loop beta function has an IR zero
if Nf is sufficiently large that b2 is negative (with b1 > 0).
In this case of a single fermion representation, for smallNf,
b2 is positive, and turns negative whenNf exceeds a certain

lower (l) value Nf;l < Nf;u where b2 ¼ 0, namely

Nf;l ¼ 17C2
A

2Tfð5CA þ 3CfÞ
ðfor Nf0 ¼ 0Þ: ð2:7Þ

Thus, in this single-representation case, if and only if Nf

lies in an interval that we have denoted previously as IIRZ,
the two-loop beta function has an IR zero (IRZ). This
interval IIRZ is

IIRZ∶ Nf;l < Nf < Nf;u ðfor Nf0 ¼ 0Þ: ð2:8Þ

Although Nf;l is not, in general, equal to Nf;cr,
it is moderately close to the latter in theories that have
been studied. As an example, in the case of an SUðNcÞ
gauge theory with Nf fermions in the fundamental (F)
representation,

SUðNcÞ; R ¼ F∶ Nf;l ¼ 34N3
c

13N2
c − 3

: ð2:9Þ

In the intensively studied case Nc ¼ 3 theory, Nl ¼
153=19 ≃ 8.05. This is close to the estimates of Nf;cr

for this theory from our previous studies and from a
number of lattice simulations [12,15,20,21].
In our present asymptotically free theory with two

fermion representations, the two-loop beta function has
an IR zero if and only if b2 < 0, which is the inequality

NfTfð5CA þ 3CfÞ þ Nf0Tf0 ð5CA þ 3Cf0 Þ >
17C2

A

2
:

ð2:10Þ

This IR zero of the two-loop (2l) beta function occurs at
α ¼ αIR;2l, where

αIR;2l ¼ −
4πb1
b2

¼ 2π½11CA − 4ðNfTf þ Nf0Tf0 Þ�
½2NfTfð5CA þ 3CfÞ þ 2Nf0Tf0 ð5CA þ 3Cf0 Þ − 17C2

A�
: ð2:11Þ

We thus define the two-dimensional region in the first
quadrant of the R2 plane defined by non-negative real
values of ðNf; Nf0 Þ where the theory is asymptotically
free and the two-loop beta function has an IR zero as the
region RIRZ, given by the conditions (2.3) and (2.10).
The upper boundary of RIRZ is the same as the upper
boundary of RNACP, while the lower boundary of RIRZ
can provide a rough guide to the lower boundary of
RNACP and has the advantage that it is exactly calculable.
This lower boundary of the region RIRZ is given by the
solution of the condition that b2 ¼ 0 in the first quadrant
of the R2 plane. This condition is obtained from
Eq. (2.10) by replacing the inequality by an equality.

The corresponding line defining the lower boundary of
RIRZ has the slope

∂Nf0

∂Nf

����
b2¼0

¼ −
Tfð5CA þ 3CfÞ
Tf0 ð5CA þ 3Cf0 Þ

: ð2:12Þ

This lower boundary of the region RIRZ crosses the
horizontal axis in the ðNf; Nf0 Þ space at the point
ðNf;l; 0Þ, where Nf;l was given above in Eq. (2.7),
and it crosses the vertical axis at the corresponding
value ð0; Nf0;lÞ, where
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Nf0;l ¼ 17C2
A

2Tf0 ð5CA þ 3Cf0 Þ
: ð2:13Þ

As noted, the lower boundary of this RIRZ region
provides a rough guide to the actual lower boundary
of the NACP region RNACP. The determination of the
true lower boundary of RNACP would require a fully
nonperturbative analysis, e.g., via lattice simulations.
Although our calculational methods require the IRFP to

be exact and hence, strictly speaking, apply only in the non-
Abelian Coulomb phase, they could also be useful for the
investigation of quasi-conformal gauge theories. In turn, the
latter have been of interest as possible ultraviolet comple-
tions of the StandardModel. Specifically, (a) if the transition
from the lower part of the non-AbelianCoulombphase to the
quasi-conformal regime in the variables ðNf; Nf0 Þ is con-
tinuous, and (b) if our series calculations are sufficiently
accurate in this region, our results for γψ̄ψ ;IR, γχ̄χ;IR, and β0IR
could provide approximate estimates for the values of these
quantities in the quasi-conformal regime just below the
lower boundary with the NACP. Here we recall that
anomalous dimensions of fermion bilinears in strongly
coupled BSM theories are relevant in helping to determine
resultant SM fermion masses (e.g., [2,3,20,21]). Another
example with fermions in multiple representations is super-
symmetric gauge theories with both gauginos and matter
chiral superfields.

C. Example with fermions in the fundamental
and adjoint representations

As an illustrative example, we consider a theory with the
gauge group SUðNcÞ that contains Nf ≡ NF fermions in
the fundamental (F) representation and Nf0 ≡ NAdj fer-
mions in the adjoint representation, Adj. We denote this as
the FA theory. Here the upper boundary of the NACP
region RNACP, which is also the upper boundary of the
region RIRZ, is given by the line

FA theory∶ NF þ 2NcNAdj ¼
11Nc

2
: ð2:14Þ

Thus, NF < ð11=2ÞNc if NAdj ¼ 0 and NAdj < 11=4 ¼
2.75 if Nf ¼ 0. The lower boundary of RIRZ, which
can provide an approximate estimate to the lower boundary
of RNACP, is given by the line b2 ¼ 0, namely

FA theory∶ ð13Nc−3N−1
c ÞNFþ32N2

cNAdj ¼ 34N2
c:

ð2:15Þ

Thus, in RIRZ, it follows that NF > 34N3
c=ð13N2

c − 3Þ if
NAdj ¼ 0 and NAdj > 17=16 ¼ 1.0625 if NF ¼ 0. In this
FA theory, the line b1 ¼ 0 has slope

TABLE I. List of asymptotically free SU(3) gauge theories with
NF fermions in the fundamental (F) representation and NAdj

fermions in the adjoint (Adj) representation, with the property that
the two-loop beta function has an IR zero, at α ¼ αIR;2l. The four
columns list ðNF;NAdjÞ,du,dl, andαIR;2l, where du anddl are the
distances of the point ðNF; NAdjÞ to the line b1 ¼ 0 and to the line
b2 ¼ 0, respectively. Half-integral values of NAdj correspond to
2NAdj copies of Majorana fermions in the adjoint representation.

