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The spectrum of light bound states in an SU(2) gauge theory with two flavors of fundamentally charged
fermions is investigated by solving the Bethe-Salpeter equations in the respective channels within a
3PI-type (i.e., beyond rainbow-ladder) truncation including, self-consistently, a correspondingly truncated
fermion–gauge boson vertex. Remarkable differences with respect to the meson spectrum of an SU(3)
gauge theory are found; although, in our approach, these are not as pronounced as indicated by some recent
respective investigations within lattice gauge field theory.
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I. INTRODUCTION

Understanding the physics of bound states in generic
gauge field theories is for several reasons of interest. Over
the last decades great efforts have been undertaken to
describe hadrons as bound states of quarks and glue within
QCD. Certain types of beyond-standard-model (BSM)
approaches as composite Higgs models [1,2] and techni-
color theories [3,4] also require us to understand the
physical spectrum of quantum field theories, including
those of the strongly interacting type. Last but not least,
dark matter might occur in the form of bound states within a
hidden strongly interacting sector; cf. the so-called SIMP
scenario [5].
Only recently the necessary tools for studying bound

states in strongly interacting quantum field theories have
been developed. On the one hand, in lattice gauge theories
(hadron) spectroscopy has proven to be a much more
complicated task than previously expected; see, e.g.,
Ref. [6] and references therein. On the other hand, due
to the rich and quite often complicated structure of highly
relativistic bound states of elementary constituents with
spin, studies of hadrons within functional methods have
been restricted to generalized rainbow-ladder (RL) trunca-
tions of the Bethe-Salpeter equation until some years ago;
see, e.g., Ref. [7] and references therein, and even nowa-
days most of such investigations of bound-state properties

like, e.g., form factors and decays, still rely on RL-type
approximations togetherwith a phenomenologically adapted
momentum dependence of the constituents’ interactions.
The description of relativistic bound states from quantum

field theory dates back to the seminal papers by Bethe and
Salpeter [8]. Whereas their treatment of the deuteron was
based on an expansion of the kernel, modern functional
methods emphasize the importance of symmetries; for
reviews on either the framework of Dyson-Schwinger
[9,10] and Bethe-Salpeter equations [8] or the functional
renormalization group [11,12], see [13–18]. Within the
Dyson-Schwinger–Bethe-Salpeter framework, the simplest
symmetry-preserving truncation scheme is given by keep-
ing the sum of all rainbow diagrams in the one-particle self-
energy, (i.e., in the two-point function) and all ladder
diagrams in the four-point function. This RL truncation is
the simplest scheme which obeys the constraints from the
axial-vector Ward-Takahashi identity. This is an important
feature in QCD as it guarantees the Goldstone boson nature
of the pion. However, despite its considerable successes in
the phenomenological studies of mesons and baryons, this
and related truncation schemes have some serious practical
and conceptual limitations; see, e.g., [7,19–38] for the
successes and shortcomimgs of RL-type truncations for
mesons and baryons.
Therefore, one of the long-standing goals within

functional methods is to establish more sophisticated
truncation schemes that can be systematically applied to
reliably calculate bound-state properties. This task can be
approached in two different ways: bottom-up or top-down.
While the former uses phenomenological input in order to
construct models and determine their parameters, the latter
requires a robust theoretical foundation upon which to
build. Consequently, there is a rich and diverse history
regarding truncations of relativistic bound state equations.
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(N. B.: BRL truncations can be roughly categorized as
diagrammatic; see, e.g., [39–53], and for nondiagrammatic
approaches, see, e.g., [54–60].) Recent investigations have
proven that it is essential to solve, at least, for the three-
point vertices of the elementary constituents explicitly in an
(at least approximately) self-consistent procedure. In
Ref. [53], light mesons have been investigated in what is,
thus far, the most sophisticated truncation scheme to QCD
within the Dyson-Schwinger–Bethe-Salpeter framework.
Based on the three-particle irreducible effective action
quark-loop contributions to the gluon propagator and
three-gluon vertex have been taken into account. The
resulting fully coupled system of Dyson-Schwinger equa-
tions for two- and three-point functions have been solved
self-consistently. The symmetry-preserving quark-antiquark
kernel of the Bethe-Salpeter equation for mesons has been
derived, and timelike properties of bound states have been
obtained by analytic continuation of Euclidean momenta.
Related studies of QCD have been performed recently

with functional renormalization group techniques; see
Ref. [61] and references therein. Employing a vertex
expansion scheme based on gauge-invariant operators a
quantitative analysis of chiral symmetry breaking has been
performed, and the feasibility of dynamical hadronization
has been demonstrated. The resulting quark propagator,
quark-gluon vertex (including its full tensor structure and
momentum dependence), and some properties of the four-
fermion scattering kernels have been calculated. However,
the analytic continuation necessary to discuss bound states
could not be achieved yet. This shortcoming in mainly due
to the lack of suitable regulator functions which are a
defining element of the functional renormalization group
equations. Recent progress on this issue [62] demonstrates
the technical nature of this limitation and makes evident
that it will be overcome in the near future.
In recent years, SU(2) gauge theories have been studied

mainly for two reasons. Two-color gauge theories with an
even number of fermion flavors Nf have been of interest to
lattice practitioners because Monte Carlo lattice simula-
tions of them at nonvanishing chemical potential are not
hindered by the sign problem, and one can gather infor-
mation about the phase diagram of the corresponding
strongly interacting matter on the lattice [63–70]. This
then also initiated related studies with functional methods
[50,71,72]. Recently, an SU(2) gauge theory with two
fundamentally charged Dirac fermions has been studied on
the lattice [73–77] because it provides the simplest field
theoretical realization of a unified theory of a composite
Goldstone boson Higgs and technicolor [78]. Therefore,
such a theory might serve as a template for aspects of
dynamical electroweak symmetry breaking as well as the
SIMP scenario for dark matter.
In this investigation, light fermion-anti-fermion (“mesons”)

