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In previous work we have presented scheme-independent calculations of physical properties of operators
at a conformally invariant infrared fixed point in an asymptotically free gauge theory with gauge group G
and N, fermions in a representation R of G. Here we generalize this analysis to the case of fermions in
multiple representations, focusing on the case of two different representations. Our results include the
calculation of the anomalous dimensions of gauge-invariant fermion bilinear operators, and the derivative
of the beta function, evaluated at the infrared fixed point. We illustrate our results in an SU(N,) gauge
theory with N fermions in the fundamental representation and N »,4; fermions in the adjoint representation.
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I. INTRODUCTION

In this paper we shall consider a vectorial, asymptotically
free gauge theory (in four spacetime dimensions, at zero
temperature) with gauge group G with massless fermions
transforming according to multiple different representa-
tions of G, which has an exact infrared (IR) fixed point
(IRFP) of the renormalization group [l]. For technical
simplicity, we will restrict ourselves to two different
representations. We thus take the theory to contain N
copies (flavors) of Dirac fermions, denoted f, in the
representation R of G, and Ny copies of fermions, denoted
/', in a different representation R’ of G. In the case in which
f' transforms according to a self-conjugate representation,
the number N refers equivalently to a theory with Ny
Dirac fermions or 2N, Majorana fermions and hence in
this case Ny may take on half-integral as well as integral
values. One motivation for such theories is a possible
direction for ultraviolet completions of the Standard Model
that might help to explain the origin of the generational
hierarchy of quark and lepton masses (e.g., [2,3] and
references therein), since this hierarchy could be associated
with the different Euclidean energy/momentum scales at
which fermion condensates form for fermions in different
representations of a strongly coupled gauge interaction
involving beyond-Standard-Model (BSM) physics. In [3]
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we studied the infrared evolution and phase structure of this
type of theory. Here we go beyond Refs. [2,3] in presenting
(scheme-independent) calculations of anomalous dimen-
sions of gauge-invariant operators.

We denote the running gauge coupling as g = g(u),
where y is the Euclidean energy/momentum scale at which
this coupling is measured. We define a(u) = g(u)?/(4x).
Since the theory is asymptotically free, its properties can be
computed reliably in the deep ultraviolet (UV) region at
large u, where the coupling approaches zero. The depend-
ence of a(u) on u is described by the renormalization-group
(RG) beta function, = da(u)/dt, where dt = d1nu (the
argument p will often be suppressed in the notation). We
will consider a theory in which the fermion content is such
that the RG flow from the UV to the IR ends in an exact IR
fixed point, as determined by the zero in the beta function
nearest to the origin for physical coupling, denoted ag.
Since # = 0 at @ = apg, the resultant theory in this IR limit
is scale-invariant, and is deduced also to be conformally
invariant [4].

The properties of the resultant conformal field theory at
this IRFP are of considerable importance. Physical quan-
tities defined at the IRFP obviously cannot depend on the
scheme used for the regularization and renormalization of
the theory. In conventional computations of these quan-
tities, one first writes them as series expansions in powers
of the coupling, and then evaluates these series expansions
with a set equal to agr, calculated to a given loop order.
These calculations have been performed for anomalous
dimensions of gauge-invariant fermion bilinears in a theory
with a single fermion representation up to four-loop level
[5—7] and to five-loop level [8]. However, as is well known,
these conventional (finite-order) series expansions are
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scheme-dependent beyond the leading terms. Indeed,
this is a generic property of higher-order calculations in
quantum field theory, such as computations in quantum
chromodynamics (QCD) used to compare with data
from the Fermilab Tevatron and CERN Large Hadron
Collider (LHC).

There is thus strong motivation to calculate and analyze
series expansions for physical properties at the IRFP which
are scheme-independent at each finite order. The fact that
makes this possible is simple but powerful. To review this,
we first specialize to a theory with N, fermions in a single
representation, R, of the gauge group G. The constraint of
asymptotic freedom means that N, must be less than a
certain upper (#) bound, denoted Ny oy Here and below, we
will often formally generalize the number(s) of fermions in
one or multiple representations from non-negative integers
to non-negative real numbers, with the understanding that
for a physical quantity one restricts to integral values.
Furthermore, as noted above, if an f’ fermion transforms
according to a self-conjugate representation, then the
number N, refers equivalently to a theory with N
Dirac fermions or 2Ny Majorana fermions, so that in this
case, Ny may take on half-integral physical values. As N
approaches N, from below, the value of the IRFP, ag,
approaches zero. This means that one can reexpress series
expansions for physical quantities at this IRFP in powers of
the manifestly scheme-independent variable [9,10]
In recent work, for theories with N [ fermions in a single
representation of the gauge group G, we have calculated
scheme-independent series expansions for the anomalous
dimensions of gauge-invariant fermion bilinears and the
derivative dfi/da, both evaluated at the IRFP, to the
respective orders O(A}) and O(A3}) [11-19]. These are

the highest orders to which these quantities have been
calculated. We gave explicit expressions for the case
G =SU(N,) and R equal to the fundamental, adjoint,
and rank-2 symmetric and antisymmetric tensor represen-
tations, and for other Lie groups, including orthogonal,
symplectic, and exceptional groups.

In this paper we shall generalize our previous scheme-
independent series calculations of physical quantities at
an IRFP from the case of an asymptotically free gauge
theory with N, fermions in a single representation of the
gauge group G to the case of fermions in multiple different
representations. Specifically, we consider a theory with N,
fermions in a representation R of G and Ny fermions in a
different representation, R, of G. We present scheme-
independent calculations of the anomalous dimensions
of gauge-invariant fermion bilinear operators to cubic
order in the respective expansion variable [A; in Eq. (1.1)

for ff and A s in Eq. (1.2) for f'f"] and to quartic order in

Ay and Ay for the derivative of the beta function, evaluated
at the infrared fixed point.

The condition of asymptotic freedom requires that the
value of a certain linear combination of Ny and N, must
be less than an upper bound given below by Eq. (2.3).
For a fixed Ny, this implies an upper bound denoted as
Ny < Ny ,, and for a fixed N, this implies the upper bound
Ny < Np , givenrespectively in Egs. (2.4) and (2.5) below.
For fixed Ny, as N, approaches N, from below, ar
approaches zero. Therefore, one can rewrite the series
expansions for physical quantities as power series in the
variable Ay. The coefficients in these series expansions
dependon N . If A is small, the value of oy is also small, so
that the resultant IR theory may be inferred to be in a
(deconfined) non-Abelian Coulomb phase (NACP), often
called the conformal window. Strong evidence for this in the
single-representation case comes from fully nonperturbative
lattice simulations [20-22]. In the same way, for fixed N,
one can rewrite the series expansions for physical quantities
as power series in the variable

Af/ :Nf/,Lt_Nf/' (12)

For a general operator O, we denote the full scaling
dimension as Dy and its free-field value as D¢ ... The
anomalous dimension of this operator, denoted yo, is
defined via the relation [23]

DO = D(’),free —Yo- (13)

Let us denote the fermions of type fasy;,i = 1,..., Ny and
the fermions of type f" as y;, j=1,...,Np. We shall
calculate scheme-independent series expansions for the
anomalous dimensions, denoted y;,, g and y;, g of the
respective (gauge-invariant) fermion bilinears

Ny
yy = ZV_/]'WJ (1.4)
=1
and
Ny
o= Z)_(j)(j- (1.5)
=1

The anomalous dimension of iy is the same as that of the
(gauge-invariant) bilinear Z;\_],Z:l ;T sy, where 7, is a
generator of the Lie algebra of SU(N ;) [24], and we shall use
the symbol y;,, g to refer to both. An analogous comment
applies to 5, r. We write the scheme-independent series
expansions of y7, g as