ðNF;NAdjÞ du dl αIR;2l

(0,3/2) 1.233 0.434 1.496
(0,2) 0.740 0.929 0.419
(0,5/2) 0.247 1.425 0.0911

(1,1) 1.562 0.0688 11.938
(1,3/2) 1.069 0.565 0.996
(1,2) 0.575 1.060 0.286
(1,5/2) 0.0822 1.556 0.0278

(2,1) 1.397 0.200 3.683
(2,3/2) 0.904 0.695 0.684
(2,2) 0.411 1.191 0.182

(3,1) 1.233 0.330 1.963
(3,3/2) 0.740 0.826 0.471
(3,2) 0.247 1.322 0.0982

(4,1) 1.069 0.461 1.219
(4,3/2) 0.575 0.957 0.316
(4,2) 0.0822 1.453 0.0298

(5,1/2) 1.397 0.0964 7.630
(5,1) 0.904 0.592 0.804
(5,3/2) 0.411 1.088 0.199

(6,1/2) 1.233 0.227 2.856
(6,1) 0.740 0.723 0.539
(6,3/2) 0.247 1.219 0.106

(7,1/2) 1.069 0.358 1.571
(7,1) 0.575 0.854 0.355
(7,3/2) 0.0822 1.349 0.0321

(8,1/2) 0.904 0.489 0.973
(8,1) 0.411 0.985 0.220

(9,0) 1.233 0.124 5.236
(9,1/2) 0.740 0.620 0.628
(9,1) 0.247 1.115 0.116

(10,0) 1.069 0.255 2.208
(10,1/2) 0.575 0.750 0.4035
(10,1) 0.0822 1.246 0.0347

(11,0) 0.904 0.386 1.234
(11,1/2) 0.411 0.881 0.245

(12,0) 0.740 0.516 0.754
(12,1/2) 0.247 1.012 0.128

(13,0) 0.575 0.647 0.468
(13,1/2) 0.0822 1.143 0.03785

(14,0) 0.411 0.778 0.278

(15,0) 0.247 0.909 0.143

(16,0) 0.0822 1.040 0.0416
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FA theory∶
∂NAdj

∂NF

����
b1¼0

¼ −
1

2Nc
; ð2:16Þ

while the line b2 ¼ 0 has slope

FA theory∶
∂NAdj

∂NF

����
b2¼0

¼ −
ð13N2

c − 3Þ
32N3

c
: ð2:17Þ

For example, in the FA theory with Nc ¼ 3, so
G ¼ SUð3Þ, these slopes (2.16) and (2.17) are −1=6 ¼
−0.16667 and −19=144 ¼ −0.13194, respectively, where
the floating-point values are given to the indicated accuracy.
The b1 ¼ 0 line crosses the horizontal and vertical axes at
ðNf; Nf0 Þ ¼ ð16.5; 0Þ and (0,2.75), respectively, while the
b2 ¼ 0 line crosses the horizontal and vertical axes at
ðNf; Nf0 Þ ¼ ð8.0526; 0Þ and (0,1.0625), respectively.
In Table I we list the physical integral values of NF and

integral and half-integral (Majorana) values of NAdj in the
region RIRZ in this SU(3) theory. Considering ðNF;NAdjÞ
as a point in the first quadrant of an R2 space, we list in the
second column the distance du of this point from the line
b1 ¼ 0 that forms the upper boundary of the regions RIRZ
and RNACP, and in the third column the distance dl of this
point from the line b2 ¼ 0 that forms the lower boundary of
the regionRIRZ. (By distance of a point P from a line L, we
mean the length of the line segment perpendicular to the
line L that passes through the point P.) Thus, Table I
provides a guide to the position of a theory with a given set
of values of ðNF;NAdjÞ in the region RIRZ. In general,
theories with small values of du are close to the upper
boundary of the region RNACP and have correspondingly
small values of αIR. In order for our perturbative analysis to
be self-consistent, it is necessary that αIR should not be
excessively large, and so one may require, say, that
αIR;2l < 1. Our perturbative analysis is expected to be
most accurate for the ðNF;NAdjÞ FA theories with small du
and hence small αIR;2l in the upper part of the NACP. We
will discuss this illustrative two-representation FA theory
further below.

III. SCHEME-INDEPENDENT CALCULATION OF
ANOMALOUS DIMENSIONS OF FERMION

BILINEAR OPERATORS

In this section, for a theory with a general gauge groupG
containing Nf fermions in a representation R and Nf0

fermions in a representation R0, we present our new

calculations of the coefficients κðfÞj and κðf
0Þ

j in the
scheme-independent expansions of the anomalous dimen-
sions γψ̄ψ ;IR and γχ̄χ;IR in Eqs. (1.6) and the analogue for
γχ̄χ;IR with 1 ≤ j ≤ 3. It will be useful to define a factor that
occurs repeatedly in the denominators of various expres-
sions, namely

Df ¼ CAð7CA þ 11CfÞ þ 4Nf0Tf0 ðCf0 − CfÞ: ð3:1Þ

In the previously studied theory with a single fermion
representation, i.e., Nf0 ¼ 0, this factor D reduces as

Df ¼ CAD if Nf0 ¼ 0; ð3:2Þ

where

D ¼ 7CA þ 11Cf; ð3:3Þ

as defined in Eq. (2.13) of our earlier work [13,15].
For the first two coefficients we calculate

κðfÞ1 ¼ 8CfTf

Df
ð3:4Þ

and

κðfÞ2 ¼ 4CfT2
f

3D3
f

½CAð7CA þ 4CfÞð5CA þ 88CfÞ

þ 24Nf0Tf0 ðCf0 − CfÞð10CA þ 8Cf þ Cf0 Þ�: ð3:5Þ

For the third coefficient, we write

κðfÞ3 ¼ 4CfTf

34D5
f

½AðfÞ
0 þ AðfÞ

1 Nf0 þ AðfÞ
2 N2

f0 þ AðfÞ
3 N3

f0 �: ð3:6Þ

It follows that the AðfÞ
0 term is independent of Nf0 and

hence, taking into account the difference in the prefactor, it
is equal to CA times the terms in the square bracket of
Eq. (6.7) in our earlier Ref. [13] or equivalently Eq. (3.4) in
our Ref. [15]. We have

AðfÞ
0 ¼ CA

�
3CAT2

fð−18473C4
A þ 144004C3

ACf þ 650896C2
AC

2
f þ 356928CAC3

f þ 569184C4
fÞ

þ 27D

�
−20T2

f
dabcdA dabcdA

dA
þ 352CATf

dabcdf dabcdA

dA
− 1331C2

A

dabcdf dabcdf

dA

�

þ 33 · 210Dζ3

�
2T2

f
dabcdA dabcdA

dA
− 13CATf

dabcdf dabcdA

dA
þ 11C2

A

dabcdf dabcdf

dA

��
; ð3:7Þ
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where ζs ¼
P∞

n¼1 n
−s is the Riemann zeta function. Here, the group invariants CA, Cf, Tf, dabcdA dabcdA , dabcdf dabcdA ,

dabcdf dabcdf , and dabcdf dabcdf0 are defined in the Appendix, and dA is the dimension of the adjoint representation of G.