and fermion-fermion (bosonic two-color “baryons”) bound
states are studied in an SU(2) gauge theory with two

fundamentally charged fermions within a beyond-rainbow-
ladder (BRL) truncation to the respective Dyson-Schwinger
(DS) and Bethe-Salpeter (BS) equations. A certain focus is
given on an analysis of the impact of various diagrammatic
contributions to the fermion–gauge boson vertex function
on bound-state observables. Hereby suitable model input
for the Yang-Mills two- and three-point functions is used to
evaluate the fermion–gauge boson vertex in a semi-self-
consistent way. While there are similar calculations available
[50,51], the present study improves upon these in the
truncation for the quark-gluon-vertexDSequation; for details,
see Sec. II B.
The paper is organized as follows: In Sec. II, the

employed bound-state equations as well as the determi-
nation of the necessary input are provided and discussed,
especially also with respect to preserving chiral symmetry.
In Sec. II B, the used truncations for the equation of the
fermion–gauge boson vertex are introduced. These con-
stitute the main element of the BRL truncation utilized in
the following, and therefore it is discussed how different
elements of the coupled system of DS equations for the
fermion–gauge boson vertex and the fermion propagator
influence this fundamental vertex function. In Sec. II E, a
symmetry-preserving kernel of the bound state equation is
presented, and in Sec. III, the spectrum of light fermion-
antifermion and fermion-fermion bound states in a SUð2Þ
gauge theory with two fundamentally charged fermions is
presented. In Sec. IV, our conclusions are provided. Some
technical issues related to solving for the fermion–gauge
boson vertex are deferred to the Appendix.

II. THE BOUND-STATE EQUATION

A. Constraining the kernel

In an SU(2) gauge theory, mesonic-type and baryonic-
type bound states are both two-body bound states and
bosons; their respective channels are related by the so-
called Pauli-Gürsey symmetry and are, therefore, degen-
erate. In the following, it is therefore completely sufficient
to focus on the fermion-antifermion bound states to under-
stand the low-lying spectrum. Nevertheless, degeneracy
factors of the multiplets have to take into the account the
existence of fermion-fermion (baryonic-type) bound states.
Understanding the quantum numbers of possible

Goldstone bosons which might appear in the chiral limit
will provide us some guiding principle when choosing a
truncation to the bound state equation; see below the
discussion of the axial-vector Ward-Takahashi identity
(axWTI). The pseudoreality of the fundamental represen-
tation of the group SU(2) implies also that the flavor
symmetry is upgraded to SU(4). Dynamical chiral sym-
metry breaking leaves a Sp(4) [locally isomorphic to
SO(5)] intact, and therefore one expects to have in the
chiral limit five Goldstone bosons: three of them are
fermion-antifermion bound states (similarly to the pions
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in QCD), and two of them are of the baryon and,
respectively, diquark type. Note that, in the latter case,
the Pauli principle reduces the number of states; cf. e.g., the
discussion in Ref. [79] and references therein. Note, also,
that a meson-type state with JP quantum numbers will have
the same mass as a diquark-type state with equal total spin
and opposite parity (J−P). Thus, with the meson spectrum
obtained, one can immediately extend the results and
conclusions to the two-fermion states as well.
Using this setup as a model for electroweak symmetry

breaking, the “direction” of the symmetry breaking with
respect to standard model determines the nature of the
model: For a vanishing angle one obtains a composite
Higgs model where four of the five Goldstone bosons
provide the Higgs doublet, and the fifth is neutral under
standard model charges. At the maximal angle one obtains
a technicolor theory. Three of the Goldstone bosons enter
as members of BRST quartets, and thus the longitudinal
components of the W and Z bosons become physical. The
Higgs is then the lightest scalar bound state, and the
remaining two Goldstone bosons can be considered as
dark matter candidates. In case the angle is determined
dynamically to be neither vanishing nor maximal, the
Goldstone boson Higgs mixes with the technicolor scalar
bound state, and the lighter of the two scalars will be
identified with the physical Higgs. Needless to say that then
the spectrum of this theory will be more complicated to
understand than in the two extreme cases. Last but not least,
the back-coupling to standard model particles will lead to
large corrections (see e.g., [80]), and therefore some quite
elaborate studies are required before one can judge the
usefulness of such a theory as a beyond-the-standard-model
scenario.
The two-body BS equation, depicted in Fig. 1, for

the amplitude ΓMðp;PÞ takes generically the form (see,
e.g., [14])

½ΓMðp; PÞ�ij ¼
Z
k
½Kðp; k; PÞ�ik;lj½χMðk; PÞ�kl: ð1Þ

Hereby, P denotes the total four-momentum of the bound
state, and p the relative momentum between the constitu-
ents. It is implicitly understood that the amplitude is
projected onto an eigenstate of the Pauli-Lubanski vector
and on parity and charge conjugation eigenstates; i.e., JPC

are good quantum numbers. The abbreviation
R
k stands forR

d4k=ð2πÞ4, and Kðp; k; PÞ denotes the interaction kernel.