YirIR = ZKEf) A (1.6)
=1
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and

Yip R = Zxﬁf >A;,. (1.7)
=1

We shall illustrate our general results in an SU(N,)
gauge theory with Ny fermions of type f in the funda-
mental (F) representation and N 4,; fermions of type f in
the adjoint (Adj) representation. For this theory we will
also use an explicit notation with coefficients /) = (F)
and () = x(Ad))

We shall calculate two equivalent scheme-independent
series expansions of the derivative fiz. With N, fixed, and
N variable, one may write the series as an expansion in
powers of Ay:

P =Y d;A). (1.8)
j=2

Alternately, one may take N to be fixed and write [ as a
series expansion in powers of A, as

P = d;A). (1.9)
j=2

Note thatd, = d, = 0 forall G and fermion representations.
This paper is organized as follows. In Sec. II we discuss
the methodology for our calculations. In Secs. IIl and V we
present our new results for scheme-independent expansions
of the anomalous dimensions of fermion bilinears and
dp/da, both evaluated at the infrared fixed point. We
discuss the special cases of the anomalous dimension and
Pir results for an illustrative theory with gauge group
SU(N,) containing fermions in the fundamental and
adjoint representations in Secs. IV and VI, respectively.
Our conclusions are given in Sec. VII, and some relevant
group-theoretic results are reviewed in Appendix.

II. CALCULATIONAL METHODS

A. Beta function and series expansions for
physical quantities
In this section we discuss some background and the
calculational methods that are relevant for our present
work. The series expansion of f in powers of the squared
gauge coupling is

p=-2a b, (2.1)
=1

where a = ¢?/(162%) = a/(4n) and b, is the #-loop
coefficient. With an overall minus sign extracted, as in
Eq. (2.1), the condition of asymptotic freedom is that

b; > 0. The one-loop coefficient, by, is independent of the
scheme used for regularization and renormalization. Mass-
independent schemes include minimal subtraction [25] and
modified minimal subtraction, denoted MS [26]. For mass-
independent schemes, the two-loop coefficient, b,, is also
independent of the specific scheme used [27]. For a theory
with a general gauge group G and N fermions in a single
representation, R, the coefficients b, and b, were calculated
in [28] and [29], while b5, b,, and b5 were calculated in the
commonly used MS scheme in [30], [31], and [32],
respectively (see also [33]). For the analysis of a theory
with fermions in multiple different representations, one
needs generalizations of these results. These are straightfor-
ward to derive in the case of | and b,, but new calculations
are required for higher-loop coefficients. These have
recently been performed in [34] (again in the MS scheme)
up to four-loop order, and we wuse the results of
Ref. [34] here.

The expansion of the anomalous dimension of the
fermion bilinear in powers of the squared gauge
coupling is

Vipy

row = clld". (22)
/=1
where c(ff ) is the Z-loop coefficient. The analogous expan-

sion applies for y;, with the replacement cif ) S cg,;f ). The

one-loop coefficient cgf ) is scheme-independent, while the

cg ) with # > 2 are scheme-dependent, and similarly with
the cE,zf ) Fora general gauge group G and N ; fermions in a
(/)

single representation R of G, the ¢, * have been calculated up
toloop order # = 4 in [35] and # = 5 in [36]. For the case of
multiple fermion representations, the anomalous dimension
coefficients for the fermion bilinears have been calculated up
to four-loop order in [37]. We use the results of [37] up to
three-loop order here.

Concerning scheme-independent series expansions, the

calculation of the coefficient Kﬁ-f ) in Eq. (1.6) requires, as
inputs, the values of the b, for 1 <7 < j+ 1 and the c(ff )

for 1 < ¢ < j, and similarly for K'(f )

J
cz(/,zf ) cf,zf ). The calculation of the coefficients d j and d j in

Egs. (1.8) and (1.9) requires, as inputs, the values of the b,
for1 <7<

Thus, using the calculation of the beta function for
multiple fermion representation to four-loop order in [34],
together with the calculation of the anomalous dimensions
of the fermion bilinears in [37] up to three-loop order, we
can calculate y, g to order O(A}) and yy, g to O(A},) for
the case of multiple fermion representations. [Note that we
cannot make use of the four-loop calculation of the
anomalous dimensions of fermion bilinears in [37] to

, with the replacement
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compute yy,r to order O(A}) and yy, g to O(A}‘.,),
because this would require, as an input, the five-loop
coefficient b5 in the beta function for this case of multiple
fermion representations, and, to our knowledge, this has not
been calculated.]

Similarly, using the four-loop beta function from [34],
we can calculate the d; and d ; for fig to order j = 4. We
denote the truncation of these series to maximal power
J=DPasypy A7 V7r IR AL ﬁiR' A7 and ﬂ;R, Aty respectively.

Although we use these coefficients as calculated in the MS
scheme below, we emphasize that our results are scheme-
independent, so the specific scheme used for their calcu-
lation does not matter. An explicit illustration of this using
several schemes is given in [38]. We refer the reader to our
previous work for detailed discussions of the procedure for
calculating the coefficients x; and d; in the case of a theory
with N fermions in a single representation of G.

Our procedure for calculating scheme-independent
series expansions requires that the IRFP be exact, and
hence we restrict our consideration to the non-Abelian
Coulomb phase, where this condition is satisfied. For
sufficiently smaller values of N ¥ and/or N 2 there 1is
spontaneous chiral symmetry breaking (SySB), giving rise
to dynamical masses for the f and/or f’ fermions [39].
Most-attractive channel arguments suggest that as N and/
or Ny decrease(s) and apr increases, the fermion with the
largest value of C; would be the first to form bilinear
fermion condensates and hence obtain dynamical masses
and be integrated out of the low-energy effective field
theory (EFT). Assuming that this happens and, say, the f’
fermions condense out, then one would proceed to examine
the resultant EFT with the remaining massless f fermions to
determine the further evolution of this theory into the
infrared. The details of the construction of the EFT will not
be relevant here, since we restrict our analysis to the
(chirally symmetric) non-Abelian Coulomb phase.

B. Relevant range of (N;,N)

Since we require that the theory should be asymptotically
free and since our scheme-independent calculational
method requires an exact IR fixed point, which is satisfied
in the non-Abelian Coulomb phase, a first step is to discuss
the corresponding values of the pair (N, Ny ) that satisfy
these conditions. We denote this set of values, or more
generally, the region in the first quadrant of the R? plane
defined by the generalization of (N;,Ny) from non-
negative integers (or half-integers in the case of a
Majorana fermion in a self-conjugate representation) to
non-negative real numbers, where the theory has an IRFP in
the non-Abelian Coulomb phase as the region Ryacp. We
next discuss the boundaries of this region.

For a specified gauge group G and fermion representa-
tions R and R’, the numbers N f and Nf/ are bounded above

by the asymptotic freedom (AF) condition that »; > 0. This
condition is expressed as the inequality on the linear
combination

11Cy4
Nfo+Nf/Tfl < 4 5

(2.3)

where C, and T'; are group invariants defined in Appendix.
Thus, for fixed Ny, the AF property implies that N is
bounded above as Ny < N, where

_11C, —4N,Ty

2.4
fu 4Tf ( )

and similarly, for fixed N Iz the AF condition implies that
Ny is bounded above as Ny < Ny ,, where

o 11C4 — 4N T, 55
T (2:5)
The upper boundary of this asymptotically free region,
which is also the upper boundary of the region Ryacp, in N ¢
and N ¢ is the locus of solutions to the condition b; = 0. This
isafinite segmentof theline N ;T + Ny Ty = 11C4 /4. We
may picture the first quadrant in the R? space defined by
non-negative (N, N ) to be such that N is the horizontal
axis and N is the vertical axis. Then the line segment
bounding the asymptotically free region is an oblique
line segment running from the upper left to the lower right,
with slope

ONp| T,

ONfplp—o Ty

(2.6)

This line segment intersects the horizontal axis at the
point (Ny,Ny) = (11C4/(4T4),0) and the vertical axis
at the point (N, Ny) = (0, 11C4/ (4T ;)). Without loss of
generality, we take f to be the (nonsinglet) fermion repre-
sentation of smaller dimension. The respective scheme-
independent expansions in powers of Ay and Ay amount
to moving into the interior of the non-Abelian Coulomb
phase from the upper boundary line horizontally (moving
leftward) and vertically (moving downward).