For the other AðfÞ
s with 1 ≤ s ≤ 3, we calculate

AðfÞ
1 ¼ CAT2

fTf0 ½273840C3
AðCf0 − CfÞ þ C2

Að−1511040C2
f þ 1916256CfCf0 − 405216C2

f0 Þ
þ CAð−129600C3

f þ 522432C2
fCf0 − 485568CfC2

f0 þ 92736C3
f0 Þ

þ Cfð−1241856C3
f þ 1020096C2

fCf0 þ 76032CfC2
f0 þ 145728C3

f0 Þ�

þ 10240T2
fTf0 ðCf − Cf0 Þ

dabcdA dabdcA

dA
þ CATfTf0 ð−114688CA − 360448Cf þ 180224Cf0 Þ

dabcdf dabcdA

dA

þ CAT2
fð114688CA þ 180224CfÞ

dabcdf0 dabcdA

dA
þ C2

ATf0 ð867328CA þ 2044416Cf − 681472Cf0 Þ
dabcdf dabcdf

dA

þ C2
ATfð−867328CA − 1362944CfÞ

dabcdf dabcdf0

dA

þ ζ3

�
270336T2

fTf0 ðCf0 − CfÞ
dabcdA dabcdA

dA
þ CATfTf0 ð1118208CA þ 3514368Cf − 1757184Cf0 Þ

dabcdf dabcdA

dA

þ CAT2
fð−1118208CA − 1757184CfÞ

dabcdf0 dabcdA

dA
þ C2

ATf0 ð−1892352CA − 4460544Cf þ 1486848Cf0 Þ
dabcdf dabcdf

dA

þ C2
ATfð1892352CA þ 2973696CfÞ

dabcdf dabcdf0

dA

�
ð3:8Þ

AðfÞ
2 ¼T2

fT
2
f0 ½350976C2

AðCf−Cf0 Þ2þCAð−94464C3
f−2304C2

fCf0 þ288000CfC2
f0 −191232C3

f0 Þ
þ225792C4

f−370944C3
fCf0 þ119808C2

fC
2
f0 −29952CfC3

f0 þ55296C4
f0 �

þ216TfTf0 ðCf−Cf0 Þ
�
Tf0

dabcdf dabcdA

dA
−Tf

dabcdf0 dabcdA

dA

�
þCAT2

f0 ð−157696CAþ495616Cf0 −743424CfÞ
dabcdf dabcdf

dA

þCATfTf0 ð315392CAþ991232Cf−495616Cf0 Þ
dabcdf dabcdf0

dA
þCAT2

fð−157696CA−247808CfÞ
dabcdf0 dabcdf0

dA

þζ3

�
638976TfTf0 ðCf−Cf0 Þ

�
Tf

dabcdf0 dabcdA

dA
−Tf0

dabcdf dabcdA

dA

�

þCAT2
f0 ð344064CAþ1622016Cf−1081344Cf0 Þ

dabcdf dabcdf

dA

×CATfTf0 ð−688128CA−2162688Cfþ1081344Cf0 Þ
dabcdf dabcdf0

dA
þCAT2

fð344064CAþ540672CfÞ
dabcdf0 dabcdf0

dA

�

ð3:9Þ
and

AðfÞ
3 ¼ 213Tf0 ðCf − Cf0 Þð11 − 24ζ3Þ

�
T2
f0
dabcdf dabcdf

dA
− 2TfTf0

dabcdf dabcdf0

dA
þ T2

f

dabcdf0 dabcdf0

dA

�
: ð3:10Þ

The coefficients κðf
0Þ

j are obtained from these κðfÞj by interchanging f and f0 in all expressions. For example,

Df0 ¼ CAð7CA þ 11Cf0 Þ þ 4NfTfðCf − Cf0 Þ; ð3:11Þ

κðf
0Þ

1 ¼ 8Cf0Tf0

Df0
; ð3:12Þ

and so forth for the other expressions.
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An important result that we found in our previous work
[12–16] was that for a theory with a single representation,
κðfÞ1 and κðfÞ2 are manifestly positive, and for all of the
specific gauge groups and fermion representations that we
considered, κðfÞ3 and κðfÞ4 are also positive. This property
implied several monotonicity relations for our calculation
of γψ̄ψ to maximal power Δp

f , denoted γψ̄ψ ;Δp
f
, namely that

(i) for fixed p, γψ̄ψ ;Δp
f

is a monotonically increasing

function of Δf, i.e., a monotonically increasing function
of decreasing Nf, and (ii) for fixed Nf, γψ̄ψ ;Δp

f
is a

monotonically increasing function of the maximal power p.
A basic question that we may ask concerning these

results is how a coefficient κðfÞ changes as one goes from
the single-representation theory with N0

f ¼ 0 to theories
with an increasing number Nf0 of fermions in a different
representation, and vice versa for the dependence of κðf0Þ on
Nf. For the purpose of this discussion, we recall that, by
convention, we take f to be the fermion in the representation
with a smaller dimension. In the cases with which we deal,
this also means that Cf < Cf0 . The question is readily

answered in the case of κðfÞ1 and κðf
0Þ

1 . As a lemma, we
observe that Df is a monotonically increasing function of
Nf0 , whileDf0 is amonotonically decreasing function ofNf.

Hence, κðfÞ1 is a monotonically decreasing function of Nf0 ,

while κðf
0Þ

1 is a monotonically increasing function ofNf. The

dependence of κðfÞj on Nf0 and of κðf
0Þ

j on Nf for indices
j ¼ 2, 3 will be analyzed below for particular theories.

Concerning the question of the positivity of κðfÞj and κðf
0Þ

j ,
in a theory with fermions in multiple different representa-
tions, there are terms of both signs in the expressions for the

coefficients κðfÞj . Nevertheless, anticipating our results
below, in the specific FA theories that we have studied

in detail, both κðFÞj and κðAdjÞj are positive for all of the
orders that we have calculated, namely j ¼ 1, 2, 3.
In our earlier work [11–17] on scheme-independent

series calculations for theories with a Nf fermions trans-
forming according to a single type of representation, we

carried out detailed studies of the reliability of these
expansions using a variety of methods. One of the simplest
procedures is to analyze the fractional change in a quantity,
calculated to a given order OðΔp

f Þ, as one increases the
maximal power p of the expansion. Here we shall apply
this method in our illustrative theory discussed in the next
section.