χMðk; PÞ is the so-called BS wavefunction which is related
to amplitude via the relation

χMðk; PÞ ¼ SðkþÞΓMðk; PÞSðk−Þ ð2Þ

with Sðk�Þ being the fermion propagator. Although there is
some freedom in the momentum assignement we choose
the momenta k� to be k� ¼ k� P=2 which is the optimal
choice when solving Eq. (1) numerically.
An essential ingredient needed for the evaluation of the

BS equations is the fermion propagator SðkÞ. In covariant
gauges, it can be decomposed as

S−1ðpÞ ¼ Z−1
f ðp2Þ½ipþMðp2Þ�; ð3Þ

where Zfðp2Þ is the respective fermion wavefunction
renormalization, and Mðp2Þ is a dynamically generated
mass function. At tree level, the above expression sim-
plifies to S−10 ðpÞ ¼ ipþ Zmm, with Zm being the fermion
mass renormalization constant. The fermion two-point
function satisfies its own Dyson-Schwinger equation, given
by (see also Fig. 2)

S−1ðpÞ ¼ Z2S−10 ðpÞ

þ g2Z1fCf

Z
k
γμSðkþ pÞΓνðkþ p; pÞDμνðkÞ:

ð4Þ

The functions DμνðkÞ and Γνðkþ p; pÞ are, respectively,
the full gauge-boson propagator and the fermion–gauge
boson vertex. Cf is the gauge group’s Casimir invariant in
the fundamental representation, with Cf ¼ 3=4 in an
SUð2Þ gauge theory. Z2 and Z1f are the renormalization
constants for the fermion field and the fermion–gauge
boson three-point interaction, respectively. In the next
section, we provide details on how the various renormal-
ization factors are obtained.
The four-point kernel Kðp; k; PÞ of Eq. (1) subsumes an

infinity of processes through which a fermion and an anti-
fermion can interact. Obviously, any practical consideration
of the BS equation requires the interaction kernel to be
truncated. In the studies of light-light and heavy-light
mesons, an important guideline for these truncations has
been and is provided by the axial-vector Ward-Takahashi
identity (axWTI), which connects the respective four-point
function K to the quark self-energy ΣðkÞ of Eq. (4):

FIG. 1. The meson Bethe-Salpeter equation.

FIG. 2. The DS equation for the fermion propagator. Straight
lines are quarks, wiggly ones gluons. Filled circles denote full
propagators and vertices.
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½ΣðpþÞγ5 þ γ5Σðp−Þ�ij
¼

Z
k
½Kðp; k; PÞ�ik;lj½ΣðkþÞγ5 þ γ5Σðk−Þ�kl: ð5Þ

A diagrammatic representation of the axWTI for flavor
nonsinglet mesons is given in Fig. 3. If a particular
truncation for the quark DS and meson BS equation
satisfies this identity, the special status of light pseudoscalar
mesons as (pseudo-) Nambu-Goldstone bosons will remain
intact, and the masslessness of the pseudoscalar ground
states in the exact chiral limit is guaranteed. As it is
expected that chiral symmetry and its breaking patterns
play an important role also in technicolor and/or composite
Higgs models, we require in the following the axWTI-
induced relation between the kernels of the BS and the DS
equations.
One way to obtain an axWTI-preserving kernel K from

an approximated fermion DS equation is to require the
kernel K in coordinate-space to be given by the following
functional derivative of the fermion’s self-energy Σ with
respect to the fermion’s propagator (also in coordinate-
space)

Kðx1; x2; x3; x4Þ ¼ −
δΣðx1; x2Þ
δSðx3; x4Þ

: ð6Þ

In a diagrammatic language, the operation of Eq. (6)
corresponds to “cutting” all internal fermion lines in the
fermion propagator DS equation to generate the kernel of
the BS equation [39,40]. An illustration is provided by the
simplest nontrivial scheme which obeys the axWTI, the RL
truncation. Starting by replacing the fully dressed fermion–
gauge boson vertex in Eq. (4) with its tree-level counterpart,
possibly multiplied by a function of the gauge-boson’s
momentum squared, λðk2Þ, i.e.,

Γνðkþ p; pÞ → λðk2Þγν; ð7Þ

one applies the above described cutting technique. It is then
straightforward to derive that the corresponding symmetry-
preserving BS kernel is given by an exchange of a single
dressed gauge boson which is shown in Fig. 4 and which
consitutes one rung of the “ladder” generated by iteration of
the kernel within the BS equation. In most of its hadron
physics applications, the function λðk2Þ of Eq. (7) was
combined with the nonperturbative dressing of the gluon

propagator into a single effective interaction, and the model
parameters are chosen such that some hadronic observables
(e.g., the pion decay constant fπ and the ρ vector meson
mass mρ) are correctly reproduced.
As mentioned in the introduction the BS approach in RL

truncation has enjoyed considerable successes in the
phenomenological studies of hadrons, and it is still widely
used today. Of course, a major part of this success is related
to choosing the interaction model parameters by fitting to a
few hadronic observables. To which extent the function
λðk2Þ reflects properties of the quark-gluon vertex stays
elusive. Since the whole formalism in the RL truncation is
reflecting basically only the properties of the calculated
quark propagator, it is in general not possible to disentangle
the various physical processes and interactions (like, e.g.,
pion cloud effects) which contribute to measurable quan-
tities [81,82], or to assess the influence of gauge degrees of
freedom. Additionally, it is virtually impossible to adjust
the RL framework to strongly interacting theories different
from QCD, since there is no obvious and meaningful way
to reparametrize the effective interaction(s) to account for
changes in the principal vertex functions of the model; see,
e.g., [50]. Furthermore, in a solution for the coupled DS
equations for the QCD propagators with a rainbow trunca-
tion for the quark DS equation the onset of the conformal
window occurs for a too small number of quark flavors
[83]. This can be related to overestimating the quark loop in
the gluon DS equation, and thus can only be improved if
more than the tree-level structures of the quark-gluon vertex
are taken into account. This implies then for the current
investigation to use a more general framework including
especially solving, at least approximately, for the fermion–
gauge boson three-point vertex.