In our earlier work on theories with N, fermions in a
single fermion representation of the gauge group, we
denoted the lower boundary of the NACP as Ny . In that
case, we assumed that N, was in the NACP interval
Inacp:Nyer < Ny < Ny, Here the generalization of this
is the set of physical values of Ny and N in the region
Rnacp- Even in the case of a single fermion representation,
the value of Ny ., is not known precisely. This question of
the value of Ny ., for various specific theories has been
investigated in a number of lattice studies [20,21], which
continue at present. As noted above, we have previously

096003-4



SCHEME-INDEPENDENT CALCULATIONS OF PROPERTIES ...

PHYS. REV. D 98, 096003 (2018)

presented approximate analytic results relevant for this
study in [2,3]. Corresponding lattice studies could be
carried out for theories with multiple different fermion
representations to study properties of the respective theo-
ries. An example is a recent lattice study of an SU(4) gauge
theory with N, =2 Dirac fermions in the fundamental
representation and N = 2 Dirac fermions in the (self-
conjugate) antisymmetric rank-2 tensor representation
[40,41], which finds that the (zero-temperature) theory is
in the phase with chiral symmetry breaking for both types
of fermions. Since our results are restricted to an exact
infrared fixed point in the (conformally invariant) non-
Abelian Coulomb phase, they are not directly applicable to
this theory.

For the present study, with the axes of the first-quadrant
quarter plane in (N, N;) € R? as defined above, the upper
boundary of the NACP is the line segment resulting from
the b; = 0 condition. The analogue of the lower boundary
of the NACP at N ., for the present study with two fermion
representations is a line segment or nonlinear curve dis-
placed in the direction to the lower left relative to the
oblique b; = 0 line, so that the resultant NACP forms a
region in which physical values of Ny and Ny define
possible IR theories. This lower boundary of the NACP
intersects the horizontal axis at the point (Ny, Np) =
(Nf¢r.0) and intersects the vertical axis at the point
(Np,Np) = (0,Nyp ). Although this lower boundary of
the NACP is not known, one can get a rough idea of where
it lies by generalizing the analysis that we gave in our
previous work for theories with a single fermion repre-
sentation [12,13,15]. This analysis was based on the
observation that the two-loop beta function has an IR zero
if N is sufficiently large that b, is negative (with by > 0).
In this case of a single fermion representation, for small Nf,
b, is positive, and turns negative when N, exceeds a certain
|

4ﬂb1 -

22[11Cy — 4(N;T; + NyTj)]

lower (¢) value Ny, < Ny, where b, = 0, namely

B 17C3%
C2T4(5C4 +3Cy)

Thus, in this single-representation case, if and only if N
lies in an interval that we have denoted previously as Iz,
the two-loop beta function has an IR zero (IRZ). This
interval Iy is

IIRZ: fo < Nf < Nf,Lt (for Nf/ = O) (28)
Although Ny, is not, in general, equal to Ny,
it is moderately close to the latter in theories that have
been studied. As an example, in the case of an SU(N,)
gauge theory with N, fermions in the fundamental (F)
representation,

34N3

SUN).R=F: Nyp= o5y

(2.9)

In the intensively studied case N, =3 theory, N, =
153/19 ~8.05. This is close to the estimates of Ny,
for this theory from our previous studies and from a
number of lattice simulations [12,15,20,21].

In our present asymptotically free theory with two
fermion representations, the two-loop beta function has
an IR zero if and only if b, < 0, which is the inequality

17C3
2

(2.10)

This IR zero of the two-loop (2¢) beta function occurs at
a = aRr s, Where

AR2¢ = — =
by |

We thus define the two-dimensional region in the first
quadrant of the R? plane defined by non-negative real
values of (N;,Ny) where the theory is asymptotically
free and the two-loop beta function has an IR zero as the
region Rigz, given by the conditions (2.3) and (2.10).
The upper boundary of Rz is the same as the upper
boundary of Ryacp, While the lower boundary of Riry
can provide a rough guide to the lower boundary of
Rnacp and has the advantage that it is exactly calculable.
This lower boundary of the region Ry is given by the
solution of the condition that b, = 0 in the first quadrant
of the R? plane. This condition is obtained from
Eq. (2.10) by replacing the inequality by an equality.

2N;T(5C4 +3Cs) +2NpTp(5C4 +3Cp) — 17C5]

(2.11)

The corresponding line defining the lower boundary of
Rirz has the slope

ONy

_ TH(5C, +3Cy) 212)
Tp(5C4 +3Cp) '

This lower boundary of the region Rigz crosses the
horizontal axis in the (N;, N;) space at the point
(N;z,0), where N;, was given above in Eq. (2.7),
and it crosses the vertical axis at the corresponding
value (0, Nf/f), where
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- 17C4
2T (5C4 +3Cy)

Ny (2.13)

As noted, the lower boundary of this Rz region
provides a rough guide to the actual lower boundary
of the NACP region Ryacp- The determination of the
true lower boundary of Ryacp would require a fully
nonperturbative analysis, e.g., via lattice simulations.

Although our calculational methods require the IRFP to
be exact and hence, strictly speaking, apply only in the non-
Abelian Coulomb phase, they could also be useful for the
investigation of quasi-conformal gauge theories. In turn, the
latter have been of interest as possible ultraviolet comple-
tions of the Standard Model. Specifically, (a) if the transition
from the lower part of the non-Abelian Coulomb phase to the
quasi-conformal regime in the variables (N, Ny ) is con-
tinuous, and (b) if our series calculations are sufficiently
accurate in this region, our results for y;, r. ¥7,r» and fig
could provide approximate estimates for the values of these
quantities in the quasi-conformal regime just below the
lower boundary with the NACP. Here we recall that
anomalous dimensions of fermion bilinears in strongly
coupled BSM theories are relevant in helping to determine
resultant SM fermion masses (e.g., [2,3,20,21]). Another
example with fermions in multiple representations is super-
symmetric gauge theories with both gauginos and matter
chiral superfields.

C. Example with fermions in the fundamental
and adjoint representations

As an illustrative example, we consider a theory with the
gauge group SU(N,) that contains N, = N fermions in
the fundamental (F) representation and Ny = Ny ; fer-
mions in the adjoint representation, Adj. We denote this as
the FA theory. Here the upper boundary of the NACP
region Ryacp, Which is also the upper boundary of the
region Ryrz, is given by the line

1IN,
FA theory: NF+2NCNAdj :—L.