IV. ANOMALOUS DIMENSIONS IN A THEORY
WITH FERMIONS IN THE FUNDAMENTAL AND

ADJOINT REPRESENTATIONS OF SU(Nc)

In this section we discuss our scheme-independent
calculations of γψ̄ψ ;IR and γχ̄χ;IR for the illustrative case
of a theory with gauge group SUðNcÞ containing Nf ≡ NF

fermions in the fundamental representation and Nf0 ≡ NAdj

fermions in the adjoint representation. As before, we call
this the FA theory. In this case, the denominator factor Df

takes the form

FA theory∶ Df ¼
1

2
½25N2

c − 11þ 4NAdjðN2
c þ 1Þ�: ð4:1Þ

We have given the values of ðNF;NAdjÞ in Table I for the
region RIRZ. For the first-order coefficients we calculate

κðFÞ1 ¼ 4ðN2
c − 1Þ

Nc½25N2
c − 11þ 4NAdjðN2

c þ 1Þ� ð4:2Þ

and

κðAdjÞ1 ¼ 8N3
c

18N3
c − NFðN2

c þ 1Þ : ð4:3Þ

If NAdj ¼ 0, then the coefficient κðFÞ1 reduces to the
expression 4ðN2

c − 1Þ=½Ncð25N2
c − 11Þ�, as given in

Eq. (6.8) of our earlier work [13]. Similarly, if NF ¼ 0,

then κðAdjÞ1 reduces to the value 4=9, as given in Eq. (6.18)
of [13].
For the second-order coefficients, we find

κðFÞ2 ¼ 4ðN2
c − 1Þ½ð9N2

c − 2Þð49N2
c − 44Þ þ 8NAdjðN2

c þ 1Þð15N2
c − 4Þ�

3N2
c½25N2

c − 11þ 4NAdjðN2
c þ 1Þ�3 ð4:4Þ

and

κðAdjÞ2 ¼ 4N4
c½1023N5

c − 2NFðN2
c þ 1Þð37N2

c − 1Þ�
3½18N3

c − NFðN2
c þ 1Þ�3 : ð4:5Þ

If NAdj ¼ 0, then κðFÞ2 reduces to the expression given

in Eq. (6.9) of [13], and if NF ¼ 0, then κðAdjÞ2 reduces to

the value 341=1458 ¼ 341=ð2 · 36Þ as given in Eq. (6.19)
of [13].
Our results for the third-order coefficients are as follows:

κðFÞ3 ¼ 23ðN2
c−1Þ½κðFÞ3;0 þ κðFÞ3;1NAdjþ κðFÞ3;2N

2
Adjþ κðFÞ3;3N

3
Adj�

33N3
c½25N2

c−11þ4NAdjðN2
cþ1Þ�5 ;

ð4:6Þ
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where

κðFÞ3;0 ¼ 274243N8
c − 455426N6

c − 114080N4
c þ 47344N2

c

þ 35574 − 27 · 33ζ3N2
cð4N2

c − 11Þð25N2
c − 11Þ

ð4:7Þ

κðFÞ3;1 ¼ 135848N8
c − 215832N6

c þ 291424N4
c − 189168N2

c

− 25872 − 29 · 32ζ3N2
cð73N4

c þ 132N2
c − 121Þ

ð4:8Þ

κðFÞ3;2 ¼ 25ðN2
c þ 1Þ½689N6

c − 2651N4
c þ 2775N2

c

þ 147þ 26 · 32ζ3N2
cð6N2

c − 11Þ� ð4:9Þ

and

κðFÞ3;3 ¼ 210N2
cðN2

c þ 1Þ2ð−11þ 24ζ3Þ: ð4:10Þ

Further,

κðAdjÞ3 ¼ 4N5
c½κðAdjÞ3;0 þ κðAdjÞ3;1 NF þ κðAdjÞ3;2 N2

F þ κðAdjÞ3;3 N3
F�

33½18N3
c − NFðN2

c þ 1Þ�5 ;

ð4:11Þ

where

κðAdjÞ3;0 ¼ 33N8
cð61873N2

c − 42624Þ ð4:12Þ

κðAdjÞ3;1 ¼ −36N3
cð6728N6

c − 5857N4
c − 1247N2

c

þ 138þ 11520ζ3N4
cÞ ð4:13Þ

κðAdjÞ3;2 ¼ 25ðN2
c þ 1Þð287N6

c − 1187N4
c þ 27N2

c

þ 9þ 2448ζ3N4
cÞ ð4:14Þ

and

κðAdjÞ3;3 ¼ −27NcðN2
c þ 1Þ2ð−11þ 24ζ3Þ: ð4:15Þ

If NAdj ¼ 0, then the coefficient κðFÞ3 reduces to the
expression in Eq. (6.10) of our earlier work [13], while

if NF ¼ 0, then κðAdjÞ3 reduces to Eq. (6.20) of [13]. The

agreement of these reductions of κðFÞj for NAdj ¼ 0 and of

κðAdjÞj for NF ¼ 0 with our earlier calculations in [13] for
j ¼ 1, 2, 3 serves as a check on our present results. As was
discussed in [13,15], these coefficients have the leading
large-Nc dependence

κðFÞj ∼ N−j
c as Nc → ∞ ð4:16Þ

and

κðAdjÞj ∼ N0
c as Nc → ∞: ð4:17Þ

As specific examples of these FA theories, we consider
the following sets of SU(3) gauge theories inRIRZ with the
indicated fermion content:

ðNF;NAdjÞ ¼
�
8;
1

2

�
; ð8; 1Þ; ð10; 0Þ;

�
10;

1

2

�
;

ð10; 1Þ; ð12; 0Þ;
�
12;

1

2

�
: ð4:18Þ

The respective positions of these theories in the regions
RIRZ andRNACP can be ascertained by referring to Table I.

The corresponding values of the coefficients κðFÞj with
j ¼ 1, 2, 3, as functions of NAdj, are listed in Table II, and

the values of κðAdjÞj with j ¼ 1, 2, 3, as functions of NF, are
listed in Table III.
We observe that all of these coefficients are positive, and

so the generalizations of the monotonicity relations that we
found in our earlier work for the theory with fermions in a
single representation also hold for this FA theory, namely
(i) for fixed NAdj, γψ̄ψ ;IR is a monotonically increasing
function of ΔF, i.e., a monotonically increasing function of
decreasing NF; (ii) for fixed NF, γχ̄χ;IR is a monotonically
increasing function of ΔAdj, i.e., a monotonically increas-
ing function of decreasingNAdj; (iii) for fixed Nf0 , γψ̄ψ ;IR;Δp

F

TABLE II. Values of the coefficients κðFÞj , j ¼ 1, 2, 3, for the
scheme-independent expansion of the anomalous dimension
γψ̄ψ ;IR in an SU(3) gauge theory with fermions in the fundamental
and adjoint representations, as functions of NAdj. Half-integral
values of NAdj correspond to 2NAdj copies of Majorana fermions
in the adjoint representation. The notation ae-n means a × 10−n.