B. The fermion–gauge boson three-point vertex

The three-point fermion–antifermion–gauge boson ver-
tex possesses in covariant gauges in general twelve tensor
components. In Landau gauge, only those eight compo-
nents are needed which are purely transverse to the gauge-
boson’s momentum. Therefore, and also because other
needed correlation functions are best known in this
gauge, the investigation reported herein is done within
the Landau gauge.
The DS equation for the three-point fermion–gauge

boson vertex equation can be written in two different

FIG. 3. A diagrammatic form of the axWTI for flavor non-
singlet mesons. Yellow blob stands for the γ5 matrix. FIG. 4. The ladder truncation of the meson BSE interaction

kernel.
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forms. These as well as the corresponding derivations may
be found, e.g., in Ref. [84], chapter 2 of Ref. [85], or
chapter 7 of Ref. [86]. For the sake of brevity, we focus
immediately on the truncated form shown in Fig. 5. The
truncation (see Refs. [49,53,84–86] for its justification)
consists of considering the one-loop contributions which
contain primitively divergent vertices. These then retain
two diagrams on the rhs of the truncated DS equation which
are usually labeled as the non-Abelian andAbelian diagrams.
Retaining one or both of these two contributions is the usual
approximationwhen treating thequark-gluonvertex function
in functional or semiperturbative approaches; see, e.g.,
Refs. [47,49,53,81,84–90] (but also Refs. [91–94] for
significantly different continuum formulations).
As will become evident below it is not necessary to treat

this three-point vertex function in a fully self-consistent
way: Instead of back-coupling the full vertex function (the
red blob in Fig. 5) into its DS equation, a projected version
is used for the internal vertices (denoted by orange squares
in Fig. 5). As this point is of a completely technical nature
all details of this procedure are described in Appendix. It is
sufficient to note for the following that for the full vertex
the complete eight transverse components are used. For the
purpose of solving its DS equation, however, we project it
onto the respective tree-level component, thereby calculat-
ing an effective dressing λðk2Þ, and in turn we employ this
on the rhs of the vertex DS equation.
In the context of bound state studies, the above-men-

tioned approximation provides a significant and almost
necessary technical simplification. The most important
reason for this approximation relates to the implementation
of the cutting procedure for the construction of a symmetry-
preserving BS kernel. If one were to employ the vertex in a
fully self-consistent way one would have to take into
account its implicit fermion propagator dependence, and
the functional derivative in Eq. (6) would produce some
very complicated terms in the bound state equation as, e.g.,
a five-point Green function with four fermion and one
gauge boson leg. While it is possible to obtain a solvable
BS kernel with a self-consistent treatment of the fermion–
gauge boson vertex (see, e.g., Refs. [52,53]), so far no one
has tackled the challenge of solving the bound-state

equation with the Abelian loops included in a self-
consistent manner. Our calculation can thus be seen as
an intermediate step towards a more complete treatment:
Additional diagrams are included, both in the vertex
equation and the BS kernel, but the evaluation of the
fermion–gauge boson vertex itself is considerably simpli-
fied without loosing, at least partially, the back-coupling
effect of the vertex on itself.
Besides the one-particle irreducible (1PI) equation,

depicted in Fig. 5, we also consider a form derived from
the three-particle irreducible (3PI) formalism [95]; cf. also
Refs. [53,85,86,88], with all the internal vertices dressed.
The notation 1PI/3PI should hereby not be understood in a
strict manner but more as convenient labels for the
presentation of the results, mainly because 1PI or 3PI
formulations would entail a self-consistent evaluation of all
vertex functions. Note that additional vertex dressings in
the 3PI approach can effectively be seen as a partial
inclusion of the disregarded two-loop terms. In addition,
they also provide an estimate of the truncation errors. For
the non-Abelian diagram in the 3PI framework also the
fully dressed three-gauge boson vertex is required.

C. Gauge boson correlation functions

As became evident in the discussion above, the gauge-
boson propagator and the three–gauge boson vertex are
needed as input. For determining the latter, one also the
ghost propagator will serve as input. In Landau gauge, the
gluon and ghost propagators, DμνðkÞ and DGðkÞ, respec-
tively, are of the form

DμνðkÞ ¼ TðkÞ
μν

Zðk2Þ
k2

; DGðkÞ ¼ −
Gðk2Þ
k2

; ð8Þ

with TðkÞ
μν ¼ δμν − kμkν=k2 being the transverse projector

with respect to momentum k. The dressing functions Zðk2Þ
and Gðk2Þ can be determined from their respective DS
equations. A compilation of results for Yang-Mills corre-
lation functions at different levels of truncations can be
found in Ref. [96]. An example for those dressing functions
(which are then used also in the following) are shown in
Fig. 6. Details of their calculation are given in Ref. [97].
Obtaining the Yang-Mills propagators from their DS
equations has the benefit of providing not only the required
dressing functions but also other essential input such as
renormalization constants. Hereby, Z̃3 and Z3 being,
respectively, the ghost and gauge boson renormalization
constants are used to determine the corresponding renorm-
alization constants for other Greens functions via Slavnov-
Taylor identities. We will return to this point below when
we will discuss the numerical method for the coupled
system of DS equations for the fermion propagator and the
fermion–gauge boson vertex.
For the three–gauge boson correlation function we use

the truncation depicted in Fig. 7. First of all, based on the

= + +

Non−Abelian Abelian
Tree

FIG. 5. The truncated fermion–gauge boson three-point vertex
DS equation, in “1PI” formulation. The internal fermion–gauge
boson vertices (orange squares) are modeled; see Appendix for
details. We also consider the “3PI” approximation, with all
internal vertices dressed.
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results of Ref. [97] it is a fair approximation to keep for the
gauge group and Lorentz tensor structure only the tree-level
ones. Hereby, the tree-level three–gauge boson vertex is
denoted by Γð0Þ