(2.14)
Thus, NF < (11/2)]\]c if NAdj =0 and NAd/ < 11/4 =
275 it N;=0. The lower boundary of Rz, which

can provide an approximate estimate to the lower boundary
of Ryacp, 18 given by the line b, = 0, namely

FA theory: (13N.—3N;')Np+ 32NN, =34N2.
(2.15)

Thus, in Rz, it follows that Ny > 34N3/(13N2 - 3) if
Nyg; =0 and Ny > 17/16 = 1.0625 if Ny = 0. In this
FA theory, the line b; = 0 has slope

TABLE I. List of asymptotically free SU(3) gauge theories with
Ny fermions in the fundamental (F) representation and Nu4;
fermions in the adjoint (Ad}j) representation, with the property that
the two-loop beta function has an IR zero, at @ = ag 5. The four
columns list (N g, Nyg;), d,, dg, and g 50, Where d,, and d; are the
distances of the point (N, N44;) to the line b; = 0 and to the line
b, = 0, respectively. Half-integral values of N,4; correspond to
2N 445 copies of Majorana fermions in the adjoint representation.

(Np.Nagj) d, dy QR 27
(0,3/2) 1.233 0.434 1.496
0,2) 0.740 0.929 0.419
(0,5/2) 0.247 1.425 0.0911
(1,1) 1.562 0.0688 11.938
(1,372) 1.069 0.565 0.996
(1,2) 0.575 1.060 0.286
(1,5/2) 0.0822 1.556 0.0278
2,1) 1.397 0.200 3.683
(2,3/2) 0.904 0.695 0.684
2.2) 0411 1.191 0.182
(3,1) 1.233 0.330 1.963
(3,3/2) 0.740 0.826 0.471
(3,2) 0.247 1.322 0.0982
4,1) 1.069 0.461 1.219
4,3/2) 0.575 0.957 0.316
4,2) 0.0822 1.453 0.0298
(5,172) 1.397 0.0964 7.630
5,1 0.904 0.592 0.804
(5,3/2) 0.411 1.088 0.199
(6,1/2) 1.233 0.227 2.856
(6,1) 0.740 0.723 0.539
(6,3/2) 0.247 1.219 0.106
(7,1/2) 1.069 0.358 1.571
(7,1) 0.575 0.854 0.355
(7,312) 0.0822 1.349 0.0321
(8,1/2) 0.904 0.489 0.973
(8,1) 0411 0.985 0.220
(9,0) 1.233 0.124 5.236
(9,172) 0.740 0.620 0.628
9,1) 0.247 1.115 0.116
(10,0) 1.069 0.255 2.208
(10,1/2) 0.575 0.750 0.4035
(10,1) 0.0822 1.246 0.0347
(11,0) 0.904 0.386 1.234
(11,1/2) 0.411 0.881 0.245
(12,0) 0.740 0.516 0.754
(12,1/2) 0.247 1.012 0.128
(13,0) 0.575 0.647 0.468
(13,1/2) 0.0822 1.143 0.03785
(14,0) 0.411 0.778 0.278
(15,0) 0.247 0.909 0.143
(16,0) 0.0822 1.040 0.0416
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ON 44/ 1
FA theory: —% =——, (2.16)
ONF | o 2N,
while the line b, = 0 has slope
ON pq; 13N%2 -3
FA theory: —2%| = —(763) (2.17)
ONFE |p,—0 32N;

For example, in the FA theory with N.=3, so
G = SU(3), these slopes (2.16) and (2.17) are —1/6 =
—0.16667 and —19/144 = —0.13194, respectively, where
the floating-point values are given to the indicated accuracy.
The b; = 0 line crosses the horizontal and vertical axes at
(N¢,Ny) = (16.5,0) and (0,2.75), respectively, while the
b, = 0 line crosses the horizontal and vertical axes at
(Ng,Ny) = (8.0526,0) and (0,1.0625), respectively.

In Table I we list the physical integral values of Ny and
integral and half-integral (Majorana) values of N,; in the
region Rygz in this SU(3) theory. Considering (Np, N44;)
as a point in the first quadrant of an R? space, we list in the
second column the distance d,, of this point from the line
b; = 0 that forms the upper boundary of the regions Rrz
and Ryacp, and in the third column the distance d, of this
point from the line b, = 0 that forms the lower boundary of
the region Rirz. (By distance of a point P from a line L, we
mean the length of the line segment perpendicular to the
line L that passes through the point P.) Thus, Table I
provides a guide to the position of a theory with a given set
of values of (Np,Ny,;) in the region Rigz. In general,
theories with small values of d, are close to the upper
boundary of the region Ryacp and have correspondingly
small values of aqg. In order for our perturbative analysis to
be self-consistent, it is necessary that oz should not be
excessively large, and so one may require, say, that
a2, < 1. Our perturbative analysis is expected to be
most accurate for the (N, N 4;) FA theories with small d,,
and hence small apg 5, in the upper part of the NACP. We
will discuss this illustrative two-representation FA theory
further below.

I1II. SCHEME-INDEPENDENT CALCULATION OF
ANOMALOUS DIMENSIONS OF FERMION
BILINEAR OPERATORS

In this section, for a theory with a general gauge group G
containing N, fermions in a representation R and N
|

fermions in a representation R’, we present our new

E-f ) and K‘E» )
scheme-independent expansions of the anomalous dimen-
sions ¥,k and y;, g in Eqgs. (1.6) and the analogue for
YR With 1 < j < 3. Tt will be useful to define a factor that
occurs repeatedly in the denominators of various expres-

sions, namely

calculations of the coefficients x in the

Dy = Co(TCx + 11C;) + 4Ny Tp(Cp = Cp). (3.1

In the previously studied theory with a single fermion
representation, i.e., Ny = 0, this factor D reduces as

Dy =CyD if Ny =0, (3.2)
where
D =7C, + 11Cy, (3.3)
as defined in Eq. (2.13) of our earlier work [13,15].
For the first two coefficients we calculate
8C,T,
(n _O%fty
ki = —Df (3.4)
and
() _4C T3

3D}
+2*'N T (Cp = Cy)(10C, +8C + Cpr)l. (3.5)

For the third coefficient, we write

(r) _ 4CTy

. f) f f f
o= i Ay +AVNy + ADNL + AVIN). (3.6)

It follows that the A(()f ) term is independent of Ny and
hence, taking into account the difference in the prefactor, it
is equal to C4 times the terms in the square bracket of
Eq. (6.7) in our earlier Ref. [13] or equivalently Eq. (3.4) in
our Ref. [15]. We have

A =c, [3CAT;(—18473Cj + 144004C3 C; + 650896C3 C3 + 356928C,C3 + 569184CY)

N 27D (_20T2 dﬁdedade
7
A
dabcddabcd
10 2 A
+33-21°D¢, (2Tf -

dqbcddabcd dabcddabcd
A / A 2 °f f
2 —13C,T +11C ,
d ALS d A d )]

dabcddabcd

4 4 ?bcd ?bcd

A 2

L 4+ 352C,Ty———1331C5 ————

d + AL f dA A dA )

(3.7)
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where ¢, = > %, n™* is the Riemann zeta function. Here, the group invariants C,, Cy, T, d3>°?d$P<d, d?dedﬁde,
dgPeddghed, and dg*<?dr* are defined in the Appendix, and d, is the dimension of the adjoint representation of G.