NAdj κðFÞ1 κðFÞ2 κðFÞ3

0 4.98e-2 3.79e-3 2.37e-4
1
2

4.56e-2 3.39e-3 1.835e-4
1 4.20e-2 3.03e-3 1.51e-4
3
2

3.89e-2 2.71e-3 1.31e-4
2 3.63e-2 2.44e-3 1.16e-4

TABLE III. Values of the coefficients κðAdjÞj , j ¼ 1, 2, 3, for the
scheme-independent expansion of the anomalous dimension
γχ̄χ;IR in an SU(3) gauge theory with fermions in the fundamental
and adjoint representations, for illustrative values of NF.

NF κðAdjÞ1 κðAdjÞ2 κðAdjÞ3

0 0.444 0.234 0.121
4 0.484 0.270 0.145
8 0.532 0.315 0.179
10 0.560 0.342 0.201
12 0.590 0.372 0.227
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is a monotonically increasing function of p; and (iv) for
fixed Nf, γχ̄χ;IR;Δp

Adj
is a monotonically increasing function

of p.
Separately, we also note a generalization of the monot-

onicity relation that we proved for κðFÞ1 and proved for κðAdjÞ1 ,

namely that for these FA theories, the κðFÞj coefficients
with j ¼ 1, 2, 3 are monotonically decreasing functions of

NAdj, and the κðAdjÞj coefficients with j ¼ 1, 2, 3 are
monotonically increasing functions of NF.

Having calculated these coefficients κðFÞj and κðAdjÞj with
j ¼ 1, 2, 3 for this FA theory, we next proceed to substitute
them in the general scheme-independent expansions (1.6)
for f ¼ F and the analogue for f0 ¼ Adj. Explicitly, with
f ¼ ψ and f0 ¼ χ,

γψ̄ψ ;IR ¼
X∞
j¼1

κðFÞj Δj
F ð4:19Þ

and

γχ̄χ;IR ¼
X∞
j¼1

κðAdjÞj Δj
Adj; ð4:20Þ

where

ΔF ¼ ðNF;u − NFÞ; ð4:21Þ
with

NF;u ¼
Ncð11 − 4NAdjÞ

2
ð4:22Þ

and

ΔAdj ¼ ðNAdj;u − NAdjÞ; ð4:23Þ

with

NAdj;u ¼
11

4
−

NF

2Nc
: ð4:24Þ

For reference, we list the values of NF;u and NAdj;u from
Eqs. (4.22) and (4.24) for these ðNF;NAdjÞ FA SU(3)
theories in Table IV.
In Table V we list the values of γψ̄ψ ;IR calculated to

OðΔp
FÞ for p ¼ 1, 2, 3, denoted as γψ̄ψ ;IR;Δp

F
. Similarly, in

Table VI we list the values of γχ̄χ;IR calculated to OðΔp
AdjÞ

for p ¼ 1, 2, 3, denoted as γχ̄χ;IR;Δp
Adj
. The monotonicity

relations noted above are evident in these tables. From an
examination of the fractional changes in the anomalous
dimensions as one increases the order of calculation, one
may infer that these scheme-independent expansions
should be reasonably reliable. For example, in the SU(3)
FA theory with ðNF;NAdjÞ ¼ ð12; 1=2Þ theory, the frac-
tional change in the γψ̄ψ ;IR anomalous dimension is

SUð3Þ; ðNF;NAdjÞ ¼ ð12; 1=2Þ
⇒

γψ̄ψ ;IR;Δ3
F
− γψ̄ψ ;IR;Δ2

F

γψ̄ψ ;IR;Δ2
F

¼ 0.81 × 10−2: ð4:25Þ

In the SU(3) FA theory with ðNF;NAdjÞ ¼ ð10; 1Þ theory,
the fractional change in γψ̄ψ ;IR is even smaller:

TABLE IV. Values of NF;u from Eq. (2.4) and NAdj;u from
Eq. (2.5) (formally generalized to non-negative real numbers) for
the illustrative SU(3) theories with NF fermions in the funda-
mental representation and NAdj fermions in the adjoint repre-
sentation. Half-integral values of NAdj refer to theories with
2NAdj Majorana fermions in the adjoint representation.

ðNF;NAdjÞ NF;u NAdj;u

(8,1/2) 27=2 17=12
(8,1) 21=2 17=12

(10,0) 33=2 13=12
(10,1/2) 27=2 13=12
(10,1) 21=2 13=12

(12,0) 33=2 3=4
(12,1/2) 27=2 3=4

TABLE V. Values of the anomalous dimension γψ̄ψ ;IR;Δp
F
, calcu-

lated to order p ¼ 1, 2, 3 and evaluated at the IR fixed point in an
SU(3) gauge theory with NF fermions in the fundamental (F)
representation and NAdj fermions in the adjoint (Adj) representa-
tion. Here, ψ is the fermion in the F representation.

ðNF;NAdjÞ γψ̄ψ ;IR;ΔF
γψ̄ψ ;IR;Δ2

F
γψ̄ψ ;IR;Δ3

F

(8,1/2) 0.251 0.353 0.384
(8,1) 0.105 0.124 0.126

(10,0) 0.324 0.484 0.549
(10,1/2) 0.159 0.201 0.209
(10,1) 0.0210 0.0218 0.0218

(12,0) 0.224 0.301 0.323
(12,1/2) 0.0684 0.0760 0.0766

TABLE VI. Values of the anomalous dimension γχ̄χ;IR;Δp
Adj
,

calculated to order p ¼ 1, 2, 3 and evaluated at the IR fixed point
in an SU(3) gauge theory withNF fermions in the fundamental (F)
representation and NAdj fermions in the adjoint (Adj) representa-
tion. Here, χ is the fermion in the Adj representation.