μνρðp1; p2; p3Þ. Second, the momentum
dependence of the multiplying function can be quite well
represented by the form

Γμνρðp1; p2; p3Þ ¼ Aðs0Þ · Γð0Þ
μνρðp1; p2; p3Þ; ð9Þ

where the function A depends only on the symmetric
momentum variable s0 ¼ ð1=6Þ · ðp2

1 þ p2
2 þ p2

3Þ. The
model dressing function A is taken from a DS calculation
following Ref. [97]. However, here we do not include all of
the self-energy contributions which were considered in this
reference but instead choose a “ghost-loop-only” approxi-
mation as depicted in Fig. 7. The resulting dressing
function is shown in Fig. 8. Note that these restrictions,
in terms of the employed tensor structures, the momentum
dependence and the only kept diagram, are well justified by
previous results on the three-gluon vertex [53,97,98] which
in turn are substantiated by lattice results [99] although in
four dimensions they are somewhat inconclusive at lower

energies due to the large statistical uncertainties. (N. B.: For
a discussion of the technical difficulties to extract the three-
gluon vertex from lattice gauge-field configurations, see
Ref. [100].)
Here a remark is in order: All Yang-Mills input is taken

from DS calculations which were originally performed for
QCD, i.e., for an SU(3) gauge theory. Nevertheless, these
functions can equally serve as input into our SU(2)
calculation without any changes due to the choice of
truncating the DS equations. In the ghost and gluon
propagator as well as the three-gluon vertex computations
specified in Ref. [97], only those diagrams were retained
which are proportional to the product g2Nc, with g the
gauge coupling and Nc the number of colors. Thus one can
easily account for the difference in the number of colors by
changing the renormalization condition for the running
coupling accordingly. The product g2Nc remains the same
as in QCD, and all DS equations are formally remain
unchanged. This simple trick would have been impossible
if, e.g., the unquenching effects were taken into account for
either of the vertex functions.

D. Numerical results for the fermion propagator
and fermion–gauge boson vertex

With the Yang-Mills input specified, we briefly comment
on the solution method for the coupled set of equations for
the fermion propagator and fermion–gauge boson vertex.
We use a fixed-point iteration technique, starting with an
initial guess for the fermion dressing functions and the
respective field renormalization constant Z2. Note that in
the chiral limit a single renormalization condition for
fermions is sufficient. In addition, this quantity is ultra-
violet finite in the Landau gauge. From Z2 and the ghost
propagator input the fermion–gauge boson vertex renorm-
alization constant Z1f is determined from a simple identity
which is valid in the mini-MOM scheme [101] in Landau
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gauge: Z1f ¼ Z2=Z̃3. As in this work wewill report only on
results in the chiral limit, this fixes all the ingredients
needed in the vertex DS equation. Therefore, the vertex can
be evaluated and back-fed into the quark propagator DS
equation until convergence is reached. All further details,
and especially how the internal vertex is obtained from tree-
level projection of the fully calculated vertex, are delegated
to Appendix.
In Fig. 9, the corresponding results for the fermion mass

function and the dominant (tree-level) tensor structure of
the fermion–gauge boson vertex are displayed for several
truncations. As noted before, we consider both the 1PI- and
3PI-type of DS equations, and we also study a truncation in
which only the non-Abelian diagram (NA) has been
retained in the vertex equation in order to probe the relative
strengths of various contributions. One of the first things to
note is that in the 1PI-based truncation the influence of the
Abelian diagram is virtually nonexistent compared to the
non-Abelian one. This is in accordance with previous
results for the quark-gluon [81] and scalar-gluon [102]
vertex functions. However, we note already here that
despite its negligible effect on these fundamental vertex
functions, the Abelian diagram induces a moderate cor-
rection for meson masses in 1PI formulation as will be seen
in the next section. It would, thus, not be entirely correct to
assume that these diagrams can be completely neglected in
the 1PI approach, at least when bound state studies are
concerned.
By considering the results with the non-Abelian diagram

alone, one can see that the dressed three-gauge boson
vertex has an appreciable impact leading to a significant
reduction in the dressing functions. The screening effects of
the full gauge-boson three-point correlation function in the
3PI-based approach are almost canceled exactly by the
dressed third fermion–gauge boson vertex in the Abelian
diagram. Due to this cancelation (which may or may not be
coincidental) the final results are almost identical in the
1PI- and 3PI-based approaches.