For the other Agf ) with 1 < s < 3, we calculate
!
AY) = C,T3T [273840C5,(Cr — Cy) + CX(~1511040C% + 1916256C,Cr — 405216C%)
+ C4(=129600C3 + 522432C35Cp — 485568C;C7, + 92736C3,)
+ Cy(=1241856C} + 1020096C7Cy + 76032C,CF, + 145728C,)]

5 dﬁdededC d}acbcddabcd
+ 10240Tfo/(Cf — Cfr) T + CATfo/(—114688CA —360448C, + 180224Cf/) T

dabcddabcd abced jabed

+ CATH(114688C, + 180224C) ~L——"— + CT(867328C, +2044416C; — 681472C,) L —

A dA
abcdda/bcd
+ C2T;(~867328C,, — 1362944C) fd—f
A
dﬁdedf\de d?bcddabcd
S CaT Ty (1118208C, + 3514368C, — 1757184C,) 2
da‘/hcddgbcd duhcddc{bcd
+ CaT}(=1118208C, — 175T184Cy) ="+ CRT(~1892352C, — 4460544C; + 1486848C ) - —
A A
dabcddabcd
f f
+ C/%Tf(1892352CA + 2973696Cf) d—}
A

+{3(270336T7T (Cpr = Cy)

(3.8)

AY) =T2T2[350976C3 (C; = C;p ) + C (~94464C} — 2304C5C 1 +288000C,C2 — 191232C%)
+225792C4 —370944C3C s + 119808C3C2 —29952C,C3, +55296C% ]
abced jabed abed jabed abced jJabed
dy™“dy dydy ) dy>dj

+216Tfo,(cf—cf,)(Tf, G T ) AT} (- 157696C, +495616C, ~743424C,) ! i

dqbcddabcd d“{’Cdd}l,,de

+CAT T (315392C, +991232C, — 495616Cf/)jdif/+ CAT3(~157696C,, —247808C) fT
A ’ A

d;?cddzbcd d?dedszd
+¢3|638976T T (Cp—Cp) ( T Ty~
A

dy
dahca’dahcd

+C4 T2, (344064C, + 1622016C; — 1081344C ) - -

dabcdda,bcd da,deda,de
X CAT ;T ;1 (—688128C,4 —2162688C + 1081344C ) foJr CaT3(344064C, +540672C ) %]
A A
(3.9)
and
dqbcddabcd dqbcdda?cd da./bcdda/bcd
AL =287 (Cp - Cp)(11 = 2483) (13 LS — o117 L L 73 L (3.10)
‘ d dy ds dy

The coefficients Kﬁ-f ") are obtained from these Kﬁf ) by interchanging f and f’ in all expressions. For example,

Dy = Co(TC4 + 11Cp) +4N ;T 4(Cyr = Cpr), (3.11)
/ 8CHTp

k) = LS (3.12)

1 ’
Dj

and so forth for the other expressions.
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An important result that we found in our previous work

[12—-16] was that for a theory with a single representation,

K(lf ) and K‘gf ) are manifestly positive, and for all of the

specific gauge groups and fermion representations that we

considered, Kgf ) and K‘y ) are also positive. This property

implied several monotonicity relations for our calculation
of y4, to maximal power A", denoted Vip.als namely that

(i) for fixed p, VAl is a monotonically increasing

function of Ay, i.e., a monotonically increasing function
of decreasing Ny, and (ii) for fixed Ny, VAT is a
monotonically increasing function of the maximal power p.

A basic question that we may ask concerning these
results is how a coefficient x/) changes as one goes from
the single-representation theory with N} =0 to theories
with an increasing number Ny of fermions in a different

representation, and vice versa for the dependence of /") on
Ny. For the purpose of this discussion, we recall that, by
convention, we take f to be the fermion in the representation
with a smaller dimension. In the cases with which we deal,
this also means that C; < Cp. The question is readily

answered in the case of K'(lf ) and K‘Ef/). As a lemma, we

observe that Dy is a monotonically increasing function of
N, while Dy is a monotonically decreasing function of N .

Hence, K'gf )
while x\/)

is a monotonically decreasing function of N,

is amonotonically increasing function of N ;. The

dependence of Kﬁ»f ) on Ny and of K;-j ) on N for indices

Jj =2, 3 will be analyzed below for particular theories.

Concerning the question of the positivity of K;f ) and K‘;f />,
in a theory with fermions in multiple different representa-

tions, there are terms of both signs in the expressions for the

coefficients Kﬁ»f ), Nevertheless, anticipating our results

below, in the specific FA theories that we have studied
in detail, both K‘ﬁ-F) and K';Adj ) are positive for all of the
orders that we have calculated, namely j = 1, 2, 3.

In our earlier work [11-17] on scheme-independent
series calculations for theories with a N fermions trans-

forming according to a single type of representation, we
|

(7) ANz = 1)[(ONZ —2)(49N7 — 44) + 8N (N7 + 1)(15NZ — 4)]

carried out detailed studies of the reliability of these
expansions using a variety of methods. One of the simplest
procedures is to analyze the fractional change in a quantity,
calculated to a given order O(AJ’? ), as one increases the
maximal power p of the expansion. Here we shall apply
this method in our illustrative theory discussed in the next
section.

IV. ANOMALOUS DIMENSIONS IN A THEORY
WITH FERMIONS IN THE FUNDAMENTAL AND
ADJOINT REPRESENTATIONS OF SU(N,)

In this section we discuss our scheme-independent
calculations of yg, r and yz, g for the illustrative case
of a theory with gauge group SU(N,.) containing Ny = N
fermions in the fundamental representation and Ny = N 54
fermions in the adjoint representation. As before, we call
this the FA theory. In this case, the denominator factor D
takes the form

FA theory: Dy =

[25N2 — 11 44N 44;(N2+1)]. (4.1)

| =

We have given the values of (Nj, N,;) in Table I for the
region Ryrz. For the first-order coefficients we calculate

4(N? -1
K'(IF) — 5 ( c ) 5 (42)
N [25N; =11+ 4NAdj(NC +1)]
and
(Adj) 8N;
k= (4.3)

~I8NI = Np(NZ241)°

If Nyyj =0, then the coefficient K§F> reduces to the
expression 4(N2—1)/[N.(25N2 —11)], as given in
Eq. (6.8) of our earlier work [13]. Similarly, if Ny =0,

then K(lAdj )

of [13].
For the second-order coefficients, we find

reduces to the value 4/9, as given in Eq. (6.18)

Ky, = =

and

(adj) _ 4NE[1023N2 — 2N (N2 + 1)(37N2 — 1)]
2 3[18N? = Np(N2 + 1)

(4.5)

If Nyg; =0, then K'gF) reduces to the expression given

(Adj)

in Eq. (6.9) of [13], and if Ny = 0, then «, reduces to

3NZ[25N2 — 11 + 4N 4;(N2 + 1)

(4.4)

|
the value 341/1458 = 341/(2 - 3%) as given in Eq. (6.19)
of [13].

Our results for the third-order coefficients are as follows:

F F F F
) 2(NZ - 9] go> +K§,1)NAdj +’<f ,2)fodj +’<,(,3)N/3mj]
3 3BNI25N2— 11+ 4N (N2 + 1)

E}

(4.6)
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where

Ky = 274243N8 — 455426N6 — 114080N* + 47344N>
35574 — 27 - 33¢,N2(4N2 — 11)(25N? — 11)
(4.7)

Ky ) = 135848N8 — 215832N8 + 291424N* — 189168N?
— 25872 — 29 - 325, N2(T3N? + 132N2 — 121)

(4.8)
Kg 2) 25(N2 + 1)[689N® — 2651N% + 2775N?
+ 147 + 20 323N2(6N2 — 11)] (4.9)
and
Ky = 2IONZ(N2 + 1)2(=11 +2485).  (4.10)
Further,
Adi) _ 4Nz ["<3Aodj> + KgAld N+ K(Ad/)N Pt KgA3dJ)N i
3 318N? — N, (N2 1 D) ’
(4.11)
where
K — 33NS(61873N2 — 42624)  (4.12)
ki) = —36N3(6728NS — 585TN? — 1247N?
138 + 1152085N°) (4.13)
K5 = 25 (N2 + 1)(287N6 — 187N 4 27N?2
+9 4 24485 NY) (4.14)
and
KA = DN (N IR+ 24). (419)