ðNF;NAdjÞ γχ̄χ;IR;ΔAdj
γχ̄χ;IR;Δ2

Adj
γχ̄χ;IR;Δ3

Adj

(8,1/2) 0.488 0.753 0.891
(8,1) 0.222 0.276 0.289

(10,1/2) 0.326 0.443 0.483
(10,1) 0.0466 0.0490 0.0491

(12,1/2) 0.1475 0.171 0.174
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SUð3Þ; ðNF;NAdjÞ ¼ ð10; 1Þ
⇒

γψ̄ψ ;IR;Δ3
F
− γψ̄ψ ;IR;Δ2

F

γψ̄ψ ;IR;Δ2
F

¼ 0.87 × 10−3; ð4:26Þ

yielding identical entries listed to three significant figures
in Table V. Similar comments apply to the calculations
of γχ̄χ;IR;Δp

Adj
.

V. SCHEME-INDEPENDENT
CALCULATION OF β0IR

In this section we return to the general asymptotically
free gauge theory with gauge group G containing Nf and
Nf0 fermions in the respective representations R and R0 and
present our calculations of the coefficients dj and d̃j in the
scheme-independent expansions of the derivative of the
beta function evaluated at the IR fixed point, β0IR, in powers
of Δf in Eqs. (1.8) and in powers of Δf0 in Eq. (1.9),
respectively. As before in this paper, this IR fixed point is
taken to be in the non-Abelian Coulomb phase. Part of the
physical interest in the quantity β0IR stems from the fact that,
owing to the trace anomaly relation [42], it is equivalent to
the anomalous dimension of the field-strength tensor term
TrðFa

μνFaμνÞ in the Lagrangian [13,43]. As noted above,

generalizing our result for the single-representation case,
d1 ¼ d̃1 ¼ 0 for arbitrary G, R, and R0.
For the higher coefficients we find

d2 ¼
25T2

f

32Df
ð5:1Þ

d3 ¼
27T3

fð5CA þ 3CfÞ
33D2

f

ð5:2Þ

and

d4¼−
23T2

f

36D5
f

½BðfÞ
0 þBðfÞ

1 Nf0 þBðfÞ
2 N2

f0 þBðfÞ
3 N3

f0 �; ð5:3Þ

where we explicitly indicate the dependence on f in the

BðfÞ
s , s ¼ 0, 1, 2, 3. [We extract a minus sign in Eq. (5.3) to

maintain the same notation as in our earlier works [13,15],
where we found that in the case of fermions in a single
representation R ¼ F, d4 is negative.] As was the case with

AðfÞ
0 in κðfÞ3 , the BðfÞ

0 term in d4 is independent of Nf0 and
hence, taking into account the difference in the prefactor, it
is equal to CA times the terms in the square bracket of
Eq. (5.11) in our earlier Ref. [13] or equivalently, Eq. (4.8)
of our Ref. [15]. We have

BðfÞ
0 ¼CA

�
−3CAT2

fð137445C4
Aþ103600C3

ACfþ72616C2
AC

2
fþ951808CAC3

f−63888C4
fÞ

þ28D

�
−20T2

f
dabcdA dabcdA

dA
þ352CATf

dabcdf dabcdA

dA
−1331C2

A

dabcdf dabcdf

dA

�

þ8448Dζ3

�
C2
AT

2
fð21C2

Aþ12CACf−33C2
fÞþ16T2

f
dabcdA dabcdA

dA
−104CATf

dabcdf dabcdA

dA
þ88C2

A

dabcdf dabcdf

dA

��
: ð5:4Þ

For the BðfÞ
j with j ¼ 1, 2, 3, we calculate

BðfÞ
1 ¼ 194880C4

AT
2
fTf0 ðCf0 − CfÞ þ C3

AT
2
fTf0 ð−1854816C2

f þ 2715648CfCf0 − 860832C2
f0 Þ

þ C2
AT

2
fTf0 ð903168C3

f þ 153216C2
fCf0 − 1241856CfC2

f0 þ 185472C3
f0 Þ

þ CAT2
fTf0Cfð−139392C3

f − 164736C2
fCf0 þ 12672CfC2

f0 þ 291456C3
f0 Þ

þ C2
AT

2
fTf0 ðCf − Cf0 Þζ3ð−967680C2

A þ 608256CACf þ 3345408C2
fÞ

þ T2
fTf0 ðCf − Cf0 Þð20480 − 540672ζ3Þ

dabcdA dabcdA

dA

þ CATfTf0 ½−229376CA − 720896Cf þ 360448Cf0 þ ζ3ð2236416CA þ 7028736Cf − 3514368Cf0 Þ�
dabcdf dabcdA

dA

þ CAT2
f½229376CA þ 360448Cf þ ζ3ð−2236416CA − 3514368CfÞ�

dabcdf0 dabcdA

dA

þ C2
ATf0 ½1734656CA þ 4088832Cf − 1362944Cf0 þ ζ3ð−3784704CA − 8921088Cf þ 2973696Cf0 Þ�

dabcdf dabcdf

dA

þ C2
ATf½CAð−1734656þ 3784704ζ3Þ þ Cfð−2725888þ 5947392ζ3Þ�

dabcdf dabcdf0

dA
ð5:5Þ
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BðfÞ
2 ¼ T2

fT
2
f0 ½669696C2

AðCf − Cf0 Þ2 þ CAð437760C3
f − 1327104C2

fCf0 þ 1340928CfC2
f0 − 451584C3

f0 Þ
þ 25344C4

f þ 59904C3
fCf0 − 87552C2

fC
2
f0 − 105984CfC3

f0 þ 108288C4
f0

þ CAðCf − Cf0 Þ2ζ3ð−110592CA − 1216512CfÞ�

þ TfTf0 ðCf − Cf0 Þð131072 − 1277952ζ3Þ
�
Tf0

dabcdf dabcdA

dA
− Tf

dabcdf0 dabcdA

dA

�

þ CAT2
f0 ½−315392CA − 1486848Cf þ 991232Cf0 þ ζ3ð688128CA þ 3244032Cf − 2162688Cf0 Þ�

dabcdf dabcdf

dA

þ CATfTf0 ½630784CA þ 1982464Cf − 991232Cf0 þ ζ3ð−1376256CA − 4325376Cf þ 2162688Cf0 Þ�
dabcdf dabcdf0

dA

þ CAT2
f½−315392CA − 495616Cf þ ζ3ð688128CA þ 1081344CfÞ�

dabcdf0 dabcdf0

dA
ð5:6Þ

and

BðfÞ
3 ¼ Tf0 ðCf − Cf0 Þ

�
211 · 3T2

fT
2
f0 ðCf − Cf0 Þ2ð−23þ 24ζ3Þ

þ 214ð11 − 24ζ3Þ
�
T2
f0
dabcdf dabcdf

dA
− 2TfTf0

dabcdf dabcdf0

dA
þ T2

f

dabcdf0 dabcdf0

dA

��
: ð5:7Þ

In passing, we note that BðfÞ
3 has the same prefactor as AðfÞ

3

in Eq. (3.10), namely Tf0 ðCf − Cf0 Þ.
The corresponding coefficients for the expansion (1.9)

are obtained from these by interchanging f and f0. Thus,
for example,

d̃2 ¼
25T2

f0

32Df0
ð5:8Þ

d̃3 ¼
27T3

f0 ð5CA þ 3Cf0 Þ
33D2

f0
; ð5:9Þ

and similarly for d̃4.