A further test of how close the results for the fermion
propagator are in these two different approaches is pro-
vided by its spectral functions. To this end, we calculate the
fermion scalar spectral function by Fourier transforming
σSðp2Þ ¼ Zfðp2ÞMðp2Þ=ðp2 þM2ðp2ÞÞ:

σSðtÞ ¼
Z

d3x
Z

d4p
ð2πÞ4 e

ip·xσSðp2Þ: ð10Þ

In Fig. 10, the absolute values of σSðtÞ in both approaches
are displayed. The cusps in the curves correspond to zero
crossings of σSðtÞ and signal positivity violation for the
fermions. First of all, we note again the close proximity of
the results for the two different approaches.
With respect to the inferred positivity violation, a remark

is in order here. Patterns similar to the one depicted in
Fig. 10 were found also in some simpler truncation
schemes, e.g., in the rainbow approximation to the quark
propagator DS equation; cf. Ref. [103] and references
therein. However, the investigation reported in [103]
provided hints that the quark positivity violation within
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FIG. 9. The dynamically generated fermion mass function (left) and the fermion–gauge boson tree-level tensor structure
T1ðp2; 2p2; 3p2Þ (right) in different truncations for the fermion–gauge boson DS equation. “NA” labels the calculation with the
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the rainbow approach is merely a truncation artifact. The
negative norm contributions to σSðtÞ vanish upon the
insertion of some additional tensor structures in the quark-
gluon vertex. Although the here reported results are much
more robust the observed positivity violationmight still be an
artifact of the approximate treatment of the fermion–gauge
boson vertex. We are nevertheless confident that the trunca-
tion errors for the fermion propagator and the fermion–gauge
boson are small enough to have no substantial impact on the
bound-state spectra.
To summarize this subsection, it is encouraging that the

final results with both one-loop diagrams included are
almost insensitive to whether the 1PI or 3PI framework has
been chosen. Since the additional vertex dressings in the
3PI version can be seen as an approximation to the effective
re-summation of certain two-loop terms this leaves the
possibility that the impact of the neglected terms is not
overwhelmingly large, and that by neglecting them we have
not made an error of qualitative importance. However, it
should be pointed out that the aforementioned cancelation
between the dressed three-gauge boson and fermion–gauge
boson vertex in the 3PI formalism is almost certainly
restricted to an SU(2) gauge theory. Given the change in
color factors such a cancelation will not be present to such a
high degree in a QCD calculation. Noting that the non-
Abelian diagram carries a factor Nc and the Abelian one is
suppressed by a factor of 1=Nc one can predict an even
smaller impact of the Abelian diagram in QCD.
Finally, concerning the overall reliability of evaluations

for certain propagators and vertices employed here, we
mention that our results for dynamical fermion masses in
Fig. 9 agree, on a qualitative level, with corresponding
lattice estimates for SU(3) (see e.g., [104,105]) and SU(2)
(see e.g., [106]) gauge field theories. However, lattice
calculations cannot yet probe so deep into the infrared,
meaning that the IR plateau forMðpÞ is less pronounced in
Monte Carlo simulations than in our investigation. Besides
reproducing the shape of the function MðpÞ reasonably
well, compared to lattice results, we also see a trend which
has already been observed on the lattice, regarding the

infrared values ofMðpÞ. Namely, in our SU(2) calculations
the function MðpÞ flattens out at lower values (in the
respective internal units) in the IR, than it does in SU(3)
computations with similar approximations; see e.g., [51]. In
other words, we see a lower “constituent fermion mass” for
an SU(2) case than an SU(3) one. Such a behavior has
already been noted in lattice calculations; compare e.g.,
[104] with [106] (bearing in mind that some caution should
be taken with such comparisons, due to differing lattice
numerical setups). These facts give us confidence that our
truncations, while possibly neglecting some effects of mild
quantitative importance, are qualitatively robust enough to
serve as a useful guide for future studies of this kind.

E. Truncations for the kernel
of the bound-state equations

Besides the propagators and vertex functions discussed
above the most important ingredient into the reported
calculation is the symmetry-preserving BS kernel as
obtained with the cutting technique of Eq. (6). For the
truncated fermion–gauge boson vertex DS equation shown
in Fig. 5 the corresponding truncated kernel is displayed in
Fig. 11. In the 3PI-based truncation, there are additional
dressings for the three–gauge boson and fermion–gauge
boson vertices. As it is straightforward to implement them
we are refraining from showing them explicitly.

III. GROUND STATE MESONS

Although our study is motivated, in large part, by
exploring possibilities for a theory of beyond-the-
standard-model physics we will mostly not concern our-
selves with the composite Higgs and/or technicolor aspects
of the considered gauge theory. The aim here is to obtain
the ground state spectrum of J ≤ 1 bound states and
compare them with lattice results of Refs. [73,74]. In
addition, to allow for a further development of truncations,
we are interested in how the calculated ground state
spectrum is influenced by the different contributions in
the DS equations, and hereby especially in the DS equation

= + +K

+ ++

FIG. 11. A symmetry-preserving truncated BS kernel in agreement with the truncated fermion–gauge boson vertex DS equation in
Fig. 5.
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for the fermion–gauge boson vertex. Of course, such tests
can be performed completely with arbitrary internal units
only. Therefore, we will choose a scale more for the matter
of convenience than for necessity. The quantity which is
fixed in scale-setting is the Higgs vacuum expectation
value, vew ¼ 246 GeV. On a purely formal level, this
quantity is identical to the “pion” decay constant, i.e.,
the decay constant of the pseudoscalar Goldstone fields.
It is then calculated via the identity [107]

fPS ¼
Z2Ncffiffiffi
2

p
P2

tr
Z
k
ΓPSðk;−PÞSðkþÞγ5PSðk−Þ; ð11Þ

with k� ¼ k� P=2, and Γπ being the Goldstone boson BS
amplitude, normalized with the Nakanishi condition [108].
(N. B.: In the above relation, we employ conventions for
which fπ ¼ 93 MeV in QCD.)
The bound state masses in various truncations for the