If Nyg; =0, then the coefficient K§F> reduces to the
expression in Eq. (6 10) of our earlier work [13], while

if Np =0, then K3 7) teduces to Eq. (6.20) of [13]. The

agreement of these reductions of K<< ) for N 44j = 0 and of
i\Adi)
Kj

Jj =1,2, 3 serves as a check on our present results. As was

discussed in [13,15], these coefficients have the leading

large-N . dependence

for N = 0 with our earlier calculations in [13] for

K~ N as N, - o (4.16)

TABLE II. Values of the coefficients K;F>, j=1,2,3, for the
scheme-independent expansion of the anomalous dimension
Yoy r in an SU(3) gauge theory with fermions in the fundamental
and adjoint representations, as functions of N,,;. Half-integral
values of N4, correspond to 2N 44, copies of Majorana fermions
in the adjoint representation. The notation ae-n means a x 107",

Nagj K<1F> KEF) KgF)
0 4.98e-2 3.79e-3 2.37e-4
% 4.56e-2 3.39e-3 1.835e-4
1 4.20e-2 3.03¢-3 1.51e-4
% 3.8%-2 2.71e-3 1.31e-4
2 3.63e-2 2.44e-3 1.16e-4
and

K.E_Adﬁ ~NY as N, = c. (4.17)

As specific examples of these FA theories, we consider
the following sets of SU(3) gauge theories in Rjgz with the
indicated fermion content:

(NF,NAdj):<8,%>, 8.1), (10,0), <1o,%>,

1
(10,1), (12,0), (12,2>. (4.18)
The respective positions of these theories in the regions
Rirz and Ryacp can be ascertained by referring to Table 1.
The corresponding values of the coefficients K;F) with
J =1,2, 3, as functions of N,;, are listed in Table II, and

the values of K'( i)
listed in Table 1L

We observe that all of these coefficients are positive, and
so the generalizations of the monotonicity relations that we
found in our earlier work for the theory with fermions in a
single representation also hold for this FA theory, namely
(i) for fixed Nugj, ¥gy v 18 @ monotonically increasing
function of Ap, i.e., a monotonically increasing function of
decreasing N; (ii) for fixed N, 7z, r is @ monotonically
increasing function of A,4;, i.e., a monotonically increas-
ing function of decreasing N 44;; (iii) for fixed N s, v, 1r, A?

with j = 1, 2, 3, as functions of N, are

TABLE III.  Values of the coefficients K‘;-Ad] ), j=1,2,3, for the
scheme-independent expansion of the anomalous dimension
Yzpr in an SU(3) gauge theory with fermions in the fundamental
and adjoint representations, for illustrative values of Np.

Ny Adi A )
0 0.444 0.234 0.121
4 0.484 0.270 0.145
8 0.532 0.315 0.179
10 0.560 0.342 0.201
12 0.590 0.372 0.227
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is a monotonically increasing function of p; and (iv) for
fixed Ny, v7,.1r, e is a monotonically increasing function

of p.
Separately, we also note a generalization of the monot-

onicity relation that we proved for K&F) and proved for K(lAdj ),

namely that for these FA theories, the KA(,»F)
with j = 1, 2, 3 are monotonically decreasing functions of

Naqj» and the K;Adj)

coefficients

coefficients with j =1, 2, 3 are

monotonically increasing functions of Ny.

Having calculated these coefficients K‘E-F) E-Adj ) with

j =1, 2, 3 for this FA theory, we next prbceed to substitute
them in the general scheme-independent expansions (1.6)
for f = F and the analogue for ' = Adj. Explicitly, with

f=wand f' =y,

and «

Vopr = kA (4.19)
=1
and
Vo = > KA (4.20)
Jj=1
where
Ap = (Npy—Np), (4.21)
with
N (11 —=4N 4 ;i
Np. ( 5 1) (4.22)
and
AAdj = (NAdj.u - NAdj)? (4-23)
with
11 Ng
Nyjin =———. 4.24
Adj.u 4 2Nc ( )

For reference, we list the values of N, and N,4;, from
Eqgs. (4.22) and (4.24) for these (Np,N,4;) FA SU(3)
theories in Table IV.

In Table V we list the values of y, r calculated to
O(A}) for p =1, 2, 3, denoted as y;,, 1r, ar- Similarly, in
Table VI we list the values of y;, r calculated to O(Af, i)
for p =1, 2, 3, denoted as y;, g, A The monotonicity
relations noted above are evident in these tables. From an
examination of the fractional changes in the anomalous
dimensions as one increases the order of calculation, one
may infer that these scheme-independent expansions
should be reasonably reliable. For example, in the SU(3)
FA theory with (Np,Nag;) = (12,1/2) theory, the frac-
tional change in the y;,, r anomalous dimension is

TABLE 1V. Values of Np, from Eq. (2.4) and N4, from
Eq. (2.5) (formally generalized to non-negative real numbers) for
the illustrative SU(3) theories with N fermions in the funda-
mental representation and N,,; fermions in the adjoint repre-
sentation. Half-integral values of N,,; refer to theories with
2N 44; Majorana fermions in the adjoint representation.

(Np.Nagj) Npy Nagju
(8,1/2) 27/2 17/12
8,1 21/2 17/12
(10,0) 33/2 13/12
(10,1/2) 27/2 13/12
(10,1) 21/2 13/12
(12,0) 33/2 3/4

(12,1/2) 27/2 3/4

TABLE V. Values of the anomalous dimension y g, g, AL calcu-
lated to order p = 1, 2, 3 and evaluated at the IR fixed point in an
SU(3) gauge theory with N fermions in the fundamental (F)
representation and N »,; fermions in the adjoint (Ad)j) representa-
tion. Here, y is the fermion in the F' representation.

(Np.Nagj) YiwIR.Ax Vi IR A2 Yoy IR A3
(8,1/2) 0.251 0.353 0.384
(8,1) 0.105 0.124 0.126
(10,0) 0.324 0.484 0.549
(10,1/2) 0.159 0.201 0.209
(10,1) 0.0210 0.0218 0.0218
(12,0) 0.224 0.301 0.323
(12,1/2) 0.0684 0.0760 0.0766

TABLE VL. Values of the anomalous dimension y;, g, A?
calculated to order p = 1, 2, 3 and evaluated at the IR fixed point
in an SU(3) gauge theory with N fermions in the fundamental (F)
representation and N »,; fermions in the adjoint (Ad)j) representa-
tion. Here, y is the fermion in the Adj representation.

(Nr.Naj) Vi IR Ay, YirIRA2, YirIRA,
(8,172) 0.488 0.753 0.891
8,1) 0.222 0.276 0.289
(10,1/2) 0.326 0.443 0.483
(10,1) 0.0466 0.0490 0.0491
(12,1/2) 0.1475 0.171 0.174

SU(3), (Np,Nygj) = (12,1/2)

Yoy IR, A3~ Vi IR, A2
rRA  TWVRE _0.81 x 1072, (4.25)

Yoy IR A2

In the SU(3) FA theory with (N, N44;) = (10, 1) theory,
the fractional change in yy,, g is even smaller:
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SU(3). (Np. Nyg;) = (10.1)

Vgw IR.AY ~ Vipy IR,A2

=0.87x 1073, (4.26)

7 2
}/I/I!//.IR,AF

yielding identical entries listed to three significant figures
in Table V. Similar comments apply to the calculations

of 77 maL, -

V. SCHEME-INDEPENDENT
CALCULATION OF g},

In this section we return to the general asymptotically
free gauge theory with gauge group G containing Nf and
Ny fermions in the respective representations R and R’ and
present our calculations of the coefficients d; and d ; in the
scheme-independent expansions of the derivative of the
beta function evaluated at the IR fixed point, Sz, in powers
of Ay in Egs. (1.8) and in powers of Ay in Eq. (1.9),
respectively. As before in this paper, this IR fixed point is
taken to be in the non-Abelian Coulomb phase. Part of the
physical interest in the quantity S, stems from the fact that,
owing to the trace anomaly relation [42], it is equivalent to
the anomalous dimension of the field-strength tensor term
Tr(F;, F**) in the Lagrangian [13,43]. As noted above,
|

generalizing our result for the single-representation case,
d, = d, = 0 for arbitrary G, R, and R'.
For the higher coefficients we find