VI. RESULTS FOR β0IR IN A THEORY WITH
FERMIONS IN THE FUNDAMENTAL AND
ADJOINT REPRESENTATIONS OF SU(Nc)

In this section we discuss the special case of our general
calculation of β0IR for an SUðNcÞ theory with Nf fermions
in the fundamental representation and NAdj fermions in the
adjoint representation (i.e., the FA theory). We write
Eqs. (1.8) and (1.9) as

β0IR ¼
X∞
j¼2

djΔ
j
F ð6:1Þ

and

β0IR ¼
X∞
j¼2

d̃jΔ
j
Adj; ð6:2Þ

where ΔF and ΔAdj were given explicitly in Eqs. (4.21)–
(4.24).

TABLE VII. Values of the coefficients dj, j ¼ 2, 3, 4, for the
scheme-independent expansion of β0IR, Eq. (6.1), in an SU(3)
gauge theory with fermions in the fundamental and adjoint
representations, as functions of NAdj. Half-integral values of
NAdj correspond to 2NAdj copies of Majorana fermions in the
adjoint representation. The notation ae-n means a × 10−n.

NAdj d2 d3 d4

0 0.831e-2 0.983e-3 −0.463e-4
1=2 0.760e-2 0.8225e-3 −2.44e-5
1 0.700e-2 0.698e-3 −1.24e-5
3=2 0.649e-2 0.600e-3 −0.578e-5
2 0.605e-2 0.521e-3 −2.12e-6

TABLE VIII. Values of the coefficients d̃j, j ¼ 2, 3, 4, for the
scheme-independent expansion of β0IR, Eq. (6.2), in an SU(3)
gauge theory with fermions in the fundamental and adjoint
representations, for illustrative values of NF.

NF d̃2 d̃3 d̃4

0 0.1975 0.117 0.0265
4 0.215 0.139 0.0313
8 0.236 0.168 0.0358
10 0.249 0.186 0.0374
12 0.262 0.206 0.0379
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We calculate

d2 ¼
24

32½25N2
c − 11þ 4NAdjðN2

c þ 1Þ� ð6:3Þ

d̃2 ¼
25N3

c

32½18N3
c − NFðN2

c þ 1Þ� ð6:4Þ

d3 ¼
25ð13N2

c − 3Þ
33Nc½25N2

c − 11þ 4NAdjðN2
c þ 1Þ�2 ð6:5Þ

d̃3 ¼
210N6

c

33½18N3
c − NFðN2

c þ 1Þ�2 ð6:6Þ

d4 ¼
24½d4;0 þ d4;1NAdj þ d4;2N2

Adj þ d4;3N3
Adj�

35N2
c½25N2

c − 11þ 4NAdjðN2
c þ 1Þ�5 : ð6:7Þ

where

d4;0 ¼ 366782N8
c − 865400N6

c þ 1599316N4
c − 571516N2

c − 3993

þ ζ3N2
c½−660000N6

c þ 765600N4
c − 2241888N2

c þ 894432� ð6:8Þ

d4;1 ¼ 18416N8
c þ 346944N6

c − 756920N4
c þ 530256N2

c þ 2904

þ ζ3N2
c½28800N6

c þ 372096N4
c þ 1026432N2

c − 975744� ð6:9Þ

d4;2 ¼ 24ðN2
c þ 1Þ½−3161N6

c þ 10589N4
c − 10155N2

c − 33

þ ζ3N2
cð3744N4

c − 13248N2
c þ 22176Þ� ð6:10Þ

d4;3 ¼ 28N2
cðN2

c þ 1Þ2½−23N2
c þ 65þ ζ3ð24N2

c − 168Þ� ð6:11Þ

and

d̃4 ¼
23N5

c½d̂4;0 þ d̂4;1NF þ d̂4;2N2
F þ d̂4;3N3

F�
35½18N3

c − NFðN2
c þ 1Þ�5 ; ð6:12Þ

where

d̂4;0 ¼ 33N8
cð46871N2

c þ 85248Þ ð6:13Þ

d̂4;1 ¼ 36N3
c½1287N6

c − 23350N4
c − 1961N2

c þ 276þ ζ3N4
cð−6912N2

c þ 16128Þ� ð6:14Þ

d̂4;2 ¼ 4ðN2
c þ 1Þ½−5153N6

c þ 18113N4
c − 747N2

c − 141þ ζ3N4
cð6912N2

c − 32256Þ� ð6:15Þ

d̂4;3 ¼ 25NcðN2
c þ 1Þ2½23N2

c − 65þ ζ3ð−24N2
c þ 168Þ�: ð6:16Þ

If NAdj ¼ 0, then d2, d3, and d4 reduce to our previous
results in, respectively, Eqs. (5.14), (5.15), and (5.16) of
[13]. Similarly, if NF ¼ 0, then d̃2, d̃3, and d̃4 reduce to our
previous results in, respectively, Eqs. (5.59), (5.60), and
(5.61) of [13]. The agreement of these reductions of dj for
NAdj ¼ 0 and of d̃j for NF ¼ 0 with our results in [13] for
j ¼ 1, 2, 3 serves as a check on our present calculations. As
was discussed in [13,15], these coefficients have the
leading large-Nc dependence

dj ∼ N−j
c as Nc → ∞ ð6:17Þ

and

d̃j ∼ N0
c as Nc → ∞: ð6:18Þ

In Tables VII and VIII we list the values of dj and d̃j with
j ¼ 1, 2, 3 for illustrative SU(3) FA theories. In Table IX
we present our scheme-independent calculations of β0IR to
orderOðΔp

FÞ via the expansion (6.1) and toOðΔp
AdjÞ via the

expansion (6.2), with p ¼ 1, 2, 3, where ΔF and ΔAdj were
defined in Eqs. (4.21)–(4.24). These are denoted β0IR;Δp