employed DS and BS equations are shown in Table I. As
only the chiral limit is considered, the pseudoscalar, i.e.,
Goldstone boson, states are strictly massless. The results
are displayed in arbitrary units in order to separate the
direct influence of the truncations from the scale setting
procedure. We provide the numerical value of fπ in the last
row of the respective columns to allow for transformation to
physical scales. The errors on the masses are purely
numerical and stem from the chosen way to extract the
masses. In Euclidean field theory, the bound state on-shell
condition P2 ¼ −M2 (with M being the bound state mass)
implies working with complex-valued total momentum P.
However, there are ways to reliably estimate some of the
hadronic observables by extrapolating from the region of
spacelike P2; see, e.g., Refs. [109–111] and references
therein. Here we employ the inverse vertex extrapolation
technique, which is explained in detail in [109]. Errors for
some of the meson masses in Table I come from this
approximate treatment. The efficiency of the method was
thoroughly tested in [50], and it was found to be very
reliable, at least for relatively light J ≤ 1 mesons which we
consider here. Note that, in the chiral limit, the Goldstone
boson decay constant fPS is one of the very few quantities
which can be calculated exactly purely from spacelike

momenta or, more precisely, for P2 ≥ 0. For this reason, the
scale setting procedure does not introduce any additional
uncertainties.
Let us take the results in the “NA, 1PI” column of Table I

as the point of reference. Comparison with other trunca-
tions shows that all the modifications (addition of Abelian
loops, the 3PI vertex dressings), induce moderate correc-
tions. In terms of relative mass differences, the 0þþ channel
seems to be most susceptible to various approximations,
whereas the vector mesons (especially the axial one) are
somewhat robust in this regard. The Abelian diagram
induce modest relative changes to the bound state masses,
ranging from 5% to 10% across different channels. Note
that not only for QCD but also for all larger gauge groups
(which have also been investigated with respect to beyond-
the-standard-model physics; see, e.g., Ref. [112] and
references therein) the impact of these diagrams would
be further suppressed by group-theoretical factors.
It is interesting to note that the mass of the scalar in this

calculation seems to be only mildly influenced by BRL
effects. In the 1PI-based approach (including the Abelian
diagram), one has m0þþ=fPS ¼ 5.0� 0.1, and for the 3PI
one, m0þþ=fPS ¼ 5.1� 0.1; i.e., both values are very close
to the RL result [50]. This is in contrast to the calculation of
the scalar meson mass in Ref. [53]: The RL value
m0þþ=fπ ¼ 6.96 is significantly lower than the obtained
value in the much more sophisticated 3PI truncation
employed there, m0þþ=fπ ¼ 10.5� 1.0. Therefore, this
comparison provides evidence that (i) the bound-state
masses for an SU(3) gauge theory are much larger than
for a SU(2) one (N. B.: This result is in agreement with the
analysis of dynamically generated fermion masses in
Ref. [112]), and (ii) BRL effects in this channel are more
pronounced for SU(3) than SU(2). Having a look at the
vector and axialvector channels these differences seems to
be much smaller. The QCD study of Ref. [53] provides for
the 3PI–3-loop truncation m1−−=fπ ¼ 7.0 whereas we
obtain m1−−=fPS ¼ 8.1� 0.2. As usual BRL effects
are small for the vector channel; cf. the discussion in the
review [7] where the presence/absence of BRL corrections
is related to importance/insignificance of spin-flip-type
interactions among the constituents. For the axial vector
channel BRL effects are significant, and the SU(3)
versus SU(2) comparison points towards an even smaller
difference or maybe even almost no difference within
the numerical accuracy, m1þþ=fπ ¼ 12.4� 1.0 versus
m1þþ=fPS ¼ 10.9� 0.2
The differences discussed above are important for future

investigations which aim at a good numerical precision.
Certainly, more work is needed to judge whether a level of
“apparent convergence” has been reached already. From a
qualitative perspective, however, one can note already some
interesting trends. The ground state spectrum of the theory
investigated here has also been studied on the lattice
[73,74], but as it is shown in Table II, the corresponding

TABLE I. Ground state masses in various truncations of the
employed DS and BS equations in internal units: “NA” stands for
the non-Abelian diagram only, “AB” for including the Abelian
one. The given errors are purely numerical and are estimated
within the employed extrapolation procedure, see text for details.

mJPC NA, 1PI NAþ AB, 1PI NA, 3PI NAþ AB, 3PI

m0−þ 0 0 0 0
m0þþ 385(8) 358(7) 335(7) 356(7)
m1−− 628(13) 583(12) 597(12) 567(11)
m1þþ 794(15) 775(14) 778(14) 760(14)
fπ 68 72 62 70
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results have relatively large uncertainties, definitely larger
ones than in between our different truncations. It is
interesting to note that the masses as obtained on the
lattice seem to be systematically larger than our results. As
a rule of thumb one may summarize the comparison by the
statement that the masses from the DS equations are located
at the lower end of the 1-σ-band of the lattice results.
An inspection of Table I reveals that all of the improve-

ments of the simplest “1PI, NA” scenario which we have
considered suppress the masses further. Taken together
with the influence of pion backreaction, as investigated in
[81], one is drawn towards the conclusion that all of the
one-loop corrections to the fermion–gauge boson vertex
beyond the simplest non-Abelian treatment invariably have
a screening effect on the results for bound states, seemingly
pushing them away from experimental data in QCD, or
central lattice estimates in an SU(2) technicolor theory.
This motivates than a fully self-consistent calculation for
different gauge groups, especially because the meson mass
results of Ref. [53] already show quite some improvement
in this regard.