25TJ%
d, = 5.1
2 32Df ( )
27T3(5C, + 3C
dy = i A 2 (5.2)
3313
and
T o0) L ) ) ()
d,= [Bi' +B{'Nyp+B;'Nj,+By'N;],  (53)

T 2675
3Df

where we explicitly indicate the dependence on f in the

B§f>, s =0, 1,2, 3. [We extract a minus sign in Eq. (5.3) to

maintain the same notation as in our earlier works [13,15],
where we found that in the case of fermions in a single
representation R = F, d, is negative.] As was the case with

Aéf ) in K'gf ) , the Béf ) term in dy is independent of Ny and

hence, taking into account the difference in the prefactor, it
is equal to C, times the terms in the square bracket of
Eq. (5.11) in our earlier Ref. [13] or equivalently, Eq. (4.8)
of our Ref. [15]. We have

By =c, [—3@, T%(137445C} +103600C; C; +72616C5 C} +951808C, C3 — 63888C%)

(Jabed gabed dabed gabed
8 27A A f A
+2°D (—2()de+ 352C, TfT

A

+844SD§3{C§T}(21C§ +12C,C;=33C2) + 16734

For the Bj.f ) with j =1, 2, 3, we calculate

da.bcddavhcd
~1331C3 fdf>

A

dabcddgbcd abced jabed dabcddabcd
d—A—104cATf7fdA +88¢c2 L 1 H (5.4)

A A dA

BY) = 194880C4T2T (Cpr — Cf) + CAT3T p(~1854816C% + 2715648C,C,r — 860832C%)
+ CAT7T(903168C; + 153216C3Cyr — 1241856CC, + 185472C7,)
+ CaT7TpC(=139392C} — 164736CCp + 12672C,CF, +291456C7,)
+ CAT3T ¢ (Cy = Cp)¢3(=967680C; + 608256C,C 4 3345408CF)

(abed gabed
3T (Cy = C) (20480 — 5406726;) Aot

+ CoT T [~229376C,, — 720896C + 360448C  + {3(2236416C, + 7028736C; — 3514368C )] ~-———

+ CaT$[229376C,, + 360448C + 3(—2236416C,, — 3514368C)] f’T
+ C3T/[1734656C,, + 4088832C, — 1362944C » + £5(~3784704C,, — 8921088C + 2973696C )] -~

+ C3T/[C4(~1734656 + 3784704L;) + C;(—2725888 + 5947392¢;3)] fd—f

abced jJabed
da
abed jJabed
dA
A
dabcddabcd
A
dabcddalbcd
(5.5)
A
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BY) = T2T%[669696C3 (C; — Cpr)? + C4(437760C% — 1327104C3Cpr + 1340928C,C2, — 451584C3)
+25344C% + 59904C;Cp — 87552C5CF, — 105984C,C}, + 108288C%,

+ C4(Cp = Cp)2L5(~110592C, — 1216512C )]

+ T,T(Cy = Cp) (131072 = 1277952¢3) | Ty L

+ CaT%[-315392C,, — 1486848C, + 991232C » + {3(688128C, + 3244032C, — 2162688C )] L——L—

+ CAT,Tp[630784C, + 1982464C; — 991232C,: + {3(~1376256C, — 4325376C + 2162688C )] L———

+ CuTH-315392C, — 495616C; + (4(688128C, + 1081344C )] -L—L—

and

BY) =T,(C;-Cp) {211 -3T3T5,(Cr = Cp)* (=23 + 24¢5)

dqbcddqbcd
+214(11 = 24¢5) (Tﬁ, B

In passing, we note that Bgf ) has the same prefactor as A

in Eq. (3.10), namely T/ (C; — Cy).
The corresponding coefficients for the expansion (1.9)
are obtained from these by interchanging f and f’. Thus,

dadedide d;,dedgde
d Idy
abced jabed
da
abcddabcd
da
dalbcdd;z”bcd
5.6
7 (5:6)
dc;bcdd;/bcd d?-/h(:dd;l»/th
2T ;T p — T2 — . 5.7
d, T ) ﬂ S
(f) p 257?/ -
2= 32Df’ ( . )
- 2'T3,(5C, +3Cp
_ 2Ty 0G +3¢) (5.9)

for example,

TABLE VII.  Values of the coefficients d;, j = 2, 3, 4, for the
scheme-independent expansion of iz, Eq. (6.1), in an SU(3)
gauge theory with fermions in the fundamental and adjoint
representations, as functions of N,,;. Half-integral values of
Naqj correspond to 2N 4,; copies of Majorana fermions in the
adjoint representation. The notation ae-n means a x 107",

Nyqj d, ds dy

0 0.831e-2 0.983e-3 —0.463e-4
1/2 0.760e-2 0.8225e-3 —2.44e-5

1 0.700e-2 0.698e-3 —1.24e-5
3/2 0.649¢-2 0.600e-3 —0.578e-5
2 0.605e-2 0.521e-3 —2.12e-6

TABLE VIII. Values of the coefficients d i J =2, 3, 4, for the
scheme-independent expansion of Sz, Eq. (6.2), in an SU(3)
gauge theory with fermions in the fundamental and adjoint
representations, for illustrative values of N.

NF (22 a~f3 (14

0 0.1975 0.117 0.0265
4 0.215 0.139 0.0313
8 0.236 0.168 0.0358
10 0.249 0.186 0.0374
12 0.262 0.206 0.0379

dy = 32 ’
3 Df,
and similarly for dj.

VI. RESULTS FOR g IN A THEORY WITH
FERMIONS IN THE FUNDAMENTAL AND
ADJOINT REPRESENTATIONS OF SU(N,)

In this section we discuss the special case of our general
calculation of S, for an SU(N,.) theory with N, fermions
in the fundamental representation and N 4,; fermions in the
adjoint representation (i.e., the FA theory). We write
Egs. (1.8) and (1.9) as

P =Y diAL (6.1)
Jj=2
and
P = dikiy;. (6.2)
=2

where Ap and A,,; were given explicitly in Eqgs. (4.21)-
(4.24).
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We calculate

5 210N6
24 dy = < 6.6
dy =5 > (6.3) T BIBN = N(N2 +1))2 (66)
32[25N% = 11 + 4N 44 (N% 4+ 1)]
. 2°N3
d2 = 32[18]\72 _ NF(N% + 1)} (64) _ 24[014,0 + d4,1NAdj + d4.,2N31dj + d4.3N3Adj] (6 7)
! 3INZ[25N2 — 11 + 4N g (N2 + 1) '
25(13N2 -3
d3y = 33 2 SE. 2 z (65)
3 Nc[25N6_11+4NAdj(NC+1)] Where
|
dso = 366782N8 — 865400N% + 1599316N% — 571516N? — 3993
+ £3N2[—660000NS 4 765600N* — 2241888N2 + 894432 (6.8)
dy, = 18416N8 + 346944N8 — 756920N¢ + 530256N2 + 2904
+ ¢3N2[28800N8 + 372096N?¢ + 1026432N2 — 975744] (6.9)
dyr = 2*(N?2 + 1)[-3161N® + 10589N¢ — 10155N% - 33
+ {3N2(3744N% — 13248N?2 + 22176)] (6.10)
dy3 = 28N2(N? 4 1)2[-23N2 + 65 + {3(24N2 — 168)] (6.11)
and
- 2N3[dyo+dy Np + dyoNy + dy ;N3]
= it : - , (6.12)
3°[18N3 — Np(N?% + 1)]

where
dyo = 3°N8(46871N2 + 85248) (6.13)
dyy = 36N3[1287NS — 23350N* — 1961N2 + 276 + {3N*(—6912N2 + 16128)] (6.14)
dys = 4(N2 + 1)[=5153NC + 18113N% — T4TN? — 141 + {3N*(6912N2 — 32256)] (6.15)
dys = 25N (N% 4 1)2[23N2 — 65 + £5(—24N2 + 168)]. (6.16)
If Nyg; =0, then d», d3, and d4 reduce to our previous &’j ~NY as N, — co. (6.18)

results in, respectively, Egs. (5.14), (5.15), and (5.16) of
[13]. Similarly, if Np = 0, then 32, 5’3, and &4 reduce to our
previous results in, respectively, Eqgs. (5.59), (5.60), and
(5.61) of [13]. The agreement of these reductions of d; for