F
and

β0IR;Δp
Adj
, respectively. Graphically, in the first quadrant of

R2 defined by ðNF;NadjÞ (formally generalized to non-
negative real numbers), the series (6.1) is an expansion in a
leftward horizontal direction from the b1 ¼ 0 line toward a
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given point ðNF;NAdjÞ in the NACP, while the series (6.1)
is an expansion inward in a downward vertical direction
from the b1 ¼ 0 line toward this point ðNF;NAdjÞ. Since
these are two alternate expansions for the same quantity,
one expects that as the maximal power p in the series
increases, they should yield similar values, and we see that
this expectation is satisfied by our results at the highest
order, p ¼ 3, as listed in Table IX. The agreement between
the two series is best when the ðNF;NAdjÞ theory is near to
the upper end of the non-Abelian Coulomb phase, since in
this case the expansion parameters ΔF and ΔAdj are the
smallest. Some explicit examples that demonstrate this
accuracy are provided by the following fractional
differences:

SUð3Þ; ðNF;NAdjÞ ¼ ð10; 1Þ

⇒

���β0IR;Δ4
F
− β0IR;Δ4

Adj

���
β0IR;Δ4

F

¼ 2.2 × 10−5 ð6:19Þ

and

SUð3Þ; ðNF;NAdjÞ ¼
�
12;

1

2

�

⇒

���β0IR;Δ4
F
− β0IR;Δ4

Adj

���
β0IR;Δ4

F

¼ 1.0 × 10−3: ð6:20Þ

VII. CONCLUSIONS

In this paper, generalizing our previous work, we have
considered an asymptotically free gauge theory with gauge
groupG and two different fermion representations, with the
property that it exhibits an infrared fixed point such that
the infrared theory is in a non-Abelian Coulomb phase.
Specifically, we have considered a theory with Nf fermions
transforming according to a representation R of G and Nf0

fermions transforming according to a different

representation, R0. We have calculated scheme-independent
series expansions of the anomalous dimensions of gauge
invariant fermion bilinears and the derivative β0IR evaluated
at the IR fixed point in the respective expansion parameters
Δf and Δf0 . As an explicit application, we have presented
calculations for an SU(Nc) theory with NF fermions in the
fundamental representation and NAdj fermions in the
adjoint representation. Our results for scheme-independent
expansions of gauge-invariant fermion bilinears extend up
to OðΔ3

FÞ and OðΔ3
AdjÞ, while our results for β0IR extend up

to OðΔ4
FÞ and OðΔ4

AdjÞ. These results provide further
information about the properties of these conformal field
theories. To the extent that the transition from the lower part
of the non-Abelian Coulomb phase to the quasi-conformal
regime in the variables ðNf; Nf0 Þ is continuous and our
finite-order perturbative calculations in the lower part of the
non-Abelian Coulomb phase are sufficiently accurate, our
present results can also be useful for the investigation of
quasi-conformal theories with possible relevance to ultra-
violet completions of the Standard Model that address the
Higgs mass naturalness problem and the generational
hierarchy of SM fermion masses.
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APPENDIX: GROUP INVARIANTS

In this appendix we discuss some relevant group-
theoretic quantities. Let us denote the generators of the
Lie algebra of the gauge group G, in the representation R,
as Ta

R, with 1 ≤ a ≤ dA, where dA is the order of the group.
These generators satisfy the commutation relations

½Ta
R; T

b
R� ¼ ifabcTc

R; ðA1Þ

TABLE IX. Values of β0IR as calculated to order OðΔp
f Þ via Eq. (6.1), denoted β0IR;Δp

F
and to order OðΔp

AdjÞ via Eq. (6.2), denoted
β0IR;Δp

Adj
, with p ¼ 2, 3, 4, in an SU(3) gauge theory with NF fermions in the fundamental (F) representation and NAdj fermions in the

adjoint (Adj) representation. Here, half-integral values of NAdj refer to theories with 2NAdj copies of Majorana fermions in the adjoint
representation. The notation ae-n means a × 10−n.

ðNF;NAdjÞ β0IR;Δ2
F

β0IR;Δ2
Adj

β0IR;Δ3
F

β0IR;Δ3
Adj

β0IR;Δ4
F

β0IR;Δ4
Adj

(8,1/2) 0.230 0.199 0.367 0.328 0.344 0.353
(8,1) 4.374e-2 4.105e-2 5.465e-2 5.32e-2 5.42e-2 5.43e-2

(10,0) 0.351 0.292 0.621 0.528 0.538 0.579
(10,1/2) 0.0931 0.0846 0.128 0.1215 0.125 0.126
(10,1) 1.75e-3 1.73e-3 1.837e-3 1.8345e-3 1.8363e-3 1.8361e-3

(12,0) 0.168 0.1475 0.258 0.235 0.239 0.247
(12,1/2) 1.71e-2 1.64e-2 1.987e-2 1.962e-2 1.975e-2 1.977e-2
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where the fabc are the associated structure constants of this
Lie algebra. Here and elsewhere, a sum over repeated
indices is understood. We denote the dimension of a given
representation R as dR ¼ dimðRÞ. In particular, we denote
the adjoint representation by A, with the dimension dA
equal to the number of generators of the group, i.e., the
order of the group. The trace invariant is given by

TrRðTa
RT

b
RÞ ¼ TðRÞδab: ðA2Þ

The quadratic Casimir invariant C2ðRÞ is defined by

Ta
RT

a
R ¼ C2ðRÞI; ðA3Þ

where I is the dR × dR identity matrix. For a fermion f
transforming according to a representation R, we often use
the equivalent compact notationTf≡TðRÞ andCf≡C2ðRÞ.
We also use the notation CA ≡ C2ðAÞ≡ C2ðGÞ. The invar-
iants TðRÞ and C2ðRÞ satisfy the relation C2ðRÞdR ¼
TðRÞdA. For G ¼ SUðNcÞ, CA ¼ Nc and for R equal to

the fundamental representation, TðRÞ¼1=2 and C2ðRÞ ¼
ðN2

c − 1Þ=ð2NcÞ.
At the four-loop and five-loop level, one encounters

traces of quartic products of the Lie algebra generators. For
a given representation R of G,

dabcdR ¼ 1

3!
TrR½TaðTbTcTd þ TbTdTc þ TcTbTd

þ TcTdTb þ TdTbTc þ TdTcTbÞ�: ðA4Þ

As with the quadratic invariants, for a fermion f in
the representation R of G, we often use the notation
dabcdR ≡ dabcdf . In this context, for R ¼ Adj, we use

dabcdR ¼ dabcdA . The quantities that appear in the anomalous
dimensions and derivative of the beta function β0IR that we
calculate are products of these dabcdR of the form
dabcdR dabcdR0 ≡ dabcdf dabcdf0 , summed over the group indices
a, b, c, d. For further discussion of these, with references to
the literature, see [16,44] and references therein.
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