IV. CONCLUSIONS

Building on the established knowledge of correlation
functions in gauge theories in Landau gauge, we have
studied the effects of various truncations of the DS equations
for the fermion–gauge boson vertex, the fermion propagator,
and the ground state spectrum in an SU(2) gauge theory. For
both, the fundamental vertex functions and the bound state
masses, we found relatively mild changes in results for
different truncations. For the masses, they were on the order
of roughly 5% to 10%. Where the recent respective lattice
results [73,74] seem to indicate a significant difference to
results in an SU(3) gauge theory, we obtained masses which
were consistently lower than the central values of the lattice
results but are nevertheless in agreement with them at an
approximately 1-σ level. Therefore, differences to the SU(3)
meson spectrum remain, especially for the scalar, but they are
not as pronounced as indicated by the (central values of the)
lattice results.
It remains to be seen if the methods outlined here can

lead to certain improvements when applied to the baryon

sector of QCD, for instance in the description of the
nucleons’ negative parity partner [51]. Also, the fact that
even in our simplified framework the influence of the
Abelian diagram in the fermion–gauge boson equation was
found to be modest but still noticeable, is suggestive that in
a self-consistent calculation these terms might induce
potentially significant corrections because in the BS kernel
there are then four fully dressed fermion–gauge boson
vertices [52,53].
For completeness, we wish also to address the issue on

how some of our results might change if one considers
gauge groups different from SU(2). We mentioned at the
end of Sec. II D that we get a smaller constituent fermion
mass, expressed in respective internal units, for an SU(2)
gauge theory than an SU(3) one. This, in turn, translates to
smaller meson masses, in units of the “pion” decay constant
fπ , in the two-colored setup compared to a three-colored
theory, see e.g., [51]. This scaling behavior for masses
arises naturally from the color Casimir operator Cf in
Eq. (4), which makes the fermion self-energy more relevant
as the number of colors is increased. Naively, we would
expect that all hadrons become more massive as more
colors are added to the theory. This expectation is in accord
with the main conclusions of [112]. However, in all these
considerations it is implicitly assumed that the back-
coupling of fermions onto the Yang-Mills sector has only
a mild quantitative impact. Based on some current lattice
results for an SU(3) gauge theory (e.g., [113]), such an
assumption seems justified for a relatively small number of
light, fundamentally-charged fermions, but it might not
hold if the number of light flavors is increased [83], or if
one looks at fermions belonging to higher-dimensional
representations of the gauge group [4]. For the latter
scenarios, a careful investigation on how fermions influ-
ence the Yang-Mills sector should be undertaken, which is
beyond the scope of our current model. We are presently
working on improved approximations to our systems of
equations, which would allow one to assess the influence of
fermions in a reliable and qualitatively robust way.
In summary, the investigation presented here has pro-

vided one further step towards a fully self-consistent
treatment of gauge-invariant bound states in gauge theories
with a sufficiently sophisticated truncation scheme of DS
and BS equations. Establishing such a scheme will first of
all provide more insight into the binding mechanisms for
highly relativistic bound states. For theories with a walking
behavior of the coupling (which implies that one deals with
a multiscale problem), functional methods based on con-
tinuum quantum field theories may offer even a higher
precision than lattice calculations.
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APPENDIX: NUMERICAL METHOD FOR THE
CALCULATION OF THE FERMION–GAUGE

BOSON VERTEX

In the treatment of the fermion–gauge boson vertex, we
implement a scheme described in Ref. [49]. The main idea
is to use on the rhs of the vertex equation a projection of the
vertex on its tree-level tensor structure and therefore
significantly simplified internal vertices. This projection
is achieved by constructing an effective dressing function
λðk2Þ; cf. Eq. (7). To be explicit, the following para-
metrization is used,

λðk2Þ ¼ hZ1f

�
LðM0Þ
1þ y

þ 1

1þ z

×

�
4π

β0αμ

�
1

logðxÞ −
1

1 − x

��
18=44

�
; ðA1Þ

with h ¼ 2.302; x ¼ k2=0.6; y ¼ k2=0.34; z ¼ k2=0.33;
β0 ¼ 11Nc=3, and αμ ¼ 1.114 the renormalized coupling
at a scale μ ¼ 3 (in arbitrary units). The infrared enhance-
ment LðM0Þ depends on the quark mass at zero momentum
(M0 ¼ Mðp2Þ ¼ 0) and is parametrized as a ratio of
polynomials:

LðM0Þ ¼
aþ bM0 þ cM2

0

M0 þ dM2
0

: ðA2Þ

The coefficients a, b, c and d are determined such that the
total model dressing λðk2Þ fits reasonably precisely the tree-
level projection of the full calculated fermion–gauge boson

vertex. These parameters are given in Table III for the
truncations considered in this work.
For completeness we provide the covariant tensor

decomposition for the full calculated vertex Γμðp1; p2Þ,
with p1 and p2 denoting, respectively, the incoming and
outgoing fermion momenta. Defining the relative momen-
tum l ¼ ðp1 þ p2Þ=2, and the outgoing gluon momentum
k ¼ p2 − p1, we use the orthonormal combinations:

tμ ¼ k̂μ;

sμ ¼ ĥμ with hμ ¼ TðtÞ
αβl

β;

γμTT ¼ TðtÞμαTðsÞ
αν γν ¼ γμ − =ttμ − =ssμ; ðA3Þ

with the hat denoting normalization of the corresponding
four-vector. Any components proportional to tμ will be
projected out in Landau gauge, leaving eight purely trans-
verse tensors. Their basis is chosen to be

ðγμTT; sμÞ × ð1; =s; =t; =s=tÞ: ðA4Þ

Here, 1 stands for a Dirac unity matrix. The T1 dressing
function, plotted in the right panel of Fig. 9, is the prefactor
of the tensor γTT.
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