In Tables VII and VIII we list the values of d g and d j with
j =1, 2, 3 for illustrative SU(3) FA theories. In Table IX

Naqj = 0 and of c~lj for N = 0 with our results in [13] for
Jj =1,2,3 serves as a check on our present calculations. As
was discussed in [13,15], these coefficients have the
leading large-N . dependence

d;~N7’

i as N, = o

(6.17)

and

we present our scheme-independent calculations of S to
order O(A7) via the expansion (6.1) and to O(AY,;) via the
expansion (6.2), with p = 1, 2, 3, where Ay and A ,;; were
defined in Egs. (4.21)—(4.24). These are denoted 'B;R, AL and

Pir ar - Tespectively. Graphically, in the first quadrant of
2adj
R? defined by (Np,N,4;) (formally generalized to non-

negative real numbers), the series (6.1) is an expansion in a
leftward horizontal direction from the »; = 0 line toward a
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TABLE IX. Values of ﬂIR as calculated to order O(A}) via Eq. (6.1), denoted S ,, and to order O(A},;) via Eq. (6.2), denoted
ﬂIR a7, , with p =2, 3, 4, in an SU(3) gauge theory w1th Ny fermions in the fundarnenfal (F) representation and N 4, fermions in the

adjomt (Ad)j) representation. Here, half-integral values of N ,4; refer to theories with 2N 44; copies of Majorana fermions in the adjoint

representation. The notation ae-n means a x 107",

(NF Nags) 1R,A2F P IRAS, iR.A; IR Ay 1R‘Al4r Iz IRAY,
(8,172) 0.230 0.199 0.367 0.328 0.344 0.353
(8,1 4.374e-2 4.105e-2 5.465e-2 5.32e-2 5.42e-2 5.43e-2
(10,0) 0.351 0.292 0.621 0.528 0.538 0.579
(10,1/2) 0.0931 0.0846 0.128 0.1215 0.125 0.126
(10,1) 1.75e-3 1.73e-3 1.837e-3 1.8345e-3 1.8363e-3 1.8361e-3
(12,0) 0.168 0.1475 0.258 0.235 0.239 0.247
(12,172) 1.71e-2 1.64e-2 1.987e-2 1.962e-2 1.975e-2 1.977e-2

given point (Np, N »4;) in the NACP, while the series (6.1)
is an expansion inward in a downward vertical direction
from the b; = 0 line toward this point (Np, N44;). Since
these are two alternate expansions for the same quantity,
one expects that as the maximal power p in the series
increases, they should yield similar values, and we see that
this expectation is satisfied by our results at the highest
order, p = 3, as listed in Table IX. The agreement between
the two series is best when the (N, N 44;) theory is near to
the upper end of the non-Abelian Coulomb phase, since in
this case the expansion parameters Ay and A,,; are the
smallest. Some explicit examples that demonstrate this
accuracy are provided by the following fractional
differences:

SU(3). (Np.Nagj) = (10, 1)
/
AL T .
1R : IRA dj — 2 2 X 10—5 (619)
IR,A%
and
1
SU(3), (N, Nagj) = 2.5
/
4 ﬂ 4
RA TR 0% 10-3) (6.20)

1R.A4F

VII. CONCLUSIONS

In this paper, generalizing our previous work, we have
considered an asymptotically free gauge theory with gauge
group G and two different fermion representations, with the
property that it exhibits an infrared fixed point such that
the infrared theory is in a non-Abelian Coulomb phase.
Specifically, we have considered a theory with N ; fermions
transforming according to a representation R of G and Ny
fermions transforming according to a different

representation, R’. We have calculated scheme-independent
series expansions of the anomalous dimensions of gauge
invariant fermion bilinears and the derivative fj evaluated
at the IR fixed point in the respective expansion parameters
Ay and Ap. As an explicit application, we have presented
calculations for an SU(N,.) theory with N fermions in the
fundamental representation and N,,; fermions in the
adjoint representation. Our results for scheme-independent
expansions of gauge-invariant fermion bilinears extend up
to O(A}) and O(A} ;) while our results for S extend up

to O(A}) and O(Aj,;). These results provide further

information about the properties of these conformal field
theories. To the extent that the transition from the lower part
of the non-Abelian Coulomb phase to the quasi-conformal
regime in the variables (N;, Ny ) is continuous and our
finite-order perturbative calculations in the lower part of the
non-Abelian Coulomb phase are sufficiently accurate, our
present results can also be useful for the investigation of
quasi-conformal theories with possible relevance to ultra-
violet completions of the Standard Model that address the
Higgs mass naturalness problem and the generational
hierarchy of SM fermion masses.
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APPENDIX: GROUP INVARIANTS

In this appendix we discuss some relevant group-
theoretic quantities. Let us denote the generators of the
Lie algebra of the gauge group G, in the representation R,
as T, with 1 < a < d,, where d, is the order of the group.
These generators satisfy the commutation relations

[T TR =

ifaeTs, (A1)
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where the f?%¢ are the associated structure constants of this
Lie algebra. Here and elsewhere, a sum over repeated
indices is understood. We denote the dimension of a given
representation R as drx = dim(R). In particular, we denote
the adjoint representation by A, with the dimension d4
equal to the number of generators of the group, i.e., the
order of the group. The trace invariant is given by

Tra(T4Th) = T(R)5.s. (A2)
The quadratic Casimir invariant C,(R) is defined by
T4TS = Co(R)L, (A3)

where [ is the dp x dp identity matrix. For a fermion f
transforming according to a representation R, we often use
the equivalent compact notation 7 = T(R) and C;=C,(R).
We also use the notation C, = C,(A) = C,(G). The invar-
iants T(R) and C,(R) satisfy the relation C,(R)dy =
T(R)d,. For G = SU(N.), C4 = N, and for R equal to

the fundamental representation, T(R)=1/2 and C,(R) =
(N2=1)/(2N.).

At the four-loop and five-loop level, one encounters
traces of quartic products of the Lie algebra generators. For
a given representation R of G,

1
d%de — 5TrR [Ta(TchTd -+ TdeTc + TchTd

+T.1,T,+ T T,T.+ T T.T})]. (A4)
As with the quadratic invariants, for a fermion f in
the representation R of G, we often use the notation
dghed = djﬁb“i. In this context, for R = Adj, we use
dgred = g4bed_ The quantities that appear in the anomalous
dimensions and derivative of the beta function Sy that we
calculate are products of these d¥° of the form
dgpeddiped = d}l-b“ldj“,,de, summed over the group indices
a, b, ¢, d. For further discussion of these, with references to
the literature, see [16,44] and references therein.
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